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Abstract: Illumination estimation is the key routine in a camera’s onboard auto-white-balance
(AWB) function. Illumination estimation algorithms estimate the color of the scene’s illumination
from an image in the form of an R,G,B vector in the sensor’s raw-RGB color space. While
learning-based methods have demonstrated impressive performance for illumination estimation,
cameras still rely on simple statistical-based algorithms that are less accurate but capable of
executing quickly on the camera’s hardware. An effective strategy to improve the accuracy of
these fast statistical-based algorithms is to apply a post-estimate bias correction function to
transform the estimated R,G,B vector such that it lies closer to the correct solution. Recent work
by Finlayson, Interface Focus, 2018 showed that a bias correction function can be formulated as
a projective transform because the magnitude of the R,G,B illumination vector does not matter
to the AWB procedure. This paper builds on this finding and shows that further improvements
can be obtained by using an as-projective-as-possible (APAP) projective transform that locally
adapts the projective transform to the input R,G,B vector. We demonstrate the effectiveness of
the proposed APAP bias correction on several well-known statistical illumination estimation
methods. We also describe a fast lookup method that allows the APAP transform to be performed
with only a few lookup operations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction and Related Work

Color constancy is the term given to the human visual system’s ability to perceive objects as
the same color even when viewed under different illuminations [1]. Camera sensors lack this
ability and unprocessed raw camera images contain noticeable color cast due to the scene’s
illumination. To compensate for scene illumination, cameras perform onboard computational
color constancy that makes up their auto-white-balance (AWB) functionality. AWB is a two-step
procedure that involves: (1) estimating the color of the illumination in the camera’s color space,
and (2) correcting the image based on the estimated illumination.
This paper addresses the illumination estimation step in computational color constancy. The

goal of illumination estimation is to determine the R,G,B response of the camera’s raw sensor
to the scene’s illumination. The most straightforward way to do this is to capture an image of
an object that acts as a pure reflector–for example, an achromatic (i.e., white or neutral) object.
Under pure white light, an ideal camera sensor’s response to the achromatic object should lie
along the achromatic “white line” (i.e., R=G=B). Under real illuminations, the camera’s response
to a pure reflector does not lie along the achromatic line and the R,G,B response represents
the measurement of the illumination in the sensor’s raw-RGB color space. An interesting
observation is that the magnitude of the R,G,B response does not matter; any uniform scale factor
(i.e., αR,αG,αB) of the camera’s response represents the same illumination color. The change in
α is due to varying radiant power of the scene’s illumination as well as settings on the camera,
such as exposure and gain.
In practice, we do not have neutral patterns in our scenes and the color of the illumination
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Fig. 1. This figure shows the basic idea of improving an illumination estimation algorithm
using a bias-correction function (denoted as Pj

i
, where i represents a particular camera model,

and j denotes the illumination estimation method). For a given camera model, statistical-
based illumination estimation methods tend to fail in a systematic way. A bias-correction
function can be estimated based on training data such that an illumination estimation
method’s estimates are corrected in order to lie closer to the ground truth solution.

must instead be estimated directly from the image. The task of illumination estimation is a
well-studied area of computer vision. Illumination estimation methods fall roughly into two
categories: statistical-based methods and learning-based methods. Statistical-based methods use
statistics from an image’s color distribution and spatial layout to determine the R,G,B illumination
vector. Representative examples include gray world (GW) [2], general gray world (GGW) [3],
gray edges (GE) [4], shades of gray (SoG) [5], white patch [6], bright pixels [7], and PCA [8].
Learning-based methods rely on training data with examples where the illumination is known
(e.g., by placing a neutral object in the scene) and use various strategies to estimate or predict the
illumination. Representative examples include [9–16]. In recent years, learning-based methods
employing deep-learning techniques have shown state-of-the-art performance [16].

Learning-based methods, however, suffer from a substantial increase in complexity, with deep
network architectures requiring millions of parameters. In the absence of specialized chips or
GPUs, the computational and memory requirements associated with running these methods
onboard the camera are still prohibitive. As a result, cameras currently rely on simple statistical
methods even though these methods are not as accurate as their learning-based counterparts.
A less explored alternative to improve the accuracy of statistical methods, while retaining

their low complexity characteristic, is to apply a post-estimate bias correction. The general
idea of bias correction is to rectify systematic estimation errors (or biases) in an algorithm by
mapping the algorithm’s estimates closer to the ground truth using a bias correction function.
The bias-correction function can be computed per camera for a given illumination estimation
method. Figure 1 shows an illustration of this idea. The effectiveness of illuminant estimation
bias correction was demonstrated by Finlayson [17]. In [17], Finlayson proposed a linear bias



correction function based on the first-, second-, and higher-order moments of the image colors or
image color derivatives.
More recently, Finlayson [18] showed that bias correction could be formulated as a 3×3

projective matrix transform. The work in [18] noted that since the illuminant can be estimated
only up to a scale factor, the three-dimensional R,G,B vector can be interpreted as a color ray
in projective space. Thus, the role of the projective bias correction is to determine a projective
function that maps estimated illuminant R,G,B rays to their corresponding ground truth R,G,B
rays. This ‘ray mapping’ is analogous to the global projective transform employed in computer
vision (referred to as a homography) that is used to map image rays between two camera views.
The work in [18] demonstrated the effectiveness of the projective bias correction on GE [4].
Contribution The work in this paper builds on the idea proposed in [18]. First, we provide an
overview of bias correction using a global projective transform and show its effectiveness when
used with several different statistical-based algorithms. Next, we extend the global projective
transformation to use an as-projective-as-possible (APAP) transform that locally adapts the
transform to the input R,G,B vector. APAP provides a more accurate result, but has a higher
computational demand because the local transformation needs to be estimated independently for
each input. To reduce the computational load, we describe a lookup table (LUT) procedure that
circumvents the need to compute an APAP projective transform for each input. We demonstrate
the effectiveness of our APAP projective bias correction technique on several statistical methods
and show that estimation errors can be reduced up to 24%-30% over the global transform.

2. Preliminaries

We begin with a short introduction to the idea of bias correction using a global projective
transform proposed in [18]. A system of linear equations that has the following form appears
frequently in projective geometry

αiyi = Pxi . (1)

The form of equation (1) is akin to an ordinary system of linear equation except for the scale
factor αi . Because of this, P is considered a projective transformation that can map xi to yi only
within some unknown multiplicative factor.

In the illumination estimation problem, P will take the form of a 3×3 matrix. We can define
x = [ R G B ]T to be an R,G,B estimate of the illumination by some algorithm, and y is used to
represent the corresponding ground truth R,G,B value of the illumination. From training data,
we can obtain a set of N corresponding (xi, yi) where i = 1, ..., N . As discussed in Section 1, the
magnitude of the R,G,B response does not matter in an AWB problem and the problem takes on
the same form as equation (1).
In [18], Finlayson proposed an alternating linear least squares procedure to solve for P. The

estimated P served as a bias-correction function that mapped newly estimated xt to a more
accurate estimate yt . This global projective mapping is illustrated in Figure 2. The work in
this paper builds on this initial idea but extends the global P to be a locally weighted projective
transformation.

3. Proposed APAP Method

In this section, we first describe how the global projective transform is solved using an alternating
least squares solver. We then develop the APAP model that improves upon the global case by
appropriately weighting the training data based on the input. Finally, we explain how the entire
bias correction framework can be reduced to simple lookup operations followed by multiplication
with the selected 3×3 projective transform matrices.
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Fig. 2. This figure provides an overview of the use of global projective bias correction
for illumination estimation. A statistical-based algorithm is used to estimate the R,G,B
illumination vectors from a set of training images. These are denoted as xi . The corresponding
R,G,B ground truth values are obtained from color rendition charts placed in the training
images’ scenes. These are represented as yi . A global 3×3 transform P is solved according
to equation (1). The matrix P is used to map xi such that it lies closer to the true solution yi .

3.1. Global projective transformation

As described in the previous section, a global projective transform P can be estimated from a
training set of N images with associated ground truth. The training images have a color rendition
chart added into the scene. For each training image, the ground truth R,G,B value of the scene’s
illumination is obtained by averaging the R,G,B values of the achromatic patches on the imaged
color chart.
A matrix A of size 3×N is constructed to contain the algorithm’s R,G,B estimate of the

illuminants {xi}Ni=1, while a 3×N matrix B holds the corresponding ground truth values {yi}Ni=1.
The projective transformation matrix P for bias correction can then be obtained by solving the
following least squares problem:

{P,D} = arg min
P,D

| |PAD − B| |F, (2)

where the N×N diagonal matrix D is introduced to account for the differences in scale between
the input and output vectors, and | |.| |F denotes the Frobenius norm. The auxiliary variable D
allows us to reduce the projective estimation problem to an ordinary linear least squares problem.

However, since both P and D are unknown, we solve for the two variables using an alternating
least squares [19, 20] procedure described in Algorithm 1. Please refer to [19] for a detailed
analysis of the convergence of Algorithm 1. Solving for P in this fashion finds a projective
transformation that achieves the best global fit to the data. It is important to note that once we
have solved for P, we do not need to consider the magnitude of the estimate, since we can recover
the illuminant only up to a scalar. Note also that the matrix D is required only when solving
equation (2) and plays no role when P is used for bias correction.

For a new test image with an estimated illuminant xt , the bias-corrected illuminant yt can be
obtained as yt = Pxt .

3.2. As-projective-as-possible transformation

An even better fit to the data can be achieved if the projective transform is modified to locally
adapt to the training data. This idea was demonstrated by Zaragoza et al. [21] for computing
projective planar transforms for use in image stitching. The basic idea of the APAP transform
is to weight the contribution of training data closer to the test input data when estimating the
projective transform.
We adapt the method of [21] to our problem of bias correction. Towards this end, we first

define a function that returns a weight between 0 and 1, indicating how close the test illuminant



Algorithm 1 Estimating a projective transformation using alternating least squares.
Input: Matrix A containing the N R,G,B estimates of the illuminant obtained using the chosen

illumination estimation algorithm, and matrix B containing the corresponding ground truth
R,G,B values of the light

Output: The 3×3 projective bias correctionmatrixP, and an auxiliary variableD that compensates
for the difference in magnitude between the estimated illuminants and their corresponding
ground truths

1: q = 0, D(0) = arg min
D

| |AD − B| |F
2: do
3: q = q + 1
4: P(q) = arg min

P
| |PAD(q−1) − B| |F

5: D(q) = arg min
D

| |P(q)AD − B| |F

6: while | |D(q) − D(q−1) | |F > threshold

estimate xt is to the training data {xi}Ni=1. The weights are calculated as

wit = exp(−Θ(xt, xi)/σ2
w), (3)

where Θ is the angular error [22] between xt and xi , and σw is a scale parameter. The scalar
weights wit give higher importance to data that are closer to the test image’s illuminant estimate
xt .

For a given test image with estimated illuminant xt , we solve a weighted least squares problem
of the form

{Pt,Dt } = arg min
P,D

| |PAWtD − BWt | |F, (4)

where Wt = diag(wit ), i = 1 to N .
The intuition behind using Wt is that assigning higher weights to data closer to xt produces a

projective transformation Pt that better respects the local structure around xt . This is in contrast
to our first model that uses a single and global P for all xt . The net effect of the weighting matrix
Wt is to produce an overall transformation that adapts flexibly to the data, yet preserving the
projective trend of the transformation. The weighted least squares fit Pt can be obtained by
solving equation (4) using the same alternating least squares procedure described in Algorithm 1,
and the bias-corrected estimate can be calculated as yt = Ptxt .

In practice, we compute the weights wit by introducing a small offset γ within 0 to 1 as

wit = max
(
exp(−Θ(xt, xi)/σ2

w), γ
)
. (5)

This is to prevent numerical instabilities while solving equation (4) in cases where xt is an
extrapolation region and most of the weights are insignificant. Note that as γ approaches unity,
the transformation reduces to the original global transformation.

3.3. Lookup table speedup

A disadvantage of the APAP bias correction technique in Section 3.2 is the computational
overhead in estimating the local projective transformation. While the global projective transform
in Section 3.1 can be computed offline and stored, the local APAP correction matrix has to be
estimated separately for each input image at test time.
We address this issue by using a lookup table based on the observation that estimated

illuminant values in the neighbourhood of xt will produce similar weights (3), and thereby
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Fig. 3. To reduce the computational overhead in estimating the local APAP transformation,
we build a lookup table by binning the space of estimated illuminant values into an L×L
grid. The blue mark represents the initial estimated illuminant vector xt . The dark yellow
circles represent the four nearest pre-computed illuminants in the LUT, which are used for
bilinear interpolation.

similar local transforms. Note that the information in an estimated illuminant x = [ R G B ]T ,
which is in homogeneous projective form, can be encoded by the inhomogeneous two-vector[

R
R+G+B

G
R+G+B

]T since the absolute scale is not important. We can therefore discretize the
3D space of estimated illuminant values into an 2D L×L grid. We then compute the weights and
the projective transformations associated with each node, and store these transformations in a 2D
LUT.

At test time, for an input image having an estimated illuminant xt , we bilinearly interpolate the
answer using our lookup table to obtain the bias-corrected value. An example of this process
is shown in Figure 3. The lookup operation is extremely fast and reduces the running time of
the APAP approach to be comparable to the global transformation case. In our experiments, we
found that a 16×16 LUT provides results comparable to using the actual xt value in equation (3).
If the entries in the table are saved as type float64, then the size of the LUT is only about 18
KB, making the memory requirements associated with storing the LUT negligible.

4. Results

We evaluated our method on three different datasets, which are: (i) the NUS dataset [8], (ii) the
reprocessed version [23] of Gehler et al.’s dataset [11], and (iii) the INTEL-TUT dataset [26].
As there are different ground-truth illuminants available [27] for the Gehler-Shi dataset, we
recalculated the ground-truth illuminants from the color rendition chart provided in each image
of the dataset. For both NUS and Gehler-Shi datasets, the images were normalized using the
black and saturation levels provided per camera in each dataset. For the INTEL-TUT dataset, the
images already have black-level correction applied, and only saturation stretching was applied.
For the mobile phone images in the INTEL-TUT dataset, the experiments were performed with
and without color shading correction.

We applied our proposed projective bias correction transformations to four different statistical-
based methods – namely (i) GW [2], (ii) GE [4], (iii) SoG [5], and (iv) distribution PCA [8].
In our experiments, we used σw = 3.0 and γ = 0.0625 for our APAP bias correction. The LUT
consisted of 16×16 bins. As the camera hardware may use a down-sampled version of the
captured image for AWB estimation, following [16], our correction was applied on the illuminants
estimated using 384×256 16-bit raw-RGB images, instead of the original full-resolution raw-RGB
images. For SoG, the Minkowski norm (p) was set to 4. The first and second differentiations
were used for GE with p = 6 and σ = 2. For the distribution PCA method [8], the selected



Table 1. Results on the NUS 8-Camera [8] dataset. The recovery angular error is reported
for the statistical-based methods, learning-based methods, and the proposed projective
correction transformations applied to the statistical-based methods. The statistical-based
methods are: gray world (GW) [2], shades of gray (SoG) [5], the first-order gray edges
(GE-1) and the second-order gray edges (GE-2) [4], and the distribution PCA [8]. The
learning-based methods are: Bayesian [11], convolutional color constancy (CCC) [12],
deep specialized network (DS-Net) [13], the FC4 method based on AlexNet (FC4-A) and
SqueezeNet (FC4-S) [15], and fast Fourier color constancy (FFCC) [16]. The proposed
projective bias correction is applied on the statistical-based methods using a down-sampled
version of the images (384×256 pixels). The term (APAP) denotes that the as-projective-
as-possible transformation is applied. The term (APAP-LUT) refers to the APAP using a
162-bins lookup table. The bold numbers refer to the state-of-the-art results reported on the
dataset.

Method

Original methods Global projective APAP APAP-LUT

Mean Median
Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%

St
at
ist
ic
al
-b
as
ed

GW [2] 4.17 3.15 0.87 9.23 2.64 1.93 0.64 5.81 2.40 1.76 0.55 5.42 2.52 1.83 0.60 5.62

SoG [5] 3.28 2.46 0.76 7.24 2.75 2.04 0.64 6.02 2.43 1.69 0.53 5.56 2.55 1.90 0.57 - 5.65

GE-1 [4] 5.08 3.38 0.90 12.14 3.71 2.34 0.80 9.08 3.16 1.93 0.54 8.13 3.11 2.14 0.63 7.39

GE-2 [4] 5.90 4.18 1.22 13.13 3.31 2.30 0.68 7.79 3.01 1.86 0.56 7.57 3.09 2.08 0.63 7.41

PCA [8] 4.30 2.95 0.79 10.05 2.90 2.22 0.68 6.25 2.45 1.72 0.52 5.67 2.59 1.96 0.59 5.69

Le
ar
ni
ng

-b
as
ed

Bayesian [11] 3.50 2.36 0.78 8.02 - - - - - - - - - - - -

CCC [12] 2.38 1.48 0.45 5.85 - - - - - - - - - - - -

DS-Net [13] 2.24 1.46 0.48 6.08 - - - - - - - - - - - -

FC4-A [15] 2.12 1.53 0.48 4.78 - - - - - - - - - - - -

FC4-S [15] 2.23 1.57 0.47 5.15 - - - - - - - - - - - -

FFCC [16] 1.99 1.31 0.35 4.75 - - - - - - - - - - - -

(A) Input image (B) GW (C) GW with GP (D) GW with APAP-LUT (E) Ground truth

Error = 11.6° Error = 5.0° Error = 2.6°

Fig. 4. Projective bias correction of the estimated illuminant of the gray world algorithm
(GW) [2]. (A) A raw Canon EOS-1Ds image from the NUS dataset [8]. (B) The corrected
image using the GW algorithm. (C) The corrected image using the global projective
transformation (GP). (D) The corrected image using the as-projective-as-possible with the
lookup table (APAP-LUT). (E) The ground truth image. The images in (B-E) were rendered
to sRGB color space for better visualization using the camera-pipeline software of [28].

percentage rate was 3.5%.
For the reprocessed version [23] of Gehler et al.’s dataset [11], we applied our bias correction

to three learning-based methods as well: (i) Bayesian-based method [11], (ii) color constancy
using natural image statistics and scene semantics (CCNIS) [24], and (iii) exemplar-based color
constancy [25]. The initial estimations of the learning-based methods were obtained from
http://colorconstancy.com.

We used three-cross-fold validation for each camera in each dataset, where two folds were used
for training, and the testing was carried out using the third fold. For the NUS and Gehler-Shi
datasets, the color chart was masked out during both training and testing.
For evaluation, we adopt the recovery angular error [22], also known as angular error, that

measures the angle between the estimated scene illuminant and the ground truth illuminant.
An example from the NUS dataset is provided in Figure 4. As shown, our correction improves

the initial estimate of the simple GW algorithm; the global projection and APAP with the LUT



Table 2. Results on the Gehler-Shi [11, 23] dataset. The recovery angular error is reported
for the statistical-based methods, learning-based methods, and the proposed projective
transformations. The statistical-based methods are: gray world (GW) [2], shades of gray
(SoG) [5], the first-order gray edges (GE-1) and the second-order gray edges (GE-2) [4],
and the distribution PCA [8]. The learning-based methods are: Bayesian [11], color
constancy using natural image statistics and scene semantics (CCNIS) [24], exemplar-based
color constancy [25], convolutional color constancy (CCC) [12], deep specialized network
(DS-Net) [13], Seoung et al.’s method [14], the FC4 method based on AlexNet (FC4-A)
and SqueezeNet (FC4-S) [15], and fast Fourier color constancy (FFCC) [16]. The proposed
projective bias correction is applied on the statistical-based methods (i.e., GW, SoG, GE
[first- and second-orders], and the distribution PCA methods) using a down-sampled version
of the images (384×256 pixels). We also applied our transformations on three learning-based
methods (i.e., Bayesian [11], CCNIS [24], and Exemplar-based [25]).

Method

Original methods Global projective APAP APAP-LUT

Mean Median
Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%

St
at
ist
ic
al
-b
as
ed

GW [2] 4.90 3.74 1.04 10.83 3.13 2.40 0.64 6.89 2.76 2.02 0.53 6.21 2.96 2.22 0.59 6.58

SoG [5] 3.77 2.32 0.53 9.39 3.38 2.30 0.54 8.08 3.13 2.04 0.51 7.61 3.29 2.20 0.54 7.88

GE-1 [4] 5.57 3.52 0.95 13.61 4.23 2.64 0.63 10.48 3.98 2.37 0.57 10.10 4.09 2.40 0.61 10.29

GE-2 [4] 6.05 3.76 1.09 14.61 4.32 2.56 0.66 10.85 4.26 2.48 0.55 11.05 4.21 2.50 0.61 10.70

PCA [8] 4.17 2.62 0.53 10.26 3.57 2.32 0.59 8.53 3.26 2.07 0.54 8.03 3.42 2.27 0.57 8.24

Le
ar
ni
ng

-b
as
ed

Bayesian [11] 4.82 3.46 1.26 10.49 4.67 3.12 0.93 11.06 4.61 2.97 0.93 10.98 4.50 2.90 0.88 10.63

CCNIS [24] 4.19 3.13 1.00 9.24 3.49 2.47 0.82 8.01 3.51 2.52 0.84 7.97 3.61 2.65 0.89 8.04

Exemplar-based [25] 2.89 2.27 0.82 5.98 3.01 2.38 0.87 6.32 3.02 2.43 0.92 6.27 3.09 2.39 0.98 6.36

CCC [12] 1.95 1.22 0.35 4.76 - - - - - - - - - - - -

DS-Net [13] 1.90 1.12 0.31 4.84 - - - - - - - - - - - -

Seoung et al. [14] 2.16 1.47 0.37 - - - - - - - - - - - - - -

FC4-A [15] 1.77 1.11 0.34 4.29 - - - - - - - - - - - - -

FC4-S [15] 1.65 1.18 0.38 3.78 - - - - - - - - - - - -

FFCC [16] 1.61 0.86 0.23 4.27 - - - - - - - - - - - - -

Table 3. Results on the INTEL-TUT [26] dataset. The recovery angular errors are reported
for statistical-based methods with and without our proposed projective transformations. The
methods are: gray world (GW) [2], shades of gray (SoG) [5], the first-order gray edges
(GE-1) and the second-order gray edges (GE-2) [4], and the distribution PCA [8]. The
proposed projective bias correction is applied using a down-sampled version of the images
(384×256 pixels).
Method

Original methods Global projective APAP APAP-LUT

Mean Median
Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%
Mean Median

Best

25%

Worst

25%

GW [2] 4.77 3.75 0.99 10.29 4.68 3.12 1.15 11.11 4.30 2.44 0.69 11.30 4.46 2.85 0.94 11.01

SoG [5] 4.99 3.63 1.08 11.20 4.37 2.87 1.04 10.49 3.99 2.14 0.60 10.82 4.11 2.62 0.84 10.17

GE-1 [4] 4.62 2.84 0.94 11.46 3.71 2.34 0.80 9.08 3.26 1.54 0.44 9.15 3.38 2.08 0.64 8.52

GE-2 [4] 4.82 2.97 1.03 11.96 3.10 2.11 0.74 7.20 2.73 1.47 0.41 7.34 2.87 1.89 0.59 6.90

PCA [8] 4.65 3.39 0.87 10.75 3.65 2.67 0.98 8.12 3.16 1.89 0.52 8.15 3.30 2.41 0.76 7.48

obtained 5.0 and 2.6 recovery angular errors, respectively, compared to 11.6 of the original GW
estimation.

We reported the mean, median, best 25%, and worst 25% performance for each method before
and after our correction, where the best 25% and worst 25% are the mean of the smallest 25%
error values and the mean of the highest 25% error values, respectively.
Tables 1, 2, and 3 show the results on the NUS, Gehler-Shi, and INTEL-TUT datasets,

respectively, using our proposed bias correction framework. In addition to the aforementioned
methods, for comparison’s sake, we reported the results of other learning-based methods [12–16]
on the Gehler-Shi and NUS datasets. It is worth mentioning that the results of learning-based



methods were taken from past papers. As the INTEL-TUT dataset is recently published, the
results of the learning-based methods are not available. Therefore, we reported only the results
obtained using GW, GE, SoG, and distribution PCA methods with and without the proposed bias
correction methods.
We would like to point out that the results of GW, GE, SoG, and distribution PCA methods

may differ slightly from other reported results in the literature, because we used fixed parameters
in all experiments instead of fine-tuning the parameters per camera.
The results using three different datasets show that the proposed projective bias correction

consistently reduces the angular error. As expected, the APAP correction achieves better
improvement than the global projective transformation, as the former applies a local correction
generated in reliance on the nearest training samples, while the latter corrects the bias globally.
Our proposed projective bias correction improves the simple statistical-based methods to yield
results close to sophisticated learning-based methods – for example, our APAP correction using
GW produces results that match some of the recent learning-based methods (e.g., CCC [12] on
the NUS dataset [8]; see Table 1).

Because of the systematic failures [29] of the statistical-based methods, the amount of angular
error reduction of the statistical-based methods is higher than that obtained using the learning-
based methods. The error of the statistical-based methods is reduced by 24.9% (32.6% on
NUS, 23.8% on Gehler-Shi, and 18.2% on INTEL-TUT datasets), 32.2% (40.8% on NUS,
28.9% on Gehler-Shi, and 26.87% on INTEL-TUT datasets), and 29.8% (39.0% on NUS, 26.5%
on Gehler-Shi, and 24.0% on INTEL-TUT datasets) using the global projection, the APAP
correction, and the APAP with the LUT, respectively, while the error reduction obtained for the
learning-based methods is only 5.4%, 5.6%, and 5.1% on average using the global, APAP, and
APAP with the LUT, respectively.

The proposed method not only achieves good accuracy but also runs faster than the state-of-the-
art methods. Our Matlab implementation takes 1.435, 630, and 15.891 milliseconds on Intel Core
CPU i7-6700 for the global projection, APAP, and APAP with the 162-bins LUT, respectively.
Note that the reported time is only for bias correction and does not include the time required
for illuminant estimation. Compared to learning-based methods, such as the deep specialized
network (DS-Net) [13], which takes 3 seconds per image on GPU, CCC [12], which requires 0.52
seconds per image, or the fast Fourier color constancy (FFCC) [16], which needs ∼0.03 seconds,
the proposed correction method requires only 0.011 seconds on average using the GW for the
initial estimation. Our algorithm’s simplicity and speed make it ideal for real-time scenarios.

5. Conclusions

This paper has proposed a method to improve the accuracy of statistical-based illumination
estimation methods by applying an as-projective-as-possible bias-correction function. This
work extends the finding in [18] that demonstrated a global projective transform could be used
as an effective bias-correction function. The proposed APAP function adapts the projective
transform locally to the training data to obtain further improvements in the bias-correction. To
provide computational efficiency, we also described how to use a 16×16 lookup table to quickly
approximate an APAP bias-correction based on a new input. We demonstrated our approach on
several white-balance datasets and show consistent improvements between 24%-30% over the
global projective bias correction on several statistical-based illumination estimation approaches.
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