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ABSTRACT

Image defocus estimation is useful for several applications
including deblurring, blur magnification, measuring image
quality, and depth of field segmentation. In this paper, we
present a simple yet effective approach for estimating a defo-
cus blur map based on the relationship of the contrast to the
image gradient in a local image region. We call this relation-
ship the local contrast prior. The advantage of our approach
is that it does not require filter banks or frequency decompo-
sition of the input image; instead we only need to compare
local gradient profiles with the local contrast. We discuss
the idea behind the local contrast prior and demonstrate its
effectiveness on a variety of experiments.

1. INTRODUCTION

We present a method to estimate the defocus map in an image
using the local contrast prior. The local contrast prior con-
siders the relationship of local image gradients to local image
contrast as shown in Fig. 1. For image regions that exhibit
defocus blur, the magnitude of image gradients within that re-
gion are smaller than the local contrast due to the smoothing
effect of the blurring process. The larger the defocus blur,
the larger this difference between the magnitude of the im-
age gradient to local contrast. Thus by computing this ratio
of maximum gradient to the local image contrast, we obtain
a simple, yet effective blur estimations that does not require
filter-banks or frequency decomposition of the image.
In this paper, we describe a fully automated method based

on the local contrast prior to estimate a defocus blur map. To
over come large homogenous regions where the local contrast
prior cannot be defined, we describe a Markov Random Field
(MRF) formulation to propagate local estimation to generate
a full image defocus map.
Our paper is organized as follows: section 2 provides a

backgrand and discussion of related work on image defocus
and its estimation; section 3 discusses the local contrast prior
and its characteristics in natural images; section 4 demon-
strates our approach on a variety of examples and demonstrate
its use on applications such as image deblurring, depth of field
segmentation, and image quality measurement; the paper is
concluded in section 5.
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dy Local Contrast
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Fig. 1. The relationship between local image gradient and
local image contrast. A sharp edge in (a) undergoes defocus
blur in (b). Inside the same neighborhood, the image contrast
is invariant to the defocus blur while image gradient strictly
decreasing.

2. BACKGROUND AND RELATED WORK

2.1. Image Defocus
The two principal causes of image defocus are limited depth
of field (DOF) and lens aberrations that cause light rays to
converge incorrectly onto the imaging sensor. Defocus of the
first type is illustrated by the point q in Fig. 2 and is described
by the thin lens law [2]:
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where f is the focal length of the lens, S1 is the distance of
the focal plane in the scene from the lens plane, and f1 is the
distance from the lens plane to the sensor plane.
The blurred spot caused by limited DOF or lens aberra-

tions is called the circle of confusion. From Eq. (1) and the
relationship of parameters in Fig. 2, the diameter of circle of
confusion is:

C = A ·
|S2 − S1|
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·

f

|S1 − f |
, (2)

which concurs that the diameter C increases as the distance
of a point from the focal plane |S2 − S1| increases and C

decreases as the aperture diameter A decreases. For defocus
blur caused by lens aberrations, C increases as the distance
|r − p| increases.
Depending on the shape and diffraction of the aperture,

the circle of confusion is not strictly a circle. The inten-
sity within the circle of confusion can be assumed to be uni-
form [16]. However, if the effects of diffraction and the lens
system are taken into account, the intensity within the blur
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Fig. 2. Optical geometry for different causes of defocus blur.
Point q: Defocus due to limited depth of field. Point r: Defo-
cus due to lens aberrations.

circle can be reasonably approximated by a Gaussian distri-
bution [14, 4, 10]. Thus, the defocus blur effect can be for-
mulated as the following convolution:

Iob = I ⊗ h + n, (3)

where Iob is the observed image, I represents an in-focus im-
age of the scene, h is a spatially-varyingGaussian blur kernel,
and n denotes additive noise. Under this configurations, the
estimation of h for each image pixel is equal to the estimation
of a defocus blur scale map (i.e. defocus map).

2.2. Related Work

Our work is related to blur/defocus estimation from a single
image. Previous work on blur estimation from a single im-
age include Elder and Zucker [3] that proposed to model fo-
cal blur by a Gaussian blur kernel. This work used the first
and second order derivative from steerable Gaussian basis fil-
ters to calculate the center line of edges and blur responses.
Saxena et al [15] proposed a supervised learning approach to
estimate a defocus map by comparing the filter responses of
image patches to the responses from training data. Bae and
Durand [1] extended the work in [3] with an MRF and cross
bilateral filtering to maintain smoothness and reduce estima-
tion errors. Levin et al [12] proposed to use a coded aperture
in the image capture process to aid defocus estimation. Liu
et al [13] proposed to use multiple features that included the
local power spectrum slope in the frequency domain, gradi-
ent histogram span, color saturation and local autocorrelation
congruency for blur detection and classification. Blur esti-
mation is also related to image segmentation used to segment
regions of interest from DOF images. Wang et al [17] used
wavelet coefficients to identify regions with high frequency
details. Kim [7] segmented in-focus regions fromDOF image
using high-frequency components with morphological filters
to fill holes. Kovács and Szirányi [9] identify in-focus re-
gions based on blind deconvolution algorithm. These previ-
ous approaches, however, all require either filter banks or fre-
quency decomposition in the estimation process. Our work
is unique in that we do not require filter banks or frequency
decomposition, but instead only need to consider local im-
age gradients and contrast which is a much simpler technique
compared with previous approaches.
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Fig. 3. The distribution of the local contrast prior in high qual-
ity natural in-focus images. (a) We plot the the distributions
of LC of 10 images randomly selected from our samples. (b)
Estimated distribution of (a) using GMM. (c) The edge pixels’
distributions ofLC of the 10 selected images. Edge pixels are
defined by using a canny edge detector. (d) Estimated distri-
bution of (c) using GMM. (e) 50 images from our samples.

3. THE LOCAL CONTRAST PRIOR

Recent studies [11, 5] have shown that the marginal distribu-
tion of image gradients follow a similar characteristic among
natural images. The so called natural image statistics prior
is powerful in image analysis and as a regularization term for
image deblurring [11, 5]. In [6], Sun et al studied the gradi-
ent profile prior and found that the edge sharpness of natural
images follows a certain distribution which is independent of
image resolution. The gradient profile prior was applied to
single image super-resolution in [6]. This paper follows this
trend by first showing the characteristics on the distribution
of the local contrast prior in natural images. We then discuss
how to convert local contrast prior measurements into a de-
focus map using MRF propagation and its applications in the
experimental section 4.

3.1. Distribution of Local Contrast Prior in Natural Im-
ages

The relationship we want to study is defined as follow:

LC(x, y) =
max |∇I(x′, y′)|

max I(x′, y′)−min I(x′, y′)
, (4)

where (x′, y′) ∈ N (x, y) is the neighborhood of (x, y).
If (x, y) is inside a homogeneous or smooth region, e.g.
max I(x′, y′) − min I(x′, y′) < t, we consider LC(x, y) to
be undefined. In our implementation, we set N (x, y) to be a
local window of size 11 × 11 and t = 25 with respect to the
intensity range from 0 to 255. Unlike natural image statistics
our measurement is computed locally. If pixels have small
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Fig. 4. The distribution of the local contrast prior in low qual-
ity images. (a) The distributions of LC of 10 images ran-
domly selected from our samples. (b) The edge pixels’ distri-
butions of LC of the 10 selected images. (c) 50 images from
our samples.

image gradients and the local contrast is also small, LC(x, y)
gives a large value.
Fig. 3 shows a histogram of the local contrast prior (LC)

defined in Eq.(4) from 50 natural in-focus images from pro-
fessional photography forums. The x-axis is LC scores and
y-axis is percentage of pixels. We normalized the histograms
so that they have the same maximum value in the y-axis for
better visualization and comparison. The distribution of LC
peaks at around 0.8 in Fig. 3-(b) which represents the aver-
age sharpness of in-focus edge pixels. This plot agrees with
the distribution in Fig. 3-(d) for which only edge pixels are
included in the estimation. The small peak at 1.0 indicates
the existence of step edges that usually exists in photos con-
taining man-made structures such as buildings. Fig. 3-(b) and
(d) decreases to zero gradually, but (b) has a longer tail as
the result of soft edges caused by shadings, shadows, etc. We
found that there are large image regions where LC is unde-
fined. The undefinedLC is from homogeneous regions which
agrees with natural image statistics that most pixels will have
zero or small gradient magnitudes.
To verify whether the distribution is uniquely defined for

in-focus images, we collect another 50 low quality images
that included images suffering from defocus blur, motion blur,
noise, over exposures, etc, and plot their LC distribution.
Fig. 4 shows 10 distributions randomly selected. As we can
see from the Fig. 4-(a), the distribution of LC becomes more
uniformly distributed with more weight at small values and
less weight at LC(x, y) = 1. The peak of edge pixel distri-
butions of the LC have shifted to left. The distribution of LC

contains more than one peak for which peaks at small values
are from out-of-focus regions and peaks at large values are
from in-focus regions.
If an in-focus image contains an edge with LC(x, y) =

m, after a convolution process caused by defocus blur, the
expected gradient magnitude of LC(x, y) should be approx-
imately equal to m√

2πσ
if the circle of confusion follows a

gaussian spherical kernel with standard derivation equal to σ.
Hence, if an image is suffering from defocus blur, its aver-

(a) (b) (c)
Fig. 5. Recover in-focus image from defocused image on
other examples. (a) Input images, (b) our estimated defocus
map, (c) recovered in-focus images. The distribution of edge
pixels’ LC are also shown.

age LC will be smaller than an in-focus image. Based on
the above observation, we can estimate the defocus scale (in
terms of σ) by assuming the expected LC of edges is approx-
imately equal to 0.8 (Fig. 3-(b)-(d)). In our implementation,
we assume the defocus blur kernel is gaussian spherical ker-
nel [14, 4, 10].

3.2. MRF Propagation

Estimating LC for each pixel is not robust due to the noise
and existence of soft edges and potentially large homogenous
regions. We use an MRF to refine our estimated defocus map.
Since the LC is not linearly related to the defocus scale, we
transform the LC into a defocus scale radiusRLC = 0.8/

√
2π

LC
before our MRF propagation. RLC is truncated to the range
between μRLC

±2σRLC
, where μRLC

and σRLC
are the mean

and standard derivation of RLC respectively. We quantize
RLC into discrete labels {R̄LC}, and we use first order neigh-
borhood N(·) to build our Markov network. Our data term
and pairwise energy term are defined as follows:
∑

i

[wi(R̄LC(i)−RLC(i))2+α
∑

j∈N(i)

wij(R̄LC(i)− R̄LC(j))2] (5)

where wi = max I(x′,y′)−min I(x′,y′)
max I(x,y)−min I(x,y) is a weight of measure-

ment by comparing the local contrast to global contrast. High
confidence is given to pixel with large local contrast since
these pixel are less sensitive to noise and are more accurate
about estimation of the LC. The term wij = |Ii − Ij |

2 is
the color difference between neighborhood pixel which as-
serts that if the neighborhood pixel has similar color, they
should have similar defocus scale. The term α is set to 1 in
our implementation. The final defocus map is obtained using
Graph cuts [8] to find the optimal R̄∗

LC that minimize Eq. (5).

4. EXPERIMENTS

Fig. 5 show our results for estimating defocus maps. We use
the estimated defocus map to enhance the quality of the im-
ages through deconvolution. After enhancement we see that
the edge pixels LC’s distribution shift’s slightly to the right
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Fig. 6. Quality Ranking. We rank the quality of images according to the mean value (below each image) of edge pixels’ LC.
The larger value meaning that the image contains more sharp edges which considered to have higher quality. The distribution
of edge pixels’ LC are also shown.

Fig. 7. Region Of Interest Extraction. The Local Contrast
Prior can also be used to extract in-focus regions from depth
of field images. The first row show depth of field images, the
second row show the extracted in-focus regions.

denoting an increase in stronger image gradients in the en-
hanced image.
The local contrast prior can also be used to segment in-

focus regions from depth-of-field images. After MRF prop-
agation, we calculate the average defocus scale within each
label. A pixel is assigned to be in-focus if the average LC of
the pixel label is larger than 0.75. Fig. 7 shows our segmen-
tation results. Note that the images we tested contain similar
color and texture in both in-focus region and out-of-focus re-
gions. Our approach is successful in segmenting the in-focus
region from depth-of-field images.
Fig. 6 shows an example to use the local contrast prior

for ranking image quality. We rank the quality of images ac-
cording to the mean of edge pixels’ LC. The distribution of
edge pixels’ LC are also shown in Fig. 6. Our quality ranking
agrees with human ranking about the image quality of the 5
images.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed the local contrast prior (LC), a
simple and effective measurement of defocus blur. We found
that for natural in-focus images, this distribution follows a
similar pattern as shown in Fig. 3. We verified this distribu-
tion by plotting the distribution of the LC in images suffered
from different type of degradation as shown in Fig. 4. This
prior is useful in estimating defocus blur, in segmenting in-
focus regions from depth-of-field image and in ranking image
quality. In future work, we plan to study the properties of the
distribution of the local contrast prior under different degree
of blurriness/noise and to investigate the possibility of using
the local contrast prior in other applications.
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