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Abstract

This paper describes a method to construct seamless im-
age mosaics of a panoramic scene containing two predom-
inate planes: a distant back plane and a ground plane that
sweeps out from the camera’s location. While this type of
panorama can be stitched when the camera is carefully ro-
tated about its optical center, such ideal scene capture is
hard to perform correctly. Existing techniques use a sin-
gle homography per image to perform alignment followed
by seam cutting or image blending to hide inevitable align-
ments artifacts. In this paper, we demonstrate how to use
two homographies per image to produce a more seamless
image. Specifically, our approach blends the homographies
in the alignment procedure to perform a nonlinear warping.
Once the images are geometrically stitched, they are further
processed to blend seams and reduce curvilinear visual ar-
tifacts due to the nonlinear warping. As demonstrated in
our paper, our procedure is able to produce results for this
type of scene where current state-of-the-art techniques fail.

1. Introduction
Although image mosaicing has received a great deal of

attention over the years, it remains a challenging problem.
The most troublesome issue is that the assumptions about
the input, e.g. images are of a distant scene or images are
captured by rotating the camera about its center of projec-
tion, are rarely met. This results in misalignments in the
stitched images. These misalignments are hidden via post-
processing techniques, such as image blending or seam cut-
ting, to varying degrees of success, often producing mosaics
that appear seamless at a quick glance, only to reveal breaks
and tears on closer inspection.

We focus on one common type of scene that is particu-
larly troublesome for existing methods: a scene containing
both a distant plane and a ground plane that sweeps out from
the camera’s location. This type of scene, as illustrated in
Figure 1, is common at tourist locations where panoramic
imaging is desired. Existing approaches rely on estimat-

Figure 1. A scene containing two dominant planes targeted by our
mosaicing approach.

ing a single planar perspective transform (homography) per
image to align the scene. However, a single homography
cannot align the image content when the input images vi-
olate the imaging assumptions. The only option now is to
attempt to hide the misalignments via post-processing.

In this paper, we describe how to address this type of
panoramic scene before the post-processing stage by fo-
cusing on how to improve the image alignment. This is
achieved by estimating two homographies per image-pair
and blending these homographies to align the images. As
demonstrated by our results, this approach can produce
more seamless results than those obtained using current
state-of-the-art methods that rely on a single homography
per image pair. While a seemingly straight-forward idea,
given that our scene has two dominate planes, there are sev-
eral issues addressed in our paper that must be considered to
make this approach work. These issues include estimating
the dual homographies from matched points, weights for
blending the homographies, extending the nonlinear warp-
ing to concatenate adjacent images, and post-processing to
blend the images and to reduce undesired curvilinear arti-
facts introduced by the nonlinear warping.

The remainder of this paper is organized as follows:
Section 2 discusses related work; Section 3 describes our
dual-homography estimation and blending for an input im-
age pair and its extension for multiple image concatena-
tion; Section 4 describes post-processing procedures to re-

49



Figure 2. Work flow of our dual-homography computation. Candidate points are first clustered into groups from which two homographies
are estimated using RANSAC. A per-pixel weight map ωij is computed to control the blending of the two homographies.

duce visual seams and rectify curvilinear artifacts; Section 5
demonstrates results obtained using our approach followed
by a discussion and summary of our work in Section 6.

2. Related Work

Image mosaicing is a well-studied area in computer vi-
sion (representative works include [18, 19, 6, 7, 9, 23]);
for an excellent survey see [22]. In addition, several free-
ware and commercial softwares are available for perform-
ing image stitching, notably: AutoStitch [1], Microsoft’s
Image Compositing Editor [2], and Adobe’s Photoshop
CS5 [3] mosaicing feature.

These approaches all work under the assumption that
the input images contains little or no parallax, which im-
plies that the scene is either sufficiently far away from the
camera to be considered planar, or that the images have
been taken from a camera carefully rotated about its cen-
ter of projection. Under this assumption the images can be
aligned via perspective planar (i.e. homography) transfor-
mations [11]. These existing techniques work exceedingly
well under these conditions, but quickly begin to exhibit
misalignment artifacts when the imaging assumptions are
violated. When this occurs the algorithms attempt to hide
the misalignments using image blending (e.g. [7, 12]) or
seam-cutting [4].

The idea of fixing misalignments (sometimes called
deghosting [21]) due to camera model violations, propaga-
tion errors, or parallax, is not new. Various approaches use
local alignment matching [21] together with scatter-point-
interpolation [8], or other nonlinear warping methods [13]
to correct problems in the overlapped regions. These ap-
proaches, however, assume that the input images can be rea-
sonably aligned using an initial global alignment and that
the misalignments are relatively small. Methods that have

more flexible imaging models include ReliefMosaic [15]
that uses dense matches to perform view-morphing to pro-
duce a 2.5D light-field that can be rendered to a mosaic.
This approach requires an image scene with sufficient tex-
ture for estimating the quasi-dense image disparity. Work
using manifold mosaicing [20] also allows a general imag-
ing framework but requires dense input to select image
strips in the fashion of a strip camera. Our work, with its
more constrained scene type, lies somewhere between tra-
ditional mosaicing with strong imaging assumptions, and
these general approaches that require either dense matching
or dense video input. As far as we are aware, the idea of the
dual-homography has not been used before.

3. Dual-Homography Alignment

We first describe how to compute the two homographies
for a pair of overlapping images, and how to use the dual-
homographies to perform nonlinear alignment. We then de-
scribe how to extend this warping to adjacent images in the
mosaic. For the sake of simplicity, we assume that each im-
age in our panorama has at most two overlapping regions
with images on either of its borders.

3.1. Dual-Homography Estimation

Our approach models the relationship between two over-
lapping images in our panorama using a blending of two
homographes, Hg and Hd, expressed as:

Hij = ωijHg + (1− ωij)Hd, (1)

where Hg and Hd represents the ground plane and distant
plane homographies respectively, and ωij is a per pixel
weight that controls the contribution of each homography
at the pixel location (i, j).

50



As with other mosaicing techniques, our approach be-
gins with a set of corresponding points matched between
the input images. We use SIFT features [17] to establish
correspondences as done in [7]. Since we are computing
two homographies per image pair, our first step is to clus-
ter the correspondences into two groups Gg and Gd based
on the spatial location in the image. This is done using K-
means clustering, with 2D seed points taken to be:

cg = (
∑n

i xi

n
, 0)T , cd = (

∑n
i xi

n
, h)T , (2)

where h is the height of input image. These seed points are
selected to ensure that the final clusters are oriented about
the top and bottom of the image, since we expect the dis-
tant plane and ground plane will most likely reside at the
top and bottom of the image respectively. We note that this
initial step does not need to be too accurate as outliers will
be discarded in the homography estimation procedure.

After the feature points are grouped, Random Sample
Consensus (RANSAC) [10] is used to robustly estimate
the homography for each group. In each trial, we select
four matched feature points to compute the homography. If
the consensus reaches 95%, the estimated homography Hg

and Hd is considered as the transform of its correspond-
ing group of features. After RANSAC is performed, outlier
SIFT features are removed to form new groups G′

g and G′
d.

The two resulting homographies can partially align the
image as shown in Figure 2. The goal now is to assign a
weight to each pixel location pij to determine how much
of each homography should be used. A natural choice is to
weight the warping based on spatial proximity, i.e.:

ωij = dg/(dg + dd), (3)

where dg and dd are the || · ||−1
2 distances to the closest

feature points in the sets G′
g and G′

d respectively. Figure 2
shows an example of this weighting map and results from
this weighted dual-homography warping.

3.2. Extending to Multiple Images

Unlike single homography approaches that can easily
concatenate multiple homographies into a single matrix, our
nonlinear warping requires more care. Figure 3 is used to
help illustrate the concatenation procedure using three over-
lapping images I0, I1, and I2 that we wish to map to the
virtual mosaic image plane IV . I0 is used as the root image
of the mosaic and undergoes no warping.

The first dual-homography used to map I1 to I0 is de-
noted as H1→0, dropping the subscripts, ij, for clarity. This
dual-homography is computed as previously described and
is the only mapping required to place I1 in the virtual im-
age: i.e. H1→V = H1→0.

The task now is to add another dual-homography pair,
H2→V , that maps I2 to I1 in the virtual image plane. This is

Figure 3. This figure illustrates how to concatenate multiple im-
ages into the virtual image plane, IV using dual-homographies.
Refer to the text in Section 3.2 for details.

achieved by first computing the dual-homography, H2→1,
to aligned I2 to I1. This is computed as described in the
prior section. Note that this estimation is done agnostic of
the relationship between I1 and I0. However, in the virtual
image, IV , image I1 is expressed as H1→0(I1). Thus, in the
overlapped region between I2 and I1, we can relate I2 to
the virtual image by H1→0(H2→1(I2)).

The question now is what do we do about the non-
overlapped region of I2 with I1. Unlike single homogra-
phy approaches where the mapping between homography
can be applied to points outside the overlapping region, our
warping function H1→0 is not defined for points outside I1.
To ‘virtually extend’ the reach of H1→0, we use a weighted
blending of the boundary points of H1→V , resulting in:

H2→V(p) =


H1→V(H2→1(p)) , if p ∈ I1 ∩ H2→1(I2)∑

q∈ΩB
ζqH1→V

q (H2→1(p)) , otherwise,

(4)
where ΩB is the boundary of I1 that overlaps with I2. The
scalar ζq = 1/‖H2→1(p) − q‖2 is computed using the Eu-
clidean distance from point p to all the boundary points q
on ΩB. Note that these weights are normalized such that∑

ζq = 1.
While this procedure has been illustrated using only

three images, it is straight-forward to derive a recursive ex-
pression from Eq. 4 to concatenate further images.

4. Post-Processing the Mosaic

This section describes two post-processing techniques,
seam blending and straightening, that are used to enhance
the aesthetic appearance of our final results. Seam-blending
aims to reduce the visible seams between overlapping im-
ages. Content-aware straightening is unique to our mosaic-
ing procedure and is applied to reduce curvilinear effects
introduced by the dual-homography warping.
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Figure 4. This example shows our blending procedure where a seam-cut is first computed, followed by blending about the seam.

4.1. Seam-Blending

There are two main approaches for reducing visible
seams in overlapped regions. The first is to blend the en-
tire overlapped region, such techniques include feathering
techniques [22], multi-band blending [7] and gradient do-
main stitching [14]. The second is to perform image cutting
between the images [4]. We found that a combination of
both produced the best results.

Seam Cutting To compute an optimal seam between two
images, for each pixel p in the final panorama result, its in-
tensity should be mapped from one of the warped source
images. This segmentation problem is formulated as a bi-
nary labeling Markov Random Field (MRF) where each
pixel p is assigned a label l ∈ {0, 1} (see [16] for details
on MRFs). To solve the MRF, the following energy terms
are minimized in order to find the optimal pixel labels:

E = Ed + λEs, (5)

where Ed is the data-cost energy reflecting the likelihood of
assigning a l to each pixel and Es is the smoothness energy
representing the cost of assigning different labels to adja-
cent pixels. We fixed the weight λ as 2.

Following the formulation in [4] the data-cost is defined
to be the gradient of a pixel at that location:

Ed(p, lp) = −∇I
lp
(p), (6)

where the binary label lp decides which gradient between
the two overlapped images to use. The smoothness cost
between two pixels p and q is defined as:

Es(lp, lq) = (‖I lp
(p) − I

lq
(p)‖

2 + ‖I lp
(q) − I

lq
(q)‖

2)+

β(‖∇I
lp
(p) −∇I

lq
(p)‖

2 + ‖∇I
lp
(q) −∇I

lq
(q)‖

2)
(7)

which represents discontinuities between each pair of
neighboring pixels. We see that if lp = lq, the smooth-
ness cost is 0, while if lp 6= lq, the smoothness cost is the
intensity and gradient difference of the corresponding point
in image lp and lq. Graph-cut optimization is used to assign
the labels to our MRF [5].

Blending While seam cutting produces an image with no
overlaps, color discontinuities may still be noticeable. To

reduce this, we expand the seam by 16 pixels and perform
a simple linear alpha blending [21] to the pixels in this ex-
panded seam as shown in Figure 4. We found this combined
approach of seam-cutting and local seam blending produced
better result than either seam-cutting or blending the entire
overlapped region alone.

4.2. Global Straightening

The linear interpolation of the homographies makes the
images warp in a quadratic fashion. This can introduce a
curved effect that may be aesthetically unappealing for the
final result.

To ameliorate this effect, we employ a content-aware
warping method similar to that used in [24, 25]. In partic-
ular, our final virtual image, IV is tesselated into a polygon
mesh, where each polygon, Q, is either a quad or a triangle.
Our mesh is computed by tessellating the input images into
quadrilaterals and then determining how these warp into the
virtual image, IV . Overlapped regions between input im-
ages are zippered together using triangles. An example of
this polygonal mesh is shown in Figure 5.

Each polygon is composed of vertices, vi, that can be
deformed to a new set of polygons, Q′, with the following
two distortion energies:

Ds(Q, Q′) = min
s

∑
n

‖s(vi)− v′i‖2, (8)

where v′i is the target warping position of vi and s( ·) is a
similar transformation function which has a general form:

s(v) =
[

c −d
d c

] [
x
y

]
+

[
tx
ty

]
, v =

[
x
y

]
. (9)

This energy attempts to constrain the deformation on all the
points vi such that the polygons, Q, only undergo a similar-
ity transformation.

The other distortion energy is according to the observa-
tion in [7] that people rarely twist the camera relative to the
horizon when shooting the panorama images. Hence, we
give each point pair v1 and v2 in the vertical edge E a bend-
ing cost energy defined as follows:

Dl(E, E′) = min
l
‖(v′1 − v′2)− l

[
0
1

]
‖2, (10)
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Figure 5. Before and after the application of content straightening.

where l is an arbitrary scaling factor. This energy constrains
all the vertical edges in the source image more to maintain
a vertical position in the final result. Combining these two
energies we can obtain the straightened result as the points
set V′ = {v′i} which minimizes the following energy:

D =
∑

Q

µ(Q)
s Ds + µl

∑
E

Dl. (11)

Here, the weight µ
(Q)
s is what allows this deformation

to be flexible. This weight is determined by the underlying
image content contained within each polygon, Q, defined
as:

µ(Q)
s =

∑
n ∇IV(x, y)

n
,∀IV(x, y) ∈ Q, (12)

where ∇IV is the image gradient inside a polygon. This
weights polygons with higher image energy to resist defor-
mation, while polygons with lower energy can be deformed
more. To enforce the vertical edge constraint, the weight µl

we give a comparatively large number which equals to 20
times of max{µ(Q)

s } to force the lines straight.
This approach is similar to that proposed by [24, 25] for

content-aware image resizing, however, we have utilized it
in a completely different manner, exploiting its ability to
linearize the mesh using Equation 11. As discussed in [25],
this system is directly computed using an over-determined
linear solver. Figure 5 shows examples of our result before
and after this straightening procedure.

While the nonlinear straightening is intended to fix arti-
facts introduced by the dual-homography warp, it can some-
times introduce noticeable bending on image content. As
such, we have a simple UI to allow the user to specify the
image region whose shape cannot be changed as shown in
Figure 6. This can be achieved by increasing the µ

(Q)
s for

the polygons falling within the user specified regions. Fig-
ure 6 shows an example of how user-markup can be used to
protect regions in this straightening process.

5. Results
Our results are compared against three state-of-the-art

softwares, AutoStitch [1], Photoshop CS5’s mosaicing fea-
ture [3] and Microsoft’s ICE [2]. AutoStitch [1] is based on

Figure 6. An example where the user can specify regions that
should remain intact in the straightening process.

the work in [6], while Photoshop and ICE appear to com-
bine elements of [6] and seam cutting [4]. All of these
techniques utilize single homography alignment. Images
were taken at locations that fit our targeted scene descrip-
tion. When imaging these scenes, we purposely moved the
camera in an arc fashion to violate the common center of
projection assumption for the input images.

Figure 8 and Figure 9 shows results of our algorithm on
a panorama sequence containing five input images. These
results are compared with AutoStitch and Photoshop CS5.
While all the results appear good at first glance, we high-
light a few notable regions where results from AutoStitch
and Photoshop exhibit tears and misalignments. Our results,
however, remain seamless in these regions. Misalignments
in the results produced by Photoshop are often the hardest to
detect since they use seam-cutting to stitch together images.
While not shown here, ICE produced results similar to those
by Photoshop on these examples, with slightly more notice-
able seams. For the example in Figure 8, the user markup
shown in section 4 was used.

Figure 10 shows a result comparing our approach with
all three softwares. Again, at first glance each approach ap-
pears to have performed well, on close inspection we can
see artifacts due to alignment issues not exhibited in our re-
sults. Note that most of the errors happen in the bottom
part of the panoramic image. This implies that the single-
homography based approaches are using the points in the
distant plane region to compute their homographies, result-
ing in misalignments in the ground plane region. We also
note that our lack of color balancing of the input images is
sometimes noticeable when compared with the results from
Photoshop CS5.

Our approach fails when the scene contains a relatively
large structure that does not belong to either the ground
plane nor distant plane. In such case, the parallax effect
will occur since there are more than two homographies in-
volved. Figure 7 shows an example of this failure case.

The run time of our approach is around 5∼10 seconds
for the homography estimation stage, 5∼10 seconds for the
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Figure 7. A failure case that is caused by a large structure that
violates our two plane assumption.

seam cut stage and 5∼10 seconds for straightening stage
(for a typical five images input). Compare to other soft-
wares, which is around 10∼15 seconds for both AutoStich
and Photoshop, our approach does need a comparatively
longer time to process, mainly due to the complex warping
procedure.

6. Discussion and Summary

We have demonstrated how to use dual-homography
warping to align images of panoramic scenes containing a
dominant distant and ground plane. While this approach
requires more work when handling multiple images than
single-homography approaches, the additional processing
is offset by the ability to produce seamless images. Com-
bined with standard post-processing approaches (seam cut-
ting and blending), together with a straightening procedure,
our method can produce results void of breaks and tears
found in current state-of-the-art approaches.

Unlike prior work, our approach is not based on any par-
ticular camera model and therefore has no physical meaning
regarding light transport into the final panorama. However,
prior work is forced to hide misalignment artifacts when
imaging assumptions are violated, while we instead hide
errors by relaxing the imaging model. In essence, our dual-
homography approach represents an effective way to align
panoramic images captured under non-ideal imaging condi-
tions.

A natural extension of our work is to consider more than
two planes. This extension can quickly drive itself towards
full 3D scene understanding and ultimately proxy geometry
estimation in a shape from motion setting. Determining the
minimum number of planes to estimate to maintain a seam-
less panorama in a given scene is an interesting avenue for
future work.
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