
Robust Estimation of Texture Flow via Dense Feature Sampling

Yu-Wing Tai1 Michael S. Brown1 Chi-Keung Tang2

Nanyang Technological University1

The Hong Kong University of Science and Technology2

{taiy0004,msbrown}@ntu.edu.sg
cktang@cs.ust.hk

Abstract

Texture flow estimation is a valuable step in a variety of
vision related tasks, including texture analysis, image seg-
mentation, shape-from-texture and texture remapping. This
paper describes a novel and effective technique to estimate
texture flow in an image given a small example patch. The
key idea consists of extracting a dense set of features from
the example patch where discrete orientations are encapsu-
lated into the feature vector such that rotation can be sim-
ulated as a linear shift of the vector. This dense feature
space is then compressed by PCA and clustered using EM
to produce a set of small set of principal features. Obtain-
ing these principal features at varying image scales, we can
compute the per-pixel scale and orientation likelihoods for
the distorted texture. The final texture flow estimation is for-
mulated as the MAP solution of a labeling Markov network
which is solved using belief propagation. Experimental re-
sults on both synthetic and real images demonstrate good
results even for highly distorted examples.

1. Introduction

Texture flow estimation serves as the starting point of
many common vision tasks including segmentation, recog-
nition, shape-from-texture, and texture remapping. Texture
flow estimation is often targeted towards images of textured
3D surfaces in natural scene [14, 16], where texture flow
arises due to the geometric variation of non-planar surfaces
or imaging under perspective. It is assumed that the under-
lying texture has some repeating structure [24] that is vary-
ing in the image (i.e. distorted) in terms of scale and orien-
tation. We called this distortion texture flow. In this paper,
we address texture flow estimation for a variety of texture
types that exhibit reasonably strong distortion in both scale
and orientation. These include textures found in natural im-
ages as well as synthetically generated images. Fig. 1 shows
an example.

(a) (b) (c)
Figure 1. An input image and its texture flow estimation. (a) The
user specified example patch. (b) The input image. (c) The esti-
mated texture flow field.

Our texture flow estimation begins with a small example
patch of the texture that is specified by the user. From this
example patch, a set of principal features are extracted that
are used to compute the orientation and scale likelihoods of
each pixel lying in a distorted texture region. Using these
per-pixel likelihoods, we formulate the final texture flow es-
timation as a Markov Random Field (MRF) and solve it us-
ing a variant of belief propagation. We demonstrate the ef-
fectiveness of this approach on a variety of inputs, including
natural and synthesized images and show the usefulness of
this extracted flow field for texture remapping.

There are two main contributions of this work. First,
while inspired by previous approaches, a novel texture fea-
ture along with a procedure for extracting principal features
from the sample patch is introduced. These principal fea-
tures are suitable for estimating orientation and scale of tex-
ture pixels while making no assumptions about the under-
lying texture properties. Second, the texture flow estima-
tion problem has been formulated into a Markov network
which can resolve orientation and scale to recover reason-
ably complex flow fields. The texture feature extraction and
MRF formulation are both contributions in themselves, as
the feature extraction approach can be beneficial to exist-
ing texture analysis and segmentation algorithms, as well as
our MRF formulation, which can be used with other feature
extraction methods to label texture flows.

1
1-4244-1180-7/07/$25.00 ©2007 IEEE

2. Related Work

There is a great deal of work targeting texture analysis
and flow estimation. We discuss examples most relevant to
our approach and refer the reader to the following recent
articles by Lazebnik et al [11], Ben-Shahar and Zucker [2]
and Lefebvre and Hoppe [12] for more thorough overviews.

In the context of flow orientation, typically for segmen-
tation, early work by Rao et al [20, 21] proposed orientation
fields estimation of gradient-like texture using first deriva-
tive Gaussian filters and performed local averaging to com-
pute coherent orientation flows. Following works on scale-
space and nonlinear diffusion, Perona [19] proposed ori-
entation diffusion which considered flow directions in the
flow smoothing step to improve estimation results. In [23],
Tschumperle et al proposed using vector set regularization
with anisotropic diffusion. Shahar et al [2] proposed to in-
corporate curvature information and enhance global contin-
uation of estimated texture flows. Paris et al [18] use band-
pass filtering to enhance flow data before estimation.

In a shape-from-texture context, the shape recovery pro-
cess is generally broken into two independent steps: 1) tex-
ture flow estimation and 2) shape recovery using the esti-
mated flow. In [16], Malik and Rosenholtz modeled texture
distortion by a dense set of 2D affine transformations and
estimated these transformations by spectrograms matched
in the frequency domain, while Clerc and Mallat [3] showed
how wavelets can be employed for this purpose. In [6],
Forsyth modeled surface texture via a marked point process
and estimated the affine transformations on these points. An
EM-like procedure is introduced to reconstruct global sur-
face from the sparse texture distortion map. This idea is
extended by Lobay and Forsyth in [14] to handle more com-
plex textons. Lazebnik et al [11] introduces RIFT to models
texture distortion on surface by sparse local affine regions.
Hays et al [7] introduced a technique to detect texture regu-
larities in natural scenes using higher-order correspondence.

In the context of texture synthesis, several techniques in-
corporate texture flow to guide the synthesis output (e.g.
see [4, 25, 10, 12]). Specifying this guidance flow field
however is often done manually, such as demonstrated by
Ashikhmin [1] and Liu et al [13] that allow texture flow to
be specified using a paint-like interface or by manipulating
a mesh grid.

Distinguishing our work from these previous ap-
proaches, we note that the flow estimation for segmenta-
tion focuses mainly on gradient like textures and utilizes
high frequency details for estimation. These approaches do
not consider overall structure of the underlying texture and
typically cannot handle large variations in scale. For the
shape-from-texture approaches, textures are assumed to be
lying on smooth 3D surfaces and the estimated distortion
map is generally not very complex. Also, the underlying
texture for shape-from-texture are usually assumed to be an

isotropic texture. In texture synthesis, the texture flow is
often specified by user. While the texture flow has been
proven to be effective for generating better quality texture
synthesis results, there is not much attention in estimating
the texture flow from natural scene or from a synthesized
texture. In our work, we desire to extract flow from a va-
riety of texture types and make no assumptions about the
texture’s structure. Moreover, while we work from an ex-
ample patch, we do not assume that the target distortion is a
matter of piecewise affine transforms of this given patch.

3. Texture Features

3.1. Feature Representation

Given an example patch, either extracted directly from
the input image, or from an example known to be suffi-
ciently similar the target image, a set of features (the term
descriptors can also be used) are derived that will be em-
ployed to estimate orientation and scale. Our feature ex-
traction is inspired by the local binary pattern (LBP) op-
erator proposed by Ojala et al [17] for segmentation. In
this approach, a feature is constructed by collecting thresh-
olded pixels at varying orientations at a fixed radius about a
pixel which are organized into a linear array. The benefit of
this feature construction is that rotation can be simulated by
shifting the linear array, thus allowing this single feature to
estimate multiple orientations.

This basic idea is extended in the following manner as
shown in Fig. 2. RGB pixel data is collected at 24 orienta-
tions at 5 discrete radii about each pixel in the sample patch.
This results in a 24 × 5 × 3 dimensioned feature per pixel.
Assuming a reasonably sized sample patch, e.g. 36 × 36,
this results in approximately 500000 intensity values to de-
scribe the input patch. Such dense features are too large for
practical use and the following steps are taken to reduce the
feature size.

First, the 24 × 5 × 3 per pixel feature space sampled
over the entire patch is decomposed via PCA. Each feature
is then projected onto the first principal component, result-
ing in a single 24 dimensioned feature per pixel. This PCA
projection captures the salient information from the multi-
ple radii and multiple color channels while maintaining the
linear-shift property.

3.2. Principal Features Extraction

The per-pixel features can further be reduced to a set of
so called principal features. This is achieved by k-means
clustering followed by expectation maximization (EM) as
shown in Fig. 2. Each pixel feature is considered to be
a point in high dimensional space and the distribution of
these points is assumed to follow a Gaussian Mixture Model
(GMM) consisting of k gaussians. The extracted principal
features are taken to be the estimated gaussian means of the

���

���

���

���

���

���

�	�
���

��	������
�����	����	�
���

���

������
���	���	 ��!�"������

��	#�
����

�����������

	�
���

	�

$%&���
����
�
%�'�(
����

)���
�	��������! $���'
���	*
���
�	��%���

Figure 2. This figure overviews the feature extraction process from the example patch. Initial features are extracted about each pixel. The
entire feature space (of all pixel features) is then decomposed using PCA and each feature is projected onto the first principal component
of the PCA decomposition. A small set of principal features are extracted by first running k-means clustering on the per-pixel features
and using the cluster means as the initializations of principal features. The feature space is then modeled using a gaussian mixture model
(GMM) and the principle features are taken to be the means and covariance matrices of k gaussians refined via EM.

GMM. Similar procedures have been used in other work
(e.g. [14, 15]) to group redundant training features.

To estimate the k means of the GMM, we first run k-
means clustering on the PCA pixel features. The result-
ing cluster centers are used as initializers for the gaussian
means. We also determine the number of gaussians during
k-means clustering. After EM converges, principal features
having very small weights assigned to their corresponding
gaussian (implying that these means model only a few in-
stances in the sample space) are removed. Typically, after
the EM procedure we are left with only 30 to 40 principal
features that represent the entire sample texture patch. Thus,
using PCA projection and EM, we have reduced our initial
feature space from more than 500000 to less than 1000.

To handle scale, the principal feature extraction proce-
dure is performed at multiple scales of the input patch. For
our implementation, we use eight scales, from 0.25 to 2.
The feature sampling and reduction procedure mentioned
above is applied for the sample patch at the various scales.

4. MRF Formulation

The texture flow field estimation is formulated as an en-
ergy minimization problem with a well-defined objective
function for a Markov network. The global objective func-
tion is described first, followed by the description of the
likelihood and prior terms for the MRF.

4.1. Global Objective Function

Given the principal features extracted from the example
texture patch, the goal is to estimate the texture flow in an
input image with the same texture. This problem can be
formulated as a discrete label assignment problem where
we wish to assign an orientation label, O, and a scale label,
S, to every pixel in the distorted texture image. We assume
that our label assignment process follows the MRF property
which has been demonstrated to be effective at overcoming
noise and correcting errors in several vision-related prob-
lems (see recent examples [5, 8, 22]). For our problem, a

Markov network is constructed where each node {ni}N
i=1

(where N is the number of nodes) corresponds to a pixel
in the distorted texture, and for which a four-neighborhood
system is defined to have edges, E , connecting each node.
Under the MRF configuration, our global objective function
is defined in the standard form:

E(L) = max
L

N∏
i=1

exp(−Vi(li))
∏

(i,j)∈E
exp(−Vij(li, lj))

= min
L

N∑
i=1

Vi(li) +
∑

(i,j)∈E
Vij(li, lj)

 , (1)

where l ∈ O×S is the set of all possible labels, L = {li}N
i=1

is a configuration with label li assigning to node ni, Vi(li)
is the data cost function for assigning label li to the node
ni, Vij(li, lj) is the pairwise potential function for assign-
ing labels li and lj to the pair of neighbor nodes ni and
nj in the Markov network. The goal is to find a config-
uration L such that the global objective function is opti-
mized. In a Bayesian MRF formulation, the configura-
tion L corresponds to the maximum a posteriori (MAP) so-
lution, where

∏N
i=1 exp(−Vi(li)) corresponds to the like-

lihood and
∏

(i,j)∈E exp(−Vij(li, lj)) corresponds to the
prior. While the definition of the energy function is stan-
dard for a Markov network, the definitions of the likelihood
and the prior costs are unique for each different problem.
Our likelihood estimation and prior term are detailed in the
following subsections, however, optimizing the MRF is de-
scribed first.

To minimize the MRF cost function, recent state-of-the-
art MRF-based approaches that optimized their objective
functions using either belief propagation (BP) ([5, 22]) or
via graph-cut [8] were considered. In our implementation,
orientation labels are defined at each 15◦ for eight different
scale labels linearly from 0.25 to 2.0, resulting in in a total
of |O| × |S| = 192 labels. Our estimation results can be
further improved by using even finer quantization in orien-
tation and scale, at a trade-off of higher computational and

memory costs. Using our current quantization, the num-
ber of labels for our problem is higher than those problems
addressed in [5, 8, 22] and as a result, we elected to use
Priority-BP [9], a variant of belief propagation, for our la-
bel assignment process.

The significant difference between BP and Priority-BP is
the use of a dynamic label pruning procedure and a prior-
ity message passing scheme to help resolve the huge mem-
ory requirements in storing all possible label assignments
at each node. As described in [9], Priority-BP can toler-
ate label assignments with thousands of labels. While our
problem does not have thousands of labels, the number is
sufficiently high to warrant the use of Priority-BP. Using
Priority-BP we find that we only need to store 20 to 30 la-
bels per node for each updating iteration, while still obtain-
ing good results.

4.2. Likelihood

Given the set of principal features generated from the
sample texture computed at a resolution of 24 orientations
and 8 different scales, denoted as labels T , where T =
{Tl}|O|×|S|

l=1 , we measure the likelihood of texture feature
ti extracted from a pixel position at ni in input image is to
be generated from each label, l, where l ∈ |O| × |S|, is
represented by the features in Tl. Since each Tl is assumed
to follow a GMM distribution, and with the assumption that
observation noise follows an independent identical distribu-
tion, we define our likelihood as follows:

P ({ti}N
i=1∈T |L)=

NY
i=1

P (ti∈Tli |L)

=
NY

i=1

exp(−(ti−µT k
li

)T Σ−1

T k
li

(ti−µT k
li

))

=
NY

i=1

exp(−Vi(li)) (2)

where N is the number of nodes in the MRF, and
(µT k

li

, ΣT k
li

) are the normalized mean and the covariance

matrix of the k-th Gaussian in Tli . This k-th Gaussian is
selected as the principal feature from Tl that is most simi-
lar to ti, i.e. k = arg mink ||ti − T k

l ||2, and is denoted as
T k

li
. Although we can use the weighted sum of errors of

all the Gaussian in Tli , we find that using the most similar
principal feature for each label gives the best results.

4.3. Prior

The Markov property asserts that the conditional prob-
ability of a site in the Markov network depends only on
its neighboring sites, which means that our prior is defined
over each pair of neighbor nodes in the Markov network.
We adopt a smoothness assumption for our prior, which as-
sumes the changes of both orientation and scale are small

across neighboring sites. To avoid smoothing discontinu-
ities present in the flow field a truncated linear cost model
in our prior term is used as discussed in the following.

Recall that our label l ∈ O × S consists of orientation
O and scale S components. Since there exists no statistical
relationship between the scale and orientation, we assume
the orientation prior P (O) and the scale prior P (S) are in-
dependent. Hence, our prior P (L) can be expanded into the
joint probability of P (O) and P (S):

P (L)=P (O)P (S)

=
∏

(i,j)∈E
exp(−VOij (l

O
i , lOj))

∏
(i,j)∈E

exp(−VSij (l
S
i , lSj))

=
∏

(i,j)∈E
exp(−(VOij (l

O
i , lOj) + VSij (l

S
i , lSj)))

=
∏

(i,j)∈E
exp(−Vij(li, lj)) (3)

where lOi ∈ O and lSi ∈ S denote respectively the
orientation and scale component of li, VOij (l

O
i , lOj) and

VSij (l
S
i , lSj) are the pairwise potential functions of P (O)

and P (S) respectively.
We first define VSij (lSi , lSj). Since our scale labels S are

defined linearly, we use a simple truncated linear model [5]
for our cost function as follows:

VSij (l
S
i , lSj) = min(cS |lSi − lSj |, dS), (4)

where cS is the rate of the cost, and dS controls when to
terminate increasing costs. This model is desirable because
it allows discontinuities in the labeled MRF by ceasing to
increase costs after the scale label difference, cS |lSi − lSj |,
is greater than dS . A similar cost function was used in a
BP approach for stereo [22], although rather than truncat-
ing the linear cost, they use a robust function that changes
smoothly from zero to a constant as the cost increases. In
our implementation, we set cS = 10/(|S| − 1) and dS = 5
such that the cost stops increasing when the label difference
is more than half the total number of labels |S|.

To model the orientation prior, VOij (lOi , lOj), we also use
a truncated linear model. However, the effects of rotation
symmetry found in the example patch needs to be incorpo-
rated into the cost function, VOij (lOi , lOj) instead of directly
using the label difference. Our modification to the linear
model is as follows:

VOij (l
O
i , lOj) = min(cOW (TlOi

, TlOj
)f(|lOi − lOj |), dO)

(5)
where

W (TlOi
, TlOj

) =
1

|TlOi
||TlOj

|

|T
lO
i
|∑

m=1

|T
lO
j
|∑

n=1

||µT m

lO
i

− µT n

lO
j

||

�� ����

����

�� ����

����

(a) (b) (c) (d)
Figure 3. Compatibility matrix (W (TlO

i
, TlO

j
)f(|lOi − lOj |)) for

different texture. The darker regions in the plots represent where
the texture is more similar for pairs of orientations. (a) a grass
texture, (b) compatibility matrix of grass texture, (c) zebra texture,
(d) compatibility matrix for zebra texture. In the grass texture,
there is no rotation symmetry, while in the zebra texture, rotation
symmetric exist at 180◦.

is the average Euclidean difference between the Gaussian
means of principal features in T at orientation defined by
lOi and lOj , and W (TlOi

, TlOj
) ∈ [0, 1] after normalization,

f(|lOi − lOj |) = { |lOi − lOj |, |lOi − lOj | ≤ |O|/2
|O| − |lOi − lOj |, |lOi − lOj | > |O|/2

defines the label difference so that the angle difference be-
tween the two label lOi , lOj within [0, 180◦). Fig. 3 dis-
plays the compatibility matrix W (TlOi

, TlOj
)f(|lOi − lOj |) for

different texture samples, we can see that our definition of
W (TlOi

, TlOj
) models the rotation symmetric properly. We

set cO = 20/(|O|−1) and dO = 5 which truncate the costs
when the angle difference between two labels is larger than
90◦. With both definitions of VSij (lSi , lSj) and VOij (lOi , lOj),
it is easy to observe that they take the same weights in joint
function Vij(li, lj).

Combining the definition of our likelihood (2), prior (3)
and the global objective function (1), our Bayesian MRF is
formulated as:

E(L)=min
L

0
@

NX
i=1

Vi(li) +
X

(i,j)∈E

(VSij (l
S
i , lSj) + VOij (l

O
i , lOj))

1
A .

5. Experimental Results

Our algorithm is evaluated using both natural and syn-
thetic image examples. For the natural image examples, we
compare our results with those obtained by two recent flow
estimation approaches proposed by Paris et al [18] and Hays
et al [7]. We admit that this is not entirely a fair compari-
son as these approaches target specific types texture types;
gradient-like textures in [18] and regular textures in [7].
However, we use these recent approaches to demonstrate
the advantage of our method to target diverse texture types.

For examples on synthetic examples, we use the re-
cent texture synthesis technique introduced by Lefebvre and
Hoppe [12] that synthesizes textures for over a specified
flow field. This gives us the ability to compare our results
using the specified flow field as a ground truth comparison.

5.1. Real World Examples

For the real world examples, while we make no assump-
tion about the texture type, we do assume the user specified
example patches are not distorted and contain sufficient tex-
tons to represent the texture. We also assume reasonably
constant shading in the distorted texture. Significant shad-
ing or shadows should be reduced before applying our algo-
rithm. Various techniques are available to address this task
and for our purposes we will assume such pre-processing
has already been applied.

Fig. 4 shows the paved stone road example used in Fig. 1.
Our estimated texture flow field (Fig. 1(b) is consistent with
human perception in terms of scale and orientation of the
stone pattern. Fig. 4(a) shows a result from orientation ex-
traction using Paris et al [18]. Since their approach assumes
a gradient-like texture its breaks down for this example.
Fig. 4(b) shows a result from Hays et al [7]. While [7] ap-
proach offers the benefit of being fully automated, it targets
textures with lattice structures. As a result, the approach
works well for a small portion of the image, but as the tex-
ture becomes increasingly distorted under perspective pro-
jection the approach is unable to follow the texture flow.

Fig. 5(a) shows a zebra example. We select a sample
texture patch from the zebra body as indicated by the green
box. The shading of the zebra texture is first normalized
as shown in Fig. 5(b) which can be achieved with vari-
ous techniques, such as homomorphic filtering. We show
our estimated texture flow field in Fig. 5(c). Using the ex-
tracted texture flow field, we perform texture replacement
using the flow-guided texture synthesis [12] as shown in
Fig. 5(d). The example texture is used to replace the original
zebra texture. Note how similar the re-synthesized version
looks to the original. Fig. 5(e) shows a result from [18]
which scale changes are not modeled. Their approach also
does not handle discontinuity and singularity well. Fig. 5(f)
shows a result from [7]. The texture violates their regular
texture assumption and can only detect a small region of the
texture.

Fig. 6 compares our extract on an example demonstrated

(a) (b)
Figure 4. Results of flow-extraction from recent proposed tech-
niques :(a) Paris et al [18], and (b) Hays et al [7].

(a) (b)

(c) (d)

(e) (f)

Figure 5. (a) Zebra image with the example patch indicated in the
green box. (b) Shading normalized over the zebra’s body. (c)
The estimated texture flow field of zebra body. (d) Texture re-
synthesized using the example patch. (e) The estimated orientation
field from [18]. (f) Detected regular texture lattice from [7]
.
in the “near regular” texture synthesis proposed by Liu et
al [13] where a lattice structure is specified by user to guide
the synthesis. Fig. 6(a) show an example from in [13]. Our
estimated texture flow field is shown in Fig. 6(b). Fig. 6(c)
shows the result from [7]. The user specified control lines
from Liu et al [13] are shown in Fig. 6(d). Our result is bet-
ter then result from [7] and is comparable to the orientation
of control lines manually specified in [13].

5.2. Synthetic Examples

Experiments for estimating the texture flow using syn-
thetic examples are shown in Fig. 7. The benefit of synthet-
ically generated textures is that we can control the difficult
of the testcase as well provide a mechanism to test against
ground truth. Seven different sample textures are shown at
the top of the figure. The example patch sizes are shown
below each sample in the figure. The input images are all
256 × 256. The texture examples vary significantly, with
different levels of symmetry, texton scale, and texton distri-
bution.

For the first example, a texture flow field with orienta-
tion varying from 0◦ to 180◦ and a fixed the scale is used.
Even though the scale is fixed, we apply our algorithm to
test over all orientation and scale sizes. For each texture ex-
ample, the root mean squared error (rms) of our estimated
flow field against the known flow field is shown in parenthe-
ses for orientation and scale respectively. For orientation,
the average rms is 9.73◦ for all examples. This is less than

(a) (b)

(c) (d)
Figure 6. Texture flow estimation of real image. (a) Input image
from [13]. An example texture patch is selected from the input
image as shown in the green box. (b) Our estimated texture flow
field. (c) Result from [7]. (d) The user specified control line
from [13].

the quantization angle of 15◦. In addition, only texture four
(labeled at T4 in the figure) has minor problems with scale
estimation.

The second test case tests the accuracy of scale estima-
tion. The scale of the texture flow field are changed while
the orientation is fixed. In this test case, the orientation is
estimated correctly (with rms less than 1◦). The average
rms of scale is 0.09. Again, the rms of each test example is
smaller than the quantized scale (0.25).

The third test case tests our algorithm under perspective
projection and the ground truth texture flow field is defined
by a plane under projection and both orientation and scale
are distorted. Our estimated average rms for orientation and
scale are 11.26◦ and 0.19 respectively. The rms of the ori-
entation for texture example five slightly exceeds the quan-
tization angle. This is due to the fact that this particular
texture becomes homogeneous under down sampling.

The final test case, the ground truth texture flow field
is a spiral structure with both orientation and scale chang-
ing at every pixel. This complex texture flow field is found
less frequently in natural structure but is common in man-
made objects. Under this difficult test case, our algorithm is
still reliable at estimating the texture flow field with average
rms of orientation equal to 13.53◦ and average rms of scale
equal to 0.12.

For that vast majority of the test cases, we find that the
rms for both orientation and scale are smaller than the quan-
tization error. This demonstrates that our extracted principal
features are effective in their estimation of orientation and
scale likelihoods for local texture neighborhoods, and that
our MRF label assignment process is accurate and robust.

6. Summary

We have presented a robust technique for estimating ori-
entation and scale flow fields in a distorted texture given
a sample patch. Our results show that our technique can be
used with a variety of texture and is able to produce good re-
sults on both natural and synthetic images for considerably
distorted textures. While the use of the RGB space in our
feature sampling generates good results, a perceptual color
space or gradient space may help to ameliorate the effect of
illumination. Future work includes exploiting our approach
to help normalize the underlying texture for general use in
texture-synthesis.

7. Acknowledgements

We gratefully acknowledge the support of NTU’s Col-
lege of Engineering Startup Grant (COE.SUG), NTU’s Re-
search Office ROAR award, and the Research Grant Coun-
cil (RGC) of Hong Kong RGC grant no: 620005. We also
thank the CVPR reviewers and Area Chair for their valuable
comments and suggestions.

References

[1] M. Ashikhmin. Synthesizing natural textures. ACM
Symposium on Interactive 3D Graphics, pages 217–
226, march 2001.

[2] O. Ben-Shahar and S. Zucker. The perceptual orga-
nization of texture flow: A contextual inference ap-
proach. IEEE Trans. PAMI, 25(4):401–417, 2003.

[3] M. Clerc and S. Mallat. The texture gradient equation
for recovering shape from texture. IEEE Trans. PAMI,
24(4):536–549, 2002.

[4] A. A. Efros and W. T. Freeman. Image quilting for
texture synthesis and transfer. ACM SIGGRAPH 2001,
page 341346, 2001.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
belief propagation for early vision. ICJV, 70(1):41–
54, 2006.

[6] D. Forsyth. Shape from texture without boundaries. In
ECCV’02, pages III: 225–239, 2002.

[7] J. H. Hays, M. Leordeanu, A. A. Efros, and Y.-X. Liu.
Discovering texture regularity as a higher-order corre-
spondence problem. In ECCV’06, May 2006.

[8] V. Kolmogorov and R. Zabih. Multi-camera scene re-
construction via graph cuts. In ECCV’02, pages III:
82–96, 2002.

[9] N. Komodakis. Image completion using global opti-
mization. In CVPR’06, pages I:442–452, 2006.

[10] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra.
Texture optimization for example-based synthesis.

ACM Transactions on Graphics (SIGGRAPH’05),
24(3):795802, 2005.

[11] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture
representation using local affine regions. IEEE Trans.
PAMI, 27(8):1265–1278, 2005.

[12] S. Lefebvre and H. Hoppe. Appearance-space texture
synthesis. ACM Trans. on Graphics (SIGGRAPH’06),
25(3):541–548, 2006.

[13] Y. Liu, W. Lin, and J. Hays. Near regular texture anal-
ysis and manipulation. ACM Transactions on Graph-
ics (SIGGRAPH’04), 23(3):368 – 376, August 2004.

[14] A. Lobay and D. Forsyth. Recovering shape and
irradiance maps from rich dense texton fields. In
CVPR’04, pages I: 400–406, 2004.

[15] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons,
contours and regions: Cue integration in image seg-
mentation. In ICCV’99, pages II: 918–926, 1999.

[16] J. Malik and R. Rosenholtz. Computing local surface
orientation and shape from texture for curved surfaces.
IJCV, 23(2):149–168, 1997.

[17] T. Ojala, M. Pietikainen, and T. Maenpaa. Multireso-
lution gray-scale and rotation invariant texture classi-
fication with local binary patterns. IEEE Trans. PAMI,
24(7):971–987, July 2002.

[18] S. Paris, H. M. Briceno, and F. X. Sillion. Capture of
hair geometry from multiple images. ACM Transac-
tions on Graphics (SIGGRAPH’04), 23(3):712–719,
August 2004.

[19] P. Perona. Orientation diffusion. IEEE Transactions
on Image Processing, 7(3):457–467, 1998.

[20] A. Rao and B. Schunck. Computing oriented texture
fields. CVPR’89, pages 61–68, 89.

[21] A. R. Rao and R. Jain. Computerized flow field anal-
ysis: Oriented texture fields. IEEE Trans. PAMI,
14(7):693–709, 1992.

[22] J. Sun, N. Zheng, and H. Shum. Stereo matching us-
ing belief propagation. IEEE Trans. PAMI, 25(7):787–
800, 2003.

[23] D. Tschumperle and R. Deriche. Orthonormal vector
sets regularization with pdes and applications. IJCV,
50(12):237–252, 2002.

[24] H. Voorhees and T. Poggio. Detecting textons and tex-
ture boundaries in natural images. In ICCV’87, pages
250–258, 1987.

[25] J. Zhang, K. Zhou, L. Velho, B. Guo, and H. Shum.
Synthesis of progressively-variant textures on arbi-
trary surfaces. ACM Transactions on Graphics (SIG-
GRAPH’03), 22(3):295302, July 2003.

Ground Truth T1 : 32 × 32 T2 : 64 × 64 T3: 64 × 64 T4 : 64 × 64 T5 : 64 × 64 T6 : 64 × 64 T7 : 64 × 64

Orientation rms: (8.53◦, 0.00) rms: (7.39◦, 0.01) rms: (8.29◦, 0.09) rms: (10.37◦, 0.25) rms: (14.16◦ , 0.00) rms: (10.31◦, 0.00) rms: (9.04◦, 0.03)

Scale rms: (0.00◦, 0.07) rms: (0.62◦, 0.05) rms: (0.00◦, 0.10) rms: (0.00◦, 0.15) rms: (0.00◦, 0.14) rms: (0.00◦, 0.06) rms: (0.00◦, 0.09)

Perspective rms: (14.49◦, 0.21) rms: (13.47◦, 0.17) rms: (10.77◦, 0.18) rms: (7.72◦, 0.22) rms: (15.30◦ , 0.19) rms: (7.94◦, 0.17) rms: (8.89◦, 0.19)

Spiral rms: (14.22◦, 0.05) rms: (15.24◦, 0.06) rms: (13.40◦, 0.19) rms: (13.82◦, 0.22) rms: (17.15◦ , 0.15) rms: (14.09◦, 0.07) rms: (13.77◦, 0.08)

Figure 7. Our algorithm is tested on several synthetic examples. Seven sample textures are shown on the top row. Four test cases are
demonstrated: rotation, scale, perspective projection and spiral. Ground truth for the texture flow field are shown for comparison in the
left most column. For each test case, the upper row shows the distorted texture generated using anisotropic texture synthesis from [12].
The lower row shows the estimated texture flow field with root mean square (rms) errors for orientation angle and scale respectively. Since
orientation is quantize by 15◦ and scale by 0.25, we find that for most of our test case, the rms of both orientation and scale are below our
quantization size. This means that estimation errors are likely attributed to the angle and scale quantization than errors in the actual label
assignment.

