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Abstract

We present a technique to reduce image blur caused by
out-of-focus regions in projected imagery. Unlike tradi-
tional restoration algorithms that operate on a blurred image
to recover the original, the nature of our problem requires
that the correction be applied to the original image before
blurring. To accomplish this, a camera is used to estimate
a series of spatially varying point-spread-functions (PSF)
across the projector’s image. These discrete PSFs are then
used to guide a pre-processing algorithm based on Wiener
filtering to condition the image before projection. Results
show that using this technique can help ameliorate the vi-
sual effects from out-of-focus projector blur.

1. Introduction

Recent research focusing on projector-based displays has
greatly increased the potential of light projectors as dis-
play devices. This is in part due to computer vision algo-
rithms that couple projectors and cameras in the same envi-
ronment. These so called projector-camera systems facili-
tate an array of applications, from the calibration of multi-
projector display environments (see [4]), to techniques for
user interaction [2, 3, 20], to algorithms for shadow cor-
rection and light suppression [5, 9] and even techniques for
displaying on textured surfaces [14].

While significant advances to projector hardware have
been demonstrated [13], on the whole, commodity projec-
tor hardware has not evolved to accommodate the flexi-
bility allowed by projector-camera systems. Commodity
light projectors are still designed to be used in an orthog-
onal (on-axis) manner with a planar display surface. While
vision-based algorithms loosen these constraints and allow
for more arbitrary positioning, one consequence is that of
focus. Projectors’ depth-of-field are often limited, and even
slight off-axis projection can lead to blurred regions in the
imagery. Currently, such blurred regions are simply ignored
in lieu of the benefits obtained from flexible projector place-
ment. Techniques to help reduce blur from focus, however,
are undoubtedly welcomed.

Figure 1. (Left) Original image with blurring due to regions of the
projected image being out-of-focus. (Right) The same image with
our deblurring pre-conditioning.

[Our Contribution] We address the issue of out-of-
focus projector blur. Our approach is formulated in the vein
of traditional restoration algorithms focused on deblurring.
Traditional approaches operate on a degraded image that
has undergone some blurring process and try to approxi-
mate the original input image. Our problem is cast as the
inverse – the original image is known, however, it cannot
be processed once it undergoes the degradation process (i.e.
projection). Thus, we need to pre-condition the image such
that when projected the effects from out-of-focus blur will
produce a result as close as possible to the original. To ac-
complish this, we have developed an algorithm that esti-
mates the blurring process as a set of spatially varying point
spread functions (PSFs) applied over the projected imagery.
A pre-conditioned image is then computed from a set of
Wiener filtered basis images computed from the estimated
PSFs. Our results demonstrate that this procedure can help
lessen the effects of blurring (figure 1 shows an example).

The remainder of this paper is as follows. Section 2 dis-
cusses related work; section 3 discusses background pre-
liminaries to our approach; section 4 overviews our overall
framework for computing the pre-conditioned image; sec-
tion 5 shows results; section 6 and section 7 conclude with
a discussion and summary of our work respectively.
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2. Related Work

Research on camera-based algorithms for projector dis-
play and tiled display systems can be divided into two cat-
egories: (1) geometric calibration and (2) photometric cali-
bration.

Geometric calibration algorithms use a camera (or cam-
eras) to observe projected imagery to compute geomet-
ric transforms to rectify the imagery. These techniques
can be used for problems as simple as key-stone cor-
rection, to calibration of multiple projectors over irreg-
ular surfaces. A number of papers have addressed ge-
ometric calibration for various setups and configurations
[6, 15, 16, 17, 18, 21, 23]. Geometric correction can also
be considered a pre-conditioning of the projected imagery,
often referred to as pre-warping. In these approaches, the
input image is warped before projection to compensate for
projector positioning as well as the display surface geom-
etry. The pre-warped image will appear geometrically cor-
rect when observed by a viewer. While pre-processing is
applied to the displayed imagery it is only in the form of
spatial transforms, the original image content is not modi-
fied.

Photometric algorithms use cameras to measure vari-
ous photometric responses of the projectors. These ap-
proaches strive to create uniform (or perceptually uniform)
imagery across a projector, or more often, across sev-
eral overlapping projectors. These techniques are typi-
cally applied in tandem with geometric correction algo-
rithms. Several papers have addressed this issue in various
ways [10, 11, 12, 14, 17, 19]. Photometric correction can
also be considered a pre-conditioning of the imagery. These
techniques involve pixel-wise transforms to match colors or
luminance values across the projectors and do not consider
intensity spread due to blurring in the correction process.

In the context of image compositing, the issue of limited
depth-of-field has been addressed (e.g. [1]). As previously
mentioned, our projector-based problem is quite different:
traditional approaches operate on the image after blurring;
the nature of our problem requires that we process the image
before the blurring occurs.

To our knowledge, no previous work has addressed the
pre-processing of displayed imagery to offset image degra-
dation due to blurring. In the following, we describe our
framework and demonstrate the results of our image pre-
conditioning algorithm on several testcases.

3. Preliminaries

3.1. Out-of-Focus Blur

When a projection setup is out of focus, the light rays
emitting from a single projector pixel and collected by the
lens system do not converge onto a single point on the dis-

play, but are instead distributed in a small area called the
circle-of-confusion. A blurred image is caused not just
by this dispersion of light but also the additive overlap of
circles-of-confusion from neighboring pixels. The blur of
an image depends on both the size of the circle-of-confusion
as well as the distribution profile of light within it – this dis-
tribution of light is typically called the point-spread func-
tion (PSF). The PSF in turn depends on a number of fac-
tors including aperture size. Projectors and cameras typi-
cally do not have pinhole apertures and therefore have a fi-
nite depth-of-field. Projectors, in particular, are designed to
have larger apertures that lead to brighter displays. Larger
apertures however suffer from smaller depth-of-fields, e.g.
in a thin-lens model the diameter of the circle-of-confusion
for an out-of-focus point is directly proportional to aperture
size. This is generally not a problem for projection systems
as the projector is typically aligned orthogonal to a flat dis-
play surface, thereby allowing all points on the surface to
be simultaneously in focus. However, in applications when
the projector is significantly skewed to the display surface,
or for substantially curved surfaces, there is only a small re-
gion on the display that is in sharp focus, while the other
parts of the display suffer varying degrees of out-of-focus
blur.

3.2. Uniform PSFs and Wiener Filtering

We initially consider the scenario in which a projector
projecting orthogonally to a flat display surface is out of
focus. In this setup, the display is uniformly blurred as the
PSF (on the display) is reasonably invariant to the spatial
position of the associated pixel in the image.

While the PSF depends on the lens system, it can be rea-
sonably modeled as a 2D circular Gaussian [7] of the form

hσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (1)

The blurred image created from the overlap of the uniform
PSF from different pixels can be modeled as the result of a
convolution

iB(x, y) = i(x, y) ◦ h(x, y)

=
∑

u

∑
v

i(x, y)h(u − x, v − y), (2)

where i(x, y) and iB(x, y) are the original and blurred im-
ages respectively. Additionally, some additive noise may
be present. In image processing, a typical problem is to
recover the original but unknown image i(x, y) given only
the blurred image iB(x, y). If (2) is valid, the deblurring
may also be achieved via convolution with an inverse filter
h−1(x, y) such that

î(x, y) = iB(x, y) ◦ h−1(x, y)
= [i(x, y) ◦ h(x, y)] ◦ h−1(x, y), (3)



where î(x, y) is the estimated deblurred image, assuming
that h−1(x, y) exists and the noise is small.

In our problem, the sequence of operators is different.
Here the goal is to pre-condition the known original image
such that when it is displayed via the out-of-focus projec-
tor, the output image appears similar to the original image.
Because convolution operators are commutative, (3) may be
rewritten as

î(x, y) = [i(x, y) ◦ h−1(x, y)] ◦ h(x, y). (4)

We can consider the pre-conditioned image to be the first
term of (4), defined as

ĩ(x, y) = [i(x, y) ◦ h−1(x, y)]. (5)

Thus, the pre-conditioned image ĩ(x, y) after degradation
h(x, y) is an approximation of the original image î(x, y).

The challenge here is determining the optimal h−1(x, y),
and this is easiest done in the frequency domain, where the
blurring process may be dually treated as

IB(u, v) = I(u, v)H(u, v), (6)

where the IB(·), I(·) and H(·) functions are Fourier trans-
forms of the iB(·), i(·) and h(·) functions respectively. If
the PSF is known, a classical solution that minimizes the
mean squared error is Wiener filtering (see [8]), for which a
simple variation is:

Î(u, v) =
H∗(u, v)IB(u, v)

|H(u, v)|2 + 1/SNR
, (7)

where Î(·) is the Fourier transform of î(·), H∗(·) is the com-
plex conjugate of H(·), and SNR is the estimated (or apriori)
signal-to-noise ratio. Hence the pre-conditioning filter that
is used for uniform PSF is simply given by

h−1(x, y) = F−1

{
H∗(u, v)

|H(u, v)|2 + 1/SNR

}
, (8)

where F−1 is simply the inverse Fourier transform.
Considering (5), (7), and (8), it is apparent that the pre-

condition image, ĩ(x, y) can be obtained by applying the
Wiener filtering to the original image, i(x, y), with H such
that:

F−1{Ĩ(u, v)} = F−1

{
H∗(u, v)I(u, v)

|H(u, v)|2 + 1/SNR

}
. (9)

Assuming that the PSF is known or can be estimated
from test images (e.g. fiducial markers), the Wiener filter
allows for the pre-conditioning of images for out-of-focus
projectors that are projecting orthogonally to the display
surface.

3.3. Non-Uniform PSFs

When the projector is skewed to the display surface or
for curved surfaces, the PSF is no uniform across the pro-
jector image. One significant consequence of this is that the
convolution model no longer applies, and Wiener filtering
cannot be directly used to pre-condition the image.

To address this problem, we estimate the spatially vary-
ing PSF profile across the projector. While we would like to
estimate the PSF for each projector pixel, this is impractical
in practice. As a compromise, we partition the projected
image into smaller regions within which a PSF is com-
puted. These sub-sampled PSFs are used to compute our
pre-conditioned ĩ(x, y) by compositing a series of global
PSF corrections described in the following section.

4. Framework For Image Pre-conditioning

4.1. Projector Blur Estimation

Our framework begins by estimating piecewise PSFs in
the projector’s image. The projector displays an image of
equally sized feature markers (crosses) in an off-axis man-
ner onto a flat surface. A high-resolution camera captures an
image of these projected features. Since the displayed fea-
tures and their observed locations in the camera are known,
we can compute the 3× 3 homography between the camera
and display image to rectify the camera image to the origi-
nal displayed image.

To derive the PSFs we would ideally compare the origi-
nal image with the rectified camera image. These two im-
ages, however, are sufficiently different due to a variety of
effects including the devices’ imaging systems, display sur-
face response, and properties such as the projector’s lamp
age and color balance settings. Given the difficulty in mod-
eling (and estimating) these effects, we instead work di-
rectly from the rectified camera image. Our idea is to lo-
cate the most in-focus observed feature and use this rec-
tified image as an exemplar for determining the PSFs of
the other features. Since the camera image is rectified to
the original projected image, the locations of the features
are known. We use the notation if (x, y) to denote the sub-
image (bounding box) about a feature in the rectified camera
image.

Due to lighting variations within the projector and il-
lumination fall off from off-axis projection, intensity re-
sponses across the displayed image are not uniform. It is
necessary to first normalize the features’ intensities before
finding the exemplar feature. In our setup, the illuminated
display surface exhibits a reasonably uniform response to
the projected light. As a result, we can exploit the nature of
the PSFs to perform the intensity normalization. For display
surfaces with non-uniform responses, more sophisticated il-
lumination correction approaches can be used [12, 19].
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Figure 2. Stages of our PSF estimation. (a) Camera image of displayed features; (b) rectified image; (c) intensity normalized; (d) sharpness
response for each feature.

The Gaussian PSF used in our blur model sums to unity
and therefore does not change the overall energy of the orig-
inal signal, i.e., it does not change the DC component of the
original I(u, v). In other words:

IB(0, 0) = I(0, 0)H(0, 0) = I(0, 0),

where the index (0, 0) represents the DC component of each
I , IB ,and H functions in the Fourier domain. By finding the
brightest feature imax = max

∑
x

∑
y ifj (x, y), all other

features, ifj (x, y) can be normalized as

ifj (x, y) = F−1{IN(u, v)}, (10)

where

IN (u, v) =

{
Imax(0, 0) if u = v = 0
Ifj (u, v) otherwise.

From (10) we see that all features are now transformed to
have the same DC component as the brightest feature.

After normalization, the sharpest feature in the image is
found by computing a sharpness response in a block-wise
fashion about each feature, ifj (x, y), using the Tenengrad
operator [22] as follows:

Tj =
1
n

∑
s2
x + s2

y, (11)

where, Tj is the sharpness response for feature ifj (x, y),
sx and sy are a 5 × 5 horizontal and vertical Sobel filter
responses applied in the spatial domain over all n pixels
composing the feature ifj (x, y).

Figure 2 shows the steps to find the exemplar feature.
Figure 2 (a) shows the original input image captured by the
camera. This image is rectified to the projected image, fig-
ure 2 (b), and then normalized, figure 2 (c). Sharpness re-
sponses computed using (11) are obtained for each block
as shown in figure 2 (d). Our exemplar feature, ie(x, y) is
taken to be the feature corresponding to max (Tj).

4.1.1 PSF Map Recovery

Given the exemplar template, ie(x, y), we compute a set of
k blurred templates with increasing σ, such that

ie(σk)(x, y) = ie(x, y) ◦ hσk
(x, y),
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Figure 3. Estimated PSF Mapσ(u, v).

where hσk
(x, y) represents the Gaussian PSF described

in (1) with parameter σk . Typical values of σk =
1
2 , 1, 3

2 , · · · , 4. These blurred ie(σk)(x, y) serve as tem-
plates for estimating the PSFs across the projector image.
Cross correlation can be applied for each projected fea-
ture ifj (x, y) against all blurred templates, ie(σk)(x, y), to
find most similar ie(σk)(x, y) for each feature. Alterna-
tively, we can also compute the Tenengrad response for
each ie(σk)(x, y) and use this for matching PSFs, since
the Tenengrad responses, Tj for each ifj (x, y) are already
available from the exemplar search.

The final result is a PSF map, Mapσ(u, v) that assigns
the appropriate σk to each feature ifj (x, y) based on the
template matching. Here we use (u, v) to represent the in-
dex of the sub-sampled feature 1. The σk associated with
each Mapσ(u, v) corresponds to the PSF hσk

(x, y) which
best approximates the blurring in that region. Figure 3
shows the resulting Mapσ(u, v). Not surprisingly, the shape
of this map appears as the inverse of the Tenengrad re-
sponses.

1For simplicity in notation we reuse the variables (u, v), these should
not be confused for the indices used for Fourier functions, e.g. F (u, v).



Figure 4. Piecewise PSF Filtering: (Top) Basis images ĩσk . (Bottom-left) Shows PSF map and four nearest neighbors to pixel (x,y).
(Bottom-middle) Shows zoomed in regions of four basis images. (Bottom-right) Final composited image.

4.2. Computing the Pre-conditioned Image

4.2.1 Basis Images via Wiener Filtering

As mentioned in section 3.3, because our PSFs are vary-
ing spatially within the image, Wiener filtering cannot be
applied in a global manner to derive the pre-condition im-
age ĩ(x, y). As a compromise, we approximate a spa-
tially varying Wiener filter given the projector blur profile
Mapσ(u, v).

The Mapσ(u, v) has k distinct PSFs defined as
hσk

(x, y). Using these hσk
(x, y), we compute a set of

preconditioned basis images, ĩσk
(x,y), using Wiener fil-

tering as described in (9), where the filter H for (9) is
F{hσk

(x, y)}. Figure 4 (top) shows an example of these
basis images.

4.2.2 Image Compositing

For a given pixel in the pre-condition image, ĩ(x, y), we
compute its value using a bi-linear interpolation of the ba-
sis images ĩσk

(x, y). The appropriate basis images and
weights for the interpolation are determined from the PSF
Mapσ(u, v).

Performing the appropriate coordinate scaling, we
find the four closest neighbors in the PSF Mapσ(u, v)
to pixel (x, y). These four neighbors are denoted as
m1,m2,m3,m4 and are ordered in a clockwise fashion
about (x, y). Letting m(σ) refer to the m’s corresponding

σ value, the interpolation is written as:

ĩ(x, y) = (1 − t)(1 − s) ĩm1(σ)(x, y)

+ (1 − t)s ĩm2(σ)(x, y)

+ ts ĩm3(σ)(x, y) + t(1 − s) ĩm4(σ)(x, y)

(12)

where s, 1 − s, t, 1 − t are the appropriate barycentric
coefficients, (s, t ∈ [0..1]), in the horizontal and vertical
directions between the (x, y) location and the centers of
the features associated with m1,m2,m3,m4. Performing
this interpolation for each pixel we obtain the desired pre-
conditioned image ĩ(x, y) needed for projection.

5. Results

Experiments are performed using a 3M MP8749 portable
LCD projector with (1024 × 768) resolution, an Olympus
C760 digital camera with 3.2M pixels and 10x optical zoom
and a IBM Intellistation M Pro. The algorithms are all im-
plemented in unoptimized Matlab 7.0 code.

For our experiments, we project a grid of 12×16 crosses.
Features are bounded by 64 × 64 pixels blocks. Eight
PSFs are estimated using σk = 1

2 , 1, 3
2 , · · · 4 as discussed

in Section 4.1.1. When computing the basis images, a SNR
of 0.01 is provided in the Wiener filter to estimate noise
present in the degradation process. Computation time, in-
cluding estimating the PSFs, constructing the basis images,
and compositing the final pre-condition image takes around
3-5 minutes.

We have selected test images that are sufficiently in fo-
cus and hope to demonstrate that results from our algorithm



are not merely attributed to a sharpening the input image.
Please note that the pre-conditioned images will inherently
appear sharper than the original, however, the original im-
ages themselves are sharp.

Figure 5 shows an example of our approach. Figure
5 (top-left) shows the original image of a “cat” and fig-
ure 5 (top-right) shows its appearance after projection. Note
the out-of-focus blur appearing in the left-bottom corner.
Figure 5 (bottom-left) is the corresponding pre-conditioned
image ĩ(x, y) and its result, figure 5 (bottom-right), after
projection. The texture of the cat’s fur appears sharper in
the pre-conditioned image (zoomed region). Figure 6 shows
similar results for an outdoor scene. Again, our zoomed re-
gion show the pre-conditioned image appear sharper than
the unprocessed image.

Figure 7 compares the results of our approach as an inset
into the original projected image. Note that textures in the
blurred regions are better preserved in the pre-conditioned
image than the original.

Our results are subjective. Given the nature of the
projector-camera system it is hard to compute quantitative
results. As an effort to motivate our approach the following
comparison is made. The error between the original image,
i, and its blurred countered part, Blur(i), is computed. In
this example, the blurring is synthesized using the same
image compositing framework describe in section 4.2,
except modified to produce basis images that are blurred
based on the PSFs. We compare this error to the error
between the original, i, and the pre-conditioned image
under blur, Blur(̃i). We show that we obtain 1 − 13%
improvement. The results are shown in the following table.

Figure || i-Blur(i)|| || i- Blur(̃i) || Improvement
Colosseum (6) 22204 21030 +5%
Cat (5) 12217 12094 +1%
Temple (1 & 7.left) 20621 18163 +13%
Castle (7.right) 25806 23557 +9%

6. Discussion

6.1. Display Surface Geometry

In this paper, we focused solely on an off-axis projec-
tor to demonstrate our approach. In practice, our approach
can be used with any display surface geometry. The only re-
quirement is that the camera image of the displayed features
be rectified back to the projector’s coordinate frame. Sev-
eral of the geometric calibration techniques (see [4]) pro-
vide methods for this rectification on non-planar surfaces.

6.2. Limitations

While the effects from projector blur cannot be com-
pletely remove, we have demonstrated that it is possible to
pre-condition the image to lessen the effects. As with image

restoration of blur, the effectiveness of our pre-conditioning
approach is related to the estimation of the PSFs and input
image itself. In the case of Gaussian PSFs, the Wiener pro-
cedure is effectively performing a sharpening. Input images
which are already very sharp can result in noticeable ring-
ing in the pre-conditioning process. Likewise, very large
PSF (extreme blur) also result in over sharpening. We also
note that it is possible that the pre-conditioning algorithm
will result in pixel values outside the allowed intensity range
of the graphics hardware and projector display capabilities.
Research on ways to best deal with these issues warrants
further investigation.

6.3. Spatial Sharpening

We initially examined approaches that applied spatial
sharpening using an approximation of the inverse filter h−1

as specified in (8). To obtain acceptable results, however,
we needed to use very large filters to the point where we
were essentially performing the equivalent of the Wiener
filter in the frequency domain using spatial convolution.

6.4. Future Work

While our Gaussian model is a reasonable approximation
of projector blur, a formal investigation into image creation
via projector systems and deeper analysis into projector spe-
cific PSFs is welcomed. As with many of the projector-
camera systems research, our results are subjective. Pro-
viding results in the form of PSNR between input and dis-
played imagery is quite difficult for reasons discussed in this
paper. A more systematic and formal approach for obtain-
ing quantitative results between input and output image is
needed.

7. Summary

A novel technique to pre-condition an image to counter
the effects of image blurring due to out-of-focus regions in
a projector has been presented. Our approach uses a cam-
era image of the projected imagery to estimate the spatially
varying PSFs across the projector image. A set of basis im-
ages are then constructed via Wiener filtering using the es-
timated PSFs. These basis images are compositied together
based on projector’s estimated blur profile to produce a pre-
conditioned image. Our results demonstrate that displaying
this pre-conditioned image is successful in lessening the ef-
fects of projector blur.
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