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Abstract
We present a novel approach that uses boundary inter-

polation to correct (1) geometric distortion and (2) shading
artifacts present in images of printed materials. Unlike ex-
isting approaches, our algorithm can simultaneously correct
a variety of geometric distortions, including skew, fold dis-
tortion, binder curl, and combinations of these. In addition,
the same interpolation framework can estimate the intrin-
sic illumination component of the distorted image to cor-
rect shading artifacts.

1. Background and Contribution
Printed materials are digitized for electronic dissemina-

tion and archival. While the printed content is 2D, the phys-
ical media that the content is printed on is rarely 2D. As a
result, two types of distortion are commonly present in the
images of these materials. The first is geometric distortion
of the 2D content arising from material’s non-planar shape.
The second is shading artifacts also resulting from the non-
planar shape. Examples of these effects can be seen in Fig-
ure 1.

Geometric and shading distortion is particularly trouble-
some for images of large materials, such as oversize books
and art-like materials. Such items are unsuitable for flatbed
imaging and are instead imaged using high resolution cam-
eras. As a result, they are rarely flattened before imaging.
Moreover, some materials simply cannot be made com-
pletely flat without risk of damage. This makes it difficult to
avoid geometric distortion and shading artifacts. For these
materials, distortion correction must be applied after imag-
ing.

Previous work has focused primarily on two types of dis-
tortions: skew and binder-curl. Skew arises when the ac-
quired image and the physical material’s 2D content are not
axis aligned. Approaches [1, 9, 10, 12] to correct this dis-
tortion compute planar transformations to rectify the im-
aged content. Binder-curl effect occurs in the region near
a book’s spine. Binder-curl results in an unsightly curling
appearance in the 2D content. Approaches to undo this dis-
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Figure 1: (Top) An image of a large piece of art that suffers from
fold distortion before and after being corrected with our algorithm.
(Bottom) An image of a painting suffering for geometric distortion
and shading artifacts before and after correction.

tortion [4, 5, 11, 15, 17] parameterize the distortion using
cylindrical models which can be used to “unroll” the curved
imagery.

These existing approaches are limited to planar doc-
uments or a single page of a bound volume. These ap-
proaches also assume the presence of only a single type
of distortion. As a result, the skew and binder-curl correc-
tion are typically applied in tandem to remove all distortion.
Furthermore, existing approaches assume that the targeted
distortion is exhibited only once in the image. De-skewing
algorithms cannot correct a material that exhibits multiple
skewing (for example from folds), such as shown in Fig-
ure 1 (Top). Binder-curl approaches assume the image is
of a single page and the curl is either on the left or right
of the image. The image in Figure 1 (Bottom) with several
curled regions cannot be corrected. None of the existing ap-
proaches can work for materials that exhibit both multiple
skew (folds) and binder-curl.
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Another drawback to existing approaches is they do not
address shading artifacts. Since these techniques target im-
ages of text-based documents and bound books, the ac-
quired images are subsequently converted to bi-tonal repre-
sentations for use in further processing, such as optical char-
acter recognition (OCR). Thus, shading artifacts are only
considered in the binarization process, requiring the use of
local vs. global thresholding to overcome variations in shad-
ing [17].

Recent approaches have addressed distortions from arbi-
trarily shaped materials [3, 13]. These approaches acquire a
3D reconstruction of the imaged material’s surface in addi-
tion to a 2D image. Relaxation algorithms are used to flat-
ten the 3D surface to a plane while minimizing spring en-
ergies between acquired 3D points. While these approaches
work, the additional 3D shape information is rarely avail-
able and requires modifications to the imaging technology.
In addition, these relaxation approaches are computation-
ally slow [3, 13] and do not address shading artifacts.

[Our Contribution] In this paper, we present a unified
approach to correct both geometric and photometric (shad-
ing) distortion via the 2D boundary of the imaged mate-
rial. Using boundary interpolation, we can compute a cor-
rective mapping to simultaneously undo common geomet-
ric distortions, such as skew, binder curl, and fold distor-
tion (and combinations of these). In addition, the same in-
terpolant framework can be used to estimate the intrinsic
illumination image. This estimated illumination image to-
gether with the original image can be used to remove shad-
ing artifacts. Our proposed approach is fast, works directly
from a 2D image, and provides a general solution to correct
both simple and complex geometric distortions and shad-
ing.

The remainder of this paper is as follows: Section 2 and
3 overview our approach; Section 4 shows results using sev-
eral examples; and Section 5 concludes our work.

2. Geometric Distortion Correction

2.1. Distortion Parameterization By Boundary

Our work assumes that the printed content will be recti-
linear in its true planar format. Our goal is to find a parame-
terization between the desired rectilinear representation and
the distorted input image. To do this, we consider how to
model the material’s 3D structure and how this model be-
haves under projection (imaging).

Several authors [4, 5, 15] have proposed cylindrical mod-
els to model binder-curl distortion of a single page. We use
a more general model of a ruled surface composed of two
opposite-boundary curves [7]. To visualize this model, con-
sider a book distorted by binder curl represented in Figure
2. Given the top and bottom 3D boundary curves, C1(u)
and C2(u), the entire 3D surface can be described as:

S(u, v) = (1 − v)C1(u) + vC2(u) (1)
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Figure 2: Material represented by a ruled surface defined by two
opposite curves, C1(u) and C2(u). The projection of this surface
can also be parameterized by the resulting 2D boundary curves.

where S(u, v) is the equation for the 3D ruled surface, pa-
rameterized by u and v. Given S(u, v), every iso-parametric
line u = uc is a straight line segment between C1(u) and
C2(u) parameterized by v. Note, in the case of folds, if
the fold is along the iso-parametric lines u = uc, the sur-
face can still be modeled using only the boundary curves.
Not only does this model describe the 3D structure, it also
fits our notion of how printed materials behavior. Ruled sur-
faces are developable surfaces and can be mapped to a plane
without distortion. This is similar to our notion of a printed
page; it can be flattened without introducing any distortion
to the 2D content.

While restrictive, this two-boundary ruled surface model
is sufficient to model the vast majority of printed materi-
als. Existing cylindrical models can be represented with our
model. In the case of folded materials, the folds made are
almost exclusively along iso-parametric lines to allow the
material to be folded into equal pieces for storage. Thus, a
document with several folds and curl effects can be mod-
eled. We note that it is easy to violate this surface model;
e.g. folding a page’s corner over on itself introduces a fold
against the iso-parametric lines, however such examples are
not typical of the majority of imaged materials.

With the surface model in place, we examine its behavior
under projection. The 2D projection of points on the two 3D
boundary curves can be expressed as, x1 = P̃[C1(uc) 1]T

and x2 = P̃[C2(uc)1]T , where P̃ is the 3×4 projection ma-
trix of the camera. Since lines are preserved under projec-
tion, the line segments passing through, C1(uc) and C2(uc)
must pass through the 2D boundary points x1 and x2 as
shown in Figure 2. Thus, the projection of this model can
also be parameterized using the projected boundary curves
in 2D.

While only the two opposite boundary curves are needed
to parameterize the distortion, in practice we will use four
boundary curves corresponding to the rectilinear edges of
the imaged materials. With appropriate boundary interpola-
tion, it is not necessary to explicitly denote which curves
are the opposite boundary pair. In addition, small non-
linearities in the imaging system, such as radial distortion,
can be compensated for in the interpolation process.
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Figure 3: The 2D curve c(t) is defined by n+1 2D feature points
xi and n + 1 knot values ti. Two schemes are used to compute
the knot’s values. Arc length parameterization assigns knot val-
ues using their position along the arc length of c(t). Uniform pa-
rameterization assumes the knots are uniformly sampled in param-
eter space, i.e. ti = i/n. If xi are from equally sampled 3D points
along the 3D curve, uniform parameterization can encode useful
depth information.

2.2. Boundary Representation

Four boundary curves of the distorted material are repre-
sented by curves c1, c2, c3, c4, representing the top, right,
bottom and left sides of the material. Each of these curves is
encoded using a natural cubic spline that defines continuous
image coordinates along the curve. i.e. ci = (x(t), y(t)),
where t is a parameter along the curve with range between
0 and 1.

Recall that 2D natural cubic splines (NCS) are defined
by specifying a set of n + 1 2D points, x0, x1, ..., xn to-
gether with their corresponding parameter value (knots), t0,
t1, ..., tn. The 2D points xi and knots ti, uniquely define a
set of piece-wise functions, si(i) such that:

s(t) =




s0(t) t ∈ [t0, t1]
s1(t) t ∈ [t1, t2]
...

sn−1(t) t ∈ [tn−1, tn]

, (2)

where si(t) = (xi(t), yi(t)), and xi(t) and yi(t) are cu-
bic functions. The coefficients of these cubic pieces can be
uniquely computed with the constraints that si−1 = xi = si

for (1 ≤ i ≤ n − 1) and that s′ and s′′ are continuous.
While the 2D points x0, x1, ..., xn can be obtained by

extracting image coordinates along the boundary, a corre-
sponding set of knot values, ti must also be specified. Two
different parameterization approaches are used.

The first approach uses the approximated 2D arc-length,
|s| of s(t) which is defined by the chord length of the points
xi, such that each ti is defined as:

|s| =
∑

0<i<n−1

|xi − xi+1|2

ti =




0 if i = 0
1
|s|

∑
0<j<i

|xj−1 − xj |2 if i > 0,

(3)

where | · |2 represents Euclidean distance. The idea of this
parameterization is to move along the curve s(t) at a con-
stant rate.

The second approach defines the parameterization uni-
formly with values ti = i/n, where n + 1 is the number of
control points. In this case, uniform parameterization en-
codes how to move along the 2D curve as it corresponds to
a uniform sampling along the arc-length of the actual 3D
curve. Consider a 3D curve called S(t), where t is param-
eterized by the 3D curve’s arc-length. If we have the rela-
tionship:

xi = P̃[S(t = i/n) 1]T , (4)

where P̃ is the projection matrix of the camera, i is the ith

sample, and n + 1 is the number of samples, then xi rep-
resents the projection of the 3D curves points at ti = i/n in
S(t). This can be visualized in Figure 3. The features points
xi are obtained from the uniform sampling of the 3D curve
and corresponds to a uniform parameterization of the pro-
jected 2D curve. Such parameterization can be used if we
have prior knowledge that 2D image points are from 3D
points samples by arc-length in 3D. This 2.5D information
incorporates the depth change information of the 3D curve
into the parameterization.

2.3. Boundary Interpolation

The restored image is defined over the parametric space
u and v, where u ∈ [0, 1] and v ∈ [0, 1]. Each curve ci maps
to its corresponding side of the rectilinear image (shown
in Figure 4). For example, the (x, y)’s points along the top
boundary c1(u) should map to I(u, 0), in the undistorted
image. This curve-to-line mapping can be computed by sim-
ple sampling of 2D curve.

While the boundaries can be easily mapped to their cor-
rect locations, a 2D function to describe how to map (x, y)
points inside the ci curves is needed. This 2D function can
be provided using a bi-linearly blended Coons patch [6], as
follows:

c(u, v) = [1 − u u]

[
c4(v)
c2(v)

]

+ [c1(u) c3(u)]

[
1 − v

v

]

− [1 − u u]

[
c1(0) c2(0)
c3(1) c4(1)

] [
1 − v

v

]
(5)

Equation 5 is formed by a linear interpolation of two
opposite-boundary curves (first two terms), with a correc-
tive function based on the boundaries’ corner points (third
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Figure 4: Curves c1, c2, c3, c4 correspond to the rectilinear edges
of the corrected image I(u, 0), I(1, v), I(u, 1), I(0, v) respec-
tively. Coons patch interpolation using the ci(·) curves provides
a mapping between restored (u, v) and the distorted (x, y) coor-
dinates. Geometric correction can performed by pointwise bilin-
ear samples of the (x, y) points. Note that shading correction has
not been applied and the restored image may still appear distorted.

term). Because of the need for the corrective function in the
interpolant, the function is not considered a bi-linear inter-
polation, but instead is a bi-linearly “blended” interpolant
[7].

The advantage of using equation 5 with four curves, in-
stead of two as defined in the original ruled surface equa-
tion 2, is that it is not necessary to specify the true opposite
boundary curves. One pair of opposite boundaries should be
straight-lines, however, in practice they are not straight due
to non-linearites in the image system. The non-linearities
are encoded in the boundary splines and their effects will
be compensated for in the unwarping process.

2.4. Geometric Distortion Removal

Using the four boundary curves, the function c(u, v)
provides a mapping between (u, v) coordinates in the rec-
tilinear image space I(u, v) to their corresponding (x, y)
coordinates in the distorted image. Constructing the re-
stored rectilinear image is performed by pointwise bilin-
ear re-sampling of the distorted image using the relation-
ship (u, v) → (x, y). The size of the restored image is spec-
ified either by the user or set according to pixel length of the
horizontal and vertical ci curves in the distorted image.

3. Shading Correction

Shading is a strong visual cue for shape. Correcting ge-
ometric distortion without addressing shading artifacts can
produce restored images that still appear perceptually dis-
torted (see Figure 4). For applications, such as text-based
imaging with OCR processing, shading artifacts can be ig-
nored, however, for images of materials where the original
content is desired (for example, images of artwork), shad-
ing artifacts must be removed to produce a perceptually cor-
rect image.

3.1. Shading Artifacts Removal

For shading correction, we only consider the luminance
component of the image. Our input image is represented in
YUV colorspace and the Y-channel (luminance) of the in-
put image, IY , can be expressed as the product of the in-
trinsic illumination image, LY , and the intrinsic reflectance
image, RY , [2] as follows:

IY = LY · RY , (6)

where · is a pixel-wise multiple between the two images. If
we can successfully compute LY , we can derive the intrin-
sic reflectance image RY as:

RY = elogIY −logLY . (7)

Once we compute the reflectance image RY , we can gen-
erate an image with uniform shading by multiplying the re-
flectance image by a constant c, such that Inew

Y = cRY .
While the intrinsic image model is view-dependent, we only
need to restore our image from a single viewpoint. As a re-
sult, this simple intrinsic image model can be used as a rea-
sonable approximation of our imaged scene.

Given a single image, solving for the intrinsic illumina-
tion image is ill-posed as the number of unknowns (L and
R) is more than the given input I . Several authors have pro-
posed approaches to estimate L from both single and mul-
tiple temporal images [8, 14, 16]. For our algorithm, how-
ever, we can exploit the fact that almost all printed mate-
rials have a uniformly colored (typically white) margin, or
border, about the page, void of printed content. The mate-
rial’s reflectance property can be assumed to be the same ev-
erywhere on the border. Intensity variations along this uni-
form border are due to the amount of illumination present
on the material’s surface. These intensities provide illumi-
nation samples of the material at the borders only. The illu-
mination in the interior of the material still needs to be com-
puted. This again becomes a boundary interpolation prob-
lem which can be addressed using an approach similar to
equation 5.

3.2. Illumination Image Estimation

Let (u, v) represent 2D image coordinates aligned in the
restored Y-channel image, IY . From Figure 5, we can see
that the intensity value at the 2D coordinates (x, y) along
the boundary of c1(u) should map to L1(u), i.e. the top
edge of the undistorted image. This correspondence holds
for other curves, e.g. (x, y) coordinates along the curve
c2(v) should map to L2(v). Given the intensity values along
the boundaries, the pixel value of interior points can be
found using the following equation:

LY (u, v) = [1 − u u]

[
L4(v)
L2(v)

]

+ [L1(u) L3(u)]

[
1 − v

v

]

− [1 − u u]

[
L1(0) L2(0)
L3(1) L4(1)

] [
1 − v

v

]
,

(8)
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Figure 5: Boundary intensity values along the curves
c1, c2, c3, c4 correspond to the rectilinear edges of the shadow
image L1(u), L2(v), L3(u), I4(v) respectively. Each in-
ner pixel value of coordinates (x, y) in the shadow image is found
from boundary values using the function LY (u, v) and pixel is
re-sampled using bilinear interpolation.

where

Li(u) = IY (ci(u)),

Li(v) = IY (ci(v)),

where ci(·) returns the 2D image coordinate (x, y) along the
appropriate boundary curve ci. The illumination image es-
timation is also based on Coons patch interpolation, how-
ever the data being blended is not (x, y) coordinates but
intensity values along the border. Figure 5 shows the re-
sults of the illumination estimation. The desired intrinsic re-
flectance image and the subsequent image with shading ar-
tifacts removed can be computed using equation 7.

4. Results
Results of several examples processed by our technique

are presented. These examples use the two boundary param-
eterizations, (1) arc-length and (2) uniform, as mentioned in
Section 2.2. Using arc-length parameterization requires no
knowledge about the depth change of the imaged material’s
boundary curves and acceptable results are obtained when
the depth distortion is small compared to the size of the im-
aged material (for example, Figure 1(Top) is corrected with
arc-length parameterization). Uniform parameterization is
useful to correct item which has significant depth change.
For uniform parameterization, a paper checkerboard pattern
is placed underneath the imaged material. This pattern un-
dergoes same deformation as the printed media and is used
to guide the uniform parameterization. We also show the
computed illumination image for our input and show the re-
sults of the image with shading artifacts removed. Under
controlled imaging environment, automatic border detec-
tion can be robustly performed using segmentation. For our
experiments we use corner detection of the checkerboard
pattern to supply the boundary points xi since multiple pa-
rameterizations are used for comparison. For illumination
estimation, the borders are adjusted slightly to be within the
document’s margin.

(a) Original Image (b) Geometry Corrected

(c) Estimated Illumination
Image

(d) Shading Corrected

Figure 6: Example of material with spine distortion. (a) Origi-
nal image. (b) Corrected image with distortion removed. (c) Esti-
mated intrinsic illumination image. (d) Shading corrected.

4.1. Small Bird Example

Figure 6(a) shows the first example with binder curl dis-
tortion. A checkerboard pattern is placed underneath the
page and uniform parameterization is used to correct geo-
metric distortion. The result are shown in Figure 6(b). Fig-
ure 6(c) shows the estimated illumination image. Figure
6(d) shows the restored image with uniform illumination.

4.2. Buddhist Fold-Out Example

Figure 7(a) shows an example which is a large fold-out
page from an oversized art book. This is an excellent repre-
sentation of materials where existing techniques are not ap-
plicable. This book has many pages that fold-out to display
very wide content. The page is 80cm × 33cm in width and
height and is very difficult to image completely flat and ex-
hibits both fold and curl distortion.

Figure 7-I(b) shows the result using arc-length parame-
terization. The corners of the checkerboard pattern are used
as the 2D feature points to define the boundary splines. No-
tice that the corrected image has artifacts due to the depth
distortion. This can be verified by looking at the uneven
black and white square pattern along the boundaries. Figure
7-II(b) shows the result which parameterized the boundary
using the same 2D feature points but with uniform parame-
terization. This parameterization is justified because the 2D
features are from uniform samples on the 3D curve obtained
from the inserted pattern. The depth distortion has been cor-
rected. Figure 7(c) shows the estimated illumination images
using white border information from the input boundary.
Figure 7(d) shows the new images under uniform illumi-
nation.
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Figure 7: Example of wide fold-out page from an art book, exhibiting both binder-curl and fold distortion. Corrected images using arc-
length parameterization are shown on column I, those using uniform parameterization is shown in column II. The images are labeled: (a)
Original image. (b) Geometry corrected. (c) Estimated illumination images. (d) Shading corrected.

(a) Original Image (b) Geometry Corrected

(c) Estimated Illumination Image (d) Shading Corrected

Figure 8: Example of material with roll (curl) distortion. 2.5D information is incorporated to guide the uniform parameterization. (a)
Original image. (b) Geometry corrected using uniform boundary sampling. (c) Estimated illumination image. (d) Shading corrected.
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4.3. Birds Example

Figure 8(a) shows another example of imaged art with
significant “roll” distortion. Uniform parameterization is
used to correct the geometric distortion, shown in 8(b). The
contents of the imaged material have been rectified. Figure
8(c-d) shows the derived illumination image and resulting
image with shading corrected.

5. Conclusion

This paper presents two innovations for document imag-
ing. First, we show that the printed materials can be mod-
eled using a ruled surface composed of opposite boundary
curves. This general surface model can model several com-
mon distortion found in printed materials, including: skew,
folds, and binder-curl. We show that the projection of this
model can be parameterized using Coons patch blending
with four boundary curves. This 2D interpolation provides
a mapping between the distorted and restored image allow-
ing shape distortion to be corrected. In addition, 2.5D infor-
mation can be easily incorporated into the interpolation pro-
cess by changing only the curve’s parameterization. This al-
lows the correction of materials with significant depth dis-
tortion.

Secondly, we showed that the same interpolation frame-
work can be used to estimate the intrinsic illumination im-
age of the input image. From this illumination image, we
can generate a new image with shading artifacts removed.

Currently, we use a physical pattern to guide the uniform
parameterization. The use of such a pattern is reasonable in
a restoration context. Our personal experience with digitiza-
tion efforts, for preservation and archival purposes, is that a
great deal of care and time is spent on each imaged item and
additional props (such as rulers and color strips) are rou-
tinely incorporated into the imaging environment. Using a
paper pattern under the imaged material would not present
a great burden and could be reasonably adopted, especially
if it is to facilitate restoration. We are currently working on
techniques to remove the need for this pattern. Using the
illumination image obtained from arc-length parameteriza-
tion, we can apply shape from shading techniques to get an
estimation of the 3D arc-length near the boundary to param-
eterize the 2D curve without the need of a pattern.

In summary, we have presented a novel approach based
on boundary interpolation that can correct geometric distor-
tion and shading artifacts present in images of printed mate-
rials. Our algorithm can simultaneously correct a variety of
geometric distortions, including skew, folding, binder curl.
In addition, the same interpolation framework can be used
to estimate the illumination component of the input image
which is used to correct shading artifacts.
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