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Detail Recovery for Single-image Defocus Blur �1

Yu-Wing Tai,†1 Huixuan Tang,†2 Michael S. Brown†1

and Stephen Lin†3

We presented an invited talk at the MIRU-IUW workshop on correcting pho-
tometric distortions in photographs. In this paper, we describe our work on ad-
dressing one form of this distortion, namely defocus blur. Defocus blur can lead
to the loss of fine-scale scene detail, and we address the problem of recovering
it. Our approach targets a single-image solution that capitalizes on redundant
scene information by restoring image patches that have greater defocus blur
using similar, more focused patches as exemplars. The major challenge in this
approach is to produce a spatially coherent and natural result given the rather
limited exemplar data present in a single image. To address this problem, we in-
troduce a novel correction algorithm that maximizes the use of available image
information and employs additional prior constraints. Unique to our approach
is an exemplar-based deblurring strategy that simultaneously considers candi-
date patches from both sharper image regions as well as deconvolved patches
from blurred regions. This not only allows more of the image to contribute to
the recovery process but inherently combines synthesis and deconvolution into
a single procedure. In addition, we use a top-down strategy where the pool of
in-focus exemplars is progressively expanded as increasing levels of defocus are
corrected. After detail recovery, regularization based on sparsity and contour
continuity constraints is applied to produce a more plausible and natural result.
Our method compares favorably to related techniques such as defocus inpaint-
ing and deconvolution with constraints from natural image statistics alone.

1. Introduction

Image blur due to defocus is a common feature in photographs. Although this
blur may sometimes be desirable for certain visual effects, the consequent loss of
local appearance detail can be detrimental to computer vision applications and
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Fig. 1 Optical geometry for different causes of defocus blur. (a) Defocus due to limited
depth of field. (b) Defocus due to lens aberrations, shown here for field curvature.

unwanted by viewers. To improve image quality, reduction of defocus blur is
often desirable.

Two principal causes of image defocus are the camera’s limited depth of field
(DOF) and lens aberrations that cause light rays to converge incorrectly onto
the imaging sensor. Defocus of the first type is illustrated in Fig. 1 (a) and is
described by the thin lens law 2):
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where f is the focal length of the lens, d is the distance of the focal plane in
the scene from the lens plane, and d′ is the distance from the lens plane to the
sensor plane. For given values of f and d′ in an optical system, radiance from
scene points p on the corresponding focal plane will be correctly focused onto the
sensor. For points that lie in front of or behind the focal plane (such as r and q

respectively), their light rays will converge behind or in front of the sensor, and
hence will appear blurred in the image. The observed blur can be modeled as
a convolution of the focused image with a point spread function, which can be
assumed to be Gaussian 8),14).

Lens aberrations arise from physical limitations of a real lens to form exact
images of a scene. Several different types of lens aberrations may occur within an
optical system. One example is field curvature, which results from the property
that a curved lens will focus light onto a curved imaging plane, as shown in
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2 Detail Recovery for Single-image Defocus Blur

Fig. 1 (b). Typically, a camera system is designed such that defocus from this
and other lens aberration effects are minimized toward the center of the image
and increases radially. The overall effects of defocus-based lens aberrations can
also be modeled as a Gaussian blur 20) that tends to increase with radial distance
from the image center.

For limited DOF and lens aberrations, the defocus blur can thus be formulated
as the following convolution:

Iob = I � h + n,

where Iob is the observed image, I represents an in-focus image of the scene, h is
a spatially-variant Gaussian blur kernel, and n denotes additive noise.

Because of this effect on images, the defocus problem has often been addressed
using blind deconvolution approaches that attempt to recover the in-focus image
I and the underlying blur kernel h simultaneously. However, even when the
blur kernel is known, deconvolution is well known to be ill-posed with numerous
possible solutions that yield the same defocused image. Many of these solutions
can appear rather unnatural. For example, the result of the theoretically optimal
Wiener filter 25) often exhibits ringing on the image boundaries and can corrupt
existing fine details. Blind deconvolution becomes additionally challenging in the
typical case of spatially-varying defocus, for which location-specific blur kernels
must be determined in order to restore the image.

In this paper, we present a method that takes advantage of the spatially-varying
defocus in an image. Our method seeks local image areas with similar image con-
tent but different defocus levels. Among image patches with similar content, those
with less defocus contain greater appearance detail and are used as exemplars
for deblurring corresponding patches that are more defocused. This approach,
which is also used in Ref. 7), is similar to image hallucination except that exem-
plar information must be gleaned from only the image itself, rather than from an
image database 1),10),18),22),24).

The main difficulty in this approach is that a single image contains rather
limited exemplar information for deblurring. As a result, an ideal exemplar
may not be present in the image for a given defocused patch. Moreover, for a
substantially defocused patch, there exists significant ambiguity as to what its
ideal exemplar should be. In Ref. 7), the most in-focus patch with the closest

correspondence independent of blur is taken as the exemplar. But while such an
exemplar may provide the best solution locally, use of such exemplars may not
lead to a globally coherent solution for the deblurred image, resulting in texture
seams and blocking effects as shown in Fig. 5 (b).

In this paper, we introduce a novel correction algorithm that addresses these
practical issues of exemplar-based single-image deblurring. To maximize the use
of limited image information, our method employs a flexible and progressive
scheme for exemplar identification. In this scheme, patches of various orien-
tations and sizes are considered to facilitate the search for exemplars and to
broaden the pool of candidate exemplars for a given defocused patch. Also, the
set of possible exemplar patches is progressively expanded by adding patches de-
blurred by our algorithm as it proceeds. The exemplar set is further expanded
by including deconvolved patches from uncorrected blurred regions in addition to
in-focus patches from the original image. In this way, exemplar-based synthesis
and deconvolution are combined into a common deblurring framework.

Our method also reduces incoherence in deblurred solutions, which is often
caused by a lack of suitable exemplars. Instead of utilizing the exemplar that
yields the best local solution, we select exemplars using Markov chain based
inference that allows some local accuracy to be exchanged for a more globally
coherent result. Even with Markov chain based inference, the synthesized solution
may nevertheless contain some noticeable artifacts such as jagged image features,
as illustrated in Fig. 4 (c), because suitable exemplars do not exist in the image.
We reduce this problem with a postprocessing step that aims to improve image
quality by enforcing two priors. One is the contour continuity prior 26), which
utilizes anisotropic diffusion to increase smoothness along image contours. The
other is the natural image statistics prior, which has previously been shown to
be useful for deblurring 15),16), and can also sharpen the diffusion of the contour
continuity prior.

With this technique, we obtain recovery solutions that not only are consistent
with both the observed blurred image areas and the sharper contextual infor-
mation that exists in the image, but also exhibit global coherence even with
the limited exemplar data that is available in a single image. This approach is
validated in our experiments with comparisons to related techniques.
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3 Detail Recovery for Single-image Defocus Blur

2. Related Work

Detail recovery is closely related to several areas, including image deconvolu-
tion, image hallucination, and texture synthesis.

Defocus blur resulting from a global convolution procedure can be optimally
solved by Wiener filtering 25). Deconvolution, however, is ill-conditioned as more
than one solution is possible. As a result, a regularization term is typically
added to constrain the solution. The Total Variation (TV) regularizer 19), which
minimizes the magnitude of the gradient image, has been often used. While TV-
based methods generally work well on artificial images, they often over-smooth
the interiors of regions and produce unnatural edges. Recently, foreground infor-
mation was proposed as a regularizer to solve for defocused areas in an image 7).
This approach yields more appealing solutions than the TV regularizer, but arti-
facts such as visible seams between patches are also introduced due to matching
problems.

Natural image statistics have also been used as a prior for regularization in blind
deconvolution. In Ref. 9), image statistics are fit to a learned prior in removing
the effects of camera shake from photographs. An image specific prior was used
in Ref. 15) to segment spatially-variant motion blur. The blur is assumed to
result from movement of constant velocity, and the prior is learned from deriva-
tives orthogonal to the direction of movement. More recently16) demonstrated
that a sparsity constraint provides plausible solutions in deconvolving depth blur
for natural images. Our approach also leverages this sparsity constraint but ap-
plies this to a combined synthesized and deconvolved result. In addition, we
incorporate a Contour Continuity prior in the regularization procedure.

Another approach for recovering fine-scale details is by image hallucination,
based on a reconstruction constraint between low-resolution and high-resolution
images, as well as a prior on the high-resolution image. The reconstruction con-
straint may be learned from training pairs of low resolution and high-resolution
images depicting either a specific class of objects1),18) or natural images10). Ad-
ditionally, the reconstructed high-resolution patches are often constrained to be
similar to their original low-resolution versions after smoothing and downsam-
pling. In Ref. 24), a group of linear transformations between high-resolution and

low-resolution training pairs is learned, and used in conjunction with a generic
image prior for exemplar selection. Our work uses an approach similar to image
hallucination, with the significant difference that our training data is restricted
to a single image. How to deal with this limited information is the principal issue
in our method.

A third approach is to replace defocused image areas by stitching together
patches taken from sharper image examples. Texture synthesis methods based
on patch-based sampling (e.g., Ref. 5), 6), 13), 17)) aim for seamless results that
are visually consistent with the sample data. User specified constraints may also
be incorporated to guide the synthesis process (e.g., Ref. 21)). These techniques,
however, do not utilize image information from within the synthesis area, and
therefore will generate image data that generally does not match the actual scene.
An exception to this is Ref. 7), which also addresses spatially varying defocus
blur. In their work, sharper image patches that closely match defocused regions
are found and used as a regularizer to recover fine-scale image details.

3. Overview

Given an image that contains both focused and defocused regions, our goal is
to use the information available in the focused areas to recover the details of the
defocused areas in order to produce a sharp and focused image. To make this
problem tractable, we assume the focused and defocused areas contain similar
content. Let F denote the focused areas of an image, f be the simulated defocus
image of F (i.e., f = F � h), d be the defocused areas of an image and D be the
deblurred image of d. Image patches within F, f , D and d are denoted by F̃, f̃ ,
D̃ and d̃ respectively.

The problem then can be formulated into the following Bayesian optimization
framework:

D∗ = arg max
D

P (D|d, f ,F) = arg max
D

P (F|d, f ,D)P (D) (1)

where P (F|d, f ,D) represents the likelihood probability of a deblurred result,
which can be maximized by choosing D̃∗ = F̃∗ such that the distance dist(d̃∗, f̃∗)
between two image patches is minimized, and P (D) is the prior probability that
encodes prior knowledge about D. Previous approaches 1),10),18),22),24) solve the
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4 Detail Recovery for Single-image Defocus Blur

above equation by using a large database of primitives from which an optimal D∗

can be found by searching the nearest neighbor in F with minimum dist(d̃, f̃∗). To
preserve consistency among neighboring patches,10),18) defined a Markov network
with P (D) =

∏
D̃j∈N (D̃i)

P (D̃i, D̃j) as the compatibility matrix of neighboring
patches, which measures the distance dist(D̃i, D̃j) in the overlapping area of D̃i

and D̃j . The optimal solution D∗ with this neighbor compatibility measure can
be solved by using belief propagation 22) or graph cuts 12). To further refine the
recovered details as demonstrated in Ref. 22), back projection 11) can be applied
after the process to minimize the reconstruction error, with D∗ as the starting
point of the back projection algorithm.

Our major challenge is that we do not have a database of in-focus examples
but instead must work with the limited information available in the input image
itself. When the number of available patches in F is significantly limited, the
optimal solutions D∗ found by using previous approaches will be unsatisfactory.
Essentially the solution space provided by the limited F is too small.

To maximize the use of available exemplar data in F, we use a flexible matching
scheme that considers exemplars of variable size and orientation. We also pro-
gressively expand F using a multiscale strategy that sequentially processes image
regions at increasing levels of defocus. Within each scale, D is defined according
to the defocus level, and its recovery results are then added to F. In this way, F
increases level-by-level by gradually introducing recovery results, beginning from
less defocused areas whose results are expected to be more accurate.

Maximizing the use of image information leads to improvement in the recovery
result, but there may nevertheless exist some artifacts due to the limited data.
To reduce this problem, we regularize the result using the natural image statis-
tics prior and the contour continuity prior. These two priors are enforced after
obtaining the solution D∗ to refine the recovered details.

Our overall procedure can then be summarized as follows: 1) determine the
defocus scale of image regions; 2) for the current defocus scale, apply the detail
synthesis approach using both in-focus and deconvolved image patches; 3) apply
regularization using the natural image statistics and the contour continuity priors;
4) proceed to the next scale level (i.e., back to step 2). We describe each of these

algorithm components in the following sections.

4. Defocus Scale Identification

Our input image must first be segmented into different layers according to
defocus level. To achieve this purpose, we propose a simple method based on
the following observation. If we blur the defocused image using a Gaussian filter
of standard deviation σ and then subtract the original image from it, areas less
defocused than σ will produce relatively large differences, while areas with greater
defocus than σ produce small differences. This is because fine image details
should be present only in the less defocused areas. Hence, we can effectively bi-
partition the image into areas with defocus scale smaller than σ and those with
defocus scale larger than σ. In order to identify pixels that belong to σ, we can
apply the bi-partitioning twice at scales σ−Δσ and σ +Δσ. The bi-partitioning
can be applied several times with different σ in order to estimate multiple defocus
layers.

This proposed method can estimate the defocus scale at each pixel location.
However, we expect the defocus scale map to be smooth and defocus scale dis-
continuities to align with image edges. This problem can be formulated as an
energy minimization problem over a Markov Network with the data term and
the pairwise energy term as follows 16):

E(σ̄i) =

{
0 σ̄i = σi

1 σ̄i �= σi
,

E(σ̄i, σ̄j) =

{
0 σ̄i = σi

exp(−|Ii − Ij |2/φ2) σ̄i �= σi

(2)

where σ̄i is the state label we want to find to optimize this energy, the factor φ

is set to 0.1 in our implementation, and Ii and Ij are the image intensities at
locations i and j respectively. We use graph cuts 12) to find the optimal solution of
Eq. (2). Figure 2 shows a defocus estimation result using our proposed method.

5. Detail Recovery through Exemplar-based Synthesis

The task now is to transfer the details from in-focus areas F of an image to the
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5 Detail Recovery for Single-image Defocus Blur

(a) (b) (c)

Fig. 2 Defocus scale estimation. (a) Input image. (b) Raw defocus scale map. (c) Refined
defocus scale map using graph cuts. Darker areas indicate smaller defocus scales.

defocused regions d. This detail transfer is performed in a multiscale process.
At each scale, we separate pixels into three classes: those that are in focus (F),
those that are defocused at the current scale level (d) and irrelevant regions.
The irrelevant regions include areas defocused at a different scale, and they are
ignored at the current level of processing.

In this section, we will describe how to obtain exemplars from F and d for
synthesis, and then present the Markov chain based inference for optimal patch
selection with consideration of neighborhood compatibility.

5.1 Exemplar Search
We generate exemplar patch pairs from F and d through convolution of F and

deconvolution of d using a Gaussian filter that approximates the defocus kernel.
Since patches generated from deconvolutions of d result in a zero match cost, we
add an offset match cost (i.e., penalty cost) to these deconvolution patches as
described in Section 3. This penalty increases quadratically with blur level. With
this offset, our method generally uses more deconvolution patches in deblurring
areas with slight defocus, and more in-focus exemplars for areas with greater
defocus. The intuition for this penalty cost is that when the defocus scale is
small, deconvolution tends to produce better results than synthesis with very
few ringing artifacts. When the defocus scale is large, deconvolution produces
results with significant ringing, so in-focus patches are preferred as exemplars.

For even greater use of the limited image data, we combine deconvolution with
the exemplar-based synthesis by supplementing F with deconvolved patches from
d̃, denoted as d̂. This means that at each defocus level in the multiscale scheme,
we have both the in-focus patches, f̃ , as well as deconvolved imagery d̂. However,

to encourage the use of in-focus exemplars and discourage the use of deconvolved
patches from highly defocused areas, we add a penalty f(σ) to the distance cost
dist(d, d̂) for deconvolved imagery, where σ is the defocus level described above
in previous section. f(σ) is designed to increase quadratically with the level of
defocus σ. With this penalty, deconvolution patches will be selected only when
there exists no suitable in-focus exemplar. For images that contain no useful
exemplar data, our method thus becomes equivalent to deconvolution.

To speed up the search process, we cluster the exemplar patches based on its lo-
cal mean and local contrast. We also facilitate the exemplar search by computing
the orientation of each local patch using a set of orientation filter banks and then
aligning patch orientations prior to clustering. For a given defocused patch, the
K best candidate exemplars are found by first finding the clusters with the closest
local mean and local contrast and then performing a comparison between border
pixels in the patch and those of its neighbors, as done in patch-based texture
synthesis techniques. These K candidates will then be evaluated using Markov
chain based inference to determine the final exemplar. Note that the candidate
patches can be obtained from both in-focus and deconvolved exemplars.

5.2 Markov Chain Based Inference
Markov chain based inference is used to ensure consistency among neighboring

patches, especially for high frequency primitives such as contours. Recall that in
the previous section, we have selected the K exemplar candidates at each defo-
cused patch location. The size of the candidates is set to be slightly larger than
the area to be synthesized, such that there exists overlap between neighboring
patches. We define a neighbor compatibility matrix based on a non-parametric
comparison within the overlap area. As described in Eq. (1), the optimal label
assignment of patches can be computed by solving a Markov Network with belief
propagation, where the data cost is the non-parametric distance between d̃ and
f̃ and the pairwise energy term is the non-parametric distance between D̃i and
D̃j within the overlap area. For further details on Markov chain based inference,
readers are referred to Ref. 22).

6. Regularization

In this section, we describe the two additional priors used to refine the recovered

IPSJ Transactions on Computer Vision and Applications Vol. 1 1–10 (Mar. 2009) c© 2009 Information Processing Society of Japan



6 Detail Recovery for Single-image Defocus Blur

(a) (b) (c)

Fig. 3 The gradient distribution of (a) natural images, (b) blurred images, and (c) severely
blurred images.

image details.
6.1 Natural Image Statistics Prior
Recent research on natural image statistics has shown that, although real-

world scenes vary greatly in content, the distribution of spatial gradients follows
a distribution with most of its mass on small values and with long tails, as shown
in Fig. 3 (a). Since this model predicts a natural image to mostly contain small
or zero gradients and few large gradients, the natural image statistics prior is
sometimes referred to as the sparsity prior.

This prior has been shown to be useful in the restoration of blurred/defocused
images 9),15),16). For a blurred image, its gradient distribution deviates from that
expected from natural image statistics, as shown in Fig. 3 (b). This deviation be-
comes more pronounced for more severely blurred images, as seen in Fig. 3 (c). By
employing the natural image statistics prior, we require the gradient distribution
of the solution image to follow the natural image statistics distribution.

We use the Laplacian distribution 16) to approximate the natural image statis-
tics distribution:

P (I) ∝
∏

exp(−|∇I|α) (3)

where α is an exponential coefficient for which 0 < α < 1, and ∇I denotes first
derivatives of an image I. The sparseness energy defined on I can be written as

Es(I) ∝ −w
∑

k

log(Pk(I)) (4)

where k is the number of filters used for calculating the first derivative response
of I.

The natural image statistics prior, however, is difficult to enforce in the syn-
thesis step, because natural image statistics describes a primarily global prop-
erty while exemplar selection is a local decision. We thus enforce this prior
after synthesis, as done in Ref. 9). Taking the reconstruction error E(d,D) =
exp(−|d−CfD∗|2) into account, the optimal solution that minimizes reconstruc-
tion errors with the Laplacian prior can be found by solving a sparse set of linear
equations AD = b:

A = CT
f Cf + w

∑
k

CT
gk

Cgk
, b = CT

f d (5)

where Cf denotes the defocus convolution matrix, and Cgk
is a set of filters in

matrix form used for calculating the first derivative response of D. Note that d
and the D are written in vector form. We use iterative re-weighted least least
squares (IRLS) 16) to obtain the optimal solution of Eq. (5). In the IRLS pro-
cess, the exemplar-based synthesis result is used as the starting point. Similar
approaches were used in Refs. 4), 22), 23), but with back projection applied after
synthesis of high frequency details to minimize reconstruction errors. These ap-
proaches do not employ regularization on the image gradient distribution. From
the in-focus areas F of an image, the parameter α of the Laplacian distribution
can be estimated by fitting the Laplacian distribution to the gradient distribution
of F.

6.2 Contour Continuity Prior
Due to the limited data in F, contours may not be well recovered, even with

the Markov chain based inference algorithm. This is because the ideal exemplars
that produce smooth contours do not exist in F. This problem is significant in
our single image approach and we propose to use the contour continuity prior to
address it.

The contour continuity prior was first proposed in Ref. 26) for refinement of
optical flows, and was later used in Ref. 3) as a constraint for blur kernel es-
timation. The contour continuity prior is defined by the anisotropic diffusion
tensor:

T =
∇I⊥∇IT

⊥
|∇I| (6)

where ∇I⊥ is the vector perpendicular to the local gradient direction ∇I. The
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7 Detail Recovery for Single-image Defocus Blur

(a) (b) (c) (d)

Fig. 4 The contour continuity prior defined by the anisotropic diffusion tensor. (a) The shape
and size of Gaussian kernels vary according to the local image structure. (b) The
observed image with defocus. (c) Recovered image using exemplar-based synthesis
with neighborhood compatibility. (d) Recovered image after applying the contour con-
nectivity prior, which effectively reduces jittering artifacts that arise from insufficient
exemplar data.

energy that regularizes contour continuity is thus defined as

Ec(k) =
∫

Ω

∇IT T (∇I)∇IdΩ (7)

which integrates the per pixel energy over the entire image domain Ω. Fig-
ure 4 (a) illustrates the variation in structure of the anisotropic diffusion tensor.
It is an elongated Gaussian along contours and is isotropic in smooth regions.

To preserve discontinuities and edge sharpness, we implement the contour con-
tinuity prior in an IRLS process with a local bilateral Gaussian convolution at
each iteration. Figure 4 (c) and (d) show a comparison before and after enforce-
ment of this prior.

Note that the contour continuity prior is fundamentally different from the
Markov chain based inference described in Section 5.2. The Markov chain based
inference finds exemplar patches in a manner that favors contour connectivity,
while the contour continuity prior will actually alter the content of D∗ based
on local structure to produce smooth contours. Use of the Markov chain based
inference is beneficial for this prior, as it yields more coherent synthesis results
that are more easily refined using the prior.

In applying this prior, a bilateral anisotropic Gaussian of larger scale would
allow more significant refinement of images, but at the same time would lead to
greater loss of detail from diffusion. This is a basic tradeoff with this prior, and
we use a small scale of σ = 1 in our implementation.

7. Results

We conducted experiments on our detail recovery method with a variety of
inputs. In Fig. 5, we compare our approach with the deconvolution method of
Ref. 16) and the closest related work, defocus inpainting 7). Some areas of the
input image are severely defocused due to limited depth of field, and in such ar-

(a) (b)

(c) (d)

(e)

Fig. 5 Comparisons on a leaves image. (a) Input image. (b) Results from defocus inpaint-
ing 7). (c) Results from deconvolution with regularization 16). (d) Our result without
regularization. (e) Our result with regularization.
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8 Detail Recovery for Single-image Defocus Blur

(a) (b)

Fig. 6 Chess scene. (a) Input image. (b) Our results.

eas deconvolution introduces significant ringing artifacts. In defocus inpainting,
limited exemplar data is used, and neighborhood compatibility and contour con-
tinuity are not considered. As a result, a relatively small proportion of the image
is deblurred, and some broken edges and blocking effects are generated. With
the use of expanded exemplar data (but without regularization by priors), our
method provides more comprehensive processing of the image and recovers more
detail as shown in Fig. 5 (d). By furthermore including regularization by priors as
described in Section 6, our algorithm obtains greater spatial coherence as shown
in Fig. 5 (e), by suppressing artifacts caused by misalignment of features. The
estimated defocus scale map of Fig. 5 is shown in Fig. 2.

In Fig. 6, we have a chess scene, which is more challenging than the leaf exam-
ple because of the disparate image content and the consequently smaller amount
of good exemplar data for each type of object. Moreover, the colors of the dif-
ferent objects are similar. Figure 6 (b) shows the detail recovery result by our
method. That our approach can successfully recover details in this difficult sce-
nario can partly be attributed to the use of the natural image statistics prior
and the contour continuity prior, which help to refine recovered details and to
maintain both sharpness and smoothness of edges.

Figure 7 shows an example of flowers. This example demonstrates the effec-

(a) (b)

Fig. 7 Flowers example. (a) Input image. (b) Our results.

tiveness of our approach in transferring sharp details to severely blurred edge
boundaries. Our method successfully transfers this edge information without
introducing ringing artifacts.

8. Discussion

In this work, we proposed a technique for recovering image details that are lost
due to defocus blur. The spatial variations in defocus that are commonly present
in images are exploited by using more-focused image patches as exemplars in
restoring less-focused patches with similar image content. The key issue of this
approach is in synthesizing a coherent result from the limited exemplar data in a
single image. For this, we have presented algorithm components that take greater
advantage of the image data and image priors. With this more comprehensive
use of image information, our method obtains more visually plausible results in
comparison to related techniques.

Although the proposed method seeks to maximize the use of contextual infor-
mation, its ability to recover image details is still limited by the available data
in the image. Textures or other repeated image content provide a richer context
from which to find exemplars. For cases with sparse context, such as Fig. 6, there
is a greater reliance on exemplars produced by deconvolution. A consequence of
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9 Detail Recovery for Single-image Defocus Blur

this is that deconvolution artifacts such as ringing may appear more frequently
in the recovery results. Though deconvolution serves as a lower bound on the
performance of our method, there often exists enough useful information in a
scene to bring appreciable improvements to photographs with defocus blur.

The use of image context may also be limited for local image regions that bear
substantial levels of defocus. For such regions, significant ambiguity can exist in
the deblurring solution due to a vast space of possible corresponding exemplars.
With this weakened constraint on exemplars, an accurate exemplar may not
be identifiable from the image context. Our method nevertheless uses spatial
coherence to select an exemplar that yields a visually plausible result. In cases
where the level of defocus is underestimated, a selected exemplar may contain
some amount of defocus blur. With a defocused exemplar, image sharpening can
still be obtained but only up to the level of the exemplar. On the other hand,
overestimation of defocus can result in an inability to find suitable exemplars.
This problem could potentially be mitigated by considering increasingly lower
levels of defocus until exemplars are found.

In future work, we plan to investigate efficient methods for accommodating
more general geometric transformations in our search for exemplar patches. Be-
cause of perspective projection, textures on a surface may exhibit various fore-
shortening effects which make them more difficult to match to other patches in
an image. Since foreshortening appears as affine transformations of patches, we
intend to extend our rotation-invariant exemplar search scheme to directly handle
affine changes. In addition to expanding the flexibility of the matching algorithm,
we also will examine other applications of our technique. For example, we be-
lieve that our general framework could potentially be applied to problems such
as packet loss in image transmission, in which the degree of image degradation
varies spatially over an image. Also, elements of this approach such as the use
of the natural image statistics prior and the contour continuity prior may have
some utility in superresolution.
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