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Abstract. We propose a color-aware regularization for use with gradi-
ent domain image manipulation to avoid color shift artifacts. Our work
is motivated by the observation that colors of objects in natural images
typically follow distinct distributions in the color space. Conventional
regularization methods ignore these distributions which can lead to un-
desirable colors appearing in the final output. Our approach uses an
anisotropic Mahalanobis distance to control output colors to better fit
original distributions. Our color-aware regularization is simple, easy to
implement, and does not introduce significant computational overhead.
To demonstrate the effectiveness of our method, we show the results with
and without our color-aware regularization on three gradient domain
tasks: gradient transfer, gradient boosting, and saliency sharpening.

1 Motivation and Related Work

Gradient domain manipulation is the cornerstone of many image processing algo-
rithms from image editing to texture transfer to image fusion. For an overview of
gradient domain algorithms and applications we refer readers to [1]. As the name
implies, gradient domain algorithms do not operate in the 0th order domain (i.e.
color domain), but instead impose changes to the 1st order derivatives of the
input image, i.e. the image gradient. When left unchecked, gradient domain pro-
cessing can result in noticeable color shifts in the 0th domain output image. To
ameliorate color-shifting artifacts, most gradient domain approaches impose an
additional 0th order constraint either at the boundary of the processed region
or over the entire region.

Early gradient domain processing approaches (e.g. [2–5]) were formulated
using the Poisson equation (see [6]) which incorporates a 0th order boundary
constraint on the solution, i.e. the Dirichlet boundary condition. While generally
sufficient for most processes, this method can, from time to time, exhibit very
noticeable color shifts inside the processed region. As a result, other approaches,
especially more recent ones (e.g. [1, 7–11]) impose a regularization over the entire
0th order solution. This is typically done using an L2 norm regularization on
one or more of the 0th order image channels. This solution results in a bi-
objective function that tries to manipulate the image gradient while minimizing
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Fig. 1. Solution spaces (denoted by the dotted line) of the marked pixel using different
0th domain regularization methods.

the Euclidean error (i.e. L2) between the original and output 0th order domains.

This paper targets this latter regularization strategy which is applied in one
of two manners, either by 1) first converting the input space (presumably RGB)
to a new color space (e.g. YUV or LAB) that separates the luminance and
chrominance components and processing only the luminance channel (we refer
to this manner as Y-ch method in the rest of this paper); or by 2) applying
the L2 regularization to all three channels separately (we refer to this man-
ner as RGB method). When only one channel is processed, the regularization
effectively constrains the output solution so that each pixel is restricted to a
1-D space (Figure 1(B)). Although this approach does not shift the chromac-
ity, it can produce outputs that appear flat and less vivid. This can be seen
in Figure 2(B). When all three channels are processed, the per pixel solution
space is constrained to lie within the sphere about its original value as shown
in Figure 1(C). This conventional regularization is applied irrespective to how
the scene colors are distributed in the original input. As a result, satisfying the
regularization constraint may also introduce colors that are quite different than
those in the original image. This can be seen in Figure 2(C) where the solution
of the gradient boosting has resulted in noticeable color shifts.

Our work is motivated by the observation that objects’ RGB colors in natural
images follow unique distributions. For example, in Figure 1(A), the pixel marked
in cyan is plotted with all other pixels belonging to the same object. It is easy
to see that the pixel belongs to a distinct color distribution in the RGB space.
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Fig. 2. This figure compares conventional 0th domain regularization applied to an
image that has had its gradient boosted. A) Input image. B) Result using L2 regu-
larization over the Y channel only. C) Result using L2 regularization over all three
channels of the RGB input. D) Our color-aware regularization result. Note the flat
output colors exhibited by Y-ch method in B, and the subtle color-shifting exhibited
by RGB method in C.

Such unique distributions observed by Omer and Werman [12] have shown that
colors in natural images tend to form elongated clusters (referred to as lines) in
the RGB space. Our color-aware approach constrains the solution space to more
tightly follow the original distribution in order to avoid color shifting as shown
in Figure 1(D) and Figure 2(D).
Contribution Our contribution is the introduction of a regularization term
that more faithfully follows the distribution of colors in the input image. Our
approach applies a simple segmentation to the input image to assign each pixel
to a color distribution represented as a Gaussian mixture model (GMM). Using
these GMMs we can formulate the color-aware regularization as an anisotropic
Mahalanobis distance [13] which can be expressed as a linear system. This color-
aware regularization constrains the output solution to better fit the original
input color distributions thereby avoiding color shifts. Our approach can be eas-
ily incorporated into existing gradient-domain formulations. We demonstrate the
effectiveness of this regularization on a variety of inputs using three selected ap-
plications, gradient transfer, gradient boosting and saliency sharpening. We com-
pare our results with conventional L2 regularization approaches (Y-ch method
and RGB method) as used by [1, 7–11].

2 Color-aware Regularization Framework

2.1 Overview

An overview of our framework is shown in Figure 3. Each pixel is first assigned to
a color distribution via segmentation. We found that a simple superpixel segmen-
tation [14] followed by k-means clustering [13] is enough to find the underlying
color distributions. These individual color distributions are then fit with a series
of 3D Gaussian distributions in the RGB color space. The input to our algorithm
is an image where each pixel is assigned to a single distribution represented by
a series of Gaussians, i.e. G1,G2, . . . ,Gm.
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Fig. 3. The overall workflow of our color-aware regularization framework.

A bi-objective function is then used to transfer the new gradients to the input
while regularizing each output pixel to lie within a minimum distance from one of
the Gaussian distributions used to model its associated color distribution. This
regularization is formulated as an optimization problem similar to [1, 7–11].

2.2 Conventional optimization framework

Taking gradient transfer application as example, we review the conventional
optimization framework based on an L2 regularization term. The purpose of
gradient transfer is to transform gradients from the source image to the target
image while preserving the original look-and-feel of the target image.

Given two images f and g, we seek a new image u whose colors (from one
or more color channels) are as close as possible to f , and at the same time, has
gradients that are as close as possible to g. More formally, the final result u is
generated by minimizing the following bi-objective cost function

E(u) =
∑
p∈u

(λEd(p) + Es(p)), (1)

where p is the pixel index of image u; Ed is the 0th order color constraint term
and Es is the 1st order gradient constraint term; λ is used for the balance between
Ed and Es. These two terms are defined as:

Ed(p) = (up − fp)2, (2)

Es(p) =
(∂u
∂x
− c · ∂g

∂x

)2
p

+
(∂u
∂y
− c · ∂g

∂y

)2
p
, (3)

where ∂
∂x and ∂

∂y denote the partial derivative operators in x- and y-direction; c
is a scaling factor used in gradient boosting and saliency sharpening application
and is set to 1.0 for gradient transfer application.

2.3 Color-aware regularization term

As shown in Figure 1, the solution space of each pixel in the resulting image
u is constrained either to lie on a 1-D solution space if only a single channel
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is processed (Y-ch method), or to lie within a sphere centered at each pixel if
applied to all three channels (RGB method). Since the Euclidean distance is blind
to the inherent correlation among variables, neither of these methods is able to
take into account the color distribution information of the input image f . This
can lead to flattened colors or noticeable color shifts in the output image. To solve
this problem, we change the conventional L2 regularization to an anisotropic
Mahalanobis distance that more tightly fits the original color distribution. By
using the Mahalanobis distance, 0th domain solutions along the shorter axis of
each pixel’s associated Gaussian model are penalized. This forces the solution
to move along the longer axis, thus constraining the solution to lie closer to the
original color distribution.
Single Gaussian Model We first consider the case where we can model a color
distribution using a single Gaussian distribution. We define our color-aware 0th
order regularization term as:

Emdd(p) = (up − fp)
TS−1p (up − fp), (4)

where p is the pixel index; both up and fp are the RGB pixel values represented
by 3D column vectors; Sp is a 3×3 covariance matrix of the Gaussian that pixel
p is assigned to. The term Emdd is the squared Mahalanobis distance, which
is a dissimilarity measure between the two vectors up and fp. The benefit of
the Mahalanobis distance is that, unlike the Euclidean distance, it considers the
correlation of data elements in the vector, in our case the pixels’ RGB values.

Combining Eq. 3 and Eq. 4 using matrix notation we can write our quadratic
form bi-objective cost function as

E(u) = λEmdd(u) + Es(u)

= λ(u− f)TΣ(u− f)

+ (Gxu− c ·Gxg)T (Gxu− c ·Gxg)

+ (Gyu− c ·Gyg)T (Gyu− c ·Gyg), (5)

where u, f and g are RGB images reshaped into the column vector form (e.g.
[R1G1B1 . . . RNGNBN ]T ); Σ is a 3N×3N (N is the number of pixels) block-
diagonal matrix containing the 3×3 inverse covariance matrices of Gaussian
models that each pixel is assigned to; the matrices Gx and Gy are discrete
forward differentiation operators. Note that gradient constraint g does not nec-
essarily form a 3-channel image since we may transfer gradients of a grayscale
image to a color image (see Section 3). In that case, image g is extended to an
RGB image by copying itself three times. Minimizing Eq. 5 amounts to taking
its derivative, setting it to zero, and solving for vector u that is uniquely defined
as the solution of the linear system:

(λΣ +GTxGx +GTyGy)u = λΣf + c · (GTxGxg +GTyGyg). (6)

To solve this linear system, we use the conjugate gradient (CG) method [15]
that is also used by [16] and [1]. Note that further improvement can be made
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Fig. 4. Comparison of cost values (with spatial-varying weights applied) when using
single Gaussian model (blue dashed line) and multiple Gaussian models (red solid
line). For multiple Gaussian models, the reassignment operation is carried out every
50 iterations (t = 50 in CG solver).

to the 1st order term Es(u) in Eq. 5 since the L2 norm is known to be sensitive
to noise and may result in haloing artifacts in the output image. To solve this
problem, we add two spatial-varying weights to Es(u) using the same weighting
scheme presented in [1]:

wx(p) =
(∣∣∣∂f
∂x
− ∂g

∂x

∣∣∣
p

+ 1
)−α

(7)

wy(p) =
(∣∣∣∂f
∂y
− ∂g

∂y

∣∣∣
p

+ 1
)−α

(8)

where the parameter α (typically 1.2 ≤ α ≤ 3) determines the sensitivity of
Es(u) to noise. By using this per-pixel weighting scheme halo artifacts are effec-
tively reduced.
Multiple Gaussian Models Instead of using a single Gaussian model per color
distribution, we use several Gaussian models to represent each color distribution
more precisely. As shown in Figure 3, each pixel is first assigned to a color
distribution (region) via segmentation. Each color distribution is represented by
a series of 3D Gaussian models G1,G2, . . . ,Gm and each pixel is initially assigned
to its nearest Gaussian model Gi via Eq. 4. All pixels in the same region (color
distribution) share the same set of Gaussian models and can be reassigned to
any Gaussian models within this set when iteratively solving the output image.
We integrate this reassignment scheme with the conjugate gradient algorithm
and show that it can further decrease the objective cost function (see Figure 4).

Assume that we divide the input image into k color distributions and each
distribution is represented by m 3D Gaussian models, resulting in k×m Gaussian
models in total; Gi,j is the jth Gaussian model of the ith color distribution
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Algorithm 1 Gaussian model reassignment

Require: input image f and g, initial assignment map of all pixels ASG (a matrix),
maximum number of reassignment operations T , number of CG solver iterations t,
small tolerance ε > 0

1: u = f
2: for reselect = 1 to T do
3: u = conjugate gradient solver(f, g, u,ASG, t); ASG old = ASG;
4: for i = 1 to k do
5: for all p ∈ Region(i) do
6: j0 = argmin

j∈[1,m]

(up − fp)TS−1
i,j (up − fp)

7: reassign p to the Gaussian model Gi,j0 (one element of ASG is updated)
8: end for
9: end for

10: if ‖ASG−ASG old‖F < ε then
11: break
12: end if
13: end for
14: return the output image u

(1 ≤ i ≤ k; 1 ≤ j ≤ m) and Si,j is the covariance matrix of Gi,j . The expression
‖A‖F denotes the Frobenius norm of matrix A. We now outline the overall
algorithm of our reassignment approach as shown in Algorithm 1.

Convergency Analysis Without using spatial-varying weights on the 1st order
constraint term, minimizing the conventional bi-objective cost function reviewed
in Section 2.2 is known to be a convex problem. Our color-aware optimization
framework (using single Gaussian model) differs from the conventional formula-
tion by only introducing a block-diagonal matrix Σ on both sides of the linear
system Au = b (see Eq. 6). We know that the covariance matrix Σ is positive-
semidefinite. As a result, introducing the matrix Σ does not violate the convex
property of this optimization problem and a global optimal solution exists.

When using multiple Gaussian models and the reassignment scheme, the con-
vex property remains intact. As shown in Algorithm 1, the reassignment scheme
is actually a combination of several independent conjugate gradient solving pro-
cedures. After each reassignment step is done, the cost value is guaranteed to
be decreased (or at least remain unchanged) by reassigning each pixel to the
Gaussian model whose covariance matrix can minimize the 0th order term Emdd
while keeping the 1st order term Es unchanged.

However, the optimization problem is no longer convex once the spatial-
varying weights are used. In this case, the global optimum solution may not
exist, but we can still use conjugate gradient method to find an appropriate
solution. In practice, we find our framework works well to minimize Eq. 5 within
250 iterations (see Section 3.1). Two plots of the cost values during conjugate
gradient iterations are shown in Figure 4. As we can see, with the help of multiple
Gaussian models and the reassignment scheme, the cost value has been further
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decreased compared to the result achieved by the single Gaussian model. Note
that the cost values are shown in log scale.

3 Experiments

We compare results obtained by our color-aware regularization against those ob-
tained using a conventional optimization framework [1, 7–11] based on L2 0th
order regularization in the two manners previously discussed (i.e Y-ch method
and RGB method). The fast deconvolution algorithm presented by [17] is used
to perform the conventional optimization. Comparisons are conducted on three
selected tasks including gradient transfer, gradient boosting and saliency sharp-
ening. Before carrying out experiments we briefly explain the parameters we
used for these tasks.

3.1 Experiment setups

For all the three methods, the gradient scaling factor c is set to 1.0 in gradient
transfer task and 2.0 or 3.0 in gradient boosting/saliency sharpening tasks. To
keep the comparisons fair, we adjust the balancing factor λ for each method to
make sure that a comparable amount of gradient has been transferred or boosted
for each example (see quantitative comparison in Section 3.3).

For our color-aware regularization method, we use over segmentation algo-
rithm followed by k-means clustering to detect underlying color distributions of
an image and k is chosen from [10, 15] range (see Section 3.3 for detail explana-
tion). The number of Gaussian models used to represent each color distribution
is fixed to m = 5. We restrict the number of Gaussian reassignment operations
within 5 times (T = 5) and set 50 iterations for the CG solver (t = 50). With
the above settings, the running time for an 800×600 image is around 3 minutes
(Matlab implementation on an Intel Core 2 Duo 2.8GHz computer). We note
using more than 5 Gaussian models does not significantly improve the results.

3.2 Image gradient manipulation tasks

Gradient transfer The first two examples demonstrate gradient transfer of the
gradients from a near-infrared (NIR) image to an ordinary RGB image. Such gra-
dient transfer has been demonstrated to improve some forms of photography [8,
18] since NIR often contain more details that cannot be seen in the visible spec-
trum. In the first example, we show an example of an outdoor scene of a castle
where the clouds and other textures are notably stronger in the NIR image. Two
input images (NIR and RGB) are shown in Figure 5(A-a) and Figure 5(A-b).
Figure 5(A-c) shows the result generated by the Y-ch method. While the desired
gradients (clouds) are transferred, the color of the green plants below the castle
change to cyan. Figure 5(A-d) shows the result produced by the RGB method.
Note that the red color of the plants and rocks changes to green. Our result is
shown in Figure 5(A-e). The colors of both the red rocks and green plants are
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(a) NIR image (b) RGB image (c) Y-ch method result (e) Our color-aware method(d) RGB method

Fig. 5. Examples of gradient transfer: (a) input NIR image; (b) input RGB image; (c)
result using L2 regularization over the Y channel only; (d) result using L2 regularization
over R/G/B channels; (e) our color-aware regularization result. Regions with color-
shifting problem have been highlighted in red and green dashed boxes.

A

(a) Original image (c) Y-ch method (e) Our color-aware method

B

C

(b) Scaled gradient map (d) RGB method

Fig. 6. Examples of gradient boosting: (a) input RGB image; (b) scaled gradient map
providing target gradients; (c) result using L2 regularization over the Y channel only;
(d) result using L2 regularization over R/G/B channels; (e) our color-aware regulariza-
tion result. Regions with color-shifting problem have been highlighted in green dashed
boxes.
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A

(a) Original image (c) Y-ch method (e) Our color-aware method

B

C

(b) Saliency map (d) RGB method

Fig. 7. Examples of saliency sharpening: (a) input RGB image; (b) saliency map of
the input image; (c) result using L2 regularization over the Y channel only; (d) result
using L2 regularization over R/G/B channels; (e) our color-aware regularization result.
Regions with color-shifting problem have been highlighted in red and blue dashed boxes.

preserved well. Another example is shown in the second row of Figure 5. Note
that the color of the nebula (highlighted by a green dashed box) changes signif-
icantly in Figure 5(B-c) and the color of the stars (highlighted by a red dashed
box) is washed out in Figure 5(B-d). Our method achieves a better result in
Figure 5(B-e) with colors that are more similar to the input RGB image.
Gradient boosting The second example targets gradient boosting that is
aimed to enhance image contrast. In Figure 6, column (a) shows original input
images; column (b) shows the scaled gradient magnitudes after boosting (ren-
dered as a hot map for better visualization); column (c), (d) and (e) are the
results generated by the three different methods. We can see that when using
the RGB method (column (d) in Figure 6), the results suffer from noticeable
color-shifting in some regions. For instance, the color of the wall and the Bud-
dha’s legs in example A become yellowish; the color of the woman’s clothing in
example B changes from brown to blue; the color of the valley in example C
also shifts to blue. Although less color shifts is noticeable when using the Y-ch
method (column (c) in Figure 6), the overall color of these images seems to be
flattened and less vivid. Our results (column (e) in Figure 6) show the images
with boosted contrast and without color shifts. In addition, our results are more
vivid and colorful compared to the Y-ch method.
Saliency sharpening Saliency sharpening is similar to gradient boosting ap-
plication. The only difference is that the gradient boosting globally enhances
gradients by a factor c, while saliency sharpening strengthens gradients in a
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(c) Y-ch method (d) RGB method (e) Our color-aware mehtod(b) Original distribution(a) Input RGB image and 
its segmentation map

Fig. 8. Distributions of the solutions using different 0th domain regularization meth-
ods: (a) input RGB image and its segmentation map; (b) original color distribution of
the selected region (highlighted in green solid boxes); (c) resulting distribution using
L2 regularization over the Y channel only; (d) resulting distribution using L2 regu-
larization over R/G/B channels; (e) our color-aware regularization distribution. Note
that our distribution better maintains the shape and trend of the original.

spatially varying manner based on the image saliency map. We adopted the gra-
dient attenuation function proposed in [2] to generate a grayscale saliency map
M (brighter regions indicate larger scale factors and stronger boosting). In this
case, the global scale factor c in Eq. 5 will be replaced by (1+c ·M). As shown in
Figure 7, our method produces results visually more appealing compared to the
other two methods. Note the visible color-shifting on the wall behind the tiger
(Figure 7(A-d)), the cloud above the rock (Figure 7(B-d)) and the sunflower
(Figure 7(C-d)). Again, results from the Y-ch method (column (c) in Figure 7)
appear flat similar to the examples in gradient boosting application. However,
our results (column (e) in Figure 7) successfully preserve the original color of
input images after saliency sharpening process.

3.3 Evaluation and analysis

In order to show how our color-aware regularization method preserves the orig-
inal color distribution more faithfully than the other two methods, we plot the
original color distribution of a selected region in the input image and compare it
with color distributions of the same region in three output images. In Figure 8,
column (a) shows the input image and its color-coded segmentation map; col-
umn (b) plots the color distribution (data points are randomly sub-sampled for
better visualization) of the selected region in the RGB space; column (c), (d)
and (e) plot different results generated by the Y-ch method, the RGB method
and our method respectively. The plots show that the color distribution of our
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(a) Original image (b) YIQ space (c) HSV space (d) LAB space (e) Our method

Fig. 9. Comparison of other color spaces: (a) input RGB images; (b), (c) gradi-
ent boosted results using L2 regularization over the luminance/brightness channel of
YIQ/HSV color spaces; (d) result of L2 regularization over all channels of LAB color
space; (e) our color-aware regularization result.

output image (selected regions) preserves the original distribution much more
faithfully than the other two in terms of shape and trend.

Other than YUV and RGB spaces, we also compared our method with tra-
ditional L2 regularization applied on other commonly-used color spaces. Similar
to the Y-ch method, we convert the input image into YIQ/HSV color space and
regularize the luminance/brightness channel only. As shown in Figure 9(b, c),
the results are similar to that of the Y-ch method and also suffer from flattened
colors due to the limitation that the output pixels are restricted to a 1-D space
(refer to Figure 1(B)). Similar to the RGB method, we convert the input image
into LAB color space and regularize three channels separately. Using LAB color
space we get the result (Figure 9(d)) that also appears flat and less colorful
compared to our result (Figure 9(e)).

Table 1. This table shows the overall amount of gradient transferred by each method
(average L2 difference between output and input gradients) is similar for all example
images shown in Figure 5(A, B), Figure 6(A, B, C) and Figure 7(A, B, C).

Methods
Figure 5 Figure 6 Figure 7

A B A B C A B C

Y-ch method 0.0040 0.0047 0.0369 0.0148 0.0899 0.0849 0.1344 0.0518
RGB method 0.0041 0.0036 0.0372 0.0123 0.0591 0.0757 0.1244 0.0467
Our method 0.0044 0.0046 0.0340 0.0113 0.0533 0.0747 0.1182 0.0453

We also want to examine the amount of gradient effectively transferred by
each method. To do so, we compare the average per-pixel Euclidean distance of
the gradient maps of three output images with the constrained gradient map.
Table 1 lists the amount of gradient transferred for each example. Note that
all methods transfer a comparable amount of gradient. This verifies that 1) our
approach is able to transfer gradient as effective as the other methods; and
2) the results shown are fairly compared because they have each transferred
approximately the same amount of gradient.
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Fig. 10. Participants preferred results of three different methods.

Our color distributions are determined by over segmentation followed by
k-means clustering, resulting in k distributions, each of which is further decom-
posed into GMMs. To determine the sensitivity of our results to the choice of
k, we performed experiments with k ranging from 5 to 40. We found the results
dose not vary too much for values of k greater than 15. As a result, we advocate
using the range [10, 15].

Lastly, since our approach is subjective in nature, we performed a simple user
study on user’s preference of the results on 14 examples (3 for gradient trans-
fer, 7 for gradient boosting and 4 for saliency sharpening). Twenty participants
(average age around 25) were asked to choose their preferred results out of the
outputs of the three different methods. Participants were not trained before the
experiment, but over half of them had experience with image editing software
such as Photoshop. Our user study showed that 18 participants preferred our
results for the gradient transfer application, and 15 participants preferred our re-
sults for the gradient boosting application. For saliency sharpening application,
16 participants preferred the results produced by our color-aware regularization
method. Figure 10 shows a graph of these results.

4 Conclusion

We have presented a straight-forward approach to perform 0th domain regu-
larization in a manner that more faithfully follows the original input color dis-
tribution. This results in gradient transfer that avoids color shifting while still
producing vivid results. While our approach requires an initial segmentation to
determine the distinct color distributions in the image, we found that the seg-
mentation stage is not a crucial issue and any basic over segmentation algorithm
(e.g. watershed [19] or superpixel [14]) gave good results. More sophisticated
segmentation algorithm like Ridge-based Distribution Analysis [20] were tried
but generated similar results. We also note that our approach is not significantly
slower than conventional techniques and can be easily incorporated into existing
image gradient manipulation methods.



14 Fanbo Deng, Seon Joo Kim, Yu-Wing Tai, Michael S. Brown

Acknowledgement This work was supported by the NUS Young Investiga-
tor Award, R-252-000-379-101, and the IT Consilience Creative Program of the
Ministry of Knowledge Economy, Korea.

References

1. Bhat, P., Zitnick, C., Cohen, M., Curless, B.: Gradientshop: a gradient-domain op-
timization framework for image and video filtering. ACM Transactions on Graphics
29 (2010) 1–14

2. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range
compression. ACM Transactions on Graphics 21 (2002) 249–256

3. Jia, J., Sun, J., Tang, C., Shum, H.: Drag-and-drop pasting. ACM Transactions
on Graphics 25 (2006) 631–637

4. Raskar, R., Ilie, A., Yu, J.: Image fusion for context enhancement and video
surrealism. ACM SIGGRAPH Courses (2005)

5. McCann, J., Pollard, N.: Real-time gradient-domain painting. ACM Transactions
on Graphics 27 (2008) 1–7
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