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Three-Dimensional Spatio-Temporal Features for
Fast Content-based Retrieval of Focal Liver Lesions

Sharmili Roy*, Yanling Chi, Jimin Liu, Sudhakar K. Venkatesh, and Michael S. Brown

Abstract—Content-based image retrieval (CBIR) systems for
three-dimensional (3D) medical datasets still largely rely on two-
dimensional (2D) image-based features extracted from a few
representative slices of the image stack. Most 2D features that are
currently used in the literature not only model a 3D tumor in-
completely but are also highly expensive in terms of computation
time, especially for high resolution datasets. Radiologist-specified
semantic labels are sometimes used along with image-based 2D
features to improve the retrieval performance. Since radiological
labels show large inter-user variability, are often un-structured,
and require user interaction, their use as lesion characterizing
features is highly subjective, tedious and slow. In this paper,
we propose a 3D image-based spatio-temporal feature extraction
framework for fast content-based retrieval of focal liver lesions.
All the features are computer-generated and are extracted from
4-phase abdominal CT images. Retrieval performance and query
processing times for the proposed framework is evaluated on a
database of 44 hepatic lesions comprising of five pathological
types. Bull’s eye percentage score above 85% is achieved for three
out of the five lesion pathologies and for 98% of query lesions,
at least one same type of lesion is ranked among the top two
retrieved results. Experiments show that the proposed system’s
query processing is more than 20 times faster than other already
published systems that use 2D features. With fast computation
time and high retrieval accuracy, the proposed system has the
potential to be used as an assistant to radiologists for routine
hepatic tumor diagnosis.

Index Terms—3D spatio-temporal focal liver lesion represen-
tation, content-based image retrieval, clinical decision support
system.

I. INTRODUCTION

FOCAL lesion in the liver refers to a region of different
echogenicity, attenuation or signal intensity compared

to surrounding liver parenchyma on ultrasound, computed
tomography (CT) and magnetic resonance imaging (MRI)
respectively and can be of different pathologies. Multi-phase
contrast-enhanced computed tomography is the primary imag-
ing technique employed for the detection and characterization
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of focal liver lesions (FLLs) [1], [2], [3], [4], [5]. The ability to
detect and accurately characterize FLLs by qualitative visual
inspection comes with years of training and experience and
hence is frequently dependent on who is performing the
diagnosis. Content-based image retrieval (CBIR) systems are
finding increasing use as diagnostic decision support systems.
CBIR systems assist radiological diagnosis by searching and
retrieving from databases of medical exams and reports con-
firmed cases that have image features similar to the case under
investigation [6], [7], [8].

It has been clinically observed that FLLs exhibit different
visual characteristics at various time points after intravenous
contrast injection. This evolution of visual features over time
carry important diagnostic information and greatly influences
FLL classification. Multi-phase contrast-enhanced CT proce-
dure captures this transition by performing consecutive CT
scans before and after injection of contrast. A non-contrast
enhanced (NC) phase scan is usually performed before con-
trast injection. The patient then receives intravenous contrast
injection and three or more scans are obtained in the arterial
(ART) phase (typically 25-40 seconds after start of injection),
portal venous (PV) phase (60-75 seconds) and delayed (DL)
phase (3-5 minutes). Diffusion of the contrast media over the
different phases enhances the vessels and the lesion tissues
thereby assisting in lesion type determination.

Classification of liver lesions using image-based features is
an active research area. Some studies have reported texture-
based classification of lesions in non-enhanced CT and ultra-
sonography images using techniques like neural networks [9]
and fuzzy support vector machines [10]. In [11], authors
provide a comprehensive performance comparison of vari-
ous texture-based classifier architectures and conclude that a
voting-based combination of three primary classifiers gives
best classification results. Yu et al. in [12] developed a
CBIR system to differentiate three types of hepatic lesions
using global features derived from non-tensor product wavelet
filter and local features based on image density and texture.
However, clinical experience shows that non-enhanced CT
captures limited diagnostic information. The enhancement
patterns observed during various phases of contrast-enhanced
images are fundamental for identifying specific focal lesions.

Some published studies have reported characterization of
FLLs using multi-phase features. In [13] authors use spatially
partitioned bag of visual words (BoW) and intensity, texture
and shape-based features derived from a few representative
triple-phase image slices to differentiate three lesion types.
The features are averaged over all phases which leads to
loss of temporal enhancement information. The mean average
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precision of the retrieval system is reported to be 88%. In
another study by the same group, the BoW-based method is
improved to obtain a precision of above 90% using a different
set of lesions [14]. A CBIR framework is proposed in [15]
to characterize six types of hepatic tumors using multi-phase
density and texture features. The texture features are averaged
over a bounding box around the tumor and tracked over
multiple phases. A “Bull’s Eye Percentage” (BEP) score of
78% is achieved. We provide a more detailed comparison of
our method with [13], [14], [15] in section IV-A.

In [16], authors use semantic features annotated by radiol-
ogists and image features derived from three orthogonal two-
dimensional (2D) planes of a single phase CT image to train a
random forest classifier that distinguishes benign from malig-
nant tumors in a retrieval framework. The framework is used
to characterize sub-centimeter liver lesions. Sub-centimeter
lesions are often found indistinguishable in clinical practice
and hence are left unclassified though closely monitored.
Further, authors in [16] neglect tumor temporal characteristics
while designing their features. Napel et al. in [17] use high
level radiological semantic features and single phase texture
and boundary features to characterize three lesion types. Se-
mantic features are unstructured subjective descriptions made
by radiologists and are known to exhibit large inter-user
variation [18], [19]. Hence, utilization of semantic features
in image retrieval may be closely tied to the clinical set-up
for which the system is designed.

The CBIR systems discussed thus far represent FLLs using
2D features derived from a few representative slices of the
entire exam stack. Physiologically, however, FLLs are three-
dimensional (3D) volumes. Hence, 2D features derived from
a few slices is clearly an incomplete tumor representation.
Further, 2D features may not be representative of the whole
lesion, especially in cases of large and heterogenous lesions.
Medical image retrieval systems based on 3D features have not
been reported extensively in the literature. This is mainly due
to the high computation time for 3D features, especially when
retrieving high resolution datasets. In [15] authors represent
3D liver lesions by averaging 2D texture features extracted
from all the slices where the lesion is visible. Slice-by-slice 2D
features only capture structures from the surface. Thus, spatial
structural information interlaced within the volume is lost.
Linear binary pattern (LBP) extracted from three orthogonal
2D planes have been used to approximate 3D features for
fast retrieval of brain lesions in [20]. Again, by modeling the
lesions using only three image slices significant part of the
lesion volume is neglected. In [21] authors use 3D LBP-based
texture bags to retrieve lung lesions. Feature computation time,
however, is not reported.

In this paper we propose a fast content-based retrieval
framework for FLLs based on 3D spatio-temporal features
derived from 4-phase CT scans. All the features are computer
generated; no radiological labels are used. The proposed
retrieval framework identifies FLLs automatically and aligns
the lesions in the four phases using an automated registration
pipeline. Regional image-based features are computed from
spatially partitioned lesion volumes and tracked over the four
phases using feature temporal derivatives. Feature similarity

is then used to retrieve similar lesions from a database of
confirmed cases. To the best of our knowledge this is the first
study to use 3D spatio-temporal features extracted from multi-
phase CT images in a CBIR framework for FLLs. The rest of
the paper is organized as follows. In section II, we describe
the evaluation database and the methods used for lesion
identification, multi-phase image alignment and 3D feature
extraction. Section III illustrates the results and section IV
provides a comparative discussion of the proposed framework
with existing FLL CBIR systems. We conclude the paper in
section V.

II. MATERIALS AND METHOD

A. Materials

Institutional review board approval was obtained for retro-
spective analysis of 4-phase contrast-enhanced CT images of
30 de-identified patients. CT scans were acquired using a 64-
detector SOMATOM sensation scanner (Siemens Medical So-
lutions, Forchheim, Germany) via a standard 4-phase contrast-
enhanced imaging protocol with a slice collimation of 0.6mm,
a matrix of 512 × 512 pixels and an in-plane resolution of
0.59−0.78mm. The raw data was reconstructed at an isotropic
resolution of 0.6 × 0.6 × 0.6mm3. The evaluation database
was constructed using 44 confirmed lesions identified in the 30
patients. The 44 lesions consisted of five types: cyst, heman-
gioma (HEM), focal nodular hyperplasia (FNH), metastatis
(METS), and hepatocellular carcinoma (HCC). There were 14
cases of cyst, 10 cases of HEM, 5 cases of FNH, 11 cases
of METS and 4 cases of HCC in the 44 confirmed lesions.
One representative lesion was identified in each patient for
analysis. The pathology type of the lesions were confirmed
based on clinical features, CT scans, data from other imaging
modalities and biopsy, wherever needed.

B. Method

The proposed retrieval framework automatically detects
candidate FLLs in the CT image [22]. The FLL of interest
is then identified in all the four phases using a B-spline-based
registration [23]. The FLL is quantitatively represented using
3D spatio-temporal features extracted from various regions
within the FLL volume of interest (VOI). A FLL database
is constructed using the resulting feature vectors and the cor-
responding clinical diagnosis. A L2-norm similarity measure
between feature vectors of the query lesion and lesions in the
database is used for retrieval. The retrieved results are ranked
on the basis of similarity score and presented as evidential
support to the radiologists. Fig. 1 shows a flowchart of the
proposed retrieval framework.

Focal Liver Lesion Identification: We use a hybrid
generative-discriminative method proposed in [22] to detect
FLLs in a 3D image. The method first uses a generative model
to represent non-lesion components such as the healthy liver
parenchyma and the enhanced liver vasculature. The candidate
FLLs are then identified within the liver volume by eliminating
these non-lesion areas. False positives among the identified
candidate FLLs are then suppressed using a discriminative
approach that uses a lesion-likelihood measure comprising of
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Fig. 1: This figure shows a flowchart of the proposed system.

Fig. 2: This figure shows the visual appearance of various
lesions over the four phases. Images in a row are from the
same lesion; cyst, HEM, FNH, METS and HCC respectively
and images in a column belong to the same contrast phase.

three shape-based features: spherical symmetry, compactness
and size. All the detected FLLs are presented to an expert who
then selects one for further processing.

4-phase Lesion Alignment: FLLs usually do not appear
visually distinguishable in all the phases. A FLL is typically
detected in the phase in which it shows highest contrast with
respect to the liver parenchyma and is localized in the other
phases using a non-linear B-spline registration [23].

3D Spatio-Temporal Feature Design and Extraction: Fig. 2
shows evolution of various lesions over different contrast
phases. Liver cysts are benign fluid-filled lesions that typically
appear as round or oval smooth-edged regions with uniformly
low density. Cysts do not show much enhancement after intra-
venous contrast injection. HEMs exhibit discontinuous nodular
peripheral enhancement in the ART phase with centripetal
enhancement over time. Central fibrosis and calcification may
sometimes be observed due to thrombosis in the vascular
channels that makes classification of HEMs challenging. FNH,

Fig. 3: This figure shows a central calcification inside a HEM.
To capture the spatial tissue characteristics we divide the lesion
into three partitions.

without any contrast, is usually hypo- or iso-dense to the
liver parenchyma. FNH demonstrates bright arterial contrast
enhancement except for the central scar; pronounced central
arteries may be visible. In the PV phase FNH becomes iso-
dense to liver. HEMs and FNHs show similar peripheral
enhancement in the ART phase. Also, presence of central
abnormalities sometimes make PV washout of HEM and FNH
visually similar. METS, on the other hand, is a malignant
tumor that usually spreads from other cancer affected organs.
METS enhance homogeneously, however, they tend to have
less well-defined margins than cysts. METS have a band like
peripheral enhancement in ART phase and a washout in DL
phase. HCC typically shows ART phase hyper enhancement
and washout in either PV or DL phases.

Clinicians primarily use visual patterns generated by con-
trast intrusion over time to identify FLLs. Spatial visual char-
acteristics such as ring enhancement, nodule-within-a-nodule
enhancement, pseudocapsule, central true and pseudo-scars,
peripheral washout are fundamental to identifying specific
focal lesions [24]. However, accurate FLL classification comes
with years of clinical experience. Our goal is to design spatio-
temporal image features that perform an objective modeling
of the tumors and computationally assist in this classification
process. We divide the tumor VOI into three volumetric
partitions and extract features from these partitions over the
four phases. An example of volumetric partitioning is shown in
Fig. 3. The innermost partition, Pt1, captures central enhance-
ment characteristics caused by structures such as the central
scar, fibrosis, calcification, necrosis, if any. The intermediate
partition, Pt2, models the tumor tissue characteristics and the
outermost partition, Pt3 is designed to represent features and
the enhancement pattern of the tumor boundary.

We use a standard distance transformation technique based
on Euclidean distance to partition the tumor VOI [25]. Dis-
tance transformation converts a binary volume into a gray
scale volume. The binary volume in our case is the tumor
VOI where voxels inside the tumor form the foreground and
the rest comprise the background. The tumor is assumed
to be segmented either manually or using existing tumor
segmentation methods [26], [27]. Distance transformation of
this binary volume results in a gray scale volume where each
voxel of the gray scale volume represents the distance of that
voxel from the closest background voxel in the binary volume.
Voxels in the gray scale volume are then grouped into three
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partitions based on these distance values.
An additional benefit of tumor partitioning is the com-

putational speed-up. Image features from each partition can
now be computed in parallel. In effect the tumor is now
partitioned into three sub-volumes and the computation time
is governed by the largest of these sub-volumes instead of the
entire tumor. In section III we discuss, in detail, the speed-up
and enhancement in retrieval performance achieved by tumor
partitioning. Large computation time is the primary deterrent
to using 3D feature-based retrieval systems in clinical practice.
In order to accelerate processing time, instead of extracting
features from all voxels within the tumor partitions we perform
a uniform sub-sampling of the voxels and use only the selected
samples for feature computation. In section III-C a detailed
analysis of how the processing time and retrieval performance
vary with various amounts of sub-sampling is provided.

Post-partitioning various features such as those based on
shape, user-supplied semantics, texture, and intensity can be
extracted from the partitions to model the tumor. Shape fea-
tures are good at distinguishing benign from malignant tumors
since benign tumors are well encapsulated as opposed to the
malignant ones that often have irregular and visually indistinct
boundary. However, shape features have insufficient power
to differentiate among benign lesions, or among malignant
lesions [15]. Further, since FLLs are most distinctively visible
only in one of the phases, temporal change in FLL shape
cannot be extracted accurately. In this work our focus is on
features that exhibit spatial and temporal evolution, hence we
do not employ shape features. User-supplied semantic labels
are subjective and often unstructured description of the tumor
characteristics with high inter-user variability. Hence, we do
not want to use semantic features. Image texture is widely used
in the literature to model tumor tissues. Methods that model
texture are broadly categorized into statistical and structural
approaches. Statistical approaches such as histogram of pixel
gray levels and gray level co-occurrence have been found to
work best with images whose microtexture can be modeled
with a stochastic formulation. Structural approaches such as
textons, wavelet transforms and Gabor filters, on the other
hand, compute weighted mean of pixel neighborhoods and
hence eliminate finer textural details [20], [28]. Published
literature reports that gray level density and co-occurrence-
based texture features are particularly important to encode
local features of hepatic tumors [10], [12], [15], and are most
widely used for liver CT image retrieval. Hence, we derive
these features from the volumetric partitions and track their
temporal evolution over the four phases. We define four 3D
feature vectors to model a tumor as defined below.

1) Density Feature: The density feature, F1, represents
the ratio of average pixel intensity inside the partitions to
the average pixel intensity of liver parenchyma. F1 measures
lesion enhancement with respect to the surrounding liver
tissues and is defined as:

F1 = {DNC, DART, DPV, DDL}, (1)

where DNC = {dNC
Pt1
/dNC

liver, d
NC
Pt2
/dNC

liver, d
NC
Pt3
/dNC

liver}. dNC
Pti

is
the average pixel intensity inside Pti in the NC phase and
dNC
liver is the average pixel intensity of the healthy liver tissue

in the NC phase. DART, DPV and DDL are defined in a similar
fashion. The resulting density features obtained from all phases
are arranged in a 12-dimensional density feature vector. The
density feature aims to capture contrast enhancement and
washout. For example, if a lesion has |DART| > |DNC| and
|DPV| < |DNC|, then the lesion is enhanced in the ART phase
due to contrast propagation and has a washout in the PV phase.

2) Temporal Density Feature: The temporal density feature,
F2, measures temporal enhancement of the lesion in ART, PV
and DL phases with respect to the NC phase. It is defined as:

F2 = {TDART/NC, TDPV/NC, TDDL/NC}, (2)

where TDART/NC = {tdART/NC
Pt1

, td
ART/NC
Pt2

, td
ART/NC
Pt3

} and
for i = 1, 2, 3

td
ART/NC
Pti

=
dART
Pti
− dNC

Pti

dNC
Pti

, (3)

td
PV/NC
Pti

=
dPV
Pti
− dNC

Pti

dNC
Pti

, (4)

td
DL/NC
Pti

=
dDL
Pti
− dNC

Pti

dNC
Pti

. (5)

Similar definitions follow for TDPV/NC and TDDL/NC. Tem-
poral density features from ART, PV and DL phases are
encoded into a 9-dimensional feature vector that models the
temporal enhancement of the tumor.

3) Texture Feature: We use a 3D gray level co-occurrence
matrix (GLCM) to quantify the gray tone distribution in
the tumor sub-volumes. GLCM is an estimation of the joint
probability distribution of a pair of gray level voxels. An
element G(θ,d)(i, j) of the GLCM matrix is the probability
of the occurrence of gray levels i and j at distance of d from
each other along the direction θ. The variables i and j can
vary from 1 to N, where N is the number of gray levels in the
volume. In 3D, θ can take 26 values resulting from linking
a voxel to each of its 26 nearest neighbors. Since directions
that are 180◦ apart result in the same co-occurrence matrix,
we only consider 13 unique directions. Given an offset d, we
compute GLCM over all 13 directions and use the average to
make the texture rotation invariant. Offset d is experimentally
chosen as described in section III-A.

Six texture coefficients: energy, entropy, inverse difference
moment, inertia, cluster shade and correlation as defined
in [29] are derived from the rotation invariant GLCM. The
texture feature, F3, is composed as follows:

F3 = {TART, TPV, TDL}, (6)

where TART = {TART
Pt1

, TART
Pt2

, TART
Pt3
} represents the texture

features derived from the three partitions in the ART phase.
TART
Pti

= {tART
1Pti

, . . . , tART
6Pti
} where tART

kPti
’s, k = {1, . . . , 6},

are computed as defined in Table I from the GLCM of Pti in
the ART phase. Similar definition applies for TPV and TDL.
The resulting texture coefficients from nine partitions in ART,
PV and DL phases are arranged into a 54-dimensional feature
vector which encodes the tumor texture.
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TABLE I: This table describes the texture coefficients derived
from the GLCM matrix. The term g(i, j) represents the joint
probability density of the gray level pair (i, j).

Texture Expression and

Coefficient Qualitative Analysis

Energy t1 =
∑N−1
i=0

∑N−1
j=0 g(i, j)2

Energy quantifies the repetition of gray

level pairs in an image.

Entropy t2 =
∑N−1
i=0

∑N−1
j=0 g(i, j)log2(g(i, j))

Entropy represents the randomness

in the image.

Inverse t3 =
∑N−1
i=0

∑N−1
j=0

1
1+(i−j)2 g(i, j)

Difference Inverse difference moment measures the

Moment local homogeneity in the image.

Inertia t4 =
∑N−1
i=0

∑N−1
j=0 (i− j)2g(i, j)

Inertia gauges local variations in an image.

Cluster t5 =
∑N−1
i=0

∑N−1
j=0 (i+ j − µi − µj)3g(i, j)

Shade where, µi =
∑N−1
i=0 i

∑N−1
j=0 g(i, j),

and µj =
∑N−1
i=0 j

∑N−1
j=0 g(i, j).

Cluster shade quantifies perceptual

uniformity and proximity.

Correlation t6 =
∑N−1
i=0

∑N−1
j=0

(i−µi)(j−µj)g(i,j)
σiσj

where, σi =
∑N−1
i=0 (i− µi)2

∑N−1
j=0 g(i, j),

and σj =
∑N−1
j=0 (j − µj)2

∑N−1
i=0 g(i, j).

Correlation assesses the linearity of

relationship between various gray

level pixel pairs.

4) Temporal Texture Feature: Temporal texture, F4, is
defined as the normalized difference in texture at the three
enhancement phases. F4 is formulated as:

F4 = {TTART, TTPV, TTDL}, (7)

where, TTART = {TTART
Pt1

, TTART
Pt2

, TTART
Pt3
} is the temporal

texture in the ART phase formulated as derivative of the
six texture coefficients in each partition in the ART phase;
TTART

Pti
= {ttART

1Pti
, . . . , ttART

6Pti
}, i = {1, 2, 3}. Derivative of

each texture coefficient is defined as:

ttART
kPti

=

tART
kPti
− median
P∈{ART,PV,DL}

tPkPti

max
P∈{ART,PV,DL}

tPkPti
− min
P∈{ART,PV,DL}

tPkPti

(8)

for k = 1, . . . , 6. Texture derivative in PV and DL phases,
TTPV and TTDL respectively, are formulated analogously
with the individual texture coefficient derivatives defined as:

ttPV
kPti

=

tPV
kPti
− median
P∈{ART,PV,DL}

tPkPti

max
P∈{ART,PV,DL}

tPkPti
− min
P∈{ART,PV,DL}

tPkPti

, (9)

ttDL
kPti

=

tDL
kPti
− median
P∈{ART,PV,DL}

tPkPti

max
P∈{ART,PV,DL}

tPkPti
− min
P∈{ART,PV,DL}

tPkPti

. (10)

Texture derivatives computed for the three enhanced phases
are organized into a 54-dimensional temporal texture feature
vector that represents the textural evolution of the tumor. The
four feature vectors F1, F2, F3 and F4 form the FLL model.

Since we use GLCM-based texture features in this paper, it
turns out that we can further improve tumor processing speed
by reducing the number of gray levels used while populating
the GLCM matrix. An element (i, j) of the GLCM matrix
measures the probability of co-occurrence of gray level pairs
i and j. Computing 3D GLCM in 13 directions using the
original CT values is highly expensive both computationally
and in terms of memory requirement. We quantize down the
original CT values to fewer distinct gray levels in order to
reduce the size and computation time of the GLCM. Optimum
number of gray levels can be determined experimentally.
Section III-C provides analysis of gain in computation time
versus retrieval performance for various gray level counts.

Similarity Assessment and Evidence Rendering: Similarity
between a query FLL and the model FLLs in the database
can be measured using a L2 distance between the respective
feature vectors. Distance between two lesions FLL1 and FLL2

in L2 is defined as:

DL2(FLL1,FLL2) =

4∑
i=1

wi||F iFLL1
− F iFLL2

||L2 . (11)

The term F iFLL1
represents the ith feature vector of FLL1

where i iterates over density, temporal density, texture and
temporal texture feature vectors and wi is the respective
weight. Weight selection is elaborated in section III-A.

Model FLLs in the database are sorted in increasing order
of their distance to the query FLL and the closest matching
FLLs are rendered to the radiologist. It is possible to predict
the pathological type of the query FLL using BEP. BEP is
defined for each query as the percentage of correct retrievals
with respect to the query FLL’s class within the top 2C results
where C is the size of the query FLL’s class [30]. The query
FLL is predicted to belong to the class that has the highest
BEP score as follows:

Query ⊆ Ci

if, BEP(Ci) = max
k=1,2,...,5

(BEP(Ck)) (12)

where Ck represents the kth class of FLL pathology in the
database. The term BEP(Ci) represents the BEP score when
query FLL is assumed to belong to class Ci. The distance of
the query FLL to a class Ck can be computed using average
distance to model FLLs belonging to class Ck retrieved within
the top 2|Ck| results as formulated below:

Distance (Ck) =
1

NCk

NCk∑
i=1

DL2(FLLQuery,FLLi), (13)

where NCk is the number of FLLs belonging to class Ck
retrieved in the top 2|Ck| results.
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Fig. 4: This figure plots the system BEP score for various
values of offsets. The offset, d, is the distance between gray
level pairs used for computing GLCM entries.

Although a CBIR system can predict the pathological type
of an unknown lesion, the primary contribution of a CBIR
system in the clinical routine is its capability of providing
evidential support in favor and also against its prediction. It
is important for radiologists to not only look at examples of
similar lesions from the same pathology type but also refer
to visually similar lesions belonging to a different class of
pathology for a possible differential diagnosis.

III. EXPERIMENTS AND RESULTS

The proposed CBIR framework is evaluated on a database
of 44 FLLs identified in 30 patients and comprising of five
pathological types. One representative FLL is chosen from
each patient for analysis. Precision-recall curve and BEP score
are used to evaluate the retrieval performance of the proposed
framework. Precision is defined as the ratio of retrieved lesions
that belong to the query class with respect to the total number
of lesions retrieved1 and recall is defined as the ratio of
number of retrieved lesions that belong to the query class with
respect to all model lesions in the database that belong to the
query class. Leave-one-out cross validation scheme is used to
compute the precision-recall curves and the BEP scores.

A. Parameter Optimization

In this section we describe selection of offset (distance
between gray level pairs while computing GLCM) and feature
weights (used for inter-lesion comparison) respectively.

Offset: We compare the retrieval performance at various
values of offsets, d, by computing texture and temporal texture
features from GLCM at d = 1, 2, . . . , 10, and measuring the
corresponding system BEP scores (Fig. 4). Higher offsets pro-
duce better results, albeit, using a smaller subset of the dataset.
Large offsets cannot be used to model small tumors. In our
framework we first partition a tumor into three sub-volumes

1This definition of precision is used in the field of information retrieval and
is not equal to the one used in other areas of science and technology.
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Fig. 6: This figure plots precision versus recall curves for
different feature weight vectors. Precision-recall curves for
optimal and equal weight vectors are observed to be close.

and then extract the GLCM matrix from each individual sub-
volume. If the offset value is too large then GLCM for the
sub-volumes of small tumors remain very sparsely populated
or empty. Hence, with high offset it is not possible to model
small tumors. The results reported with higher offsets include
only the big tumors which could be a reason for better system
performance. In Fig. 5 we plot tumor size distribution for the
five classes of lesions in our database. From experiments we
observe that a maximum offset of four is able to model all the
tumors in our database and hence for subsequent analysis we
set d = 4.

Feature Weights: Similarity between two lesions is assessed
using a weighted L2 difference between the respective feature
vectors (Eq. 11). To compute the optimum weights, we con-
duct a brute-force search where the objective is to maximize
the system BEP score under an increment/ decrement of the
weights in steps of 0.05 while keeping their sum equal to one.
It is found that a weight vector of [0.3 0.3 0.2 0.2] generates the
best results. Fig. 6 compares precision-recall curves for various
weights including the optimal and equal weight vectors.
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Fig. 7: This figure compares precision-recall curves when
the lesions in the database are volumetrically partitioned into
three sub-volumes versus when they are not. The retrieval
performance obtained by non-partitioned lesions is found to be
inferior to that obtained by partitioned lesion representation.

TABLE II: This table enlists the Bull’s Eye Percentage for
various lesion classes.

Lesion Class Bull’s Eye Percentage Score

Cyst 0.87

HEM 0.62

FNH 0.70

METS 0.94

HCC 1.00

B. Tumor Partitioning

As mentioned in section II-B, we divide the tumor into
partitions and extract features from each partition to capture
the spatio-temporal characteristics of the tumor. Fig. 7 shows
the gain in retrieval performance obtained by dividing the
tumor into three partitions against the case when tumors
are represented by features extracted from the whole VOI.
Retrieval performance post-partitioning is clearly superior to
the non-partitioned case.

C. Retrieval Performance and Processing Speed

Fig. 7 plots the retrieval performance of the proposed
retrieval framework in terms of precision and recall. The
system’s precision remains above 0.85 till a recall of 0.6.
The BEP score for the five lesion pathologies is tabulated in
Tab. II. The global mean score of 82.6% demonstrates good
discriminatory properties of the 3D spatio-temporal features. A
more detailed examination of the results shows excellent BEP
scores, between 87% and 100%, for cyst, METS and HCC.
This can be contributed to the markedly different temporal
enhancement of these three lesion types. The low number
of HCCs in our database may have led to a perfect BEP
score for HCC. For a more thorough evaluation we would
like to test the performance with a wider example set of HCC.
HEM and FNH, however, report lower BEP scores. Pt3, which
captures the peripheral enhancement, tends to show similar

Fig. 8: This figure shows the top retrieval results for five query
lesions, one from each of the five lesion classes.

enhancement in ART phase for both HEM and FNH. Further,
Pt1 shows similar temporal washout in the DL phase for both
HEM and FNH due to the occasional presence of a central
scar in FNH. This may explain why lower scores are obtained
for HEM and FNH. FNH is difficult to detect and it is well
known clinically that they are called “stealth lesions” if the
ART phase enhancement is not well demonstrated.

Fig. 8 shows the top retrieval results for five query lesions,
one from each of the five lesion classes. For 98% of query
lesions, at least one lesion of the same pathological type as
the query lesion is rendered in the top two retrieval results.

Low query processing time is critical for the clinical
feasibility of a retrieval system. Various characteristics of
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Fig. 9: This figure plots the BEP scores and the processing
times for various amounts of volumetric sub-sampling.

Fig. 10: This figure plots the BEP scores and the processing
times for various counts of distinct gray levels.

our feature extraction framework contribute towards acceler-
ating query processing time. Tumor partitioning is the first
contributor. By partitioning the tumor we process all sub-
volumes concurrently in a multi-core computing framework.
The processing time is now governed by the largest sub-
volume instead of the entire tumor volume.

Further, we perform sub-sampling of the sub-volumes in-
stead of using all voxels during feature computation. Fig. 9
shows how the system BEP score and the total feature com-
putation time for all lesions in the database vary with varying
amounts of sub-sampling. The computation time is measured
using MATLAB R2011b without any GPU acceleration in
an Intel Xeon 2.4 GHz 4 core processor with 6 GB RAM.
We observe that BEP score varies from 0.80 to 0.82 with
additional sampling, however, gain in speed-up is substantial
when lower number of voxels are sampled. In this paper we
use 25% sub-sampling to compute features.

Use of GLCM for texture computation gives us another
parameter to gain additional speed-up, namely, the number of
distinct gray levels used for GLCM computation. Larger the
number of distinct gray levels, bigger is the GLCM matrix
and hence slower is the computation. We quantize down the
original CT gray levels to a lower number of distinct values
and study its effect on the computation time and the retrieval

TABLE III: This table compares the processing times for some
FLLs when tumor partitioning, volumetric sub-sampling and
gray level quantization are used to accelerate feature compu-
tation versus when no acceleration is used. For acceleration
we use 25% sub-sampling and 60 gray levels.

FLL Size Processing time with Processing time without
(in cm3) acceleration (in min.) without acceleration (in min.)

69.6 0.08 2.41

133.6 0.19 5.34

184.1 0.26 7.66

286.4 0.33 8.95

328.1 0.46 12.84

accuracy. Fig. 10 plots the system BEP score versus number
of gray levels used for feature computation. Total time taken
to compute 3D features for all lesions in the database is also
plotted against the number of gray levels. As expected, higher
number of gray levels increases the computation time, how-
ever, the gain in performance saturates after certain gray levels.
In this paper we use 60 gray levels for feature extraction.

Tab. III compares the processing times for some FLLs
with and without net computation acceleration obtained by
tumor partitioning, volumetric sub-sampling and gray level
quantization. On an average the computation with acceleration
is more than 28 times faster than without acceleration.

IV. DISCUSSION

A. System Comparison

In this paper we propose a retrieval framework for FLL char-
acterization using 3D image-based spatio-temporal features.
To the best of our knowledge no FLL CBIR system based on
3D multi-phase features have been reported in the literature.
The closest related works have studied lesion retrieval based
on 2D features derived from representative slices of single
or multi-phase CT images [13], [14], [15], [16], [17]. In the
following paragraphs we compare the proposed system with
these prior studies in detail.

Yu et al. in [13] propose retrieval of three types of
FLLs: cyst, HEM, and HCC using BoW and 2D image-
based features. The lesions are spatially partitioned and BoW
histograms are computed for each partition. The visual vocab-
ulary for BoW histogram is constructed using image patches
of the training lesions without normalization. Additionally
93 image-based global features are constructed from the un-
partitioned tumor region of interest based on intensity, GLCM,
Gabor filter and tumor shape. The lesion is represented by
averaging spatial BoW and global image-based features across
multiple phases. A mean average retrieval precision of 88% is
reported. In an extension to this work, the authors in [14] elim-
inate lesion partitioning and use distance metric learning meth-
ods to compute similarity between global BoW histograms
and report an average precision of above 90% when evaluated
on a database of cyst, HEM and hepatomas. Processing time,
however, is not reported. In [13] lesion spatial-partitioning
is used, though only to construct the BoW histograms. For
other image-based features no spatial information is preserved.
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Further averaging BoW and image features over multiple
phases leads to loss of temporal information. In [14] both
spatial and temporal information is neglected for BoW and
image features. Pathologically different lesions may appear
visually similar in some phases. By combining features from
various phases, a good correspondence between lesions in se-
quential phases is not guaranteed. Similar sequential evolution
of two lesions is essential for them to be categorized to the
same pathological type. Further, from experiments we observe
that computing GLCM texture features over the whole tumor
without acceleration is slow. Research shows that computing
texture using Gabor filter is even slower than GLCM [20].
We propose a much simpler modeling of tumors using density
and only six GLCM-based texture coefficients that preserve
both spatial and temporal characteristics of the tumor and are
also faster to compute as against the elaborate modeling of
tumors proposed in [13], [14] using 93 features and BoW
learning. When evaluated using cyst, HEM and HCC, our
system achieves a higher mean average precision of 92.4%.

In [15], the authors design a FLL retrieval framework using
GLCM-based 2D temporal features derived from multi-phase
CT images. The features are, however, derived by averaging
density and texture over a tumor bounding box. The system is
tested on a database of 69 FLLs comprising of six pathological
types. A BEP score of 78% is obtained. It is reported that
for 90% query lesions, the processing time is more than 10
minutes. 2D GLCM captures the joint probability distribution
of gray level pairs in only 4 directions: 0◦,45◦,90◦, and 135◦.
However, a 3D GLCM represents gray level distribution in 13
directions along the 13 neighbors of a voxel. Averaging 2D
features over multiple slices does not accurately approximate
the 3D texture. Further, by averaging features over the whole
bounding box, authors dismiss the spatial enhancement char-
acteristics of the tumor. In this paper we use 3D regionally-
partitioned temporal features and obtain a superior precision-
recall curve and a higher system BEP score than in [15] with
more than 20 times faster processing speed.

A CBIR system is proposed in [16] to differentiate cyst
from METS using radiological semantic labels and computer-
generated features based on density histogram and its mo-
ments obtained from three orthogonal 2D cuts of a single-
phase scan volume. A random forest classifier is used to
learn a discriminant distance between various FLL attributes.
The classification performance is measured using a receiver
operating characteristic curve. The framework proposed in [16]
uses only global density-based features derived from the lesion
area and the whole liver in a single contrast phase. Moments
are well-known quantitative measures of the global shape of
a set of points. FLL shapes, however, are rarely used to
differentiate different lesions in the clinical routine. This may
explain why inferior results are obtained using moments as
the discriminating features of the FLLs.

In [17], the authors propose retrieval of cyst, METS and
HEM using only a single image in the PV phase on a database
of 30 images. Computer-generated image-based features and
higher level radiological semantic labels are used to represent a
FLL. Visual similarity between each pair of lesions is adjudged
by two senior radiologists based on texture, boundary shape

Fig. 11: This figure shows some cases where the top retrieved
lesion does not belong to the query lesion class.

and boundary sharpness. The similarity measure between two
FLLs is defined as 3/2/1 for very similar, somewhat similar
and not similar pairs respectively. The system is evaluated in
terms of precision and recall on how well the system retrieves
visually similar lesions in comparison to radiology experts. A
mean precision greater than 90% is achieved. The retrieval
framework proposed in [17] is optimized and characterized
for retrieving visually similar lesions as perceived by expert
radiologists as opposed to retrieving lesions belonging to
the same lesion class. Retrieval performance in terms of
FLL characterization is not reported which makes a formal
performance comparison with our system difficult. Further,
only one slice in the PV phase, selected manually, is used
for feature computation. Higher level radiological annotations
that are inherently known to be subjective and widely user-
dependent are used to bridge the performance gap.

B. System Performance

For most cases the proposed CBIR system ranks lesions
belonging to the same pathological type as the query lesion
higher than lesions from other pathological groups. However,
in certain cases lesions from a different lesion class may be
ranked higher as shown in Fig. 11. This is due to variation in
visual appearance among lesions belonging to the same patho-
logical group. In clinical practice other higher level semantic
information and clinical history are used to distinguish such
cases. In this paper we do not use any semantic information.
However, we try to model commonly used semantic descrip-
tions such as relative density of tumor region with respect
to the liver parenchyma and tumor edge characteristics using
image-based features. Nonetheless, in future we would like to
explore other features that are more efficient in distinguishing
visually similar lesions from different pathological classes.

C. Clinical Feasibility

By reducing query computation time, the proposed frame-
work establishes the clinical feasibility of 3D feature-based
CBIR systems. However, at present we do not have a graphical
user interface for easy use of the system by radiologists.
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Design of a good user interface poses its own set of tech-
nical challenges. These need to be addressed before clinical
deployment of the system is possible.

V. CONCLUSION

In this paper we propose a FLL CBIR framework using
3D spatio-temporal features derived from 4-phase contrast-
enhanced CT images. Acceleration techniques are employed
to speed up the 3D feature extraction process, known to be the
primary bottleneck in integration of 3D feature-based retrieval
systems into the clinical routine. The proposed system is
evaluated in terms of precision-recall and system BEP score
on a database of 44 lesions comprising of five pathological
categories. The proposed system performs better and faster
than existing 2D feature-based FLL CBIR systems.

In future work, we would like to conduct a clinical val-
idation of the proposed system and evaluate the system’s
performance on a larger database that includes more FLL
pathologies. We acknowledge that the database used in this pa-
per, though at par with some of the existing studies [15], [17],
is small. A systematic search on the intrinsic dimensionality
of the database will be a future addition to this work. CBIR
systems are known to improve radiological diagnostic accu-
racy [15], however, high processing times have rendered their
integration into the clinical routine impractical. By keeping the
query processing time low and including more pathological
cases we hope to be able to integrate the proposed system as
a diagnostic assistant into the routine radiological practices.
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