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Abstract

Illumination estimation is a well-studied topic in com-
puter vision. Early work reported performance on bench-
mark datasets using simple statistical aggregates such as
mean or median error. Recently, it has become accepted to
report a wider range of statistics, e.g. top 25%, mean, and
bottom 25% performance. While these additional statis-
tics are more informative, their relationship across differ-
ent methods is unclear. In this paper, we analyse the re-
sults of a number of methods to see if there exist ‘hard’ im-
ages that are challenging for multiple methods. Our find-
ings indicate that there are certain images that are difficult
for fast statistical-based methods, but that can be handled
with more complex learning-based approaches at a signifi-
cant cost in time-complexity. This has led us to design a hy-
brid method that first classifies an image as ‘hard’ or ‘easy’
and then uses the slower method when needed, thus provid-
ing a balance between time-complexity and performance.
In addition, we have identified dataset images that almost
no method is able to process. We argue, however, that
these images have problems with how the ground truth is
established and recommend their removal from future per-
formance evaluation.

1. Introduction
Images captured by a digital camera are often corrupted

by a color cast caused by the scene illumination. This color
cast can make the image look unpleasant and hinder subse-
quent processing for computer vision tasks. Illuminant es-
timation algorithms attempt to estimate the scene illumina-
tion from the input image and apply a correction to remove
the color cast.

Illuminant estimation algorithms can be roughly clas-
sified into two types: statistical-based methods and
learning-based techniques (see [19] for a detailed sur-
vey). Statistical-based methods (representative examples
include [25, 4, 27, 13, 20, 7]) directly estimate the illumina-
tion from statistics computed from the input image. These
methods are fast and work irrespective of the type of camera

hard image hard image easy image

Figure 1: Examples of images from the Gehler-Shi
dataset [15, 26] considered hard and easy based on our anal-
ysis of the performance of 12 different methods on the entire
dataset.

used. Their performance, however, is generally not as good
as learning-based methods. Learning-based methods (rep-
resentative examples include [14, 12, 16, 15, 18, 5, 11, 23])
exploit the availability of training images that have labelled
ground truth illumination. These methods use image fea-
tures to train regressors to predict the illumination based
on the input image and associated training-data. Learning-
based methods generally give superior results over statisti-
cal methods, but at the cost of higher running-times and the
need to be trained per camera. The selection of an illumi-
nation estimation method is generally guided by the need
for performance vs. time-complexity, e.g. most onboard
camera white-balance algorithms still use statistical-based
methods.

There are several benchmark datasets [2, 9, 26] that are
used to evaluate the performance of illumination estimation
algorithms. These datasets generally have a large number of
images. As a result, only aggregate performance values are
given over the whole dataset. Early work on illuminant esti-
mation often used the mean error as a common statistic [1].
However, later it was shown [21] that the mean error does
not provide an accurate statistical summary of the under-
lying error distribution and the median error was proposed
instead. In a perceptual evaluation [17, 19] of illuminant es-
timation algorithms the trimean error was introduced which
gives the additional values of the error distribution (e.g. the
top and bottom 25%).
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The routine reporting of these additional statistics
provides more insight to a method’s performance across
an entire dataset. Interestingly, however, none of the prior
works have examined if there is any commonality in these
statistics across the images in the dataset. For example, it
is unclear if the bottom 25% results have shared images
across different methods. This would be interesting finding
as it would indicate the existence of images that multiple
methods consistency perform poorly on. We term these
images as ‘hard images’. This lack of analysis serves as the
impetus for our work.

Contribution In this paper, we describe an analysis on
12 leading illumination estimation algorithms belonging to
both statistical- and learning-based methods. In particular,
we enumerate over all combinations of five methods out
of 12 to find the set of images where at least the majority
(three or more) methods fail. We consider these images to
be ‘hard’ for this subset of methods. Our findings indicate
that there are, indeed, sets of hard images for different sub-
sets (e.g. see Figure 1). More importantly, these subsets can
be grouped depending if their methods belong to statistical-
based or learning-based. To this end, we found that there
are a number of ‘hard’ images for the fast statistical-based
methods that can be handled by more complex learning-
based approaches (Section 2). This led us to develop a hy-
brid estimation approach that classifies the image as hard or
easy depending on the results of the statistical-based meth-
ods (Section 3). In the case an image is categorised as hard,
it is likely that the results of the simple camera on-board
white balancing algorithms are incorrect. Such hard images
can be saved as RAW on the camera for later off-line pro-
cessing by slower, but more accurate, learning-based meth-
ods, such as the exemplar-based method [23, 24]. This leads
to better overall illumination estimation performance while
reducing the overall time-complexity. Our analysis also has
found that certain images in a well established benchmark
dataset are hard for all methods. On closer examination we
found that these images have issues that makes establishing
the ground truth difficult and advocate for their removal for
future evaluation (Section 4).

2. Analysing Results on a Common Dataset
The Gehler-Shi dataset [15, 26] has become the standard

image dataset for illumination estimation performance eval-
uation. While newer datasets exist (e.g. the NUS 9 cam-
era dataset [7]), the Gehler-Shi dataset remains the most
commonly tested dataset in the color constancy literature.
Gijsenij et al. [19] performed a thorough evaluation of 15
methods on the Gehler-Shi dataset. Their work provided re-
sults for each of these 15 methods for each image in dataset.
We use this comprehensive results for our analysis in this
paper.

From Gijsenij et al. [19], we select 12 algorithms that
have received the greatest attention in the published liter-
ature. We divide them into two groups. Statistical-based
methods including: S1 = shades of grey [13], S2 = grey
world [4], S3 = 1st order grey edge [27], S4 = 2nd or-
der grey edge and S5 = white-patch [25]. Learning-based
methods including: L1 = exemplar-based [23], L2 = color
constancy using natural image statistics [16], L3 = edge-
based gamut, L4 = pixel-based gamut, L5 = intersection-
based gamut [14, 18], L6 = Bayesian method [15] and L7 =
spatial correlation [5].

As previously mentioned, Gijsenij et al. [19] provides
the complete results (estimated illumination) by each 12
method for each image in the Gehler-Shi dataset. This
dataset contains a total of 568 images involving two cam-
eras, a Canon 1D (86 images) and a Canon 5D (482 im-
ages). Because the learning-based methods are trained per-
camera, we focus on the Canon 5D given that it has the most
images. This gives us a total of 482 images with 12 results,
corresponding to the associated methods S1-5 and L1-7.

Our analysis is intended to find images that are collec-
tively hard for multiple methods. In this case, ‘hard’ images
are those where multiple methods are unable to estimate the
illumination within some error threshold. In this paper, we
use nine degrees error as this threshold, meaning that the
estimated illumination has at least nine degrees (or more)
angular difference from the ground truth illumination. Nine
degrees is used as it represents a threshold that categorises
typical error of the bottom 25% for most methods as re-
ported by Gijsenij et al. [19]. Thus, we are comparing the
images that are reported to give the worse performances for
the 12 methods.

When we examine which images in the dataset that have
at least nine degrees of error for all 12 methods, we found
there are only a few images (this finding is discussed in
more detail in Section 4). This means that there is signif-
icant variation in the images that different methods perform
poorly on. To provide a more manageable grouping, we
consider all combinations of 5 methods from the 12 total
(i.e. 12 choose 5). In particular, we enumerate all five
combinations of the 12 methods which gives total of 792
combinations. Among these combinations, we are inter-
ested in those for which at least three out of five methods
introduce errors higher than our threshold. This is illus-
trated in Figure 2 which shows one out of the 792 combi-
nations. The columns in Figure 2 represent a unique image
in the dataset. The rows represent the five different meth-
ods tested. A white-box means a method has failed for this
particular image (i.e. produces a high error). A black-box
means the method is successful. Three or more empty boxes
for a particular column represents an image where the ma-
jority of methods has failed. This is considered a ‘hard’
image for this particular combination of methods. For the



Figure 2: A combination of five illuminant estimation algorithms. This combination results in 24 hard images out of 482
images of Canon5D from Gehler-Shi dataset [15, 26].

Combinations with most ‘hard’ images Combinations with least ‘hard’ images
Methods failed

images
Time (m) Methods failed

images
Time (m)

S2 S3 S5 L3 L7 84 1.5 L1 L2 L4 L6 L7 31 12.6
S2 S3 S5 L3 L6 80 9.8 S4 L1 L2 L5 L7 27 3.7
S2 S3 S5 L3 L4 78 1.8 S1 S4 L1 L2 L6 24 11.2
S2 S3 S4 S5 L3 73 1 S2 L1 L2 L6 L7 22 11.7

S1 S2 S3 S4 S5 69 0.36 S2 S4 L1 L2 L7 19 2.87
S1 S2 S4 S5 L4 64 1.2 S2 S4 L1 L6 L7 18 11.1

Table 1: The five combinations out of 12 illuminant estimation algorithms in terms of number of images they fail for. We
have highlighted the fastest (on the left) and slowest (on the right) combinations. Running times given are per image.

example shown, the combination are methods (S1, S4, L1,
L2, L6), and this set results in 24 hard images.

This procedure is performed for all combinations of 5
methods out of the 12. For each combination, we record
the number of hard images per combination and sort the list
of combinations based on the number of hard images. Ta-
ble 1 includes the combinations with most and least ‘hard’
images. Almost all combinations with most ‘hard’ images
include three or more simple statistical-based algorithms.
The combinations with least ‘hard’ images are mostly dom-
inated by learning-based methods.

Each method examined has a time complexity associ-
ated with it. The work by Gijsenij et al. [19] did not report
this time-complexity, however, more recent work has exam-
ined most of the same methods and reported the running-
time [7]. The only exception is that of the exemplar-based
method (L1). For this method, we estimate its time to
take approximately twice that of the gamut-based methods
based on the running-time reported by the author [22]. The
fastest and slowest combinations are highlighted in Table 1.
The statistical-based methods in general have a much faster
running-time than the learning-based methods. For exam-



Figure 3: The hard images from the Gehler-Shi dataset [15, 26] for the five statistical-based methods. L1-L7 rows are the
performance of the learning-based methods.

ple, the highest number of hard images is 84 that is achieved
using the combination in the first row of section ‘combi-
nations with most hard images’ in Table 1. This set of
methods requires roughly 1.5 minute per image to run all
5 methods. The overall run-time is mainly attributed to the
two learning-based techniques: (L3) edge-based gamut [20]
and (L7) spatio spectral [5].

The fifth largest number of failure images (out of 792
combinations) is for the set of the five statistical methods
(S1-S5). This is highlighted on the left in Table 1. This
only requires approximately 0.36 minutes per image and is
the fastest of all the combinations. This is a very interesting
finding. It shows that the statistical-based methods tend to
collectively fail on the same images in the dataset. This
means that we have a chance to examine these images to
see if we can build a classifier that can predict if an image is
‘hard’ or ’easy’ for this set of methods. The question now is
can we find a method that performs well on the hard images
for the statistical-based approaches.

Given the combination of five statistical-based methods
and their associated hard images, we examine the perfor-
mance of the learning-based methods. Figure 3 shows the
results. The diagram shows all 69 of the hard images (where
at least three or more of the learning-based methods fail).
The rows below show the results of the L1-L7 learning-
based methods. It is interesting to note that there are some
images considered hard for the statistical-based method that
all learning-based method are successful on. Overall, how-
ever, the L1 (exemplar-based [23]) method does particularly
well for the hard images, able to produce a better result on
all except a few of the images.

Based on the analysis in this section, we have developed
a hybrid method that first applies the statistical based ap-
proaches. As discussed in the next section, from this we
can classify if the image is hard or easy. For images that are
classified as hard, we propose that they are saved as RAW

(on the camera) for later to be processed off-line by learning
based methods such as the exemplar-based (L1).

3. Hybrid Method for Targeting Hard Images
In this section, we describe our framework to classify

images as hard or easy and then process them accordingly.
As discussed in Section 2, an image is labelled as hard if
at least three out of five simple statistical-based algorithms
have an error beyond nine degrees. We label an image as
easy if all five methods succeed, i.e have an error below the
threshold. We set the threshold for easy images as eight
degrees which is slightly lower than the hard images thresh-
old. We use these labelled images as training data to build
a classifier.

3.1. Features and Classifier

We have experimented with several image features to be
used in designing a classifier to label a new input image as
either hard or easy. One feature commonly used in learning-
based color constancy methods is the rg chromaticity values
([r, g] = [R,G]/(R + G + B)). These are typically used
to compute a histogram over the r and g values as features.
We found, however, that the distribution of the rg values
had little correlation to image being labelled hard or easy.
We also examined the chromaticity values with respect to
the rg chromaticity curve of the ground-truth illuminants
(i.e. the locus of ground-truth illuminants in chromaticity
space). Again, we found that these had little correlation to
whether an image was labelled as hard or easy.

The lack of success with chromaticity values led us to
examine features defined in the full 3D RGB space. In par-
ticular, we looked at the mean (centroid) location of the
five estimated illuminants provided by the statistical meth-
ods (S1-S5). Figure 4 (top) shows the distribution of these
centroid of the estimated illuminants for a set of hard (red)
and easy (blue) images from Gehler-Shi dataset. We can see



Feature Overall accuracy Hard image accuracy Easy image accuracy
1. Centroid 93.6% 85% 96.6%
2. Median from centroid 86.7% 68.3% 94.3%
3. Standard deviation (std) 82% 42.3% 95.9%
4. Centroid + std 89.7% 68.1% 95.9%
5. Median + std 85.4% 59.2% 94.7%

Table 2: Performance of the SVM classifier with different features.
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Figure 4: The top two diagrams show the centroids of five
estimated illuminants for hard and easy images. The bottom
two diagrams are the selected illuminants out of five estima-
tions with median angle from the centroid. The features for
easy images form a cluster in both cases.

that these form two distinct clusters of points. We also cal-
culated the angle between each of five estimated illuminants
and the centroid of the estimates. Among five estimates we
selected the one with the median angle from the centroid.
The points in the last two plots of Figure 4 (bottom) belong
to the selected estimated illuminants. While there is a dis-
cernable pattern in the data, it is not as distinguishable as
that with the the clusters of centroid.

Based on the observation in Figure 4, we experimented
with classifiers using five different features: 1) The cen-
troid of the five estimated illuminants; 2) the estimated il-
luminant selected out of the five estimates with the median
angle from the centroid; 3) feature 1 and the standard devi-
ation of the five estimated illuminants; 4) feature 2 and the
standard deviation of the five estimated illuminants; and 5)
the standard deviation of the five estimated illuminants. The

features were used to train a support vector machine (SVM)
[10] classifier based on the implementation of Chang and
Lin [6].

Table 2 shows the overall accuracy of the SVM classi-
fier with all the features as well as how accurate the model
classifies hard and easy images. We found that the simple
centroid feature produced the best results over all the five
features and use it in our overall framework.

3.2. Overall Procedure

The overall framework of our hybrid strategy can be seen
in Figure 5. For a given input image, its illumination is es-
timated by the five statistical-based methods (S1-S5). The
centroid (mean) of the five estimates is calculated and used
with the SVM to predict if the image is hard or easy. If the
image is classified as hard, we use a learning-based method
such as the exemplar-based method [23] to process the im-
age to obtain the final illumination estimate.

If the image is classified as easy, we have five estimates
to choose from. A straight-forward option would be to use
the average of these estimations. This is reported in our ex-
periments in the next section. However, another option is
to use this information to get a better prediction of the illu-
minant. In particular, the recent ‘corrected moments’ work
by Finlayson [11] showed that a correction matrix can be
pre-computed using the ground-truth illuminants from the
training-data to correct the estimates of the existing simple
derivative-based statistical methods. In this case, we can
use the result of the two derivative-based methods S3 and
S4 (1st grey edge and 2nd grey edge) to build the correc-
tion matrix. We found this approach gives notably better
results over using the average of the S1-S5 scores. This is
also reported in the experiments in the following section.

3.3. Experiments

We have tested our hybrid strategy on the Gehler-
shi [15, 26] dataset using different features mentioned in
Section 3.1. To generate a set of labelled data we categorise
hard and easy image based on their thresholds (here we set
eight degrees for easy images and nine degrees for hard im-
ages as explained in Section 2). Out of 482 images of Canon
5D from Gehler-shi [15, 26] dataset, this results in 233 la-
belled images. The sets of training and test images are made



Figure 5: The proposed framework which focuses on illuminant estimation for hard images. The classifier categorises
images into hard and easy. The easy images can be treated using fast statistical-based techniques. Images classified as hard
are processed using a slower, but more accurate learning-based method.

by 3-fold cross validation, i.e. each fold has 155 training
and 78 test images. The SVM classifier based on the ‘cen-
troid’ feature is built on the training set and the accuracy of
it is examined on the test images. The model’s performance
on this set of 78 test images showed an accuracy of 93.6%
with 85% for classifying hard images and 96.6% for clas-
sifying easy images. Table 3 shows the result of the model
applied on a set of unlabelled images.

The performance of the five statistical methods (S1-S5)
for all images are shown in the first row of the Table 3. The
L1 column shows the error of exemplar-based method for
all images. The exemplar-based has an overall good per-
formance for all images but is significantly slower than the
S1-S5 methods combined.

In our hybrid algorithm, we use our SVM to classify the
input images. In the first column of the proposed section of
Table 3 the average of statistical-based methods is used as
our estimate. By excluding hard images we have avoided
the high error of S1-S5 that is obtained when applied to all
images. It is interesting to note that median of the average of
S1-S5 is less than the median of the individual methods. As
previously mentioned, we also use the corrected-moment il-
luminant estimation method [11] to further improve the re-
sults. This method uses a cross validation procedure to build
a correction matrix that takes the results from the S3 and S4
estimates and refine the result based on the ground-truth il-
luminants of training data. Table 3 shows the (corrected)
algorithm performance. This allows us to get an additional

gain on the performance of the statistical based methods.
Note that the approach in [11] still has trouble on the hard
images and the use of the exemplar-based method is signif-
icantly better and therefore necessary for the hard images.

Our results show that this strategy of using fast
statistical-based methods can give us good performance on
the easy images, while identifying the difficult images and
passing them to a slower, but more accurate learning-based
approach. While the overall running-time is slow due to the
use of the learning-based method, our approach can reduce
this by almost half while giving similar performance. More-
over, the results for easy images can be obtained in a matter
of seconds.

4. False Hard Image Removal

As mentioned in Section 2 we found nine images that
almost all methods failed on from the Gehler- Shi [15, 26]
dataset. We were keen to see if there were some charac-
teristics to the hard images that no method could resolve,
however, on careful inspection of these images we realise
it was due to the position of the color chart in the scene.
Figure 6 shows an example.

In all of these images, the color checker board that is
used to provide the ground truth illumination is placed un-
der a different illumination than the rest of the scene. This
means the scene is lit by two different illuminations, but in
the cases of these nine images, the dominant illumination



S1 S2 S3 S4 S5 L1 Proposed
average corrected

All 4.37◦ 7.04◦ 4.81◦ 4.73◦ 6.46◦ 2.4◦

Easy 3.5◦ 6.9◦ 4.26◦ 4.7◦ 4.7◦ 2.1◦ 3.42◦ 2.4◦
Hard 6◦ 7.04◦ 6.1◦ 4.8◦ 12.9◦ 2.91◦ 2.91◦ 2.91◦

Time (per image) 3.4s 1.8s 6.8s 8s 1.85s 1.96m 21.9s + (1.96m per hard image)

Time (total) 18.5m 9.8m 36.9m 43.5m 10m 10.7h 4.5h

Table 3: The median errors of the proposed hybrid framework treating hard and easy images differently. In comparison we
show the errors of fast statistical algorithms (S1 to S5), as well as time complexity of exemplar-based method [23] (L1).

Figure 6: Examples of images that all methods incor-
rectly estimate the illumination on from the Gehler-Shi
dataset [15, 26].

arguable does not fall on the color checker board. These
images do not represent fair test cases and should be re-
moved as they introduce negative results for evaluation and
are erroneously used by learning-based methods for train-
ing. We have provided an updated version of the Gehler-
Shi [15, 26] which excludes these nine images and their
measured ground truth illuminations1.

5. Concluding Remarks

This paper has analysed the performance of multiple
color constancy methods to examine if methods fail on the
same images. As far as we are aware, this is the first work
to examine the relations of the hard images across different
color constancy methods.

Our analysis revealed that there are common ‘hard’ im-
ages for subsets of methods. One of these subsets with
a large number of hard images is composed of all fast
statistical-based color constancy methods. We also ob-
served that there exist some learning-based methods that
give excellent performance on this set of hard images, but
at a significant cost in running-time. Based on these ob-
servations, we proposed a hybrid method that classifies an
image as hard or easy and then processes it accordingly.
This allows easy images to be processed quickly. Easy im-
ages white-balancing could even be performed onboard the
camera itself. For the images classified as hard, learning-

1http://colour.cmp.uea.ac.uk/datasets/
GehlerFalse.html

based methods such as the exemplar-based method [23] are
applied to give good results. We note that learning-based
methods will continue to improve in terms of performance
and speed. Recent work by Bianco et al. [3] and Cheng
et al. [8] provided similar estimation performance to the
exemplar-based method (L1) used in our work, but at a
significantly faster running-times. These methods can be
easily incorporated into our overall framework’s running
time, however, we note that learning-based methods will
still need to be performed off-line and therefore require the
determination of which images are ‘hard’ and require such
off-line processing.

Our analysis has also identified nine images in the widely
used Gehler-Shi [15, 26] dataset that were problematic for
all 12 methods we examined. We have found that these
images have problems with how the ground-truth is estab-
lished and we recommend their removal from the dataset for
the future studies.

For future work we are keen to extend our idea to addi-
tional color constancy datasets. Currently, we were only
able to apply this approach to the Gehler-Shi dataset as
it has sufficient number of images. More recent datasets
(e.g. NUS 9-camera) has more overall images, but less
images per camera (only around 200 images per camera).
We did attempt to apply this approach to the older Grey-
ball dataset [9] but found the dataset is inappropriate given
that it is low-resolution video footage (320×240) and is not
properly linearised. We also found that this dataset had a
large number of hard images due to improper position of
the Grey-ball used for the ground truth. This points to the
need of additional datasets in the color constancy commu-
nity and is an area we are focusing on for future work.

6. Acknowledgement

This research was supported by EPSRC grant H022236.

References
[1] K. Barnard, V. Cardei, and B. Funt. A comparison of com-

putational color constancy algorithms. I: Methodology and

http://colour.cmp.uea.ac.uk/datasets/GehlerFalse.html
http://colour.cmp.uea.ac.uk/datasets/GehlerFalse.html


experiments with synthesized data. IEEE Transactions on
Image Processing, 11(9):972–984, 2002. 1

[2] K. Barnard, L. Martin, B. Funt, and A. Coath. A data set for
color research. Color Research & Application, 27(3):147–
151, 2002. 1

[3] S. Bianco, C. Cusano, and R. Schettini. Color constancy
using CNNs. IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), Deep Vision: Deep
Learning in Computer Vision, 2015. 8

[4] G. Buchsbaum. A spatial processor model for object colour
perception. Journal of the Franklin institute, 310(1):1–26,
1980. 1, 2

[5] A. Chakrabarti, K. Hirakawa, and T. Zickler. Color con-
stancy with spatio-spectral statistics. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(8):1509–
1519, 2012. 1, 2, 4

[6] C.-C. Chang and C.-J. Lin. Libsvm: a library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology (TIST), 2(3):27, 2011. 6

[7] D. Cheng, D. K. Prasad, and M. S. Brown. Illuminant es-
timation for color constancy: why spatial-domain methods
work and the role of the color distribution. Journal of the
Optical Society of America A, 31(5):1049–1058, 2014. 1, 2,
3

[8] D. Cheng, B. Price, S. Cohen, and M. S. Brown. Effective
learning-based illuminant estimation using simple features.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1000–1008, 2015. 8

[9] F. Ciurea and B. Funt. A large image database for color con-
stancy research. 11th IS&T/SID Color and Imaging Confer-
ence, 2003(1):160–164, 2003. 1, 8

[10] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995. 6

[11] G. D. Finlayson. Corrected-moment illuminant estimation.
IEEE International Conference on Computer Vision (ICCV),
2013, pages 1904–1911, 2013. 1, 6, 7

[12] G. D. Finlayson, S. D. Hordley, and P. M. Hubel. Color
by correlation: A simple, unifying framework for color con-
stancy. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1209–1221, 2001. 1

[13] G. D. Finlayson and E. Trezzi. Shades of gray and colour
constancy. Color and Imaging Conference, 2004(1):37–41,
2004. 1, 2

[14] D. A. Forsyth. A novel algorithm for color constancy. In-
ternational Journal of Computer Vision, 5(1):5–36, 1990. 1,
2

[15] P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp.
Bayesian color constancy revisited. IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.
1, 2, 3, 5, 6, 8

[16] A. Gijsenij and T. Gevers. Color constancy using natural
image statistics. IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2007. 1, 2

[17] A. Gijsenij, T. Gevers, and M. P. Lucassen. Perceptual anal-
ysis of distance measures for color constancy algorithms.
Journal of the Optical Society of America A, 26(10):2243–
2256, 2009. 1

[18] A. Gijsenij, T. Gevers, and J. Van De Weijer. Generalized
gamut mapping using image derivative structures for color
constancy. International Journal of Computer Vision, 86(2-
3):127–139, 2010. 1, 2

[19] A. Gijsenij, T. Gevers, and J. Van De Weijer. Computational
color constancy: Survey and experiments. IEEE Transac-
tions on Image Processing, 20(9):2475–2489, 2011. 1, 2,
3

[20] A. Gijsenij, T. Gevers, and J. Van De Weijer. Improv-
ing color constancy by photometric edge weighting. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
34(5):918–929, 2012. 1, 4

[21] S. D. Hordley and G. D. Finlayson. Reevaluation of color
constancy algorithm performance. Journal of the Optical So-
ciety of America A, 23(5):1008–1020, 2006. 1

[22] H. R. V. Joze. Estimating the colour of the illuminant using
specular reflection and exemplar-based method. PhD thesis,
Applied Sciences: School of Computing Science, 2013. 4

[23] H. R. V. Joze and M. S. Drew. Exemplar-based colour con-
stancy. British Machine Vision Conference, 2012, pages 1–
12, 2012. 1, 2, 4, 6, 8

[24] H. R. V. Joze and M. S. Drew. Exemplar-based color con-
stancy and multiple illumination. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(5):860–873,
2014. 2

[25] E. H. Land. The retinex theory of color vision. Scientific
American, 237(6):108–128, 1977. 1, 2

[26] L. Shi and B. Funt. Re-processed version of the gehler color
constancy dataset of 568 images. Simon Fraser University,
2010. 1, 2, 3, 5, 6, 8

[27] J. Van De Weijer, T. Gevers, and A. Gijsenij. Edge-based
color constancy. IEEE Transactions on Image Processing,
16(9):2207–2214, 2007. 1, 2


