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Tutorial schedule

* Part | (General)
* Motivation
* Review of color & color spaces
* Overview of in-camera imaging pipeline

* Part 2 (Imaging and Computer Vision)

* Misconceptions in the computer vision
community regarding color

e Recent work on color and cameras
* Concluding remarks

- 1.30pm - 3.30pm

Break

5 3.30pm -4.30pm

- 4.30pm - 6.00pm




Tutorial schedule

* Part | (General)
* Motivation
* Review of color & color spaces
* Overview of in-camera imaging pipeline

* Part 2 (Imaging and Computer Vision)

* Misconceptions in the computer vision
community regarding color

e Recent work on color and cameras
* Concluding remarks

Beginner audience
Covers color and camera.
General knowledge topic.
Not specific to any papers.

Intermediate audience
Covers recent research on
camera pipelines -- assumes you
have a background in computer
vision.

(Note: Includes papers from my
research lab)



Part 1: Motivation for
this tutorial?



Shifting landscape of cameras

SAMSUNG

Film Point-and-shoot DSLR/Mirrorless Smartphone
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Photography = smartphone camera




Imaging is at our finger tips




Not always a good thing ...




And useful for purposes beyond photography

In many appllcatlons a human W|II
never see the captured image.




Scientist’s view of photography

Photo by Uwe Hermann



Scientist’s view of photography
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Camera = light-measuring device

[llumination source
ﬂ (radiance)
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Scene Element

Simple models of a camera assumes an image is a “quantitative measurement’ of scene radiance.

Figure from Digital Image Processing, Gonzales/VWoods



Image = radiant energy measurement
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Simple models of a camera assumes an image is a “quantitative measurement’ of scene radiance.

Figure from Digital Image Processing, Gonzales/VWoods



This assumption is made often in computer vision

Shape-from-shading

* Shape from shading

* HDR imaging

* Image matching

* Color constancy

* Applications relying on color
* Image delubrring

* Etc...

image of object surface normals 3D model
From Lu et al, CYPR’|0

Image matching HDR imaging

From Jon Mooser, CGIT Lab, USC From O’Reilly’s digital media forum



Camera = light-measuring device!

User defined
programs
(Custom modes)

Manual program
Diaphragm priority

Shutter speeds
priority
Programmable
automatic program

Fully automatic SAMS!

program

Subject modes

0

Diptic

u Portrait Mode n Soft Skin Mode n Transform Mode
[;’./ Self-portrait Mode - Scenery Mode E Panorama Assist Mode | , @
v Py Sports Mode m Night Portrait Mode Night Scenery Mode FingerFocus
Food Mode Party Mode BT Candie Light Mode : ’ \ 7 @
Baby Mode 1/2 Pet Mode = Sunset Mode - - ,,“ L
H High Sensitivity Mode High-speed Burst Made Flash Burst Mode
n Starry Sky Mode bl Fireworks Mode ! Beach Mode
B Snow Mode Aerial Photo Mode Pin Hole Mode
Film Grain Mode High Dynamic Mode B Photo Frame Mode

Retouch




Camera pipeline photo-finishing routines
“Secret recipe” of a camera

Nikon Sony

Photographs taken from three different cameras with the same aperture, shutter speed,
white-balance , ISO, and picture style.

20



Modern photography pipeline

X Scene Radiance

Starting point:
reality (in radiance)

Final output

Ending point:
better than reality (in sRGB)

Pre-Camera

In-Camera

Lens Filter —_ CMOS response (raw-RGB)
Lens raw-RGB processing
Shutter +
Aperture “Photo-finishing
Processing”
N

* Adobe Photoshop C53
fe Gt fmoge Lur feedt Pt Yew Window beb

+ Untitied-1 @ 300% (Layer 1, RGBIB)
PR BT

B
LA
Q.7
& 7
2.0,
w.e,
0T
R
5.2
9
vad
@l
=,
Post-Processing
Touch-up

Hist equalization
Spatial warping
Etc ...

Camera Output: sSRGB

Even if we stopped here,

the original CMOS response
potentially has had many
levels of processing.
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Digital cameras

* Digital cameras are not designed to be light-measuring devices

* They are designed to produce visually pleasing
photographs

* There is a great deal of processing (photo-finishing) applied in the
camera hardware

The goal of this tutorial is to discuss
common processing steps that take place
onboard consumer cameras




Tutorial schedule

* Part | (General)
Motivadi
* Review of color & color spaces
* Overview of in-camera imaging pipeline

* Part 2 (Imaging and Computer Vision)

* Misconceptions in the computer vision
community regarding color

e Recent work on color and cameras
* Concluding remarks

- 1.30pm - 3.30pm

Break

5 3.30pm -4.30pm

- 4.30pm - 6.00pm




Part 1:“Crash Course” on
Color & Color Spaces



Color

Def Color (noun): The property possessed by an object of producing
different sensations on the eye as a result of the way it reflects or emits
light.

Oxford Dictionary



Color is perceptual

* Color is not a primary physical property on an object

* Red, Green, Blue, Pink, Orange, Atomic Tangerine, Baby Pink,
etc. ..

* These are words we assign to human color sensations

Which is the "true blue™?

http://en.wikipedia.org/wiki/List_of colors

26


http://en.wikipedia.org/wiki/List_of_colors

Subjective terms to describe color

Hue
Name of the color
(yellow, red, blue, green,...)

Value/Lightness/Brightness
How light or dark a color is.

Saturation/Chroma/Color Purity
How “strong” or “pure” a color is.

Hue Value/Chroma Chart

-9

v

N3/

»— Value—>

nevtrols from black fo white

N2/

Value
N1 N4/ N5/ N6/ N7/ N8/
1
<

4

=

Image from Benjamin Salley

27
A page from a Munsell Student Color Set



Where do “color sensations’” come from?

A very small range of electromagnetic radiation

l < Increasing Frequency (v)
1?24 l(l)'lz 1920 l?lﬂ l(I)I6 l|0|4 19]2 IIOH) llos 1|06 1|O4 l|02 10[) " (HZ)
y rays X rays uv IR Microwave |FM AM Long radio waves
Radio waves
0l I [ | | [ [ |

|
= 4% 12* 107 10" 107 10* 10° 10 A(m)
|

—
-
-

---------- Increasing Wavelength (1) —

- -
-

Generally wavelengths
from 380 to 720nm are
visible to most individuals

g ] ] i
400 500 600 700

Increasing Wavelength () in nm —
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White light through a prism

“white light”
(broad spectrum)

Spectral “colors”

\ \ \

450nm 600nm 650nm

Isaac Newton

Relative Power

Light is separated into “monochromatic” light at different wave lengths.

29



Biology of color sensations

* Our eye has three receptors (cone cells) that respond to visible light and
give the sensation of color

Light Response Spectra for Human Light Receptors (Cones)

Short, Medium,
Long Cones

Optical nerve

-==-9 Sensitivity =====9

<_—BJ.|.I£_QQD£§_(.B.)_.

Green Cones (G)

Eye < Red Cones (R) &

.................................

400 450 500 550 600 650 700
Wavelength (nm)
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Cones and rods

* We have additional light sensitive cells called rods that are not
responsible for color. Rods are used in low-light vision.

* Cone cells are most concentrated around the fovea of the eye

Cone
density

N

Rod
density

Density in thousands per square mm

oo
=
o
=

-40 -20 0 20 40

Angular separation from fovea (degrees)

60

80
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Spectral power distribution (SPD)

—
Y

o
o

\ Butter 4
\ Tomatoi

o
=

response (normalized)
o
D

o
N

. et
400 200 600 700
wavelength (nm)

We rarely see monochromatic light in real world scenes. Instead, objects reflect a wide

range of wavelengths. This can be described by a spectral power distribution (SPD)

shown above. The SPD plot shows the relative amount of each wavelength reflected
over the visible spectrum.
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SPD relation to color is not unique

* Due to the accumulation effect of the cones, two different SPDs can be
perceived as the same color (such SPDs are called "metamers").

Lettuce SPD

Lettuce SPD
‘ stimulating
$=0.2, M=0.8, c)O
L=0.8 0
B aveength omy SPD of “real lettuce”
Green Ink SPD
- Green ink SPD ’ Result in the same
E ‘ stimulating color “sensation”.
s $=0.2, M=0.8,
fu L=0.8

400 © 500 BO0 700

wavelengtn (i) SPD of ink in a “picture of lettuce”



Tristimulus color theory

* Before the biology of cone cells was understood, it was empirically
known that only three distinct colors (primaries) could be mixed to
produce other colors

* Thomas Young (1803), Johann Wolfgang von Goethe (1810), Hermann
Grassman (1853), James Maxwell (1856) all explored the theory of
trichromacy for human vision

LPI’{ LSMATIC

e




Tristimulus color theory

Grassman’s Law states that a source color can be matched by a linear

combination of three independent “primaries”. Three lights (shown as lightbulbs)
serve as primaries. Each light has
@ — Rl*! + G1* ! + Bl*! intensity, or weights, R1, G1, B1 to
match the source light #| perceived

Source light #| color.

Same three primaries and the
—_ R2* + G2* + B2* weights (R2, G2, B2) of each
primary needed to match the

Source light #2 source light #2 perceived color

If we combined source The amount of each primary needed to match the new source light

lights 1 & 2 to get #3 is the sum of the weights that matched lights sources #1 & #2.

a new source light 3 This may seem obvious

now, but discovering

@ that light obeys the laws
= (R1+ R2)* !_,_ (G1+ G2 )* + (B1+B2)* of linear algebra was a
huge and useful discovery.
Source light #3 .



Radiometry vs. photometry

* Radiometry
* Quantitative measurements of radiant energy
» Often shown as spectral power distributions (SPD)

* Measures either light coming from a source (radiance) or light falling on a surface
(irradiance)

* Photometry/ colorimetry
* Quantitative measurement of perceived radiant energy based on human’s sensitivity to
light
* Perceived in terms of “brightness” (photometry) and color (colorimetry)

Object é

™\

Radiometry Photometry/

colorimetry
Tomato’s SPD OO

e °

Perception of the
Wavelength (})

tomato’s SPD



Quantifying color

* We still need a way to quantify color & brightness

* SPDs go through a “black box” (human visual system) and are perceived as
color

* The only way to quantify the “black box” is to perform a human study

Tomato’s SPD “Black box” Ripe Red

C e
Wavelength ()



Experiments for photometry

Relative Power

450nm 600nm 65

Chromatic source light at
a particular wavelength and
adjustable radiant power.

-+

Viewer gradually
increases source
radiant power

The “flicker photometry” experiment
for photopic sensitivity.

Reference bright light

O
/ with fixed radiant power.

O (Alternating between source and reference @ |7Hz)

Alternate between the source light and reference light
|7 times per second (17 hz).A flicker will be noticeable
unless the two lights have the same perceived
“brightness”.

The viewer adjusts the radiant power of the chromatic
light until the flicker disappears (i.e. the lights fuse into a
constant color).The amount of radiant power needed
for this fusion to happen is recorded.

Repeat this flicker fusion test for each wave-length in the
source light. This allows method can be used to
determine the perceived “brightness” of each
wavelength.



Relative Power

450nm 600nm 650nm

O

Reference lisht

Result of the flicker experiments

Radiant power needed to match test light

400 500 600 700

wavelength

Amount of radiant
power need for each
wavelength

to make the reference
light.

You need a lot more
400nm light to match
the reference than
you do the 550nm.

This means you
perceive 550nm
brighter than 400nm.



CIE (1924) Photopic luminosity function

Lof
If we invert the -
0.8
curve on the I
pervious slide, I
we get the o0or
luminosity function. YW |
0.4
02
0.0

400

The Luminosity Function (written as y(A) or V(1)) shows the eye’s sensitivity to radiant energy into
luminous energy (or perceived radiant energy) based on human experiments (flicker fusion test).

International Commission on Illumination (CIE comes from the French name Commission internationale e
I'éclairage) was a body established in 1913 as an authority on light, illumination and color .. CIE is still
active today -- http://www.cie.co.at



http://www.cie.co.at/

Radiometric vs. photometric units

. Luminous Flux
Radiant Flux
(lumens)

(watt)
Radiant intensity Luminous Intensity
watt per steradian ,
( P ) Radiance (candela) Luminance
P A 2
l/kwatt per m? steradian) /candela per m?)
Irradiance ! IIIumin’ance
(watt per m?— falling on surface) (lux)
Radiometric values Photometric values

(Radiometric values weighted
by the Luminosity Function)



Colorimetry

* Based on tristimulus color theory, colorimetry attempts to quantify all
visible colors in terms of a standard set of primaries

D- 9 P

Target color : : :
Three fixed primary lights

42



CIE RGB color matching

L‘ Red (700nm)

+/-
< . Green (546nm)
+/-
Test color | Matched Color L. Blue (435nm)
Human subjects
matched test colors \ 2° FoV

by add or subtracting
three primaries.

Field of view was 2-degrees
(where color cones are most
concentrated)

O

)

“Standard Observer”

(Willing participant with no eye disease)
Experiments carried out by
W. David Wright (Imperial College) and John Guild (National Physical Laboratory, London) — Late 1920s
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CIE RGB color matching

+

Primary is added to the test color!

L‘ Red (700nm)

+/-
« . Green (546nm)

+/-
Test color | Matched Color L. Blue (435nm)

For some test colors, no mix of the
primaries could give a match! For
these cases, the subjects were ask to add
primaries to the test color to make the
match.

This was treated as a negative value of the
primary added to the test color.

\ \/ 2° FoV
O
o)
“Standard Observer”
(Willing participant with no eye disease)
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CIE RGB results

0.4C-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
F()
0-3% g () *
: ——b@) 3
0.2(F E
0.1 E
0.0C ;
_[]vm]_‘alIlIlllh*/lIIIIlllllllllllllllllllllllE
400 500 ) 600 700 800

CIE RGB 2-degree Standard Observer
(based on Wright/Guild’s data)

Plots are of the mixing
coefficients of each
primary needed to
produce the corresponding
monochromatic light at
that wavelength.

Note that these functions
have been scaled such
that area of each curve
is equal.

45



CIE RGB results

0.4C-lllIIIIllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
: F() :
0-3% g () *
é —— b @) :
0.2(F E
0.1 E
0.0C ;
_OolélllllllNl IIlllllllllllllllllllllllE
400 500  ANG00 700 800

Negative values -- the three primaries used did not span
the full range of perceptual colors.



CIE 1931 XYZ

* In 1931, the CIE met and approved defining a new canonical basis, termed XYZ that
would be derived from Wright-Guild’s CIE RGB data

* Properties desired in this conversion:
* White point defined at X=1/3,Y=1/3,Z=1/3
* Y would be the luminosity function (V(A))
* Quite a bit of freedom in selecting these XYZ basis
* In the end, the adopted transform was:

X 0.4887180 0.3106803 0.2006017][R
Y| =10.1762044 0.8129847 0.0108109( |G
Z 0.0000000 0.0102048 0.9897952/ LBI" cie 1931 rGB

Nice article see: Fairman et al “How the CIE 1931 Color-Matching Functions Were Derived from Wright—Guild Data”, Color Research
& Application, 1997



CIE 1931 XYZ

0T —
I y(A)

1.5 — Z(A)

1.0+

05

400 500 600 700
A/nm

This shows the mixing coefficients X(A), ¥(A), Z{A) for the CIE 1931 2-degree standard observer XYZ basis
computed from the CIE RGB data. Coefficients are all now positive. Note that the basis XYZ are not physical
SPD like in CIE RGB, but linear combinations defined by the matrix on the previous slide.
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CIE XYZ 3D plot

55.5_. - E:BEI

580
L R S 1

ng— B

3D plot of the CIE XYZ matching functions z
against the XYZ axis. Note that scaling of
this plot is not uniform.




Using CIE 1931 XYZ functions

* We now have a canonical color space to describe SPDs
* Given an SPD, I(1), we can compute its mapping to the CIE XYZ space

780 780 780

X = J I dL Y = J Iy NdL  Z = f 1Mz dA

380 380 380

* Given two SPDs, if their CIE XYZ values are equal, then they are considered the
same perceived color, i.e.

I, A),1L,A) — (X,,Y,Z)) = (X,,Y,,Z,) [ perceived as the same color ]

@

* So .. we can quantitatively describe color!



SPD to CIE XYZ example

20T

—» CIE XYZ Values

151

SPD | e
XS SPDI
T N X=0.2841
Y=0.2989 -
Z=O3254 From their CIE XYZ
SPD?2 mappings, we can
determine
SPD?2 [~ that these two
5 5 & - =0.284| SPDs will be
perceived as the
Two SPDs Y=0.2989 | same color (even
7=0.3254 without needing
to see the color!)
Thanks CIE XYZ!
Radiometric Colorimetric

CIE XYZ gives a way to go from radiometric to colorimetric.
Imbedded is also the photometric measurement in the Y value.




Usefulness of CIE 193] XYZ

* CIE XYZ space is also considered “device independent” — the XYZ
values are not specific to any device

* Electronic devices (e.g. cameras, flatbed, scanners, printers, displays)
can compute mappings of their device specific values to the
corresponding CIE XYZ values.

* This provides a canonical space to match between devices (at least in
theory).



Luminance-chromaticity space (CIE xyY)

e CIE XYZ describes a color in terms of linear combination of three
primaries (XYZ)

* Sometimes it is useful to discuss color in terms of luminance (perceived
brightness) and chromaticity (we can think of as the hue-saturation
combined)

* CIE xyY space is used for this purpose



Deriving CIE xyY

X+Y+Z=1

Project the CIE XYZ values onto the X=1, Y=1, Z=1 plane.

Figure from Ponce and Forsyth



o s

555 . :
| 580

05 ..o

A bit hard to visualize after seeing the
CIE XYZ 3D plot, but we do obtain

the shape on the previous slide from 7 X
the projection onto X=1, Y=1, Z=1




o s

05 ..o

455

A bit hard to visualize after seeing the
CIE XYZ 3D plot, but we do obtain
the shape on the previous slide from
the projection onto X=1, Y=1, Z=1

555 . :
: EBD




CIE xy chromaticity diagram
09520N

0.81

This gives us the familiar
horseshoe shape of
visible colors as a 2D plot.
Note the axis are x & Y.

Point “E” represents '
where X=Y=Z have equal y
energy (X=0.33,Y=0.33, 2=0.33)

CIE XYZ “white point”

03 04 05 06 07 08
X
In the 1930s, CIE had a bad habit of over using the variables X,Y. Note that x, y are chromaticity coordinates,

X,y (with the bar above) are the matching functions,and X,Y are the imaginary SPDs of CIE XYZ. V!



Fast forward 80+ years

* CIE 1931 XYZ,CIE 1931 xyY (2-degree standard observer) color
spaces have stood the test of time

* Many other studies have followed (most notably - CIE 1965 XYZ |0-
degree standard observer), ...

* But in the literature (and in this tutorial) you'll find CIE 1931 XYZ
color space remains the preferred standard



What is perhaps most amazing!?

* 80+ years of CIE XYZ and it is all based on the experiments by the
“standard observers”

* How many standard observers were used? 100,500, 1000?

(&

A Standard Observer



CIE XYZ is based on |7 standard observers

10 by Wright, 7 by Guild

“The Standard Observers”

6l



A caution on C|E xy chromaticity

From Mark D. Fairchild book: “Color Appearance Models”

“The use of chromaticity diagrams should be avoided in most circumstances,
particularly when the phenomena being investigated are highly dependent on
the three-dimensional nature of color. For example, the display and comparison
of the color gamuts of imaging devices in chromaticity diagrams is misleading
to the point of being almost completely erroneous.”



Are we done with color?



An object’s SPD

* In a real scene, an object’s SPD is a combination of the its reflectance
properties and scene illumination

Our earlier example

(v could avme ¢ v pure Mominane | SPD jluminant 250 e 3

white light). <?(A)<i> — <1»CAj,> ’\L <YCA>4|>
HA AA P7A

Tomato SPD

® - -

.

Wavelength (1)

1 Instead, think of this 7 >
of how the object R __\/—
reflects different 3 2

wavelengths A

e, © O
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Color constancy

* Our visual system is able to compensate for the illumination

llluminant | SPD

A, ——™

YV
3t

X
—

®

0

Looks the same! @ @ @

llluminant 2 SPD
A
<v<>d> /\/\‘ﬁ

PYA
X

e

®
A

!

0

llluminant 3 SPD
A
Y¢S
PVQ
X
e

®

!

0
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Chromatic adaptation example




Chromatic adaptation example




Color constancy/chromatic adaptation

* Color constancy (also called chromatic adaptation) is the ability of the
human visual system to adapt to scene illumination

* This ability is not perfect, but it works fairly well

* Image sensors do not have this ability (it must be performed as a
processing step, i.e. ‘white balance”)

Note: Our eyes do not adjust to the illumination in the photograph --
we adjust to the viewing conditions of the scene we are viewing the
photograph!
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Color constancy and illuminants

* To understand color constancy, we have to consider SPDs of different
illuminants

2.5

[ I [

__slightly cloudy, sun behind a cloud

cloudy, gray sky
slightly cloudy, sun visible
cloudless sky

cloudless sky, bright snow

05 |-
cloudless sky, SUHSCV cloudless sky, just before sunset
400 450 500 550 600 65 700

Figure from Ponce and Forsyth



Color temperature

* llluminants are often described by their "color temperature”

* This mapping is based on theoretical “blackbody radiators” that produce SPDs for a
given temperature -- expressed in Kelvin (K)

* We map light sources (both real and synthetic) to their closest color temperature
(esp in Photography/Video production)

3JF Blackbody Radiation

e
[44]
T

I
o

0.2

Tmin=1000 K

4"

Spectrum

4 0.6 0.8 1.0

T=4000 K

1.4 1.6
A wavelength nm

Tmax=6000 K

™}
L

20

2.2 2.4 26 28 )
%10

A_max = 3000 nm I [0 Log scale

™}
L

™}
.

e

A5 he

Plank's law

Spectral density of electromagnetic
radiation emitted by a blackbody
radiator at a given temperature T.
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Visible range of a black body radiator

Consider only the visible

* wavelengths from Plank's

equation at a certain
temperature.

400 S00 kLI J00

Radiometric power

Visible range

gamma rays Wave length long waves

Black body radiator SPD for different color temperatures

Animation credit: Dariusz Kowalczyk



Plot visible SPDs in CIE xy chromaticity

0.91
520
- Plot of color CIE xy locations of SPDs based
0813 540 on color temperature.
Ot This curve in the CIE xy plot of the
s "Planckian Locus" of color temperatures.
0.61
5001
0.5 >80
y 2500
0.4 \ 600
2000 1500 %
L0 F 620

0.31

AN 700
0.2
500 B0 700 0.1

0.0 .

0.0 0.8



Color temperature of an SPD example

SPD of a light source

OLED

powe
b >

380 430 480 530 580 630 680 730 780
wavelength (nm)

X

"y — )

():24

(1) Find the light sources SPD mapping to CIE XYZ using the CIE 193] mapping functions.
(2) Project the CIE xyY value to the Planckian locus line.

400 500 600 700

CIE 1931 mapping functions Where it falls is the Correlated Color Temperature (CCT) of this light source. So, this example
the OLED light source is roughly 4500K.

—

While we often say "color temperature", we should say "correlated color temperature”. The
concept is not related to the physical temperature of the light source, but its correlation with the

black body radiator's color temperature.



Color temperature

Kelvin Color Temperature Scale

10,000K
i 10,000K +: Blue Sky
9,000K Typical description of
- color temperature used
8,000K in photography & lighting
- sources.
7'000'1 — 7,000K-7,500K: Cool White Seesmart LED
6,000K
i | 6,000K: Cloudy Sky
5,000K _ 5,500K-6,000K:Day White Seesmart LED

= 4,800K: Direct Sunlight

4:000K 4,000K-4,5000K: Natural White Seesmart LED
e — 4,000K: Clear Metal Halide

30000K c— 3,000K: 100W Halogen
— b 2,800K: 100W Incandescent
—_— 2,700K-3,200K: Warm White Seesmart LED
2,000K 2,200K: High Pressure
e ——w 1,900K: Candle

From B&H Photo
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Relative energy

Man made illuminants SPDs

1

09
0.8 —
0.7 =
0.6 —
05 =
04 —
03

I I I | I
I* ——— Metal halide

— - — Standard flourescent |
------ Moon white flourescent |
--------------- Daylight flourescent

.

|

|

I

Wavelength in nm

Figure from Ponce and Forsyth
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Lighting industry uses

color temperature

LVWIT LED Light Bulbs 60 watt
Equivalent (8.5W) 5000K Daylight
Non-dimmable A19 LED Bulb E26
Screw Base UL-Listed 6-Pack
wRRRWY V119

CDN$‘| 999

< <> <>
- - @
H . P

Hyperikon PAR30 LED Bulb, Short
Neck (L: 3.6"), 10W (65W
Equivalent), 820lm, 3000K (Soft
White Glow), CRI90+, 40° Beam...

RR R W v 57

CDN$4 595 (cpN$ 7.66/Bulbs)

Usage of color temperature in these ads relate to the perceived color of the bulb's light. The heat output of a typical LED bulb is between

60C-100C (~333-373K).




CIE standard illuminants

(I:IIE established several “synthetic”” SPDs that serve as proxies for common real
illuminants

llluminant A
* tungsten-filament lighting (i.e. a standard light-bulb)

llluminant B
* noon sunlight

llluminant C
* average daylight

llluminant D series

* represent natural daylight at various color temps (5000K, 5500K, 6500K), generally denoted as
D50, D55, D65

llluminant E
* idea equal-energy illuminant with constant SPD
* does not represent any real light source, but similar to D55

llluminant F series
* emulates a variety of fluorescents lamps (12 in total)



250

200

150

100

50

4]

400

CIE standard illuminants

500 550 600 650 TFOO o T30

SPDs for CIE standard illuminant A, B, C

120,

110}

100‘ \\

90}

80+

70}

60} ———
—— D50

501 pss |

D65
40 3 A A 3 — —
400 450 500 550 600 650 700

1530

50

=y

500 550 G000 G50 700

SPDs for CIE standard illuminant D50, D55, D65

SPDs for CIE standard illuminant E

60

“F2

Sor —F11

40t
30}

20t I LN

400 450 500 550 600 650 700

D, E, and F series images from http://www.image-engineering.de

SPDs for CIE standard illuminants F2, F8, F1 |
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White point

* A white point is a CIE XYZ or CIE xyY value of an ideal “white target”
or “white reference”

* This is essentially an illuminants SPD in terms of CIE XYZ/CIE xyY

* We can assume the white reference is reflecting the illuminant

* The idea of chromatic adaptation is to make white points the same
between scenes



White points in CIE xy chromaticity

0.97

0.81

0.7

CIE HHluminants
A, B, C, D65, E in terms of CIE xy

: CIE x .,y
y A 0.44757 , 0.40745
B 0.34842 , 0.3516!

C 0.31006 , 0.31616

D65 031271 , 0.32902

E 0.33333 , 0.33333

0.8
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Color constancy (at its simplest)

* (Johannes) Von Kries transform
* Compensate for each channel corresponding to the L, M, S cone johannes von Kries

response

S
|

/

L,, M,, S, is the new LMS
response with the illuminant
divided “out”. In this case
white is equal to [I,1,1]

_1/L1w
0
0

0
1/IVIlw
0

T

0
0

1/Slw_

Liw Miw S| is the LMS
response to “white” under
this illuminant

L, M,,S, are the input
LMS space under an
illuminant.

8l



llluminant to illuminant mapping

* More appropriate would be to map to another illuminant’s LMS response
(e.g. in the desired viewing condition)

* (LMS), under an illuminant with white-response (L., M\ S|w)

* (LMS), under an illuminant with white-response (L,,,, M., S5, )

_LZ _ _LZW/L1W 0 0 _ Ll _
M| = 0 Mow/Miw 0 M,
52 0 0 Sow/S1w| |51

J T \

L,, M,, S, is the new LMS Live M S'W‘I‘S the I,',MS L,,M,,S, are the input
. : . response to “white” the
response with the illuminant LMS space under an

. Ly input illuminant, L,,, M , ,
divided “out” and scaled to P 2w 2w lluminant.
LMS. illuminant S, response to “white

2

of output illuminant



Example

:

Simulation of different “white points” by photographing a “white” object under different illumination.

Images courtesy of Sharon Albert (VWeizmann Institute)
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Input

Adapted to
“target”
illuminant

Before After

Example

Before After

Target lllumination
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Now we are finally done with color?
Almost (really) ...



CIE XYZ and RGB

* While CIE XYZ is a canonical color space, images/devices rarely work
directly with XYZ

* XYZ are not real primaries
* RGB primaries dominate the industry
* We are all familiar with the RGB color cube

But by now, you should realize
that Red, Green, Blue have no
quantitative meaning. We need to
know their corresponding SPDs or
CIE XYZ values
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Device specific RGB values

The RGB values span a subspace
of CIE-XYZ to define the devices
gamut.

If you have RGB values, they are
specific to a particular device .

White
(255,255,255)
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Trouble with RGB

Device |

Device 2 -~

Device 3 ----

White
(255,255,255)

RGB values have no meaning

if the primaries between devices

are not the same! This is a

huge problem for color reproduction
from one device to the next.




Standard RGB (sRGB) — Rec.709

520

In 1996, Microsoft and HP
defined a set of “standard”
RGB primaries.

R=CIE xyY (0.64,0.33,0.2126)
G=CIE xyY (0.30,0.60,0.7153)
B=CIE xyY (0.15,0.06,0.0721)

This was considered an RGB
space achievable by most
devices at the time.

White point was set to the D65
illuminant. This is an important

. thing to note. It means sRGB
"~ has built in the assumed

viewing condition (6500K daylight).
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sRGB's white point

* When we map from CIE XYZ to a color space, we need to specify the white
point, --i.e., what is the CIE XYZ of "white" where we will view our image.

* This is to match the assumed viewing condition of my device
* While in my sRGB color space, the white-point is r=g=b, it was transform from CIE

XYZ at a particular white-point

0.9
0.8
0.7

0.6

D50

500
0.5

y
0.4
0.3

0.2

0.1

D65 »

0.0 386
00 0.1 02 03 04 05 06 07 08
X

CIE XYZ

The positions of the white-point locations are exaggerated here.

sRGB (D50 whitepoint)

sRGB (D65 whitepoint)

vAy D50 viewin
<pCV>Q> g

eye is adapting to D50
environment light.

vAY D65 viewi
<Q> viewing

eye is adapting to D65
environment light.



CIE XYZ to sRGB conversion

Matrix conversion:

R 3.2404542 —1.5371385 —0.4985314][X

G| =1-0.9692660 [.8760108 0.0415560 ||Y

B 0.0556434 -0.2040259 1.0572252 ZL
Linearized sRGB (Dé65) CIE XYZ

* D65 is taken as the white-point

* This is the linear-sRGB space

* sSRGB also specifies a gamma correction of the values

* The CIE refers this as the Recommendation 709 color space — or
Rec.709

*Thanks to Boris Venet for finding an error in the matrix above in earlier online versions of these slides posted before March 2020.



sRGB gamma curve

1

09
0.8F

0.7

06} 1 This is a close approximation of

05t 1 the actual sSRGB gamma
04 7

0.3
0.2F

01

Output sRGB 0-255 (byte)

0

L L L 1 L 1 L 1 L
0 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Input linear-sRGB (range 0-1)

Actual formula is a bit complicated, but effectively this is gamma (I’ = 255*1(//22)), where I’ is the output intensity and | is
the linear sRGB ranged 0- 1, with a small linear transfer for linearized sRGB values close to 0 (not shown in this plot).



Stevens' power law

* Physical stimulus vs. perceptual sensation

e Stevens' Power Law S ooy s
r. dtan ey tevens

showed that

most human sensations

follow a power-law relationship
between stimuli and sensation.

_ aA «— power
A S - kI exponent

Human T
sensation Constant

Stimulus
intensity

Stevens' model stated that human perception to brightness

_ 1/3
Y =100 followed a cube-root power-law.

perceived brightness 1)

radiometric power ®



sRGB gamma

* The sSRGB gamma encoding is related to the Steven's power-law

* The sSRGB gamma is approximately a V3 power-law

1

0.9}F

> m

(7] ‘;\ 08k

“ 0

(] N 0.7k

S LN

)
< LN 06

.20 N

[
e g 051
-U 04 L

o — 1/3 ©) '

s Y =100 2 o

bt ©

o 5

o [a N

') 01
o]
. . O 0 1 1 1 1 1 1 1 1 1
radlometrlc Power CI) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input linear-sRGB (range 0-1)



Before (linear sSRGB) & after (sSRGB)

1

09

08

07

06

05

04

03

02

Final sSRGB

0.1

0
0 01 02 03 04 05 06 07 08 09 1

Linear sRGB

Linear sRGB Final sSRGB



An additional fun fact

* Physical stimulus vs. human sensations

e Stevens' Power Law

perceived sensation

Human

///(curve of pain)
[ =.0015@3>

Y = 109173
/ (curve for brightness)

stimulus intensity ®

_ aA <«— power
Y. S — kI exponent

sensation ConstTant \

Dr. Stanley Stevens

introduced showed that

most human sensations

follow a power-law relationship

Stimulus ) ) )
between stimuli and sensation.

intensity

Stevens also did experiment on the pain sensation of
electrical shock! Turns out our sensitivity is the opposite
than with radiometric power to brightness.




Standardization is not new - NTSC/PAL

® Primaries of sSRGB
®Primaries of NTSC

1
0.8+ Gamma
encoding I,
(2.2)"! Y 4
0.6
4
&+ ’
4
0.4 p 4
4
/, 2.2
0.2; P
P Gamma
’I decoding
o8
O ‘ r r r r
0 0.2 0.4 0.6 0.8 1
0

Both NTSC and sRGB used gamma encodings.



CIE XYZ < NTSC/sRGB

(know your color space!)

Linear-sRGB back to XYZ

X [0.4124 0.3576 0.1805
Y| = (02126 0.7152 0.0722
" 0.0193  0.1192  0.9505

Linear-NTSC back to XYZ

X 0.6071 0.1736 0.1995
Y| = 102990 0.5870 0.1140
7 10.0000 0.0661 1.1115

It is important to L~
known which color space
your image is in.




CIE XYZ:The pnother of color spaces
grand

CIE XYZ
ProPhoto

/ [ \ YUV
Adobe RGB /

CIELAB rgR NTSC

N \
HSV HSI YIQ



CIE XYZ:The pnother of color spaces
grand

CIE XYZ
ProPhoto

/ [ \ YUV
Adobe RGB /

CIELAB rgR NTSC

N \
HSV HSI YIQ

Be careful, not all Y’s are the same!



Other common color spaces

This tutorial does not go into the details of the mathematical transformations to other
color spaces (we'd need another tutorial for that). You can find the transforms online.

The goal here is to explain the rationale behind each transform so you understand
why the other color spaces are introduced.



CIE LAB space

The ellipses shows the
range of colors (around the

0.9 center of the ellipse) that
* CIE LAB space (also written as CIE _?2()' would be perceived as the
L"a"b") was introduced as a perceptually .y same. We can see that CIE
uniform color space XYZ this is not uniform.
0.74 —_—
* Why? -
* CIE XYZ provides a means to map between 500+
a physical SPD (radiometric measurement) to y°-5

a colorimetric measurement (perceptual)

* However, a uniform change in CIE XYZ space
does result in an uniform change in perceived 0.31
color difference (see diagram)

* CIE Lab transforms CIE to a new
space where color (and brightness)
differences are more uniform. -

David MacAdam performed experiments into color
perception. This plot is known as the MacAdam ellipses.




CIE 1976 LAB

* Considering the MacAdam experiments and the Steven's power-law, CIE LAB was

derived in 1976 by applying various transformations to the CIE XYZ values that
result in the following:

* L* represents a perceptual brightness measure between 0-100

* L*is a non-linear transformation of the Y component of CIE XYZ.

* L is approximately a cube root of Y (directly from Steven's power law)

* a* and b* (often range £100)

* Both have similar non-linear transformations applied, and represent approximately:
* a* values lying along colors related to red and green

* b* values lying along colors related to yellow and blue

» a*=b*=0 represents neutral grey colors

NOTE: CIE LAB requires the white-point to be specified for the transformation.
The default white-point is D65.



CIE

CIE-L*ab space

LAB

CIE-xyY space

0B

o7

R

05

04

03p

02

01

Chromaticity comparison's between CIE LAB and CIE XYX

Image from Bagdasar et al ICSTCC'I7

L]




Y'UV,Y'IQ,Y'CrCb

* These spaces are color decompositions that separate the RGB space
into a "brightness-like" component and chrominance (color)
components.

* TheY in these color spaces are not defined on linear-sRGB or linear-
NTSC

* They are defined on the gamma encoded sRGB and NTSC color
spaces

e TheseY are referred to as “Luma’”’, not Luminance

* It should be written asY' but they are typically written as only Y

Y’ 0.2126 0.7152 0.0722 R Gamma encoded
U | =1]-0.09991 -0.33609  0.436 G (nonlinear) sRGB values
1% 0.615  —0.55861 —0.05639 | | B

*TreatingY from YUV,YIQ, and YCrCb as CIEY luminance is a common mistakes in the computer vision community.



Color error metric — CIE 2000 Delta E (AE)

* The CIE defined a color error metric in 2000 based on the CIE LAB
space. This returns a color error between 0-100.

* You will see this referred to as CIEDE2000, CIEDE, AE, Delta E, DE, ..
* Delta E 2000 interpretation:

Delta E Perception
P In general, DE of 2 or less

<=1.0 Not perceptible by human eyes. is considered to be very
good. It means a

1-2 Perceptible through close observation. standard observer could

' not tell that two colors
2-10 Perceptible at a glance. are different unless they
i : observed them ver

11-49 Colors are more similar than opposite Y
closely.

100 Colors are exact opposite

Table from
https://zschuessler.github.io/DeltaE/learn/



https://zschuessler.github.io/DeltaE/learn/

Congratulations!

@f"fﬁﬁf’f’ﬂ"ﬁ’ r-// S ﬂ;'/:*f";"'r’ﬂ’r 7,

. :-’ELI ?t':ﬂﬁ'qj-{r'rwﬁ“ e ‘,f'iﬁ*rjr*m‘r“rf fii
You

T 27 -'-l'-':'-'l:;r oo OCt 20 I 9

fer H-.l:-'.";fq‘-r"f'r}-n oo
“Crash Course on Color”
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Standard color spaces are great

Camera
sRGB Image

108



Tutorial schedule

* Part | (General)
Motivadi
+ Review-of-color &colorspaces

* Overview of in-camera imaging pipeline

* Part 2 (Imaging and Computer Vision)

* Misconceptions in the computer vision
community regarding color

e Recent work on color and cameras
* Concluding remarks

- 1.30pm - 3.30pm

Break

5 3.30pm -4.30pm

- 4.30pm - 6.00pm




Part 1: Overview of the
Camera Imaging Pipeline



Integrated signal processor (ISP)

* You will hear the term "ISP" associated with camera pipelines

* An ISP is dedicated hardware used to process the sensor image to
produce the final output (JPEG image) that is saved on your device

* The ISP is usually integrated as part of a system on a chip (SoC) that has
other modules

* Companies such as Qualcomm, HiSilicon, Intel (and more) sell ISP chips
* An ISP can be customized by the customer (Samsung, Huawei, LG, Apple, etc)

* Note that it is also possible to perform operations common on an ISP
on your device's CPU and GPU



A typical color imaging pipeline

ISO gain and RGB
raw-image ‘ ..
5 Demoasicing
processing
Sensor with color filter array (CFA) ‘

(CCD/CMOS)

White-Balance &
Color

; Color S Noise
epprs o RGE | 4 | Manipuston | | TOUTRC )| LSOF
P (Photo-finishing) (CIE XY2)

JPEG ‘ Save to file

Compression

NOTE:This diagram represents the steps applied on a typical consumer camera pipeline. ISPs may apply these steps in a different order or
combine them in various ways. A modern camera ISP will undoubtedly be more complex, but will almost certainly implement these steps in
some manner.



A typical color imaging pipeline

Mapping to sRGB
output

l

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color

Manipulation
(Photo-finishing)

Save to file

o

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

l

Noise
Reduction

13



Camera sensor

Medium format film _Fujifilm G Format
(70 x 60 mm) S — | —1 438 x32.9 mm)
| 35mm format
‘Medium format’ sensor 11 (36 x 24 mm)
(=BT 40 i) Uil APS-C format
Q it (~23.5 x 15.7 mm)
‘Medium format'sensor =
(49 x 36.8 mm) — 1 | | ] Micro Four Thirds
- Y (17.3 x 13.0 mm)
Pentax 645D sensor oA 15§ Ty
(44 x 33 mm) ———f— \\ (12.8 x 9.6 mm)
* Smartphone sensor
CMQOS sensor b geptichac

Figure from Photo Review website.

Almost all consumer camera sensors are based on complementary metal-
oxide-semiconductor (CMOS) technology.

We generally describe sensors in terms of number of pixels and size. The larger the sensor,
the better the noise performance as more light can fall on each pixel. Smart phones have
small sensors!

I 14



Camera sensor RGB values

Micro-lenses are placed over the
diode to help increase
light collection on the sensor

Color filters place over

the sensor. This forms

a Color Filter Array (CFA)
also called a “Bayer Pattern”
after inventor Bryce Bayer.

=

Color filter array
or "Bayer" pattern.

Photodiode Silicon/Circuitry

Photons hit the diode
and force out electrons.
This design is similar to

a solar cell!

Bryce Bayer

15



Camera RGB sensitivity

* The color filter array (CFA) on the camera filters the light into
three sensor-specific RGB primaries

Nikon D3 Canon 1D Mark Il
1 1¢
= =
£ 0.8} = 0.8}
@ @
S 0.6} S 0.6}
%) W
©04 © 0.4
I $
20.2 2 0.2}
£00 500 600 700 £00 500 600 700
Wavelength nm Wavelength nm

Plotted from camera sensitivity database by Dr. Jinwei Gu from Rochester Institute of Technology (RIT). Dr. Gu is
now at SenseTime (USA). http://www.cis.rit.edu/jwgu/research/camspec/



http://www.cis.rit.edu/jwgu/research/camspec/

Remember: physical world
is measured by radiometric
spectral power distributions.

Sensor raw-RGB image

Spectral Senistivity

<
(&)

Canon 1D Mark Il

-

~ b

>
v

900 500 600 700
Wavelength nm

Color Matching Functions
CIE XYZ

Your camera sensor
RGB filter is sensitive
to different regions
of the incoming SPD.

raw-RGB represents
the physical world's SPD
"projected” onto the
sensor's spectral filters.
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Sensors are linear to irradiance

* Camera sensors are decent light measuring devices

* If you double the amount of light hitting a sensor's pixel, the digital value
output of that pixel will double

é

Sensor output is linear with respect to
irradiance falling over the sensor over
a certain amount of time.

[ =1t

Digital value | is a linear function of irradiate i and exposure t.
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IMPORTANT: raw-RGB sensor images are not in a
standard color space

4

Canon ID

[|[Canon ID - Nikon D40||, [||Canon ID - Sony a57||, |

Color plots show L2 distance between the raw-RGB values with different cameras.



Displaying raw-RGB images
* Inserting a raw-RGB image in your slides, research paper, etc will result in

strange colors.

* Why? Our devices (computers, printers, etc) expect the image to be in a
standard color space like sSRGB.

This is a raw-RGB image. Why does it look bad?
Because the RGB values are not sRGB values.
Knowing your color space is important! 120



A typical color imaging pipeline

Mapping to sRGB
output

l

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color
Manipulation
(Photo-finishing)

Save to file

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

$

Noise
Reduction

121



ISO signal amplification (gain)

* Imaging sensor signal is amplified and digitized
* Amplification to assist A/D conversion
* Need to get the voltage to the range required to the desired digital output

* This gain is used to accommodate camera ISO settings
* Gain to signal applied on sensor
* Note — gaining the signal also gains image noise

Different ISO settings (note: the exposure will be shorter for higher ISO)

ISO gain and
raw-image
processing

Image: Harry Guinness



Pixel "intensity"

* We often talk about a pixel's intensity, however, a pixel's numerical
value has no unit

* The digital value of a pixel is based on several factors
- Exposure (which is a function of both shutter speed and exposure)
- Gain (ISO setting on the camera)
- Camera hardware that digitizes the signal

* We typically rely on the relative digital values in the image and not
the absolute digital values



Black light subtraction

* Sensor values for pixels with “no light” should be zero

* This is not the case due to sensor noise
* The black level often changes as the sensor heats up

* This can be corrected by capturing a set of pixels that do not see light
* Place a dark-shield around sensor

* Subtract the level from the “black” pixels

ISO gain and
raw-image
processing



Optical black (OB)

Sensor area(s)
VOB 2/ capturing
25— 1— SELECTION SECOND OB PIXEL PART : // 4 « ) '
---------------------------------------------------------------------------- NN
VOB S \\\t\\m\wx\m\mﬂh\\\\\ SHODE BN ! OPtlcaI blaCk
24—t SELECTION e P \ FIRST OB PIXEL PART \\:-:-Z-Z-Z k3
CIRCUIT e A SRICIE :

.

23— —{setecrion § APERTURE PIXEL PART
.
\

VOB I
22— SELECTION - S
CIRCUIT

L B

voB Rty A S OB NSSI I
21—~ SELECTION -f-f-f-f-f-i-i-i-fti-i-i-i-_'-i-i-i-'_-f-i-f-Z-i-Z-Z-Z-Z-Z-Z-.'-'_-Z-. SRentrne I I 5|
EIRCUiT .................................................................................... ']
K \ READ-OUT CIRCUIT \
/ / l.
103 102 101

Black light capturing areas (likely exaggerated) from Sony US Patent US8227734B2 (Filed 2008) .

ISO gain and
raw-image 125
processing



Defective pixel mask

* CMOS have pixels that are defective

* Dead pixel masks are pre-calibrated at the factory
* Using “dark current” calibration
* Take an image with no light
* Record locations reporting values to make “mask”

* Bad pixels in the mask are interpolated

ISO gain and
raw-image
processing



Defective pixel mask example

|dentifying “dead pixels” After interpolation

raw-image
processing

ISO gain and
127

Image courtesy of Lu Zheng and Moshe Ben-Ezra



Flat-field correction

Uniform light falling on the sensor

may not appear uniform in the raw-RGB
image. This can be caused by the lens,
sensor position in the camera

housing, etc.

We want to correct this
problem such that we
get a "flat" output.

Apply a correction
gain over the sensor
values.

After correction

Before correction

ISO gain and

raw-image
processing

128

This operation can also be called "lens shading" correction.



A typical color imaging pipeline

Mapping to sRGB
output

l

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color
Manipulation
(Photo-finishing)

Save to file

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

$

Noise
Reduction
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CFA/Bayer pattern demosaicing

* Color filter array/Bayer pattern placed over pixel sensors

* We want an RGB value at each pixel, so we need to perform
interpolation

&

Sensor with color filter array

(CMOS) Sensor RGB layout Desired output with RGB per

pixel.

RGB
Demoasicing
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This is a zoomed up version

of the Bayer pattern. Simple inte rPOIatiOn

c: [

At location R5, we have a red pixel . G5 - G2 + G4 + G6 + G8
value, but no Green or Blue pixel. /
G5 ! 4

We need to estimate the G5 & B5
values at location R5. ) 2
Sand J U O E

L2

Demoasicing
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G4

-Gz-
-Gs-

G2

RGB
Demoasicing

G8

Simple “edge aware” interpolation

If (|G2-G8) && [(G4-G8)| both < Thres): G2
G5 - G2 + G4 + G6 + GB8 G“;I:“
4
elseif ( |G2-G8| > Thres): Py
G4 «—> G6
G5 = G4 + Gé6 s
2
else: -
G5 = G2 + G8 -618 e
2

Do this procedure also for the blue pixel, BS.

Case |

All about the same.

Case 2

G2 and G8 differ
— ignore them

in the
interpolation

Case 3

G2 and G8 differ

— ignore them
in the
interpolation
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Demosaicing in practice

* The prior examples are illustrative algorithms only
* Camera IPSs use more complex and proprietary algorithms.

* Demosaicing can be combined with additional processing
* Highlight clipping
* Sharpening
* Noise reduction

RGB
Demoasicing



A typical color imaging pipeline

ISO gain and ‘ RGB
raw-|ma.ge Demoasicing
processing

Sensor with color filter array (CFA)

(CCD/CMOS) ‘

White-Balance &
Color

Mapping to sSRGB ) , Color Space Noise
Manipulation « T )
output ransform Reduction

(Photo-finishing) (CIE XYZ)

JPEG » Save to file

Compression

* Note that steps can be optional (e.g. noise reduction) or applied in slightly different order.



Noise reduction (NR)

* All sensors inherently have noise
* Most cameras apply additional NR after A/D conversion
* A simple method is described in the next slide

* For high-end cameras, it is likely that cameras apply different strategies
depending on the ISO settings, e.g. high ISO will result in more noise, so a
more aggressive NR could be used

* Smartphone cameras, because the sensor is small, apply aggressive noise
reduction.

Noise
Reduction




A simple noise reduction approach
* Blur the image based on the ISO setting (higher ISO = more blur)

* Blurring will reduce noise, but also remove detail.

* Add image detail back for regions that have a high signal. We can even
boost some parts of the signal to enhance detail (i.e. "sharpening”)

Sketch of the procedure here

input I —>| B()

blur input
reduces noise
but blurs edges

!

Com-
bine

+
Output NR+Sharpened

>@_>

-B(1)|>T

Subtract I-B

Noise (high pass filter)
Reduction

Output

Values with high-response, we may assume are image
“content” and not noise. We can add this response
back to the image (or even boast it).

Low response areas we don't add back, but
keep the blurred (noised reduced) result.



Noise reduced
image
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A typical color imaging pipeline

Mapping to sRGB
output

l

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color
Manipulation
(Photo-finishing)

Save to file

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

$

Noise
Reduction
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Color mapping/colorimetric stage

* This step in the IPS converts the sensor raw-RGB values to a
device independent color space

1
0s 0.9——
520

Camera sensors have %

: Canon ID
their own spectral 207 —

¥ 500}

response. : 153 — )
1.0 +
We need to map | ‘ 054
it into a standard 0.0 Lot daasssannny = ' 4
CIE XYZ 09 10 057 03 04 05 06 07 08

2
: ProPhoto RGB
&K ! We will use CIE XYZ in this tutorial, but most

response (CIE XYZ). Nikon D40
cameras use a related space called ProPhoto.

White-Balance & Sony a57
Color Space
Transform

(CIE XYZ)
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Two step procedure

(1) apply a white-balance correction to the raw-RGB values
(2) map the white-balanced raw-RGB values to CIE XYZ

White-Balance &
Color Space
Transform

(CIE XYZ)

White balance

#H

#H

#H

3x3 diagonal matrix

raw-RGB values

white-balance raw-RGB

Color space transform (CST)

H

#H

#H

H

H

H

H

H

#H

3x3 full matrix (or polynomial function)

WB-raw-RGB mapped
to CIE XYZ
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How does white balance (VWB) work!?

Sensor's
response to
illumination (€)

fr| 0.2

2,1=10.8

¢,| lo.8

raw-RGB sensor image
(pre-white-balance correction)
. Twb
White-Balance & White-balance Iwp | =

Color Space : :
olor Spac diagonal matrix |b,,
(CIE XYZ)

—

\
~ - - - -~
-_ e

“White-balanced”

raw-RGB image

1/2;
0

0

0

1/2,
0

0 1
0

1/ ]

|

r

b




White balance
(computational color constancy)

* The challenging part for white-balance is determining the
proper white-balance setting!

* Users can manually set the white balance
* Camera specific white-balance matrices for common illuminations
* These can be manually selected by the user

* Otherwise auto white balance (AVVB) is performed
* In computer vision, we often refer to AVWB as "illumination estimation”
* Since the hard part is trying to determine what the illumination in the scene is.

White-Balance &
Color Space
Transform

(CIE XYZ)




WB manual settings

WB SETTINGS COLOR TEMPERATURE LIGHT SOURCES
10000 - 15000 K Clear Blue Sky
& 6500 - 8000 K Cloudy Sky / Shade
Al 6000 - 7000 K Noon Sunlight
ks 5500 - 6500 K Average Daylight
& 2000 - 5500 K Electronic Flash
S 4000 - 5000 K Fluorescent Light
3000 - 4000 K Farly AM / Late PM
- 2200 - 3000 K Domestic Lightning
1000 - 2000 K Candle Flame

Cameras can pre-calibrate their sensor’s response for common illuminations.
Typical mapping of WB icons to related color temperate.

White-Balance &
Color Space

Transform ' 143
(CIE XYZ) Image from ExposureGuide.com




White-Balance &
Color Space
Transform

(CIE XYZ)

Examples

Sunny

2.0273 0 0
0 1.0000 0

0 0 1.3906

Daylight

2.0938 0 0
0 1.0000 0

0 0 1.5020

Daylight

2.6836 0 0
0 1.0000 0
0 0 1.5586

of manual VWB matrices

Nikon D7000

Incandescent
1.3047 0 0
0 1.0000 O
0 0 22148
Canon 1D
Tungsten
1.4511 0 0
0 1.0000 0
0 0  2.3487
Sony A57K
Tungsten
1.6523 0 0
0 1.0000 0
0 0 27422

Shade
24922 0 0
0 1.0000 O
0 0 1.1367
Shade
24628 0 0
0 1.0000 O
0 0 1.2275
Shade
3.1953 0 0
0 1.0000 0
0 0  1.2891

Pre-calibrated white-balance matrices for different brands of cameras.



Auto white balance (AVVB)

* If manual white balance is not used, then an AWB algorithm is
performed

* AWB needs to determine the sensor's raw-RGB response to the
scene illumination from an arbitrary image

* This is surprisingly hard and AVVB still fails from time to time (see
next slide)

White-Balance &
Color Space
Transform

(CIE XYZ)




AVVB is not easy

Given an arbitrary raw-RGB image,
determine what is the camera's response
to the illumination.

The idea is that something that is white* is
a natural reflector of the scene's
illuminations SPD.

So, if we can identify what is "white" in the
raw-RGB image, we are observing the
sensor's RGB response to the illumination.

raw-RGB input image before white-balance

146
* It doesn’t have to be "white", but grey — sometimes we call these scene points "achromatic" or "neutral” regions.



AWB: "Gray world" algorithm

* This methods assumes that the average reflectance of a scene is achromatic (i.e.
gray)

* Gray is just the white point not at its brightest, so it serves as an estimate of the illuminant
* This means that image average should have equal energy, i.e. R=G=B

* Based on this assumption, the algorithm adjusts the input average to be gray as
follows:

First, estimate the average response:

1 1 1
Rypg = mz: Rsensor(r) Ggyg = N_gz Gsensor(g) Bayg = N_bz Bsensor(b)

r = red pixels values, g=green pixels values, b =blue pixels values
Nr = # of red pixels, Ng = # of green pixels, Nb = # blue pixels

Note: # of pixel per channel may be different if white balance is applied to the RAVV image before demosaicing. Some
pipelines may also transform into another colorspace, e.g. LMS, to perform the white-balance procedure.



AWB: "Gray world" algorithm

* Based on the image average R/G/B value, white balance can be
expressed as a matrix as:

RI
G'| =
BI

/

White-balanced
sensor RGB

-Gavg / Ravg
0

0

0
1
0

T

Matrix scales each channel by its average and

0
0

Gavg/Bavg_

R

B

Sensor RGB

then normalizes to the green channel average.

White-Balance &
Color Space
Transform

(CIE XYZ)




AWB: "White patch” algorithm

* This methods assumes that "highlights" (bright spots) represent specular reflections of
the illuminant
* This means that maximum R, G, B values are a good estimate of the white point

* Based on this assumption, the algorithm works as follows:

Riax = max(Rsensor(r))  Gugx = max( Gsensor(g)) B,g, = max( Bsensor(b))

r = red pixels values, g=green pixels values, b =blue pixels values

White-Balance &
Color Space
Transform

(CIE XYZ)




AWB: "White patch” algorithm

* Based on RGB max, white balance can be expressed as a matrix as:

R’ Gmax/Rmax 0 0 R
G'| = 0 1 0 G
B’ 0 0 Gnax/ Bmax_ B

N\

White-balanced T Sensor raw-RGB

sensor raw-RGB
Matrix scales each channel by its maximum value and

then normalizes to the green channel’s maximum.

White-Balance &
Color Space
Transform

(CIE XYZ)




AWB example

Gray World White Patch

White-Balance &
Color Space

Transform I5]
(CIE XYZ)




Better AYWB methods

* Gray world and white patch are very basic algorithms

* These both tend to fail when the image is dominated by large regions of a
single color (e.g. a sky image)

* There are many AWB methods in the literature
» Camera's often use their own proprietary white-balanced

* Note — they may not use the exact scene illumination, but a slightly
different result to leave a small color cast in the image for aesthetic
reasons.

White-Balance &
Color Space
Transform

(CIE XYZ)
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Color space transform — part 2

* Process used on cameras involves interpolation from factory presets

* The need for interpolation is relate to white-balance only
approximating true color constancy

Color space transform is applied after the white balance. In fact, the matrix we use to perform the CST is
based on the white-balance CCT.

raw-RGB values white-balanced raw-RGB WB-raw-RGB mapped to CIE XYZ

H|#|#
H|#|#
#H#H|#

#

#

#

white color space
balance transform

(CST)



Color space transform (1/3)

Factory pre-calibration o
lllumination 1 (CCT 2500K)

# H#|#
# HI#|#
# HI|#|#
2500°K Wll T11 CIE XYZ target

D

lllumination 2 (CCT 6500K)

# #|#|#
# ##|#
# ##|#
° 1
6500°K W,? 1y, CIE XYZ target
White-Balance & white-balance matrix CST matrix
Color Space
Transform CST matrices (T}, and Ty, ) are calibrated for two different illuminations (I and 12). Depending on the temperature of the
(CIE XYZ) white-balance, we use the corresponding CST.




Color space transform (2/3)

Interpolation process

520

4300 K 9500 K

Vleor CCT,' — CCTy,*

I~ e T —ccr !

h, =gn,, +(1—-9)T,

# H|#|#
# H|#|#
# H|#|#
New input (I)lc%m Wl;a T,

(4300°K)

Given a new illumination (la) and its estimated correlated color temperature (CCT),
we construct a CST matrix by blending the two factory pre-calibrated matrices.



Color space transform (3/3)

Weighting functions

1
g
— (1-9)
CCT,* — CCTy,* =
I = CCT T —CCT ! @
14 1, G;J
h, =90, + (1 —-9)T,,
o)

2500°K 6500°K
Correlated color temperature

White-Balance &
Color Space

Transform
(CIE XYZ)




Typical color imaging pipeline

Mapping to sRGB
output

l

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color
Manipulation
(Photo-finishing)

Save to file

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

$

Noise
Reduction
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Color manipulation

* This is the stage were a camera applies its "secret sauce" to make the
images look good

* This procedure can be called by many names:

* Color manipulation

* Photo-finishing

* Color rendering or selective color rendering

* Yuv processing engine
* DSLR will often allow the user to select various photo-finishing styles
* Smartphones often compute this per-image

* Photo-finishing may also tied to geographical regions!



DSLR "picture” styles

= Standard = Portrait * Landscape From Canon’s user manual

Glowing prints with crisp For transparent, healthy Crisp and impressive
finishes. skin for women and reproduction of blue skies
It is the basic color of EOS | | children and green trees in deep,

DIGITAL. vivid color
* Neutral = Faithful * Monochrome

~ ln S;' ' ~ v -'ai' - -
Subjects are recorded In Accurate recording of the Filter work and sepia tone
rich detail, giving the subject’s color, close to with the freedom of digital
greatest latitude for image the actual image seen with monochrome

processing the naked eye



Picture styles

Color

Example of four different picture styles from Nikon
(Photo-finishing) This image is the same raw-RGB image processed in four different ways.

Manipulation




Nonlinear color manipulation

3D Look up table 1D Tone
(LUT) Curve

Color manipulation can be implemented using a 3D look up table (LUT) and a 1D LUT tone-curve.

The 3D LUT table acts like a 3D function: f(X,Y,Z) - X',Y',Z'
The 1D LUT table is applied per channel: g(X) » X',g(Y) - Y',g(Z) - Z'

The 3D and 1D LUT can change based on picture style.

Color
Manipulation
(Photo-finishing)



Global tone map example (1D LUT)

output tones

input tones ~ © o e

Darkening the Brightening the Enhancing contrast
image image (called an S-curve)



3D LUT color manipulation visualization

NikonD40 Normal NikonD40 Vivid anonEOS1Ds Standard CanonEOS1Ds Landscape

Visualization as a displacement map of a slice
of the 3D LUT mapping, warping an input and output value




Local tone

Global tone-mapping
Camera mode - Manual

NOTE: On many cameras, esp smartphones, a local
tone map is applied as part of the photo-finishing.
This helps bring out highlights in the image.

Color
Manipulation
(Photo-finishing)

mapping (LTM)

Local tone-mapping
Camera mode - Auto

e

Difference map between image before and after LTM




Typical color imaging pipeline

Mapping to sRGB
output

$

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color
Manipulation
(Photo-finishing)

Save to file

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

$

Noise
Reduction
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Final sSRGB conversion

* Map from photo-finished CIE XYZ image to sRGB
* Apply the sRGB (2.2)"' gamma encoding

Photo-finished CIE XYZ Covert to linear sRGB ‘Apply sRGB gamma

R 3.2404542 —1.5371385 0.4985314][X
=1-0.9692660 1.8760108 0.0415560||Y
0.0556434 —0.2040259 1.057225211Z

Map to sRGB 166
output |

B




Typical color imaging pipeline

Mapping to sRGB
output

l

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color
Manipulation
(Photo-finishing)

Save to file

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

$

Noise
Reduction
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JPEG compression scheme

f(x,y) - 128
(normalize between —128 to 127)

8x8 DCT Quantize DCT coefficients
via
(Forward DCT) Quantization “Table”

on each block

C’(u,v) = round(C(u,v)/T(u,v))

\ T
Take original image and

Break it into 8x8 blocks [ Differential I 0] :
coding DC component N v

€ resrnrresssnerennes Huffman o

Encod { < o

JPEG bitstream code RLE ]

AC Vector B

\ L

“Zig-zag” Order Coefficients

JPEG applies almost every compression trick known.
1) Transform coding, 2) psychovisual (loss), 3) Run-length-encoding (RLE), 4) Difference coding, and Huffman.




JPEG quality

* The amount of quantization applied on the DCT coefficients amounts
to a “quality” factor

* More quantization = better compression (smaller file size)
* More quantization = lower quality

* Cameras generally allow a range that you can select

e

NORM
BASIC

BBack <¢>Movg._

Image from nphotomag.com
PG g p g
Compression 169




Save to storage and we are done!

Mapping to sRGB
output

l

JPEG
Compression

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color
Manipulation
(Photo-finishing)

Save to file

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

$

Noise
Reduction
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Exif metadata

* Exchangeable image file format (Exif)

* Created by the Japan Electronics and Information Technology Industries
Association (JEITA)

* Associates meta data with images
* Date/time
* Camera settings (basic)

* Image size, aperture, shutter speed, focal length, ISO speed, metering mode (how
exposure was estimated)

* Additional info (from in some Exif files)

* White-balance settings, even matrix coefficients of white-balnace

Picture style (e.g. landscape, vivid, standard, portrait)
Output color space (e.g. sSRGB,Adobe RGB, RAW)
GPS info

* More...



|CC and color profiles

* International Color Consortium (ICC)
* In charge of developing several ISO standards for color management

* Promote the use of ICC profiles

* |CC profiles are intended for device manufacturers to describe how
their respective color spaces (e.g. sensor RGB) map to canonical
color spaces called Profile Connection Spaces (PCYS)

* PCS are similar to linking all devices to CIE XYZ, but are more

flexible allowing for additional spaces to be defined (beyond CIE
XYZ)



=

FI"Om the ICC' I SO 22028 Photography and graphic technology —

Extended colour encodings for digital

Original scene image storage, manipulation and
interchange —
I_I . PY3 . . 99 o
Digital AD Raw digital In this case,“sensor characterization’ is
camera Converter camera captures related to the color space transform

described earlier.

In-camera processing

We can see tone-mapping is not explicitly

Exposure adjustment . .. .
P : denoted, instead it is grouped with “color
White balancling ¢ render’’.
Sensor characterlzatlon
Colour rendering K o "
; Softcopy image
Output-referred S I:1. 1
CRT-ready colour
encodin
9 Printer colour -
transform Hardcopy image
173




From the ICC-ISO 22028

Orlglnal scene

] : L;‘L.

Digltal }—
camera

AD
Converter

Raw dlglal
camera captures

We can see a more detailed

Scene editing
(re-lighting, etc,)

Camera compensation

()

Exposure adjustment

White balancing

Sensor characterlzatlon

Scene-referred
colour encoding

Colour rendering

(add text, etc.)

breakdown of color >
rendering.
Picture editing Qutput-referred

Tone mapplng

Gamut mappling

Colour preference

Dlsplay colour
transform

colour encoding

Printer colour
transform

Softcopy Image

Hardcopy Image

This describes
a basic digital
camera pipeline
in more detail.

RGB values
linked to the
raw-RGB are
considered
‘““scene referred”.

After the color
transform to
sRGB they are
denoted as
‘“output referred”
color encodings.
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Note: sSRGB/JPEG is slowly being replaced

* sRGB was developed for monitors in the
|990s — it is an old standard.

* High Efficient Image Encoding (HEIC)

* Better compression than JPEG

* Apple iPhone has started to use HEIC to
replace JPEG

* HEIC supports multiple color spaces.Apple
uses Display P3 — a variation on a Digitial
Cinema Initiative P3 space.

* The P3 gamut is 25% wider than sRGB

* There is also a gamma encoding similar to
sRGB.

* Pixel 4 and other Android devices are will
support this color space soon.




Pipeline comments

* Again, important to stress that the exact steps mentioned in these
notes only serve as a guide of what takes place in a camera

* Modern pipelines are more complex, however, you will find steps
similar to what was described

* Note: for different camera makes/models, the operations could be
performed in different order (e.g. white-balance after demosaicing)
and in different ways (e.g. combining sharpening with demosaicing)



What about machine vision cameras?

* Some industrial/machine vision cameras provide minimal ISP

processing

* For example, some will only perform white-balance and apply a
gamma to the raw-RGB values.

* This means the output is in a camera-specific color space

ISO gain and
raw-image
processing

-

RGB
Demoasicing

-

White-Balance
(per-channel

gain)

Typical machine vision pipeline

1
1
0n
or
L]
s
(23
/
03l

per-channel gamma

Point grey
grasshopper
camera.



Congratulations!

@f"fﬁﬁf’f’ﬂ"ﬁ’ r-// S ﬂ;'/:*f";"'r’ﬂ’r 7,

. :-’ELI ?t':ﬂﬁ'qj-{r'rwﬁ“ e ‘,f'iﬁ*rjr*m‘r“rf fii
You

T 27 -'-l'-':'-'l:;r oo OCt 20 I 9

S H-.l:-'.";fq‘-r"f'r}-n oo
“In-camera imaging pipeline”
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Tutorial schedule

* Part | (General)
Motivadi
+ Review-of-color &colorspaces
. . ‘ o e i

* Part 2 (Imaging and Computer Vision)

* Misconceptions in the computer vision
community regarding color

e Recent work on color and cameras
* Concluding remarks

- 1.30pm - 3.30pm

Break

5 3.30pm -4.30pm

- 4.30pm - 6.00pm




Part 2: Mistakes and misconceptions in
the computer vision community
regarding color



Mistake: Working in the wrong color space

* This problem stems from a lack of understanding of color spaces

* You can't just say "RGB", you need to specify which RGB (e.g., raw-RGB,
sRGB, NTSC, P3, etc). If you got the image off the web, it is highly likely
to be sRGB.

* Certain color spaces are more suitable than others depending on the
application.



Current access to different image states

Radiance

Mapping to
sRGB output

———————————————————

10}

sRGB image

’ \ ISO gain and
‘ . RGB
@ - "' = | e |
processing

: ' Color Space Noise
. Manipulation . Transform . Reduction

Sensor with color filter array (CFA)

(CCDICMOS) ,.,

White-Balance &
Color

(Photo-finishing) (CIE XYZ)

Most cameras allow access to two image states.
(1) raw-RGB — unprocessed sensor image
(2) sSRGB — fully processed (photo-finished) image




Advantage of raw-RGB

* It is linear with respect to the scene's physical light. This
means the pixel values are related to the scene.

* Certain CV problems make this assumption
* Shape from shading (photometric stereo)

* Intrinsic image decomposition

* Image deblurring

* However, many times these problems are attempted in
the sRGB space!




Consider image deblurring

B TH - B Tl =
B I K

Assumption is: linear color space (raw-RGB or linear-sRGB). Just look at the equation,
convolution with | is a linear process.

B B-/lN PNl =)
B I K

Reality: sSRGB image has been run through the pipeline and some non-linear modification f




sRGB's nonlinear manipulation effect on blur

linear input non-linear input

' . : 1
[ = I —

. PsF PSF [—_ ———————— | sz},
III.' '.III I| 'II _____ | eb
| | |
/ \ | |
30 100 150 200 250 300 I:IIII 50 100 150 200 250 300
AfterCRF | A Before CRF
Re-mapping I zbcb Re-mapping

Tai et al. TPAMI 201 2.



Deblurring in raw-RGB vs sRGB

Canon 600D

Input with blur Ground Truth Deblur on raw-RGB Deblur on sRGB

(Note ringing in the sSRGB image)



Common misconception regarding sRGB

* Assuming sRGB images are directly related to the physical
scene.

* The mistake occurs because sRGB is considered a "standard".

* SRGB is an ISO standard to describe how a photo-finished image should
be encoded for display. sSRGB does not state how the image would be
processed before it is encoded to sRGB.

* In color science, sSRGB is referred to as a "display referred” color space.



Common misconception regarding sRGB

Mapping to sRGB
happens after

the image has been
manipulated to look
good.

Radiance

Mapping to
sRGB output

Sensor with color filter array (CFA)

e

(CCD/CMOS)

ISO gain and

raw-image ‘

processing

Color
Manipulation
(Photo-finishing)

RGB
Demoasicing

2

White-Balance &
Color Space
Transform

(CIE XYZ)

Noise
Reduction

Because of the nonlinear color manipulation (i.e., photo-finishing), the sSRGB images
relationship to the scene radiance is broken.

This is a very common misconception!
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sRGB images

* When you are working with an sSRGB image, it represents the
photo-finished image

* The colors represent the colors of the "photograph”, not the
colors of the "scene”

 These colors will be different for different cameras or even
same camera with different picture styles!

sRGB output on different cameras. sRGB output on the same camera, w/ different color

manipulation.
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This assumption can led to serious
mistakes in a computer vision
application.

This type of processing
is not suitable for
scientific applications!

Which one is correct?



Misconception: sSRGB to scene luminance

* Have you seen this before!?

Y =0.299R + 0.587G + 0.114B

* Papers claim that by applying this equation, they are recovering
the luminance of the physical scene!



Forget luminance conversion

This CVPR paper is the Open Access version, provided by the Computer Vision Foundat
xcept for this watermark, it is identical to the version available on IEEE Xplore

Why You Should Forget Luminance Conversion and Do Something Better

Rang M. H. Nguyen

National University of Singapore

nguyenhofcomp.nus.edu.sg

Abstract

One of the most frequently applied low-level operations
in computer vision is the conversion of an RGB camera im-
age into its luminance representation. This is also one of the
most incorrectly applied operations. Even our most trusted
softwares, Matlab and OpenCV, do not perform luminance
conversion correctly. In this paper, we examine the main
factors that make proper RGB to luminance conversion dif-
ficult, in particular: 1) incorrect white-balance, 2) incorrect
gamma/tone-curve correction, and 3) incorrect equations.
Qur analysis shows errors up to 50% for various colors are
not uncommon. As a result, we argue that for most com-
puter vision problems there is no need to attempt luminance
conversion; instead, there are better alternatives depending
on the task.

1. Introduction and Motivation

One of the most frequently applied operations in com-
puter vision and image processing is the conversion of an
RGB image into a single-channel luminance representation.
Luminance is a photometric measurement that quantifies

| WEEENYy- Ly 2 R T bl ) R

Michael S. Brown
York University

mbrownfeecs.yorku.ca

Error doe to
white-balancng (2500

Error due to wrong
tone-curve

Figure 1. This figure shows examples of errors that arise due to
improper luminance conversion. The ground truth luminance for
this experiment is captured from a hyperspectral camera.

sion, including the color space’s assumed white-point and
nonlinear mappings (e.g. gamma correction). Radiomet-
ric calibration methods [7. 10, |5, 9] have long known
that cameras use proprietary nonlinear mappings (i.e. tone-
curves) that do not conform to sRGB standards Recent

sRGB image Y from YIQ ‘Grayscale’ in [21] 3 channel method

Usually we apply luminance conversion because
we want to process only a single image.

It is OK to just use the green channel, or a contrast
preserving decolorization method (Lu et al IJCV'[4)



Misconception: Post-capture correction of VWB

* Another misconception is that it is easy to correct color mistakes
made by the camera post-capture (i.e., by modifying the sSRGB image)

* For example, if your white balance was incorrect at capture time, you
can just apply a diagonal white-balance matrix to correct it.

sRGB image with the Matlab's result by applying Properly white-balanced

wrong white-balance an inverse sRGB gamma, result when white-balance
the correct WB, then re-applying is applied before photo-finishing

the sSRGB gamma. This doesn't
undo the photo-finishing!



Correcting an incorrectly VB image

"l )

Google Al - . : Google Al Google Al

input: sRGB with wrongWB Post-capture correction using a Captured with the right WB
WB matrix
1/€ 0 0 r
[.gwb] /g 0 []g
0 1/¢,

Applying the 3x3 diagonal white-balance post-capture doesn't correct the problem



Correcting an incorrectly VB image

input: sRGB with wrongWB Post-capture correction using a Captured with the right WB
WB matrix
1/# 0 0 r
[gwb] /g 0 []g
0 1/¢,

Applying the 3x3 diagonal white-balance post-capture doesn't correct the problem.
In some case, it can make it even worse!



Why is this hard to correct?



Mistakes made when capturing photos

Mapping to
sRGB output

Mistakes made early
in the camera pipeline
are propagated.

(CCD/CMOS)

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

Color
Manipulation
(Photo-finishing)

e

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

2

prisingly, many

Noise
Reduction

resources erroneously
suggest this will work!

J

0

1/¢,| Lb]




Post-capture white-balance correction

* Because white-balance happens before the non-linear photofinishing,
applying a diagonal white-balance correction will not work.

* You would need to reverse all the non-linear processing applied on
the camera and then re-apply the camera pipeline.

* Note, the non-linear processing is not jus the sSRGB gamma encoding,
but all the camera-specific (and picture style) specific color
manipulation



Another mistake: interpreting images "out-of-context”

__ Original ‘ round truth _ Proposed

_Gray-world

Moment correction tio-spectral

“Subjective” white balance results shown
(images are in the camera's raw-RGB color space)

These subjective results have absolutely no visual meaning.
The camera-raw is not a standard color space!

From Cheng et al CVPR 2015 199



Tutorial schedule

* Part | (General)
Motivadi
+ Review-of-color &colorspaces
. . ‘ o e i

* Part 2 (Imaging and Computer Vision)
l i | |
* Recent work on color and cameras
* Concluding remarks

- 1.30pm - 3.30pm

Break

5 3.30pm -4.30pm

- 4.30pm - 6.00pm




Part 2: Recent research in camera
pipelines



Opening the camera pipeleine

* Camera pipelines and ISPs are "closed hardware"

* This makes it difficult to do research on individual components and see the final
output. Also, it is hard to get access to intermediate image states (e.g., CIE

XYZ values)

* There are some nice libraries for raw-RGB processing
* libRaw
* Adobe DNG SDK

* Google's camera API
* Opening up low-level access to make camera parameters



Software camera pipeline
[ECCV’16]

Karaimer and Brown
Stages of the camera imaging pipeline and associated parameters

= -
Gamma applied for visualization e ) . . S ‘ 6' White'bala nCing &
2- Black light subtraction, 3- Lens correction 4- Demosaicing 5- Noise reduction Color space [MATs]
1- Reading raw Image Linearization [2D Array(s)] [Func] [Func]
[Values or 1D LUT] '
#|#|#
- # || - @« - \
##|# :
12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- EXposure cLlrve 73 Hﬂe/Sat map
application [1D LUT] conversion [Mat] application [1DLUT]  pulation [3D LUT] [EV value or 1D LUT] (3D LUT]

Intermediate images for each stage




Walking through the pipeline (1)

Camera raw-RGB



Walking through the pipeline (2)

Black level
subtraction and
linearization +
defective pixel mask




Walking through the pipeline (3)

Lens correction
(non-uniform gain)



Walking through the pipeline (4)

Demosaicing
+ Noise Reduction



Walking through the pipeline (5)

# H|#|#
# #H|#|#
# #Hl#|#

White balance
+ color space transform
(CIE XYZ/Pro-photo)




Walking through the pipeline (6)

e

Hue-saturation

adjustment



Walking through the pipeline (7)

%
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Exposure
Compensation
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Walking through the pipeline (8)

Tone urve

Color rendering



Walking through

the pipeline (9)




Walking through the pipeline (10)

1 T T T T T T T T T

gamma curve
0.9
0.8
0.7

0.6

0.5
0.4
0.3

0.2

sRGB gamma -

08 09



Lots of opportunities

Stages of the camera imaging pipeline and associated parameters

#

Gamma applied for visualization o L . T - f 6- White-balan(:ing &
2- Black light subtraction, 3- Lens correction 4- Demosaicing 5- Noise reduction Color space [MATs]
1- Reading raw Image Linearization [2D Array(s)] [Func] [Func]
[Values or 1D LUT] _
#|#|# :
‘ #l#|# ‘ . ‘ .
#|#|# -
12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- Exposure curve 7- Hl.je/Sat map
application [1D LUT] conversion [Mat] application [1IDLUT]  pulation [3D LUT] [EV value or 1D LUT] [3D LUT]

Now, we can analyze each step of the pipeline.




Lots of opportunities

Let's look at

Stages of the camera imaging pipeline and associated parameters color mapping.
I=---=-=-=-= 1
I # I
» » |
|

7

e " - ' | 6- White-balancing &I
2- Black light subtraction, 3- Lens correction 4- Demosaicing 5- Noise reduction | Color space [MATs] |
1- Reading raw Image Linearization [2D Array(s)] [Func] [Func] -
- [Values or 1D LUT] SRR

Gamma applied for visualization

#|# |8

@« L @ «

#Hi#|#

12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- Exposure curve 7- Hu'e/Sat map
application [1D LUT] conversion [Mat] application [1IDLUT]  pulation [3D LUT] [EV value or 1D LUT] [3D LUT]



Simply add
another
calibrated
illumination.

Improving color for cameras

A Calibration

llumination 1 (CCT 2500°K)

!
2500°K Wy T,
Ilumination 2 (CCT S000°K)

13 T
S000°K Wy I3

lllumination 3 (CCT 6500°K)

L
ssoock W' h,

B Interpolation process

- S000°K 3000°K

- 1 pl. 2500°K
Lan * , ! I

. g

CIE X¥<Z target

CIE XYZ target

CIE X¥Z target

Mew input ¢:‘;m wia T
{3000°K) ?

CCT* —CCT;*
- CCTy* —CCT;*

, =gT, +(1-g)Ty

C Weighting functions

1
— g
— (1-g)
g
Ny
=
@
=
1]
2500°K S000°K B500°K

Correlated color temperature

[CVPR’18]

Cme af the key operarions performed on a digial cam-
era is 1o map the sensor-specific color space 1o a siandard
perceprial color space. This procedure imvolves the appli-
carion of a whire-balance correcion followed by a color
space rransform. The cwrrery approaoh for this colorimer-

Improving Color Reproduction Accuracy on Cameras

Hakki Can Karaimer  Michael S. Brown
York University, Toronto

karaimer, mbrown}Bescs.yorku.ca
{ ¥

Ahbstract




Improving color for cameras

Current approach Proposed method 1 Proposed method 2
uses white-balance correction improved CST interpolation - uses full color-balance over

and interpolated CST minimal modification to pipeline traditional white-balance correction
™

fdar-

Mean angular error: 3.10°

Mean angular error: 0.30 ° Mean angular error: 0.29°

Mean angular
error on color
chart: 0.37°

Mean angular
error on color
chart: 2.52°

Mean angular
error on color
chart: 0.58°




Deep learning and the camera pipeline!?

* Deep-learning outperforms many traditional methods

* Where is it appropriate for camera pipelines?
* Devote to hard tasks (demoasicing, NR, AVVB)

6- White-balancing &
Color space [MATs]

Gamma applied for visualization

1- Reading raw Image Linearization
[Values or 1D LUT]

#|#]# 1
« #l#|# - - / «
#l#|# . :
TEEEEEE s . T ‘ | T ] | |
12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- Exposure curve 7- Hue/Sat map

application [1D LUT] conversion [Mat] application [1DLUT]  pulation [3D LUT] [EV value or 1D LUT] [3D LUT]



Improving AVWB
* Lou et al "Color Constancy by Deep Learning", BMVC 2015

* Hu et al "FC4: Fully Convolutional Color Constancy with Confidence-
weighted Pooling”, CVPR 2017

* Barron "Convolutional Color Constancy”, ICCV 2015

* Oh et al "Approaching the computational color constancy as a classification
problem through deep learning’, Pattern Recognition, 20(7

* Many many more...



Training data for AVWB

Training images Testing/validation

raw-RGB with a neutral or achromatic object inserted. The neutral object is masked out.
The label/ground-truth for the training data is the raw-RGB value
in the region of the neutral object.

Neutral
object masked
out.

Neutral object in the scene. The raw-RGB values at this pixel
location is considered to be the entire scenes illumination.
In the case of the color chart, only the white-patches are used.

Original image



DNNs for denoising

» Zhang et al "Beyond a Gaussian Denoiser: Residual Learning of Deep
CNN for Image Denoising", TIP 2017

* The following is a website with many denoising papers with code
available:

https://paperswithcode.com/task/image-denoising/page=2

Noisy Image Residual Image

Conv + RelLU
Conv + BN + RelLU
Conv + BN + RelU
Conv + BN + RelLU

Conv

Many methods predict the noise image instead of the denoised image (DnNN from TIP 2017)


https://paperswithcode.com/task/image-denoising?page=2

Denoising contest at

NTIRE denoising contest at CVPR'I9

NTIRE 2019 Challenge on Real Image Denoising:
Methods and Results

Abdelrahman Abdelhamed Radu Timofte Michael S. Brown Songhyun Yu
Bumjun Park Jechang Jeong Seung-Won Jung Dong-Wook Kim Jae-Ryun Chung
Jiaming Liu Yuzhi Wang Chi-Hao Wu Qin Xu Yugian Zhou Chuan Wang
Shaofan Cai Yifan Ding Haogiang Fan Jue Wang Kai Zhang Wangmeng Zuo
Magauiya Zhussip Dong Won Park Shakarim Soltanayev Se Young Chun
Zhiwei Xiong Chang Chen Muhammad Haris Kazutoshi Akita Tomoki Yoshida
Greg Shakhnarovich Norimichi Ukita Syed Waqgas Zamir Aditya Arora
Salman Khan Fahad Shahbaz Khan Ling Shao Sung-Jea Ko Dong-Pan Lim
Seung-Wook Kim Seo-Won Ji Sang-Won Lee Wenyi Tang Yuchen Fan
Yugian Zhou Ding Liu Thomas S. Huang Deyu Meng Lei Zhang
Hongwei Yong Yiyun Zhao Pengliang Tang Yue Lu Raimondo Schettini

Simone Bianco Simone Zini

Abstract

This paper reviews the NTIRE 2019 challenge on real
image denoising with focus on the proposed methods and
their results. The challenge has two tracks for quantitatively
evaluating image denoising performance in (1) the Bayer-
pattern raw-RGB and (2) the standard RGB (sRGB) color
spaces. The tracks had 216 and 220 registered participants,
respectively. A total of 15 teams, proposing 17 methods,

Chi Li

Yang Wang Zhiguo Cao

ing image denoisers, especially the additive white Gaussian
noise (AWGN)—for example, [0, 9, 35]. Recently, more
focus has been given to evaluating image denoisers on real
noisy images [I, 25]. It was shown that the performance
of learning-based image denoisers on real noisy images can
be limited if trained using only synthetic noise. Also, hand-
engineered and statistics-based methods have been shown to
perform better on real noisy images. To this end, we have
proposed this challenge as a means to evaluate and bench-

SSIM

0.997

0.9969

0.9968

0.9967

0.9966

0.9965

0.9964

0.9963

0.9962

CVPR'|9
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More than 10 DNN-based submissions



Training data for noise reduction (denoising)

Training/validation/testing images
Real images captured under low-ISO and high-ISO.
Or, synthetic images with noise added.

Label/ground truth image Noisy image
Low ISO setting High I1SO setting

Example from Darmstadt Noise Dataset

Most DNNs operate on
small patches (32x32). So, a single
image provides many training samples.



Denoising dataset

SIDD: Smartphone Image Denoising Dataset

Abdelhamed et al CVPR 2018

A High-Quality Denoising Dataset for Smartphone Cameras

Abdelrahman Abdelhamed
York University

kamel@eecs.yorku.ca

Abstract

The last decade has seen an astronomical shift from
imaging with DSLR and point-and-shoot cameras to imag-
ing with smartphone cameras. Due to the small aperture
and sensor size, smartphone images have notably more
noise than their DSLR counterparts. While denoising for
smartphone images is an active research area, the research
community currently lacks a denoising image dataset rep-
resentative of real noisy images from smartphone cameras
with high-quality ground truth. We address this issue in
this paper with the following contributions. We propose a
systematic procedure for estimating ground truth for noisy
images that can be used to benchmark denoising perfor-
mance for smartphone cameras. Using this procedure, we
have captured a dataset — the Smartphone Image Denoising
Dataset (SIDD) — of ~30,000 noisy images from 10 scenes
under different lighting conditions using five representative
smartphone cameras and generated their ground truth im-
ages. We used this dataset to benchmark a number of de-
noising algorithms. We show that CNN-based methods per-
Sform better when trained on our high-quality dataset than
when trained using alternative strategies, such as low-1SO
images used as a proxy for ground truth data.

Stephen Lin
Microsoft Research

21in@m

Michael S. Brown
York University

soft. mbrown@eecs

B, = 298 x 10
B=4x10"*
o =505

(@) Noisy image (ISO 800)  (b) Low-ISO m;agc (ISO 100)

Bo=69% l':’
B =1x10°*
o =084

(¢) Ground truth using [ ]

(d) Our ground truth
Figure 1: An example scene imaged with an LG G4 smart-
phone camera: (a) a high-ISO noisy image; (b) same scene
captured with low ISO — this type of image is often used as
ground truth for (a); (¢) ground truth estimated by [2°]; (d)
our ground truth. Noise estimates (3, and 3, for noise level
function and o for Gaussian noise — see Section 3.2) indi-
cate that our ground truth has significantly less noise than
both (b) and (¢). Images shown are processed in raw-RGB,
while sSRGB images are shown here to aid visualization.

dataset is essential both to focus attention on denoising of

-30,000 images

-5 cameras

-160 scene instances
-15 I1SO settings
-Direct current lighting
-Three illuminations



Instant denoising improvements with better training data

Noisy Image

Residual Image

\ 4
Conv

Conv + RelLU
Conv + BN + RelLU
Conv + BN + RelLU
Conv + BN + RelLU

iPhone, IS0 100, Normal Light 5500K | Pixel, ISO 1600, Normal Light 4400K
o i :

Learning-based DNNs get better performance
when trained on real noisy images.




"Learning to see in the dark”

Sony 7S 11 Filter array

Exposure time (s)

# images

x300
x250
x100

Bayer
Bayer
Bayer

1710, 1/30
1/25
1/10

1190
699
808

Fujifilm X-T2  Filter array

Exposure time (s)

# images

x300
x250
x100

X-Trans
X-Trans
X-Trans

1/30
1/25
1/10

630
650
1117

Chen et al CVPR 2018

Learning to See in the Dark

Chen Chen
UIuC

(a) Camera output with ISO 8,000

raw sensor data from (a).

Abstract

4v1 [cs.CV] 4 May 2018

(a8 impractical. A variety of denoising, deblurring, and en-
N\ . -

~ hancement techniques have been proposed, but their effec-
S tiveness is limited in extreme conditions, such as video-rate
-

>

St SOSenote ee it dapit TR LSRR % R

Qifeng Chen
Intel Labs

(b) Camera output with ISO 409,600

Imaging in low light is challenging due to low pho-
ton count and low SNR. Short-exposure images suffer from
noise, while long exposure can induce blur and is often

imaging at night. To support the development of learning-

Vladlen Koltun
Intel Labs

Jia Xu
Intel Labs

(c) Our result from the raw data of (a)

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1
lux. The Sony a7S II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8.000. (b) Image produced by the
camera with ISO 409.600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the

cal means to increase SNR in low light, including opening
the aperture, extending exposure time, and using flash. But
each of these has its own characteristic drawbacks. For ex-
ample, increasing exposure time can introduce blur due to
camera shake or object motion.

The challenge of fast imaging in low light is well-
known in the computational photography community. but
remains open. Researchers have proposed techniques for
denoising, deblurring, and enhancement of low-light im-

SID dark data generated 5000+ pairs of raw-RGB
images captured with very short and very long exposures.

Given a short exposure image, the DNN predicts the long
exposure image.

While note a denoising paper, this extended ISO
feature is quite similar.



DNN for demosaicing (and denoising)

Gharbi et al SIGGRAPH Asia, 2016

Deep Joint Demosaicking and Denoising

Michagl Gharbi
MIT CSAIL

Frédo Durand
MIT CSAIL

Gaurav Chaurasia Sylvain Paris
MIT CSAIL Adobe

Figure 1: We propose a data-driven approach for jointly solving denoising and demosaicking. By carefully designing a dataset made of rare
but challenging image features, we train a neural network that outperforms both the state-of-the-art and commercial solutions on demosaicking
alone (group of images on the left, insets show error maps), and on joint denoising-demosaicking (on the right, insets show close-ups). The
benefit of our method is most noticeable on difficult image structures that lead to moiré or zippering of the edges.

Abstract 1 Introduction

Demosaicking and denoising are the key first stages of the digital Demosaicking and denoising are simultaneously the crucial first

imaging pipeline but they are also a severely ill-posed problem that steps of most digital camera pipelines. They are quintessentially

infers three color values per pixel from a single noisy measurement. ill-posed reconstruction problems: at least two-thirds of the data is
AR UK ANG Y Nl A Al T TS DN X SO L B . PSRRI U OO VoY - RS A . B N . d PG ST -
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This is a very interesting paper that examines
using a DNN to perform demoasicing.

Interestingly, the act of demosaicing to a
clean ground truth image implicitly performs denoising.

The only drawback of this paper is that training/testing
demosiaced images were synthetically generated
by sampling SRGB images and adding noise.

A lack of a raw-RGB dataset is a problem and
would be a nice addition in this area.



Non-learning improvement for demosaicing

20 &l

_-_|___||—

a) RAW Input Burst

Wronski et al SIGGRAPH 2019

b) Local Gradients

d) Alignment Vectors

2019

8 May

[cs.CV]

Handheld Multi-Frame Super-Resolution

BARTLOMIEJ WRONSKI, IGNACIO GARCIA-DORADO, MANFRED ERNST, DAMIEN KELLY, MICHAEL
KRAININ, CHIA-KAI LIANG, MARC LEVOY, and PEYMAN MILANFAR, Google Research

Fig. 1. We present a multi-frame super | Igorithm that the need for demosaicing in a camera pipeline by merging a burst of raw images.
We show a comparison to a method that merges frames containing the same-color channels together first, and is then followed by demosaicing (top). By
contrast, our method (bottom) creates the full RGB directly from a burst of raw images. This burst was captured with a hand-held mobile phone and processed
on device. Note in the third (red) inset that the demosaiced result exhibits aliasing (Moiré), while our result takes advantage of this aliasing, which changes on
every frame in the burst, to produce a merged result in which the aliasing is gone but the cloth texture becomes visible.

PN -5 - - S, - DU - R o N I S Yk - £~ S T~ N I, .-

c) Kernels

f) Motion Robustness

g) Accumulation

h) Merged Result

This paper uses multiple frames and very
small camera motion (from hand tremors)
to perform demosaicing and
super-resolution. By exploiting motion,
they can fill in missing Bayer data.



Other opportunities

Stages of the camera imaging pipeline and associated parameters

# #
#
» ;
amma applied ror visua ization - . . P
2- Black light subtraction, 3- Lens correction 4- Demosaicing 5- Noise reduction Color space [MATs]
1- Reading raw Image Linearization [2D Array(s)] [Func] [Func]
' [Values or 1D LUT] _
#|#|#8
#laln @ ; @ @
#4|# ;
12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- Exposure curve 7- Hue/Sat map
application [1D LUT] conversion [Mat] application [1IDLUT]  pulation [3D LUT] [EV value or 1D LUT] [3D LUT]

Better image encoding for post-capture correction.

Recall:
Problem of ,
incorrect VVB. &




raw-RGB disadvantages

X File size is too large

raw-RGB files are significantly larger than JPEG
(e.g.25-80 MB vs 5-10 MB per image)

X Limited support

Some (computer vision) image workflows do not support
raw-RGB



But what if ...

. . we could encoded the raw-RGB image inside
the JPEG image for (almost) free?

231



But what if ...

. . we could encoded the raw-RGB image inside
the JPEG image for (almost) free?

3 extract raw-RGB image | =~
"JPEG when needed. "RAW |




SRGB JPEG

3
3
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e
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Orignal RAW

[CVPR’16]

Hybrid image encoding

Estimate Tone Mapping White-balance Color Space Transform  Gamut Mapping

camera
pipeline’s

=
I
[
parameters |§ £ Wy t11
I 0 Wp
|

0 t31

SRGB

— e S S e W e RN RN GEE RN s S S G e R S wee e e e e s e o)

Reconstruct
RAW image

4

Reconstructed RAW MOdIerd sRGB JPEG

a Self-Contained sSRGB-JPEG Image with only 64 KB Overhead

Camera images are almost exclusively saved using the
JPEG image standard. JPEG is a lossy compression format
that encodes images in a standard RGB color space (sRGB)

Abstract

RAW Image Reconstruction using

Rang M. H. Nguyen Michael S. Brown
School of Computing, National University of Singapore

nguyenhofcomp.nus.edu.sg brown@comp. nus.edu. sg
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Hybrid image encoding

sRGB JPEG (9,788KB + 64KB) Groundtruth RAW (25,947KB)

' 0.10

0.075

0.05

Io.ozs

Reconstructed RAW Error Map (RMSE: 0.002)



Hybrid image encoding application

Input Ground truth White-balancing on our reconstructed RAW White-balancing on sRGB



xtended to deep-learning compression

sRGB input image 64

256
512

%
t sRGB/raw pair

Raw input image

3x3 feed forward conv.
1/0
1x1 feed forward conv.

512

Network architecture of Toderici et al. 2017 [19]

Bi-level code (-1/1)
32

32

Fidelity loss
D(x, %)

Compressed sRGB output

256

512

AR

fidelity loss

Reconstructed raw
image

3x3 I/P - 1x1 hidden assoc. LSTM

3x3 I/P - 1x1 hidden assoc. LSTM conv.

Xraw

4=

Raw reconstruction loss
Dy-qw raw) Xraw)

raw loss

TPAMI 2019

Learning Raw Image Reconstruction-Aware
Deep Image Compressors

Abhijith Punnappurath and Michael S. Brown, Member, IEEE

iMage COMprass0rs are acthely plarad N &N &Moo SUpSrsacs coMVentional image

comprassion sigorithms, such as JPEG. C anddeep aigonnms focus on minimizing image
fideiily erors in the nonkinear standerd RGE (sAGE) color space. Howewve, 1o many compuier vision tasks, the sensors ineer
raw-RGE image is desirabie. Alacent work has shown that the orignal raw-RGE image can ba recanstrucied using anly small amounts
of metadata embacded insida the JPEL image [1]. Howaver, [1] alied on tha canvantional JPEG ancoding that is unawara of the
raw-RGE moonstnction tsk. In this papar, wa axamine the ahilty of deep image comp@ssors o ba “awara” of the sddtional abjiciive
of raw mconsiuction. Towards this goal, we descibe & genaral iamework that enaties tergeting imags o
jaintty considiar both image fikelity amors nd raw reconstruction arors. We Sescribe this Bpproach in two scanarios: |
frainad from scraich using owr proposed joint loss, and (2) & network orginally treined only for sSRGE Ndslity loss is laker i fine-tured to
incorparate our raw raconstruction loss. Wnen compared fo sRGA Nidality-ony compressicn, our combinad loss eads 1o appracishie
improvemeants in PSNA of the raw raconstruction with cnly minor impact on sRGE fidelily &5 measurad by MS-SSIM

Index Terms—image compressian, ragome s calibration, raw image moInsiuclion, deep leaming-Dased image camprassion

+

1 INTRODUCTION AND MOTIVATION

based on desp neural networks [10], [11], [12), [13], [141,[15]
[15], [17], [18], [19]. This mecent focus on developing a new
class of image compressors based on neusal netw orks offers
the oppostunity to “leam” image compression that targets
ly perceptual fidelity but also the image's utility for

AMERA images ane compressed and saved in the highly

processed standard RGB (sRGB) color space. The cam-
efa sensor itself, captures images in an unprocessed raw-
RGB format that is lisear with fespect o sensor irradiance.
Raw-RGB images ame converted onboard the camera to nof
sRGH through a number of steps, many nonlinear in nature,  compuler vision algorithms, Towards this e advocate
in order to improve the perceptual and aesthetic quality of  a raw memstruction loss that can be integ e ex isting
the image. Many computer vision tasks (e, debluming,  deep leaming frameworks for image compression such that
phatometsic stero, color constancy) work best in the linear  the compressor i also aware of the target of reconstructing
raw-RGB format. Whilke lern cameras allow images o the faw image.
be saved in unprocessed linear-raw formal, most casual To this end, we show that the mapping function esti-

photographess do not shoot in faw because of pi B-raw pair by the method of Nguyen
Fly cimae ared eder-acrs 1 e (e rcerrifod b 2 10w P 10

mated for a given sRG
. .

develop new deep-learning
compression schemes that

or linear data.

Al-methods will replace JPEG.
This gives us an opportunity to

incorporate in the need to RAW
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Part 2: Concluding remarks



" "
Take away” messages

1) Consumer cameras do not attempt to reproduce accurate color!

239



"Take away" messages

2) sRGB is a standard color pace, but colors are not accurate
with respect to the physical world.

Remember, sRGB values have been manipulated by your camera hardware
and do not represent the physical world, they represent the "photo"!

sRGB output on the same camera, different SRGB output on different cameras.

Nikon




" "
Take away” messages

3) raw-RGB images are linear with respect to irradiance
If you need to measure the physical world, capture raw-RGB images.

However, keep in mind that raw-RGB images are not standard between
devices! The raw-RGB is device specific.

DN

Canon ID Nikon D40 Sony a57




Many opportunities to improve the camera pipeline

T (A I

2- Black light subtraction,

Linearization
[Values or 1D LUT]

Gamma applied for visualization

1- Reading raw Image

- -

12- Gamma curve
application [1D LUT]

11- Final color space
conversion [Mat]

application [1D LUT]

~—" | f
3- Lens correction |  4- Demosaicing I % Noise reduction
[2D Array(s)] L L [_FUT]_ L : L _ [Func]

or mani-
pulation [3D LUT]

10- Tone curve 9- Col

8- Exposure curve
[EV value or 1D LUT]

| 6 White-balancing &
I Color space [MATs]

e/Sat map

7- Hu
[3D LUT]



Last slide (almost)

* | hope you have learned more about color and the in-camera processing
pipeline.

* | hope you have a better idea of which color spaces are more suitable for
different computer vision tasks.

* | encourage you in your papers to denote your assumptions about your image's
color space in your research papers:

For example, replace this: "Our input is an RGB image ..."
to: "Our input is an RGB image encoded in standard RGB..."

* Such a small clarification in your paper will greatly help other researchers.



Thank you for attending

Special thanks to my students and colleagues for contributing images, code, and
materials to this tutorial.

Mahmoud Abhijith Abdelrahman Hakki C. Abdullah
Afifi Punnappurath Abdelhamed Karaimer Abuolaim

Li Yu Rang Nguyen Cheng Dongliang



Understanding color perception

James Clerk Maxwell Johann von Goethe Thomas Young 245



Digital cameras

Bryce E. Bayer Willard Boyle and George Smith Eric R. Fossum Steven Sasson
(Color Filter Arrays) (Nobel Prize for inventing the CCD)  (Invented CMQOS) (Attributed with building

Photo: Reuters the first digital camera)
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And of course...

N L

“The Standard Observers”
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