
EECS1012
Net-centric Introduction

to Computing

M.S. Brown, EECS – York University 1

Lecture 8

Introduction to JavaScript

EECS 1012 Fall 2018

Acknowledgements

Contents are adapted from web lectures for “Web Programming Step by Step”, by M. Stepp, J. Miller, and V. Kirst.

Slides have been ported to PPT by Dr. Xenia Mountrouidou.

These slides have been edited for EECS1012, York University.

The contents of these slides may be modified and redistributed, please give appropriate credit.

(Creative Commons) Michael S. Brown, 2017.

JavaScript relationship to HTML2

Client-side scripting
3

JavaScript runs on the

browser -- we call this

"client side". JS provides

a way to dynamically

modify the HTML content

and appearance in the

browser without having

to contact the web server.

Web servers return either

fixed HTML pages, or

dynamically generated

pages based on data

sent from a form.

Programs that run here

are called "server-side".

JavaScript

Why use client-side programming?

Why use client-side scripting?

 client-side scripting benefits:

 usability: can modify a page without having to post

back to the server (faster UI)

 efficiency: can make small, quick (dynamic) changes to

page without waiting for server

 event-driven: can respond to user actions like clicks and

key presses

EECS1012

4

EECS 1012

What is JavaScript?

 a lightweight programming language ("scripting

language")

 used to make web pages interactive

 insert dynamic text into HTML (ex: user name)

 react to events (ex: page load or user click)

 can get information about a user's computer (ex:

browser type, history, etc)

 perform calculations on user's computer (e.g.: for form

validation)

EECS1012

5

EECS 1012

JavaScript (JS) vs. Java

 JavaScript is interpreted, Java is compiled

 JavaScript has more relaxed syntax and rules

 fewer and "looser" data types

 errors often silent (few exceptions)

 JS is contained within a web page and integrates

with its HTML/CSS content

EECS1012

6

EECS 1012

JavaScript vs. Java

EECS1012

7

+ =

EECS 1012

Interestingly, even though the name has "Java" in it, JavaScript

is not affiliated with Java (from Sun Microsystems – that is now

part of the Oracle Corporation).

(JavaScript is a "mellow" version of Java)

Linking to a JavaScript file: script

 script tag should be placed in HTML page's head

 script code is stored in a separate .js file

 It is preferred to link in a JS file.

 Pay attention to the notation, there is an open and

closed script tag <script></script>.

EECS1012

8

<head>
<script src="filename" type="text/javascript"></script>
…
</head>

HTML

EECS 1012

HTML File
<head>
<link href="my.css">
<script src="my.js">
</script>
</head>

Defines the elements and

overall structure of the

webpage.

HTML + CSS + JavaScript

 Just like a CSS file, we "link" to our JS file.

EECS1012

9

CSS file: my.css

Defines the style of

the wepbage.

Javascript file: my.js

Defines the

interaction or

behavior of the

webpage.

We can link in

one or more JS files that

provides functions that we can

use to help make our webpage

more dynamic.

Event-driven programming
10

EECS1012EECS 1012

Event-driven programming
11

 Event-driven programming: writing programs driven

by user events

 Many programs (e.g. Java, C++, PHP, Python) start

when the program is started.

 JavaScript programs instead wait for browser or

user actions called events and respond to them.

 Examples of events:

 When a page loads or closes (this can be thought of events

caused by the browser)

 When a button is clicked (this is an event caused by the user)

An example: start with a button

 button's text appears inside tag; can also contain

images (note this is different than an HTML form)

 To make a responsive button or other UI control:

1. choose the control (e.g. button) and event (e.g. mouse

click) of interest

2. write a JavaScript function to run when the event

occurs

3. attach the function to the event on the control

EECS1012

12

<button>Click me!</button> HTML

EECS 1012

Your first JavaScript statement: alert

 a JS command that pops up a dialog box with a

message

 The appearance of the "alert" may look different

depending on the browser and operating system
EECS1012

13

alert("EECS1012 is my favorite class!");
JS

EECS 1012

Defining a JavaScript function
14

/* the syntax to declare a function */
function functionName() {
statement;
statement;
...
statement;
} JS

 the above could be the contents of example.js

linked to our HTML page

 statements placed into functions can be evaluated in

response to user events.

/* an example of a function named "myFunction" */
function myFunction() {

alert("EECS1012 remains my favorite class!");
} JS

Event handlers in HTML

Linking HTML to JavaScript

 JavaScript functions can be set as event handlers

 when you interact with the element, the function will execute

 onclick is an HTML element property that can be

set to call a JavaScript function

 We will see more examples, this example is just to get

us started.

15

<element … onclick="function();">...</element>
HTML

<button onclick="myFunction();">Click me!</button>
HTML

Putting it together

EECS1012

16

<!DOCTYPE html>
<html>
<head>
<script src="example.js"

type="text/javascript"></script>
</head>
<body>
<button onclick="myFunction();"> Click Me!

</button>
</body>
</html>

function myFunction() {
alert("EECS1012 remains my favorite class!");

}

HTML FILE

JS file: example.js

This statement

links in the JS file.

The JS file has

our JavaScript

code. Like CSS,

this linking is done

by file name.

Like CSS, the JS file

has to be in the

correct location to

link it in.

Event (click) of the HTML button,

calls the specified handler function

Effect of the previous code
17

When the button is clicked an "click"

event occurs. This event calls the

myFunction(). In the function, the alert()

is called, causing this alert box to

appear.

Event

Just an example
18

 The alert box example is a simple example to help

us get started.

 It gives you an idea of how JavaScript

programming is going to work.

 We will be writing functions that respond to events

that happen on the page.

 Now, we need to understand the JavaScript

language to write interesting functions.

JavaScript Language19

JavaScript

EECS1012

20

 If you are familiar with other programming

languages, you will likely be able to quickly pick up

JavaScript

 In fact, most programming languages are quite

similar and generally you can learn them quickly once

you have experience in another language.

Comments in JavaScript

 JavaScript comments are similar to CSS

 Comments are placed in /* ….. */

 You can also use // for single line comments.

 All comments are ignored by JavaScript.

 We will use comments in our notes

EECS1012

21

JavaScript variables

EECS1012

22

var clientName = "Connie Client"; /* variable clientName */
var age = 32; // variable age
var id = 3994330; // variable id

 Variables are used to store and retrieved data.

 Variables are defined by the keyword var

 Variables are categorized into different types

Rules for variable names

 First character must be a letter or an underscore (_)

 The rest of the variable can be any letter, number,

or underscore

 Variable names are case sensitive

 age, Age, AGE would all be different variable names

 You cannot use JavaScript reserved words for

variable names

 Example of a reserved word? var

var var = 10; // Since var is used to declare a variable

// you can't use var as a variable

23

Variable name examples

 Valid names:
_myVar thissisalongvariablename num
_var eecs1012 myString

name1 test_1 x

 Invalid names:

1test /* starts with a number */

test 1 /* there is a space in the name */

t$est /* non alphanumeric character */

var /* reserved word */

EECS1012

24

JS data types

EECS1012

25

TYPE Explanation Example

Number Integers and numbers with decimal places. 99, 2.8, 5, -10

String A variable that is a collection of characters.

Sometimes we call this a string literal.

“Hello”, “EECS1012”

Boolean A variable that wholes only two possible values

– true or false.

true or false

Array A variable that is actually a collection of

variables that can be access with an index

[1,2,3,4, …]

[“hello”, “deaner”, …]

Objects Objects are special data types that have

functions and data associated with them. These

are more common in JS than PHP and we will

need to use them often.

Document.getElementByID();

(example of an object)

function A user defined function that can be called by an

user event (e.g. mouse click, etc)

function name ()
{
statements;
..
}

Relation to computational thinking

EECS1012

26

"sum: ",s

start

end

s w+h

w,h var w = 10;
var h = 10;
var s = 0;

s = w + h;

Using the var keyword

defines (or declares)

the variables.

Once defined, we can

refer to the variables by

their name.

Number variables & JS math27

Number type variables
28

var enrollment = -99;
var medianGrade = 70.8;
var credits = 5 + 4 + (2 * 3);

 Number types are integers (whole numbers) and

numbers with decimal places

 Numbers with decimal places are often called

"floating point" numbers, e.g.:

2.99993 3000.9999 -40.00

We call them floating point because the decimal point

appears to float around. Sometimes these are just called

floats to distinguish them from integers.

Expressions and statements

CS

29

var num1 = 5; /* value 5 is the expression */

var num2 = num1 + 10; /* num1 + 10 is the expression,
/* operator is +, this computes 5 + 10 */

num2 = num2 + 1; /* this uses num2 and assigns the
result back to num */

var str1 = "hello"; /* value is "hello" */
var str2 = "world"; /* value is "world" */

num1 = ((3.14) * 10.0) / 180.0; /* multiple operators */

JS

 An expression is the combination of one or more

variables, values, operators, or functions that

computes a result.

Syntax breakdown of a statement
30

num1 = ((3.14) * 10.0) / 180.0;

An expression that will be

evaluated to compute some result.

Later we will see this can

be other things, like calling a

“function”, or testing if something is

“true” or “false”

variable

= is an assignment.

This takes the

result of the

expression and

makes it the current

value of the

variable on the

left side of the

assignment.

semicolon.

In JS,

we will

use a semi

colon to

end most

of our

statements.

The entire entity above, that is the expression, assignment, and semicolon is called a "statement".

Relation to computational thinking

EECS1012

31

p 2*(width + height)

p = 2 * (width + height);

In our computational thinking lecture, we wrote the

following. This computes an expression using width and

height and then assigns it to the variable p.

Assuming p, width and height have already been declared, this would

be the corresponding JS code.

Basic arithmetic operators
32

CSEECS 1012

a + b Addition Sum of a and b.

a - b Subtraction Difference of a and b.

a * b Multiplication Product of a and b.

a / b Division Quotient of a and b.

a % b Modulo Remainder of a divided by b.

Here a and b could be variables, but we could also replace them with

numbers. 10 + 20, 3.14 / 2.0, etc. . .

Evaluation and assignment
33

var num1 = 10;
num1 = num1 + 10;

The expression is always

computed before the

assignment. This allows

us to use a variable and

assign the result back to the

same variable.

JS will interpret these

statements as:

1: num1 is assigned 10

2: num1 + 10

10 + 10

20

num1 20

1:

2:

“Short hand” assignment operators
34

Assignment Same as:

a += b; a = a + b; Addition

a -= b; a = a - b; Subtraction

a *= b; a = a * b; Multiplication

a /= b; a = a / b; Division

a %= b; a = a % b; Modulus

a++; a = a + 1; Self Addition

a--; a = a -1; Self subtraction

JS math operator precedence
35

var num1 = 5 * 5 + 4 + 1 / 2; /* What is the answer? */
var num2 = 5 * (5 + 4) + 1 / 2; /* What is the answer? */

JS

Operator Precedence

() Highest

* / %

+ - Lowest

29.5 and 45.5
output

Compute results based on

order of precedence, and from

left to right in the expression.

* This operator precedence is the same for most programming languages.

Example from previous slide
36

num1 = 5 * 5 + 4 + 1 / 2;

25 0.5

29

29.5

(a) (b)

(c)

(d)

Based on operator precedence,

the expression would be have

computed in the following order:

(a) 5*5 = 25

(b) 1 / 2 = 0.5

(c) (a) + 4 [where (a) is 25]

(d) 29 + (b) [where (b) is 0.5]

final 29.5

num1 = 5 * (5 + 4) + 1 / 2; Based on operator precedence,

we would have:

(a) (5+4) = 9

(b) 5 * (a) [where (a) is 9]

(c) 1/2 = 0.5

(d) (2) + (c) [45 + 0.5]

Final 45.5

9

0.5
45

45.5

(a)

(c)

(d)

(b)

String variables37

String type variables

EECS1012

38

var s1 = "Connie Client";
var s2 = 'Melvin Merchant';
var favoriteFood = "falafel";

 Strings are in treated like a series of characters

var favoriteFood = "falafel";

var stringNumber = "234";

Here, variable stringNumber is not the value two

hundred and thirty four, but instead the characters

2,3,4.

More on string type

EECS1012

39

var stringNumber = "234";
var len = stringNumber.length; /* len is assigned the number 3 */

 String variables have a special property called

"length" that returns the number of characters in the

string.

var stringNumber = "234";

var len = stringNumber.length;

/* len is set to 3, since stringNumber

has 3 characters in it. */

String and spaces

EECS1012

40

var s1 = "String can have spaces"; // spaces are characters
var len = s1.length;

 Keep in mind that spaces are also characters.

 That variable len will 22. Count the characters

yourself -- make sure to count the spaces.

Empty string

EECS1012

41

var s1 = ""; // This is something you will see
var len = s1.length; // 0

 A variable can be assigned an empty string

 This means the variable is of type string, however,

the string has no characters in it.

 The string will have length zero (0).

String as an object

EECS1012

42

var s1 = "Connie Client";
var len = s1.length;

variable s1 is of

type String, however,

this can also be thought

of as a "String object".

we can access various properties

of the object using a "." operator and

object's the property's name. You are

going to see this type of property

access often in JavaScript (and other

"Object Oriented" languages)

More on strings

 You need to put quotes around a string to let JS

know it is a string. You can also use single quotes.

EECS1012

43

var s = "EECS1012"; // CORRECT!
var s = 'EECS1012'; // CORRECT!

var s = EECS1012; // INCORRECT!

In this example, JavaScript will interpret EECS1012

as a variable, not a string!

Special characters

 What if you want a quote character " to be part of

the string?

EECS1012

44

var s = "This is a quote " "; //INCORRECT!

This statement will cause problems for JS, because when it sees the second

double quote it will assume this is the end of the string.

Escape characters

 Escape characters are used inside strings to tell JS

how to interpret certain characters

EECS1012

45

var s = "This is a quote \" "; //CORRECT

This string will be interpreted in JavaScript as:

T-h-i-s-_-i-s-_-a-_-q-u-o-t-e-_-"-_

Here a – is used to separated characters.

An underscore _ is used to represent a space character.

Alternatives

EECS1012

46

var answer = "It's alright";
var answer = "He is called 'Johnny'";
var answer = 'He is called "Johnny"';

You can use quotes inside a string, as long as
they don't match the quotes surrounding the
string

More escape characters

EECS1012

47

Code Result

\" quote

\' single quote

\n New Line

\\ Backslash

\t Horizontal Tabulator

Examples:

var x = 'It\'s alright.';

var x = "We are the so-called \"Vikings\" from the north.";

var x = "The character \\ is called backslash.";

var x = "This string ends with a new line \n";

String concatenation (+ operator)
48

var s1 = "Hello ";
var s2 = "World";
var s3 = s1 + s3; // s3 = "Hello World";

 The plus operator is used for string concatenation

 This can be confusing, because we often think of +

as only being used for arithmetic. But in this case

of String types, it means connect (or concatenate)

two strings together.

More string + examples

EECS1012

49

var s1 = ""; // empty string
var s2 = "Abdel";
var s3 = "Zhang";

var s4 = s1 + s2; // result "Abdel", why? s1 is empty
var s5 = s2 + s3; // result "AbdelZhang"
var s6 = s2 + " " + s3; // result "Abdel Zhang"

// why "Abdel" + " " + "Zhang" – adds a " "
s2 += s3; // s2 now equals "AbdelZhang"

// why? s2+=s3; is the same as s2=s2+s3;

String indexing []

 We can access an individual character in the string

using an index [] notation.

 The first character starts at index 0, not 1. This

often confuses new programmers. See next slide.

50

var name = "Deaner";
var first_letter = name[0]; // assigns string "D"

JS

String indexing []
51

0 1 2 3 4 5 6 7 8 9

J . T r u d e a u

var str1 = "J. Trudeau";

Index

Character

Expression Result

str1[0] "J"

str1[3] "T"

str1[2] " " (space character)

str1.length 10 (be careful – why 10?)

str1[str1.length-1] "u"

We can think of a string as a sequence of characters. These characters can be “indexed”

starting from zero (0).

Unpacking last expression
52

str1[str1.length-1]

Operator Precedence

access object Highest

() parenthesis
[]
* / %
+ - . Lowest

Our initial look at operator

precedence didn’t consider

accessing objects.

str1[10 – 1]

str1[9]

"u"

(1) get str1 length property (10)

(2) 10 - 1

(3) String index str[9]

(4) final result of expression

String + number types

 When the + operator is used between variables or

expressions that are string and numbers, the

number type will be converted to a string.

 Examples:

var str1 = "how many? ";

var strNum = "10";

var num = 10;

str1 = str1 + num; // result is "how many? 10".

strNum = num + strNum; // result is "1010"

strNum = "" + num; // result is "10"

53

This last example is a quick trick to convert any number type into a string.

"" is an empty string. Adding a number to an empty string converts

the number to a string.

Arrays54

Arrays
55

EECS1012EECS 1012

What is an array?
An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars

in an array would look like:

var car = ["Saab", "Volvo", "BMW"];
// We can access each individual value using the following notation.
// car[0] is "Saab"
// car[1] is "Volvo"
// car[2] is "BMW"

This is similar to how we can access individual characters in a String Type.

Indexing starts from 0.

Array properties

 Like Strings, arrays have a length property

var names = ["Amir", "Abdel", "Johan"];

var len = names.length; // len is assigned 3

EECS1012

56

Array can store different types
57

EECS1012EECS 1012

Arrays can mix datatypes

var car = ["Saab", "Volvo", "BMW"]; // Array of Strings

var nums = [1, 2, 3, 4, 5]; // Array of Numbers

var data = ["EECS1012", 780, "Fall", 2018]; // Mix types

// data[0] is a string type with value "EECS1012"
// data[1] is a number type with value 780

Control Statements58

Control statements

 Program flow control is the most powerful part of

programming

 It allows us to make decisions on whether to execute

some statements or not

 Virtually all programming languages have some

type of control statements

 The most basic are :

 if statements

 for or while statements (also called “loops”)

59

Relation to computational thinking

 We saw flow control diagrams in our previous

lecture

EECS1012

60

condition

True

False condition

True

False

True

False
initialization

modification
condition

We will see how to implement these in JavaScript.

Before we look at flow control

 It is important to understand basic Boolean logic

and expressions

 Boolean logic concerns itself with expressions that

are “true” or “false”

 The name comes from the inventor,

George Boole

61

True/false expressions
62

Expression Meaning Boolean Result

45 < 10 is 45 less than 10? No. FALSE

45 < 100 is 45 less than 100? Yes. TRUE

50 > -1 is 50 greater than -1? Yes. TRUE

7 == 9 Is 7 equal to 9? No. FALSE

8 == 8 Is 8 equal to 8? Yes. TRUE

Why the crazy double ==? In JS, a single = sign means assignment. var a = 5.

So, to distinguish the assignment =, from the comparison if two items that are equal, we use a ==.

True/false example #2
63

Expression Meaning Boolean Result

var a = 5;
var b = 10;

a < b is 5 less than 10? yes. TRUE

a == b is 5 equal to 10. no. FALSE

a > b is 5 greater than 10? no FALSE

This becomes more interesting when we use variables.

Equality with between Types
64

Expression Meaning Boolean Result

var a = 5;
var b = “5”;

Assignment as Number

Assignment as String

a == b is Number 5 equal to string

“5”. In JS– yes!

TRUE

a === b the triple-equal, tells JS to

consider the type in the

equality test. Is Number 5

equal to String “5” – no.

FALSE

JS – comparison operators
65 Operator Description Comparing Returns

== equal to x == 8 false

x == 5 true

x == "5" true

=== equal value and equal

type

x === 5 true

x === "5" false

!= not equal x != 8 true

!== not equal value or not

equal type

x !== 5 false

x !== "5" true

x !== 8 true

> greater than x > 8 false

< less than x < 8 true

>= greater than or equal to x >= 8 false

<= less than or equal to x <= 8 true

66

if statement

if (condition) {
statements;
…

} JS

If statements execute code within the { } if the

(condition) expression is true.

If the expression is false, the statements within

the { } are skipped.
condition

True

False

67

If statement example

if (grade == "A")
{

alert("I love EECS1012!");
}

JS

Example

If the variable grade is equal to “A”, then the statements

are executed. Otherwise the statements within the { …

} are skipped.

68

if/else statement

if (condition) {
statements1;

} else {
statements2;

} JS

Almost the same as the if statement, but in this

case, if the (condition) expression is false,

statements1 are skipped, but statements2 are

executed.

69

if/else statement

if (grade == "A")
{

alert("I love EECS1012!");
}
else
{

alert("I hate EECS1012!");
} JS

Example

If the variable grade is equal to “A”, then the statements are executed.

Otherwise the statements within the else { … } are executed.

while-loops
70

while (condition) { // while the condition is true
statements;

} JS

EECS1012EECS 1012

var i=0;
var sum = 0;
while (i < 100) { /* loop i is less than 100 is true */

sum = sum + i; /* adds up 0 to 99 */
i++; /* adds one to i */

} JS

Example

condition

True

False

Computational thinking example

EECS1012

71

T

F

"sum = ", sum

sum sum + i

sum 0

end

start

TASK

compute the sum of

numbers between

10 and 30,

inclusively.

var sum = 0;
var i=10;
while (i <= 30) {
sum = sum + i;
i = i + 1;

}
alert("sum = "+sum);

JS

i ≤ 30

i 10

i i + 1

var s1 = "hello";

var s2 = ""; /* empty string */

for (var i = 0; i < s.length; i++) {

s2 += s1[i] + s1[i];

}

// s2 will equal "hheelllloo"

for-loop
72

for (intitialization; condition; update) {

statements;

....

} JS

EECS1012EECS 1012

True

Falseinitialization

modification
condition

Computational thinking example

EECS1012

73

compute the sum of

numbers between

10 and 30,

inclusively.

var sum=0;
for(var i=10; i<= 30; i++)
{

sum = sum + 1;
}
alert("sum = "+sum);

JS

T

Fi 10

i i +1
i ≤ 30

“sum = ", sum

sum sum + i

sum 0

end

start

for-loop more detail
74

for (initialization; condition; update) {

for_statements;

}

JS

initialization statement;

while (condition expression)

{

for_statements;

update statement; //apply after for statements

}

for-loop logic as a while loop

For-loops are special cases

of while-loops. They allow a

fast way to specify the

initialization, condition, and

update rules for a while loop.

JavaScript Functions75

JavaScript - functions

 We saw these on slide 14, this section gives more

details

 A JavaScript function is a block of code that

performs some task

 A function is executed when something "calls" or

"invokes" the function

EECS1012

76

Function syntax – several examples

EECS1012

77

function name() {
statements;
…

}

function name(parameter1, parameter2, …) {
statements;
…

}

function name(parameter1, parameter2, …) {
statements;
…
return value;
}

Keyword function is used to define a function.

name is the name of the function.

The parenthesis are used to denote it is a function that

accepts no parameters. See next slide.

This syntax allows parameters

to be "passed" to the function.

Parameter names are defined

between the (..) (see slide 71)

This syntax allows parameters

to be "passed" to the function.

Note that the function also

returns a value.

(see slide 72)

1)

2)

3)

Function: Ex 1

EECS1012

78

<html>
<head>
<script src="example.js" type="text/javascript"></script>

</head>
<body>
<button onclick="myFunction();">Click me!</button>
</body>
</html>

function myFunction() {
alert("You clicked my function!");

}

example.js

Simple function that calls

an alert box with the text

"You clicked my function!".

Function: Ex 2

EECS1012

79

<html>
<head>
<script src="example.js"

type="text/javascript"></script>
</head>
<body>
<button onclick="myFunction(2);">Click me!</button>
</body>
</html>

function myFunction(num) {
var words = ["zero", "one", "two"];
if (num < words.length)
{

alert(words[num]);
} else
{

alert("more than two");
}

}

example.js

The parameter name is num.

num is a variable that takes the value

that was placed when the function

was called.

If the num is 2 or less, then print out

the word in the array. Otherwise,

print out "more than two".

This example combines many concepts.

Functions, parameters, arrays, and if-else

statements.

Function: Ex 3

EECS1012

80

<html>
<head>
<script src="example.js"

type="text/javascript"></script>
</head>
<body>
<button onclick="myFunction(2);">Click me!</button>
</body>
</html>

function doubleVar(p) {
var result = p + p;
return result;
}

function myFunction(num) {
var doubleValue= doubleVar(num);
alert("Double " + doubleValue);

}

example.js

The JS file define two functions.

The first, named doubleVar() takes

a single parameter, named p. It

computes p+p and returns it.

The second, named, myFunction(),

takes a parameter, named num.

The value in num is passed to the

first function. The returned result is

assigned to variable doubleValue.

This is displayed in an alert box.

JavaScript Objects81

Objects

 Number and string variables are containers for data

 Objects are similar, but can contain many values.

 Objects also can associated functions (they are called

methods to distinguish them from the functions you just

learned about).

 We will examine several pre-defined Objects in

JavaScript

EECS1012

82

Math Object

EECS1012

83

/* PI is value associated with the Math object. We access it
using the "." operator, just like we did with length for arrays
and strings. num now equals 3.14159265358979 */
var num1 = Math.PI;

var num2 = -50.30;
var num3 = 4;
var num4 = 66.84

var result1 = Math.round(4.7); // method rounds a number
var result2 = Math.abs(num2) ; // method computes absolute value
var result3 = Math.sqrt(num3); // method computes the square root
var result4 = Math.min(num2, num3); // returns the minimum of a list of nums
var result5 = Math.max(num2, num3); // returns the maximum of list of nums
var result6 = Math.floor(num4); // rounds number down to nearest integer
var result7 = Math.ceil(num4); // rounds up to nearest integer

More Match Object methods here: https://www.w3schools.com/js/js_math.asp

https://www.w3schools.com/js/js_math.asp

Useful Math methods

EECS1012

84

Function Description

Math.abs(n) absolute value

Math.ceil(n) ceil means round up to the nearest integer

9.01 would round up to 10.

Math.floor(n) floor means round down to the nearest integer

9.99 would round down to 9.

Math.min(n1, n2, ..),
Math.max(n1,n2,..)

min or max of a sequence of numbers:

e.g. max(50, 43, 1, -1, 30) = 50

Math.sqrt(n) computes square root of n

Math.random() return a random number between 0 (included)

and 1 (excluded). So, the number will be

between 0 and 0.999999999…

Math.round(n) Traditional round approach, e.g. 9.4999 would

round to 9; 9.50 would round up to 10.

Math Object

 Random

 Random is a useful Math object method that generates

a returns a random floating pint number between 0

(inclusive) and 1 (exclusive)

EECS1012

85

// returns a number between 0 – 1. 0 is included, but not 1.
var num1 = Math.random();

// returns a number between 0 – 99
var result = Math.floor(Math.random() * 100);

// returns a number between 0 - 100
var result = Math.floor(Math.random() * 101);

Explaining previous examples

EECS1012

86

var result = Math.floor(Math.random() * 100);

Returns a number

between 0-.9999999.. (remember

1 is not included).

rand

num

rand

num
* 100That will result in a number

between 0 - 99.99999..

Math.floor() rand

num
* 100

Applying the floor() method

rounds down to the nearest

integer. So now the range is 0 . . 99.

1

2

3

Math.random() is called first.

Then multiple by * 100.

Floor() is called last.

Date object

EECS1012

87

var myDate = new Date();

var day = myDate.getDay(); // returns day of the week

var year = myDate.getFullYear(); // returns the year

var month = myDate.getMonth(); // returns the month

var minute = myDate.getMinutes(); // returns the minute

var second = myDate.getSeconds(); // returns the seconds

var dateStr = myDate.toDateString(); // returns a string of the date

 Date object allows us to get information about the

date.

 The format is different than the Math object. In this

case, we need to use the "new" keyword to create a

new Date Ojbect which is assigned to a variable.

Date methods

EECS1012

88

Method Description

getDate() Returns the day of the month (from 1-31)

getDay() Returns the day of the week (from 0-6)

getFullYear() Returns the year (e.g. 2018)

getHours() Returns the hour (from 0-23)

getMilliseconds() Returns the milliseconds (from 0-999)

getMinutes() Returns the minutes (from 0-59)

getMonth() Returns the month (from 0-11)

getSeconds() Returns the seconds (from 0-59)

document Object

EECS1012

89

 The document object is another useful built-in object

in JavaScript. We will learn more about this in

detail in upcoming lectures.

 Here, we will show how to use the document object

to change the text inside a paragraph.

document Object

EECS1012

90

function myFunction() {
var p = document.getElementById("mydata");
p.innerHTML = "You clicked the button!";

// this changes the text of the HTML for this object.
// later we will see this isn't the best way, but
// will help you get started.

}

document.getElementById("id name")

Object "document".

Note that the object

name is lowercase!

Call the object's method getElementById(. . .)

searches the HTML page to find the element

with the id=="id name".

If the element isn't found, the methods returns

null.

Example using document object (1)

EECS1012

91

EECS1012

<!DOCTYPE html>
<html>
<head>
<script src="example.js"

type="text/javascript"></script>
</head>
<body>
<p id="mydata"> button not clicked </p>
<button onclick="myFunction();" > Click Me!

</button>
</body>
</html>

function myFunction() {
var p = document.getElementById("mydata");
p.innerHTML = "You clicked the button!";

}

JS file: example.js

Event (click) of the HTML button,

calls the specified handler function

Example using document object (2)

EECS1012

92

function myFunction() {
var p = document.getElementById("mydata"); // get the paragraph
p.innerHTML = "You clicked the button!"; // changes HTML code

}

After myFunction() called.

<p id="mydata">

Putting it all together examples93

You have the basics to get started

 From the previous slide, you have the basics to get

started

 We will show a few examples in the next few slides

 These are also posted on the "Additional Resources"

on the class schedule page

EECS1012

94

HTML file

EECS1012

95

<!DOCTYPE html>
<html lang="en">
<head>
<!-- link to external JS file. Note that <script> has an
end </script> tag -->
<meta charset="utf-8">
<title> Example 2 </title>
<script src="example2.js" type="text/javascript"></script>

</head>
<body>
<!-- Create a paragraph with id mydata -->
<p id="mydata"> Button no clicked yet. </p>
<button onclick="myFunction();"> Click Me! </button>

</body>
</html>

Example 2 – random number

EECS1012

96

function myFunction()
{
var num = Math.random(); // get a random number
var p = document.getElementById("mydata"); // get the paragraph

if (num < 0.5) // if num less than 0.5
{

p.innerHTML = num + " is less than 0.5 ";
}
else
{

p.innerHTML = num + " is equal to or large than 0.5";
}
}

Example 1 is the first example that created the alert box

Example 2 – random number (2)

EECS1012

97

Before any click.

First click calls function.

HTML of paragraph is changed.

Other clicks also calls function.

HTML of paragraph is changed.

Example 3 – Random greeting

EECS1012

98

/* A function that returns a random number between 0 and 3 – see slide 86 */
function myRandom() { /

var num = Math.floor(Math.random() * 4);
return num;

}

/* functioned called my our HTML page when the button is clicked */
function myFunction() {

var greetings = ["Hello", "Yo", "Hi", "Welcome"]; // declare array
var selectOne = myRandom(); // get random number between 0 -3
var p = document.getElementById("mydata"); // get paragraph
p.innerHTML = greetings[selectOne]; // set paragraph

}

Example 3 – random number (2)

EECS1012

99

Each click generates a new random

number and otuputs the corresponding

greeting in the array.

Example 4 – for loops and string +

EECS1012

100

/* called when button is clicked. Passes a value from the HTML page */
function myFunction(num)
{

var sum = 0;
var outputString = "Adding 0"
var p = document.getElementById("mydata");

for(var i=1; i <= num; i++)
{

sum = sum + i;
outputString = outputString + "+" + i;

}
p.innerHTML = outputString + "= " + sum;

}

<p id="mydata"> Button no clicked yet. </p>
<button onclick="myFunction(15);"> Click Me! </button>

Example 5 – Date, array, if

EECS1012

101

/* function called by button click */
function myFunction()
{
var p = document.getElementById("mydata");
var dayNames = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"];
var myDate = new Date();
var day = myDate.getDay();
// recall day is 0=sunday, monday=1, and so on
if (day == 2) // check if the day is Tuesday
{

p.innerHTML = "Today is Tuesday!"; // if it is
}
else {

p.innerHTML = "Today is NOT Tuesday!"; // if it is not
}
// finally
p.innerHTML += "
 Today is " + dayNames[day];

}

Comments on notation

In many programming languages, you will see the

following notations

value

- Text by itself is assumed to be a variable or object named value

"value"

-Text with quotes is assumed to be a string with content value

value()

-Text with parentheses after is assumed to be a function name

value or a method associated with an object.

EECS1012

102

Summary

 You have learned the basic of JavaScript

 We will look at more details to the document object

next

 We will also see how to allow JavaScript to be

applied to a page without the need for the HTML to

be modified (e.g. with no onclick="" properties).

EECS1012

103

