Understanding the In-Camera Image Processing Pipeline for Computer Vision

IEEE CVPR 2016
June 26, 2016

Michael S. Brown
National University of Singapore
(York University, Canada)
Tutorial schedule

• Part 1 (General Part)
 – Motivation
 – Review of color/color spaces
 – Overview of camera imaging pipeline

• Part 2 (Specific Part)
 – Modeling the in-camera color pipeline
 – Photo-refinishing

• Part 3 (Wrap Up)
 – The good, the bad, and the ugly of commodity cameras and computer vision research
 – Concluding remarks

8.30am-10.25am
Coffee Break
10.25am – 11am
11.00am-12.30pm
Motivation for this tutorial?
Shifting landscape of cameras
1 ≈ 50+
Image capture is mainstream
Not always a good thing . . .
Imaging for more than photography

Many applications are not necessarily interested in the actual photo.
Scientist’s view of photography
Scientist’s view of photography
Camera = light-measuring device

Simple models assume an image is a “quantitative measurement” of scene radiance.

Figure from Digital Image Processing, Gonzales/Woods
Simple models assume an image is a “quantitative measurement” of scene radiance.
Assumption used in many places

- Shape from shading
- HDR Imaging
- Image Matching
- Color constancy
- Etc . . .
Camera = light-measuring device?
Light-measuring device?

Samsung Galaxy S6 edge

HTC One M9

LG G4

Google Camera App

All settings the same
Onboard processing (photo finishing) “Secret recipe” of a camera

Photographs taken from three different cameras with the same aperture, shutter speed, white-balance, ISO, and picture style.
Modern photography pipeline

Starting point: reality (in radiance)

Pre-Camera
- Lens Filter
- Lens
- Shutter
- Aperture

In-Camera
- CCD response (RAW)
- CCD Demosaicing (RAW)
- “Photo-finishing Processing”

Scene Radiance

Final output

Ending point: better than reality (in RGB)

Post-Processing
- Touch-up
- Hist equalization
- Spatial warping
- Etc...

Even if we stopped here, the original CCD response potentially has had many levels of processing.
Digital cameras

• Digital cameras are far from being light-measuring devices
• They are designed to produce visually pleasing photographs
• There is a great deal of processing (photo-finishing) happening on the camera

The goal of this tutorial is to discuss common processing steps that take place onboard consumer cameras
This tutorial will examine

Starting point: reality (in radiance)

Scene Radiance

Pre-Camera
- Lens Filter
- Lens
- Shutter
- Aperture

In-Camera
- CCD response (RAW)
- CCD Demosaicing (RAW)
- “Photo-finishing Processing”

Camera Output: sRGB

What is (potentially) happening on a camera.

Camera pipelines are almost always proprietary, so knowing exactly what steps are performed for a particular make/model is not possible. This tutorial examines the most common steps likely to be found on most cameras.
Tutorial schedule

• Part 1 (General Part)
 – Motivation
 – Review of color/color spaces
 – Overview of camera imaging pipeline

• Part 2* (Specific Part)
 – Modeling the in-camera color pipeline
 – Photo-refinishing

• Part 3 (Wrap Up)
 – The good, the bad, and the ugly of commodity cameras and computer vision research
 – Concluding Remarks

* Mainly involves shameless self-promotion of my group’s work.
“Crash Course” on Color & Color Spaces
Color

Def Color (noun): The property possessed by an object of producing different sensations on the eye as a result of the way it reflects or emits light.

Oxford Dictionary
Color is perceptual

• **Color is not** a primary physical property
• Red, Green, Blue, Pink, Orange, Atomic Tangerine, Baby Pink, etc. . .
 – Adjectives we assign to “color sensations”

![Color Swatches]

Which is “True Blue”?

Subjective terms to describe color

Hue
Name of the color
(yellow, red, blue, green, . . .)

Value/Lightness/Brightness
How light or dark a color is.

Saturation/Chroma/Color Purity
How “strong” or “pure” a color is.
Where do “color sensations” come from?

A *very* small range of electromagnetic radiation

Generally wavelengths from 390 to 700nm are visible to most individuals.
“White light” through a prism

“white light”

Refacted light

Prism

Spectral “colors”

Relative Power

450nm 600nm 650nm

Light is separated into “monochromatic” light at different wave lengths.
Sensations?

- Our eye has three receptors (cone cells) that respond to visible light and give the sensation of color.
Cones and rods

- We have additional light sensitive cells called *rods* that are not responsible for color
- Cones are most concentrated on the fovea
Spectral power distribution (SPD)

We rarely see monochromatic light in real world scenes. Instead, objects reflect a wide range of wavelengths. This can be described by a spectral power distribution (SPD) shown above. The SPD plot shows the relative amount of each wavelength reflected over the visible spectrum.
SPD relation to color is not unique

- Due to the accumulation effect of the cones, two different SPDs can be perceived as the same color.

Lettuce SPD

- Stimulating S=0.2, M=0.8, L=0.8

SPD of “real lettuce”

Green Ink SPD

- Stimulating S=0.2, M=0.8, L=0.8

SPD of ink in a “picture of lettuce”

Result in the same color “sensation”.
Tristimulus color theory

• Even before cone cells were discovered, it was empirically found that only three distinct colors (primaries) could be mixed to produce other colors

• Thomas Young (1803), Hermann von Helmholtz (1852), Hermann Grassman (1853), James Maxwell (1856) all explored the theory of trichromacy for human vision
Grassman’s Law states that a source color can be matched by a linear combination of three independent “primaries”.

\[
\text{Source light 1} = R_1 + G_1 + B_1
\]

\[
\text{Source light 2} = R_2 + G_2 + B_2
\]

Three primaries and the weights \((R_1, G_1, B_1)\) of each primary needed to match the source light #1 perceived color.

Same three primaries and the weights \((R_2, G_2, B_2)\) of each primary needed to match the source light #2 perceived color.

If we combined source lights 1 & 2 to get a new source light 3

\[
\text{Source light 3} = (R_1 + R_2) + (G_1 + G_2) + (B_1 + B_2)
\]

The amount of each primary needed to match the new source light 3 will be the sum of the weights that matched lights 1 & 2.
Radiometry vs. photometry

• **Radiometry**
 – Quantitative measurements of radiant energy
 – Often shown as spectral power distributions (SPD)
 – Measures either light coming from a source (radiance) or light falling on a surface (irradiance)

• **Photometry/ colorimetry**
 – Quantitative measurement of **perceived** radiant energy based on human’s sensitivity to light
 – Perceived in terms of “brightness” (photometry) and color (colorimetry)
Quantifying color

• We still need a way to quantify color & brightness
• SPDs go through a “black box” (human visual system) and are perceived as color
• The only way to quantify the “black box” is to perform a human study

Tomato’s SPD “Black box”

Ripe Red
Experiments for photometry

Chromatic source light at a particular wavelength and adjustable radiant power.

Alternate between the source light and reference light 17 times per second (17 Hz). A flicker will be noticeable unless the two lights have the same perceived “brightness”.

The viewer adjusts the radiant power of the chromatic light until the flicker disappears (i.e. the lights fuse into a constant color). The amount of radiant power needed for this fusion to happen is recorded.

Repeat this flicker fusion test for each wavelength in the source light. This allows method can be used to determine the perceived “brightness” of each wavelength.
CIE* (1924) Photopic luminosity function

The Luminosity Function (written as $\bar{y}(\lambda)$ or $V(\lambda)$) shows the eye’s sensitivity to radiant energy into luminous energy (or perceived radiant energy) based on human experiments (flicker fusion test).

*International Commission on Illumination (CIE comes from the French name Commission internationale de l'éclairage) was a body established in 1913 as an authority on light, illumination and color . . CIE is still active today -- http://www.cie.co.at
Colorimetry

• Based on tristimulus color theory, colorimetry attempts to quantify all visible colors in terms of a standard set of primaries

\[
\text{Target color} = \text{R1} + \text{G1} + \text{B1}
\]

Three fixed primaries
CIE RGB color matching

Human subjects matched test colors by add or subtracting three primaries.

Field of view was 2-degrees (where color cones are most concentrated)

"Standard Observer" (Willing participant with no eye disease)

Experiments carried out by W. David Wright (Imperial College) and John Guild (National Physical Laboratory, London) – Late 1920s
For some test colors, no mix of the primaries could give a match! For these cases, the subjects were asked to add primaries to the test color to make the match.

This was treated as a negative value of the primary added to the test color.

“Standard Observer”
(Willing participant with no eye disease)
CIE RGB results

Plots are of the mixing coefficients of each primary needed to produce the corresponding monochromatic light at that wavelength.

Note that these functions have been scaled such that area of each curve is equal.
CIE RGB results

Negative points, the primary used did not span the full range of perceptual color.
CIE 1931 - XYZ

• In 1931, the CIE met and approved defining a new canonical basis, termed XYZ that would be derived from Wright-Guild’s CIE RGB data

• Properties desired in this conversion:
 – White point defined at X=1/3, Y=1/3, Z=1/3
 – Y would be the luminosity function \(V(\lambda) \)
 – Quite a bit of freedom in selecting these XYZ basis
 – In the end, the adopted transform was:

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
0.4887180 & 0.3106803 & 0.2006017 \\
0.1762044 & 0.8129847 & 0.0108109 \\
0.0000000 & 0.0102048 & 0.9897952
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

Nice article see: Fairman et al “How the CIE 1931 Color-Matching Functions Were Derived from Wright–Guild Data”, Color Research & Application, 1997
This shows the mixing coefficients $\bar{x}(\lambda)$, $\bar{y}(\lambda)$, $\bar{z}(\lambda)$ for the CIE 1931 2-degree standard observer XYZ basis computed from the CIE RGB data. Coefficients are all now positive. Note that the basis XYZ are not physical SPD like in CIE RGB, but linear combinations defined by the matrix on the previous slide.
CIE XYZ 3D plot

3D plot of the CIE XYZ matching functions against the XYZ axis. Note that scaling of this plot is not uniform.
What does it mean?

• **We now have a canonical color space to describe SPDs**

• Given an SPD, $I(\lambda)$, we can find its mapping into the CIE XYZ space

\[
X = \int_{380}^{780} I(\lambda)\bar{x}(\lambda) \, d\lambda \quad Y = \int_{380}^{780} I(\lambda)\bar{y}(\lambda) \, d\lambda \quad Z = \int_{380}^{780} I(\lambda)\bar{z}(\lambda) \, d\lambda
\]

• Given two SPDs, if their CIE XYZ values are equal, then they are considered the same perceived color, i.e.

 $I_1(\lambda), I_2(\lambda) \rightarrow (X_1, Y_1, Z_1) = (X_2, Y_2, Z_2)$ [perceived as the same color]
SPD to CIE XYZ example

Two SPDs

SPD1

X = 0.2841
Y = 0.2989
Z = 0.3254

SPD2

X = 0.2841
Y = 0.2989
Z = 0.3254

From their CIE XYZ mappings, we can determine that these two SPDs will be perceived as the same color (even without needing to see the color!)

Thanks CIE XYZ!

CIE XYZ Values

<table>
<thead>
<tr>
<th>SPD1</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2841</td>
<td>0.2989</td>
<td>0.3254</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPD2</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2841</td>
<td>0.2989</td>
<td>0.3254</td>
</tr>
</tbody>
</table>

Radiometric

Colorimetric

CIE XYZ gives a way to go from radiometric to colorimetric. Imbedded is also the photometric measurement in the Y value.
What does it mean?

• CIE XYZ space is also considered “device independent” – the XYZ values are not specific to any device

• Devices (e.g. cameras, flatbed, scanners, printers, displays) can find mappings of their device specific values to corresponding CIE XYZ values. This provides a canonical space to match between devices (at least in theory)
Luminance-chromaticity space (CIE xyY)

• CIE XYZ describes a color in terms of linear combination of three primaries (XYZ)
• Sometimes it is useful to discuss color in terms of luminance (perceived brightness) and chromaticity (we can think of as the hue-saturation combined)
• CIE xyY space is used for this purpose
Deriving CIE xyY

Project the CIE XYZ values onto the X=1, Y=1, Z=1 plane.

\[x = \frac{X}{X + Y + Z} \]
\[y = \frac{Y}{X + Y + Z} \]
Projection plot

A bit hard to visualize after seeing the CIE XYZ 3D plot, but we do obtain the shape on the previous slide from the projection onto X=1, Y=1, Z=1.
A bit hard to visualize after seeing the CIE XYZ 3D plot, but we do obtain the shape on the previous slide from the projection onto $X=1, Y=1, Z=1$
This gives us the familiar horseshoe shape of visible colors as 2D plot. Note the axis are x & y.

Point “E” represents where X=Y=Z have equal energy (X=0.33, Y=0.33, Z=0.33)

CIE XYZ “white point”

In the 1930s, CIE had a bad habit of over using the variables X, Y. Note that x, y are chromaticity coordinates, \(\bar{x}, \bar{y}\) (with the bar above) are the matching functions, and X, Y are the imaginary SPDs of CIE XYZ.
CIE x-y chromaticity diagram

Moving along the outside of the diagram gives the hues.

Moving way from the white point represents more saturation.
CIE xyY

• Generally when we use CIE xyY, we only look at the \((x, y)\) values on the 2D diagram of the CIE x-y chromaticity chart

• However, the Y value (the same Y from CIE XYZ) represents the perceived brightness of the color

• With values \((x, y, Y)\) we can reconstruct back to XYZ

\[
X = \frac{Y}{y} x \quad \quad Z = \frac{Y}{y} (1 - x - y)
\]
Fast forward 80+ years

- CIE 1931 XYZ, CIE 1931 xyY (2-degree standard observer) color spaces have stood the test of time
- Many other studies have followed (most notably - CIE 1965 XYZ 10-degree standard observer), . . .
- But in the literature (and in this tutorial) you’ll find CIE 1931 XYZ color space making an appearance often
What is perhaps most amazing?

- 80+ years of CIE XYZ is all down to the experiments by the “standard observers”

- How many standard observers were used? 100, 500, 1000?

A Standard Observer
CIE XYZ is based on 17 Standard Observers

10 by Wright, 7 by Guild

“The Standard Observers”
A caution on CIE x-y chromaticity

From Mark D. Fairchild book: “Color Appearance Models”

“The use of chromaticity diagrams should be avoided in most circumstances, particularly when the phenomena being investigated are highly dependent on the three-dimensional nature of color. For example, the display and comparison of the color gamuts of imaging devices in chromaticity diagrams is misleading to the point of being almost completely erroneous.”

Re-quoted from the Mark Meyer’s “Deconstructing Chromaticity” article.
We are done with color, right? Almost . . .
An object’s SPD

- In a real scene, an object’s SPD is a combination of its reflectance properties and scene illumination.

Our earlier example ignored illumination (we could assume it was pure white light).

Instead, think of this of how the object reflects different wavelengths.

- Tomato SPD

 - Wavelength (λ)

 - If you imagine this, it’s like thinking about how the object reflects different wavelengths.

- Illuminant 1 SPD

 - λ

- Illuminant 2 SPD

 - λ

- Illuminant 3 SPD

 - λ
Color constancy

- Our visual system is able to compensate for the illumination

Looks the same!
Color constancy/chromatic adaptation

• Color constancy, or chromatic adaptation, is the ability of the human visual system to adapt to scene illumination
• This ability is not perfect, but it works fairly well
• Image sensors do not have this ability (it must be performed as a processing step, i.e. “white balance”)
• **Note:** Our eyes do not adjust to the lighting in the photograph -- we adjust to the viewing conditions of the scene we are viewing the photograph in!
Color constancy and illuminants

- To understand color constancy, we have to consider SPDs of different illuminants
Color temperature

- Illuminants are often described by their color temperature
- This is associated with theoretical “blackbody radiators” that produce SPDs based on a given temperature (expressed in kelvins)
- We often map light sources (both real and synthetic) to their closest color temperature (esp in Photography/Video production)

Freeware app by, Fu-Kwun Hwang to generate blackbody SPDs at different temperatures, showing the range in the visible spectrum.
Color temperature

Typical description of color temperature used in photography & lighting sources.

From B&H Photo
Plot of color CIE xy locations of SPDs based on color temperature.
Man made illuminants SPDs

Figure from Ponce and Forsyth
CIE established several “synthetic” SPDs that serve as proxies for common real illuminants

- **Illuminant A**
 - tungsten-filament lighting (i.e. a standard light-bulb)
- **Illuminant B**
 - noon sunlight
- **Illuminant C**
 - average daylight
- **Illuminant D series**
 - represent natural daylight at various color temps (5000K, 5500K, 6500K), generally denoted as D50, D55, D65
- **Illuminant E**
 - idea equal-energy illuminant with constant SPD
 - does not represent any real light source, but similar to D55
- **Illuminant F series**
 - emulates a variety of fluorescents lamps (12 in total)
CIE standard illuminants

SPDs for CIE standard illuminant A, B, C

SPDs for CIE standard illuminant D50, D55, D65

SPDs for CIE standard illuminant E

SPDs for CIE standard illuminants F2, F8, F11

D, E, and F series images from http://www.image-engineering.de
White point

• A white point is a CIE XYZ or CIE xyY value of an ideal “white target” or “white reference”
• This is essentially an illuminants SPD in terms of CIE XYZ/CIE xyY
 – We can assume the white reference is reflecting the illuminant
• The idea of chromatic adaptation is to make white points the same between scenes
White points in CIE x-y chromaticity

CIE Illuminants
A, B, C, D65, E in terms of CIE x-y

<table>
<thead>
<tr>
<th>CIE</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.44757</td>
<td>0.40745</td>
</tr>
<tr>
<td>B</td>
<td>0.34842</td>
<td>0.35161</td>
</tr>
<tr>
<td>C</td>
<td>0.31006</td>
<td>0.31616</td>
</tr>
<tr>
<td>D65</td>
<td>0.31271</td>
<td>0.32902</td>
</tr>
<tr>
<td>E</td>
<td>0.33333</td>
<td>0.33333</td>
</tr>
</tbody>
</table>
Color constancy (at its simplest)

• (Johannes) Von Kries transform
• Compensate for each channel corresponding to the L, M, S cone response

\[
\begin{bmatrix}
L_2 \\
M_2 \\
S_2
\end{bmatrix} =
\begin{bmatrix}
1/L_{1w} & 0 & 0 \\
0 & 1/M_{1w} & 0 \\
0 & 0 & 1/S_{1w}
\end{bmatrix}
\begin{bmatrix}
L_1 \\
M_1 \\
S_1
\end{bmatrix}
\]

L_2, M_2, S_2 is the new LMS response with the illuminant divided “out”. In this case white is equal to [1,1,1]

L_{1w}, M_{1w}, S_{1w} is the LMS response to “white” under this illuminant

L_1, M_1, S_1 are the input LMS space under an illuminant.
Illuminant to illuminant mapping

- More appropriate would be to map to another illuminant’s LMS response (e.g. in the desired viewing condition)
- \((\text{LMS})_1\) under an illuminant with white-response \((L_{1w}, M_{1w}, S_{1w})\)
- \((\text{LMS})_2\) under an illuminant with white-response \((L_{2w}, M_{2w}, S_{2w})\)

\[
\begin{bmatrix}
L_2 \\
M_2 \\
S_2
\end{bmatrix}
=
\begin{bmatrix}
L_{2w}/L_{1w} & 0 & 0 \\
0 & M_{2w}/M_{1w} & 0 \\
0 & 0 & S_{2w}/S_{1w}
\end{bmatrix}
\begin{bmatrix}
L_1 \\
M_1 \\
S_1
\end{bmatrix}
\]

- \(L_2, M_2, S_2\) is the new LMS response with the illuminant divided “out” and scaled to LMS\(_2\) illuminant
- \(L_{1w}, M_{1w}, S_{1w}\) is the LMS response to “white” the input illuminant, \(L_{2w}, M_{2w}, S_{2w}\) response to “white” of output illuminant
- \(L_1, M_1, S_1\) are the input LMS space under an illuminant.
Example

Simulation of different “white points” by photographing a “white” object under different illumination.

Images courtesy of Sharon Albert (Weizmann Institute)
Here, we have mapped the two input images to one below to mimic chromatic adaptation. The “white” part of the cup is shown before and after to help show that the illumination falling on white appears similar after the “chromatic adaptation”.

Adapted to “target” illuminant
Now we are finally done with color? Almost (really) . . .
CIE XYZ and RGB

• While CIE XYZ is a canonical color space, images/devices rarely work directly with XYZ
• XYZ are not real primaries
• RGB primaries dominate the industry
• We are all familiar with the RGB color cube

But by now, you should realize that Red, Green, Blue have no quantitative meaning. We need to know their corresponding SPDs or CIE XYZ values
Device specific RGB values

The RGB values span a subspace of CIE-XYZ to define the device gamut.

If you have RGB values, they are specific to a particular device.
Trouble with RGB

RGB values have no meaning if the primaries between devices are not the same! This is a huge problem for color reproduction from one device to the next.
Standard RGB (sRGB)

In 1996, Microsoft and HP defined a set of “standard” RGB primaries.

\[
\begin{align*}
R &= \text{CIE } xyY (0.64, 0.33, 0.2126) \\
G &= \text{CIE } xyY (0.30, 0.60, 0.7153) \\
B &= \text{CIE } xyY (0.15, 0.06, 0.0721)
\end{align*}
\]

This was considered an RGB space achievable by most devices at the time.

White point was set to the D65 illuminant. **This is an important thing to note.** It means sRGB has built in the assumed viewing condition (6500K daylight).
CIE XYZ to sRGB conversion

Matrix conversion:

\[
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix} =
\begin{bmatrix}
3.2404542 & -1.5371385 & 0.4985314 \\
-0.9692660 & 1.8760108 & 0.0415560 \\
0.0556434 & -0.2040259 & 1.0572252
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

- R=G=B=1 is defined as illuminant D65 is in CIE XYZ*
- This is the linear-sRGB space
- sRGB also specifies a gamma correction of the values
sRGB gamma curve

This is a close approximation of the actual sRGB gamma

Actual formula is a bit complicated, but effectively this is gamma \(I' = 255 \times I^{(1/2.2)} \), where \(I' \) is the output intensity and \(I \) is the linear sRGB ranged 0-1, with a small linear transfer for linearized sRGB values close to 0 (not shown in this plot).
Gamma justification

- Gamma encoding is used in hardware to compensate for the non-linear characteristics of cathode ray tubes (CRT).
- The application of the gamma=$1/(2.2)$ will be undone by the CRT’s non-linear responsible to voltage to beam intensity to produce the desired result.

Gamma to compensate for CRT
Before (linear sRGB) & after (sRGB)
Standardization isn’t new - NTSC/PAL

![Diagram showing color spaces and conversion curves for sRGB and NTSC.]
CIE XYZ ↔ NTSC/sRGB
(know your color space!)

It is important to known which color space your image is in.

Linear-sRGB back to XYZ

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
0.4124 & 0.3576 & 0.1805 \\
0.2126 & 0.7152 & 0.0722 \\
0.0193 & 0.1192 & 0.9505
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

Linear-NTSC back to XYZ

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
0.6071 & 0.1736 & 0.1995 \\
0.2990 & 0.5870 & 0.1140 \\
0.0000 & 0.0661 & 1.1115
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]
CIE XYZ: The mother of color spaces

\[\text{ProPhoto} \rightarrow \text{CIE XYZ} \]

\[\text{Adobe RGB} \rightarrow \text{CIE XYZ} \]

\[\text{L*ab} \rightarrow \text{sRGB} \]

\[\text{sRGB} \rightarrow \text{NTSC} \]

\[\text{NTSC} \rightarrow \text{YIQ} \]

\[\text{YUV} \rightarrow \text{HSV} \]

\[\text{HSV} \rightarrow \text{HSI} \]
CIE XYZ: The mother of color spaces

But, be cautious. All Ys are not equal. The YUV and YIQ are defined from the gamma encoded RGB values. Technically they are not CIE Y luminance, but “luma”. They should be written with a Y’ to distinguish them.
Standard color spaces are great

Camera
sRGB Image

sRGB -> CIE XYZ -> CMYK -> printer ink (ICC Profile)

sRGB -> CIE XYZ -> Display (ICC Profile)

sRGB -> HSV -> Image Editing Software
Benefits of sRGB

• Like CIE XYZ, sRGB is a device independent color space (often called an output color space)
• If you have two pixels with the same sRGB values, they will have the same CIE XYZ value, which means “in theory” they will appear as the same perceived value
• Does this happen in practice?
sRGB values that are the same will be perceived as the same on the screen. However, from “real scene SPD” to final sRGB, cameras are clearly doing different things.
Congratulations!

Certificate of Completion

This Certificate is presented to

You

on this 26 day of June 2016

for completion of

“Crash Course on Color”
Crash course on color is over!

• A lot of information to absorb
• Understanding colorimetry is required to understand imaging devices
• CIE XYZ and CIE illuminants will make many appearances in color imaging/processing discussions
Tutorial schedule

• Part 1 (General Part)
 — Motivation
 — Review of color/color spaces
 — Overview of camera imaging pipeline

• Part 2 (Specific Part)
 — Modeling the in-camera color pipeline
 — Photo-refinishing

• Part 3 (Wrap Up)
 — The good, the bad, and the ugly of commodity cameras and computer vision research
 — Concluding Remarks
Overview of the Camera Imaging Pipeline
Pipeline for sRGB (JPEG)

Sensor with color filter array (CCD/CMOS) → Gain Control A/D Converter Possible LUT → White Balance

AFE – Analog Front End Sensor related processing

Tone Reproduction → Color Space Transform + Color Preferences → Noise Reduction/Sharpening → CFA Demoasicing

JPEG Compression → Exif File Info → Save to storage

* Note that steps can be optional (e.g. noise reduction) or applied in slightly different order.
Pipeline for RAW

Sensor with color filter array (CCD/CMOS) → Gain Control A/D Converter Possible LUT → Lossless Compression

Additional steps could be “estimated” but not applied for RAW*. For example, white point/illuminant estimation, which is saved in the meta-data but not applied to the RAW. Some cameras even save the full “Exif” data with RAW so the RAW can be rendered as if it was fully processed as an sRGB/JPEG.

*Technically speaking, RAW shouldn’t be all caps, it is not an acronym.
• We will discuss the basics of the imaging sensor at a high level
 – Could have a whole tutorial just on sensors
• The assumption is after this step, the digital values coming off the sensor are linear with respect to the amount of falling on the pixel over a given amount of time
• Will discuss some common steps to make this happen
Imaging sensor

Basic imaging sensor design

Microlens to help increase light collection on the sensor

Color filters place over the sensor. This forms a Color Filter Array (CFA) also called a “Bayer Pattern” after inventor Bryce Bayer.

Silicon/Circuitry

Light

Photodiode (Photon comes in, electron pops out)
CCD & CMOS

CCD (charge coupled device) has a different readout technology to convert charge to voltage and buffer it for output. The plus side is there is more space on the pixel for the photo sensor.

CMOS (complementary metal oxide semiconductor) converts charge to voltage at the pixel site. This allows faster readouts, but less space for the photo sensor per pixel.

Figures from Dave Litwiller, “CCD vs. CMOS”, Photonics Spectra, Jan 2001
Camera RGB sensitivity

- The color filter array (CFA) on the camera filters the light into three primaries

Plotted from camera sensitivity database by Dr. Jinwei Gu from Rochester Institute of Technology (RIT)
http://www.cis.rit.edu/jwgu/research/camspec/
Black light subtraction

• Sensor values for pixels with “no light” should be zero
• But, often, this is not the case for various reasons
 – Cross talk on the sensor, etc.
 – This can also change with sensor temperature
• This can be corrected by capturing a set of pixels that do not see light
• Place a dark-shield around sensor
• Subtract the level from the “black” pixels
Optical black (OB)

Sensor area(s) capturing "optical black"

Signal amplification (gain)

- Imaging sensor signal is amplified
- Amplification to assist A/D
 - Need to get the voltage to the range required to the desired digital output
- This gain could also be used to accommodate camera ISO settings
 - Unclear if all cameras do this here or use a simple post-processing gain to the RAW for ISO settings
 - DSLR cameras RAW is modified by the ISO setting
Defective pixel mask

• CCD/CMOS have pixels that are defective
• Dead pixel masks are pre-calibrated at the factory
 – Using “dark current” calibration
 – Take an image with no light
 – Record locations reporting values to make “mask”
• Bad pixels in the mask are interpolated
• This process seems to happen before RAW is saved
 – If you see dead pixels in RAW, these are generally new
dead pixels that have appeared after leaving the factory
Example

Identifying “dead pixels”

After interpolation

Image courtesy of Lu Zheng (CityU Hong Kong) and Moshe Ben-Ezra (MIT)
Nonlinear response correction

• Some image sensor (generally CMOS) often have a non-linear response to different amounts of irradiance
• A non-linear adjustment or look up table (LUT) interpolation can be used to correct this
Other possible distortion correction

• Sensor readout could have spatial distortion for various reasons, e.g. sensor cross-talk
• For point-and-shoot/mobile cameras with fixed lens, vignetting correction for lens distortion could be applied
• Such corrections can be applied using a LUT or polynomial function (in the case of vignetting)
Ex: Flat field correction

Black level subtraction and linearization
Ex: Flat field correction
(non-uniform gain)
At this stage

- We now have a reading from the sensor that is linear with respect to light coming in
- Defective pixels have been interpolated
- Potential distortion has been reduced
RAW – stop here

- If saving in RAW, we can stop here.
- Convert to TIFF + metadata, save to media
- RAW generally represents gained + linearized sensor response before CFA demosaicing and white-balance correction
- We like to think of RAW as “unprocessed” sensor response

Important: RAW image color space will be camera-specific
White balance

• White balance is intended to mimics chromatic adaptation of the eye

• Users can manually set the white balance
 – Camera specific white-balance matrices are used selected illuminant (see next slides)
 – This is often stored in the Exif metadata

• Otherwise auto white balance (AWB) is performed
WB manual settings

<table>
<thead>
<tr>
<th>WB SETTINGS</th>
<th>COLOR TEMPERATURE</th>
<th>LIGHT SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>☁️ 🌿</td>
<td>10000 - 15000 K</td>
<td>Clear Blue Sky</td>
</tr>
<tr>
<td>☀️</td>
<td>6500 - 8000 K</td>
<td>Cloudy Sky / Shade</td>
</tr>
<tr>
<td>🌞</td>
<td>6000 - 7000 K</td>
<td>Noon Sunlight</td>
</tr>
<tr>
<td>🌞</td>
<td>5500 - 6500 K</td>
<td>Average Daylight</td>
</tr>
<tr>
<td>🌞</td>
<td>5000 - 5500 K</td>
<td>Electronic Flash</td>
</tr>
<tr>
<td>🌞</td>
<td>4000 - 5000 K</td>
<td>Fluorescent Light</td>
</tr>
<tr>
<td>🌞</td>
<td>3000 - 4000 K</td>
<td>Early AM / Late PM</td>
</tr>
<tr>
<td>🌞</td>
<td>2500 - 3000 K</td>
<td>Domestic Lightning</td>
</tr>
<tr>
<td>🌞</td>
<td>1000 - 2000 K</td>
<td>Candle Flame</td>
</tr>
</tbody>
</table>

Typical mapping of WB icons to related color temperate. White-balance matrix is often stored in the exif file.
Examples of manual WB matrices

<table>
<thead>
<tr>
<th>Camera Model</th>
<th>Sunny</th>
<th>Daylight</th>
<th>Shade</th>
</tr>
</thead>
</table>
| **Nikon D7000** | \[
\begin{bmatrix}
2.0273 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.3906 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
2.0938 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.5020 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
2.4922 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.1367 \\
\end{bmatrix}
\] |
| **Canon 1D** | \[
\begin{bmatrix}
2.3487 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.4511 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
2.7422 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.6523 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
2.4628 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.2275 \\
\end{bmatrix}
\] |
| **Sony A57K** | \[
\begin{bmatrix}
1.5020 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 2.0938 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
1.6523 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 2.7422 \\
\end{bmatrix}
\] | \[
\begin{bmatrix}
3.1953 & 0 & 0 \\
0 & 1.0000 & 0 \\
0 & 0 & 1.2891 \\
\end{bmatrix}
\] |
Auto white balance (AWB)

- If manual white balance is not used, then an AWB algorithm is performed
- This is not entirely the same as chromatic adaptation, because it doesn’t have a target illuminant, instead AWB (as the name implies) attempts to make what is assumed to be white map to “pure white”
- Next slides introduce two well known methods: “Gray World” and “White Patch”
AWB: Gray world algorithm

• This methods assumes that average reflectance of a scene is achromatic (i.e. gray)
 – Gray is just the white point not at its brightest, so it serves as an estimate of the illuminant
 – This means that image average should have equal energy, i.e. R=G=B

• Based on this assumption, the algorithm adjusts the input average to be gray as follows:

First, estimate the average response:

\[
R_{avg} = \frac{1}{N_r} \sum R_{sensor}(r) \quad G_{avg} = \frac{1}{N_g} \sum G_{sensor}(g) \quad B_{avg} = \frac{1}{N_b} \sum B_{sensor}(b)
\]

\[
r = \text{red pixels values, } g = \text{green pixels values, } b = \text{blue pixels values}
\]
\[
N_r = \# \text{ of red pixels, } N_g = \# \text{ of green pixels, } N_b = \# \text{ blue pixels}
\]

Note: # of pixel per channel may be different if white balance is applied to the RAW image before demosaicing. Some pipelines may also transform into another colorspace, e.g. LMS, to perform the white-balance procedure.
AWB: Gray world algorithm

- Based on averages, white balance can be expressed as a matrix as:

\[
\begin{bmatrix}
R' \\
G' \\
B'
\end{bmatrix} = \begin{bmatrix}
\frac{G_{avg}}{R_{avg}} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{G_{avg}}{B_{avg}}
\end{bmatrix}\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

Matrix scales each channel by its average and then normalizes to the green channel average.

Note: some (perhaps most) pipelines may also transform into another colorspace, e.g. LMS, to perform the white-balance procedure.
AWB: White patch algorithm

• This method assumes that highlights represent specular reflections of the illuminant
 – This means that maximum R, G, B values are a good estimate of the white point
• Based on this assumption, the algorithm works as follows:

\[R_{max} = \max(\text{Rsensor}(r)) \quad G_{max} = \max(\text{Gsensor}(g)) \quad B_{max} = \max(\text{Bsensor}(b)) \]

\[r = \text{red pixels values, } g=\text{green pixels values, } b =\text{blue pixels values} \]
AWB: White patch algorithm

• Based on RGB max, white balance can be expressed as a matrix as:

\[
\begin{bmatrix}
R' \\
G' \\
B'
\end{bmatrix} = \begin{bmatrix}
G_{max}/R_{max} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & G_{max}/B_{max}
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

Matrix scales each channel by its maximum value and then normalizes to the green channel’s maximum.
AWB example

Input

Gray World

White Patch
Better AWB methods

• Gray world and white patch are very basic algorithms
 – These both tend to fail when the image is dominated by large regions of a single color (e.g. a sky image)

• There are many improved versions

• Most improvements focus on how to perform these white point estimation more robustly

• Note: AWB matrix values are often stored in an images Exif file
CFA demosaicing

• Color filter array/Bayer pattern placed over pixel sensors
• We want an RGB value at each pixel, so we need to perform interpolation

Sensor RGB layout

Desired output with RGB per pixel.
Simple interpolation

Simply interpolate based on neighbor values.
Simple “edge aware” interpolation

If $|G2 - G8| \& \& |(G4-G8)|$ both $< \text{Thres}$

$$G5 = \frac{G2 + G4 + G6 + G8}{4}$$

elseif $|G2 - G8| > \text{Thres}$

$$G5 = \frac{G4 + G6}{2}$$

else

$$G5 = \frac{G2 + G8}{2}$$

Case 1
$$G2 \quad G4 \quad G6 \quad G8$$

All about the same.

Case 2
$$G2 \quad G4 \quad G6 \quad G8$$

G2 and G8 differ

G4 and G6 differ
Demosaicing

• These examples are simple algorithms
• Cameras almost certainly use more complex and proprietary algorithms
• Demosaicing can be combined with additional processing
 – Highlight clipping
 – Sharpening
 – Noise reduction
Noise Reduction (NR)

• All sensors inherently have noise
• Some of this is mitigated in the sensor circuitry (discussed previously)
• Some cameras apply NR after A/D conversion
• A couple simple methods are presented here
• For high-end cameras, it is likely that cameras apply slightly different strategies depending on ISO settings, e.g. high ISO will result in more noise, so a more aggressive NR could be used
• Examples given are more likely on lower-end point-and-shoot cameras
NR – Rank order statistics

• Sliding window **median** filter
• Sort all pixels in a 3x3 (or larger) widow about center pixel by value
• Select median (i.e. pixel #5 in rank)

Median filter is nice because is preserves edges.
NR – Rank order statistics

- Sliding window **despeckle** filter
- Sort all pixels in a 3x3 (or larger) widow about center pixel by value
- If center pixel maps to extreme (rank 1 or 9) and is significantly different than closest neighbor, take neighboring ranked pixel value

<table>
<thead>
<tr>
<th>Input</th>
<th>[8, 9, 9, 10, 10, 10, 10, 11, 19]</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 11 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 19 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 8 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Center pixel mapped to an extreme.
|Rank 9 (19) – Rank 8 (11)| > threshold
Replace with Rank 8
NR + Sharpening

• Another strategy is to apply a blur and add the detail back in “content regions”, or even boost content to perform sharpening

Sketch of the procedure here:

For values with high-response assume this is “content” and add it back to the blur version (can even give a slight boost = sharpening). If low response, don’t do anything, then this region will have NR applied.
Color space manipulation

• We are now at one of the most crucial steps in the pipeline
• Up until this point, the “RGB” values have been related to the camera’s RGB sensitivity, i.e. sensor RGB color space
• We now need to map these values to the output color space (sRGB)
Color space transform

• Color Correction Matrix (CCM)
 – Transforms sensor native RGB values into some canonical colorspace (e.g. CIE XYZ) that will eventual be transform to the final sRGB colorspace

• It is important that the white-balance has been performed correctly
These LUT used to correct sensor RAW

RAW sensor RGB values come in, and sRGB values come out

Tone-scale and sRGB gamma are applied

Matrix decompositions

Focusing on the matrix part only. Conceptually we could breakdown the color transform into a series of transforms. It may desirable to perform AWB in a different colorspace, e.g. LMS, then to sRGB (using CIE XYZ as an intermediate colorspace to try things together)

First, convert sensor RGB to CIE (1931) XYZ

This is from Parulski & Spaulding, however, it is more common to perform white-balance first – more on this later.
Tone-mapping

• Non-linear mapping of RGB tones
• Applied to achieve some preferred tone-reproduction
 – This is not sRGB gamma
 – This is to make the images look nice
• To some degree this mimics the nonlinearity in film (known as the Hurter-Driffield Curves)
• Each camera has its own unique tone-mapping (possibly multiple ones)
Here are several examples of tone-mappings for a white range of cameras. The x-axis is the input “RAW” (or linearized-sRGB), the y-axis is the output After tone mapping.

From Grossberg & Nayar (CVPR'03)
Tone-mapped examples
Note about tone-mapping

• It is worth noting, that up until this stage, our color values (either RAW or linear sRGB) are related to incoming light in a linear fashion
• After this step, that relationship is broken
• Unlike the sRGB gamma (which is known), the tone-mapping is propriety and can only be found by a calibration procedure
JPEG compression

• Joint Photographic Experts Group (JPEG)
• Lossy compression strategy based on the 2D Discrete Cosine Transformation (DCT)
• The by far the most widely adopted standard for image storage
JPEG applies almost every compression trick known.
1) Transform coding, 2) psychovisual (loss), 3) Run-length-encoding (RLE), 4) Difference coding, and Huffman.
JPEG quality

• The amount of quantization applied on the DCT coefficients amounts to a “quality” factor
 – More quantization = better compression (smaller file size)
 – More quantization = lower quality

• Cameras generally allow a range that you can select
Exif metadata

- Exchangeable image file format (Exif)
- Created by the Japan Electronics and Information Technology Industries Association (JEITA)
- Associates meta data with images
 - Date/time
 - Camera settings (basic)
 - Image size, aperture, shutter speed, focal length, ISO speed, metering mode (how exposure was estimated)
 - Additional info (from in some Exif files)
 - White-balance settings, even matrix coefficients of white-balance
 - Picture style (e.g. landscape, vivid, standard, portrait)
 - Output color space (e.g. sRGB, Adobe RGB, RAW)
 - GPS info
 - More . . .
Save to storage. We are done!

- Gain Control
- A/D Converter
- Possible LUT
- AFE – Analog Front End
- Sensor related processing
- White Balance
- Sensor with color filter array (CCD/CMOS)

- Tone Reproduction
- Color Space Transform + Color Preferences
- Noise Reduction/Sharpening
- CFA Demoasicing

- JPEG Compression
- Exif File Info
- Save to storage

* Note that steps can be optional (e.g. noise reduction) or applied in slightly different order.
Pipeline comments

• Again, important to stress that the exact steps mentioned in these notes only serve as a guide of common steps that take place

• For different camera makes/models, these could be performed in different order (e.g. white-balance after demosaicing) and in different ways (e.g. combining sharpening with demosaicing)
These two steps combined is often referred to as “color rendering” or “color processing/interpolation”. What actually happens here is very much specific to individual cameras, and even settings on the camera.
ICC and color profiles

• International Color Consortium (ICC)
 – In charge of developing several ISO standards for color management

• Promote the use of ICC profiles

• ICC profiles are intended for device manufacturers to describe how their respective color spaces (e.g. sensor RGB) map to canonical color spaces called Profile Connection Spaces (PCS)

• PCS are similar to linking all devices to CIE XYZ, but are more flexible allowing for additional spaces to be defined (beyond CIE XYZ)
From the ICC – ISO 22028

Photography and graphic technology — Extended colour encodings for digital image storage, manipulation and interchange —

In this case, “sensor characterization” is related to the Color Adaptation Matrix described earlier.

We can see tone-mapping is not explicitly denoted, instead it is grouped with “color render”.
From the ICC ISO 22028

RGB values linked to the device are considered “scene referred”. After the color transform to sRGB they are denoted as “output referred” color encodings.
Tone mapping/color rendering

- From the ICC ISO standards, we see this part is more complex than just matrix + tone-map
- In fact, it can often involve $3D\ LUTs$
Camera image processors

• Steps applied after the sensor output are generally performed by an “image processor” on the camera
• Different cameras use different processing boards/software
• High-end cameras and associated processors
 – Nikon – Expeed
 – Fuji – Real photo engine
 – Canon – DIGIC
 – Sony – BIONZ
 – …
• Mobile-devices
 – Qualcomm - Snapdragon
 – Nvidia - Tegra
Example: Expeed block diagram
Example: Sony Exmor + BIONZ

Not a lot of detail . . .
Tutorial schedule

• Part 1 (General Part)
 — Motivation
 — Review of color/color spaces
 — Overview of camera imaging pipeline

• Part 2* (Specific Part)
 — Modeling the in-camera color pipeline
 — Photo-refinishing

• Part 3 (Wrap Up)
 — The good, the bad, and the ugly of commodity cameras and computer vision research
 — Concluding Remarks

* Mainly involves shameless self-promotion of my group’s work.
Part 2: Modeling the onboard camera color processing pipeline
Part 2 Acknowledgements

Prof. Seon Joo Kim (Yonsei)

Dr. Hai-ting Lin (NUS/U. Delaware)

Prof. Sabine Süsstrunk (EPFL)

Dr. Steven Lin (MSR-Asia)

Dr. Zheng Lu (NUS/City U Hong Kong)

Standard color spaces are great

“The real scene”

Camera
sRGB Image

sRGB -> CIE XYZ -> CMYK -> printer ink (ICC Profile)

sRGB -> CIE XYZ -> Display (ICC Profile)

sRGB -> HSV -> Image Editing Software
Ideal (simple) camera pipeline

1. White balance
2. Color Space Transform (CST)
3. Apply sRGB encoding gamma.

Sensor Image (RAW)

White-balanced camera-specific raw-RGB

CST maps from camera color space to CIE XYZ. Then we go to linear-sRGB.

Camera-Specific R/G/B Sensitivity Functions

sRGB Output
The world isn’t ideal

Samsung Galaxy S6 edge HTC One M9 LG G4

Canon Nikon Sony
Tone-curve is camera-specific

Sensor Image (RAW) → White balance → Color Space Transform (CST) → CIE XYZ

Linear-sRGB

\[
\begin{bmatrix}
& # & # \\
& # & # \\
& # & # \\
\end{bmatrix}
\begin{bmatrix}
3.24 & -1.53 & 0.49 \\
-0.96 & 1.87 & 0.04 \\
0.05 & -0.20 & 1.05 \\
\end{bmatrix}
\]
Tone-curve is camera-specific

Sensor Image (RAW) → White balance → Color Space Transform (CST) → CIE XYZ Linear-sRGB

We have known for a long time that **nobody** uses the sRGB encoding gamma.

Large body of research to estimate these camera-specific tone-curves f. All assume this is fixed per camera.

Mann and Picard, SPIE’95
Debevec and Malik, SIG’97
Mitsunaga and Nayar, CVPR’99
Farid, TIP’01
Grossberg and Nayar, TPAMI’03
Grossberg and Nayar, TPAMI’04
Lin et al, CVPR’04
…
Manders et al, ICIP’04
Pal et al, CVPR’04
Lin et al, ICCV’05
Kim and Pollefeys, TPAMI’08
Chakrabarti et al, BMVC’09
Manufacturers give us a hint

From Canon’s user manual
Nikon D7000 - RAW
NEUTRAL
LANDSCAPE
VIVID
Camera = light-measuring device

“All models are wrong, but some are useful; how wrong can they be and still be useful.”

George Box
Professor Emeritus of Statistics
U. Wisconsin
Early work

“Radiometric Calibration”

Unknown f (tone-map) is the camera’s non-linear transform of RAW to “intensity”.

Debevec and Malik [SIG’97]
Accepted model

(1) Irradiance $E_x (RAW)$

(2) Color Transform

(3) Radiometric Response

$$T = T_{WB} T_{srgb} T_{xyz}, e_x = T E_x$$

$$\begin{bmatrix}
E_{rx} \\
E_{gx} \\
E_{bx}
\end{bmatrix}
\begin{bmatrix}
e_{rx} \\
e_{gx} \\
e_{bx}
\end{bmatrix}
= T
\begin{bmatrix}
E_{rx} \\
E_{gx} \\
E_{bx}
\end{bmatrix}$$

T is a 3x3 matrix

(small e are white-balanced RAW)

$$\begin{bmatrix}
i_{rx} \\
i_{gx} \\
i_{bx}
\end{bmatrix}
= \begin{bmatrix}
f_r(e_{rx}) \\
f_g(e_{gx}) \\
f_b(e_{bx})
\end{bmatrix}$$

i is the sRGB output and f is a non-linear function
Prior work

1. Irradiance E_x (RAW)
2. Color Transform
3. Radiometric Response

Fixed property of the camera

- Mann and Picard, SPIE’95
- Debevec and Malik, SIG’97
- Mitsunaga and Nayar, CVPR’99
- Farid, TIP’01
- Grossberg and Nayar, TPAMI’03
- Grossberg and Nayar, TPAMI’04
- Lin et al, CVPR’04
- Manders et al, ICIP’04
- Pal et al, CVPR’04
- Lin et al, ICCV’05
- Kim and Pollefeys, TPAMI’08
- Chakrabarti et al, BMVC’09
Prior work

Mann and Picard, SPIE’95
Debevec and Malik, SIG’97
Mitsunaga and Nayar, CVPR’99
Farid, TIP’01
Grossberg and Nayar, TPAMI’03
Grossberg and Nayar, TPAMI’04
Lin et al, CVPR’04

Chakrabarti et al conclusions:
😊 RAW is meaningful

😢 But, requires a 24 parameter model that is scene-dependent to accurately go back from sRGB to RAW.
Scene dependent.

Tone curve, f, is computed based on scene content. This makes it almost impossible to pre-compute.
Accepted model

(1) Irradiance E_x(RAW)

(2) Color Transform

(3) Radiometric Response

Is processing scene dependent?

Or is this model not good enough?

$$T = T_{WB} T_{srgb} T_{xyz}, \ e_x = T \ E_x$$

$$
\begin{bmatrix}
 i_gx \\
 i_{bx}
\end{bmatrix} =
\begin{bmatrix}
 f_g(\ e_{gx}) \\
 f(\ e_{bx})
\end{bmatrix}
\quad e_{bx} = T
\begin{bmatrix}
 E_{gx} \\
 E_{bx}
\end{bmatrix}
$$
Our experiment: data collection

• More than 10,000 images from 33 cameras from DSLRs to point-and-shoots

• Images of color charts under indoor / outdoor (cloudy)

• Images are taken at all possible shutter speeds, at multiple aperture, and white balance settings. JPEG / RAW both captured if possible.

* Special shooting features such as lighting optimizer are turned off

Lin et al, ICCV 2011; Kim et al, TPAMI 2012
Data collection

More than **10,000 images** from **33 cameras**

- Different Cameras
- Different Lightings
- Different WBs
- Different Exposures

RAW

sRGB
Data collection

More than **10,000 images** from **33 cameras**

- Different Cameras
- Different Lightings
- Different WBs
- Different Exposures

sRGB

RAW

181
Checked if f is fixed or scene dependent

• How?

• Plot the **brightness transfer function** (BTF)
 – Plot points from image pairs of different scenes
 – Each pair has the same ratio, τ, of exposure change

\[\begin{align*}
\text{Scene 1} & \quad \text{Exposure } k_i \\
\text{Scene 2} & \quad \text{Exposure } \tau k_i \\
\text{Scene 3} & \quad \text{Exposure } k_j
\end{align*} \]
Checked if f is fixed or scene dependent

- How?
- Plot the **brightness transfer function** (BTF)
 - Plot points from image pairs of different scenes
 - Each pair has the same ratio, τ, of exposure change

Scene 1
- Exposure 1s
- Exposure 2s

Scene 2
- Exposure 0.5s
- Exposure 1s

Scene 3
- Exposure 0.5s
- Exposure 0.25s
Checked if f is fixed or scene dependent

- How?
- Plot the **brightness transfer function** (BTF)
 - Plot points from image pairs of different scenes
 - Each pair has the same ratio, τ, of exposure change

Scene 1
- Exposure 1s
- Exposure 2s

Scene 2
- Exposure 0.5s
- Exposure 1s

Scene 3
- Exposure 0.25s
- Exposure 0.5s
Scene 1

Exposure k_i

Exposure k_j

BTF

Exposure k_i (intensity)

Exposure k_j (intensity)

Linear function looks like this. . .
Scene 1
Exposure k_i
Exposure k_j

Scene 2
Exposure k_i
Exposure k_j

Scene 3
Exposure k_i
Exposure k_j

Linear function looks like this...
Non-linear BTF looks like this . . .
Scene dependent non-linear BTF looks like this . . .
For the most part . . . it was ok
For the most part . . . it was ok
Where are the outliers?

Outliers were not scene dependent.

Outliers were color dependent.
Gamut mapping is necessary because the gamut of the camera’s color space is different from the gamut of sRGB.

Gamut mapping is a natural mechanism to support scene modes, such as vivid model, portrait mode, landscape mode, etc.
Proposed a new model

Camera (RAW)

White balance (T_w)
RAW to sRGB (T_s)

Gamut mapping (h)

Tone mapping (f)

sRGB (JPEG)
Proposed a new model

Camera (RAW)

White balance (T_w)
RAW to sRGB (T_s)

Gamut mapping (h)

Tone mapping (f)

sRGB (JPEG)

Introduce h, a 3D function that takes in input RGB and maps it to a new RGB value

$$\begin{bmatrix}
i_{rx} \\
i_{gx} \\
i_{bx}
\end{bmatrix} = f(h \left(\begin{bmatrix}
E_{rx} \\
E_{gx} \\
E_{bx}
\end{bmatrix} \right))$$

$h : \mathbb{R}^3 \rightarrow \mathbb{R}^3$
sRGB Image to RAW

Based on several sRGB-RAW pairs,

- \(f^{-1} \) & \(T^{-1} \) are computed using less saturated points
- \(h^{-1} \) is computed with scatter point interpolation via radial basis func.

Gamut mapping modeled using radial basis function

\[
h^{-1}(\mathbf{X}) = p(\mathbf{X}) + \sum_{i=1}^{N} \lambda_i \phi(||\mathbf{X} - \mathbf{X}_i||)
\]
Canon EOS1Ds Mark III

White Balance

- AWB
- Tw1, Tw2, Tw3, Tw4

Picture Styles

- **S** Standard
- **P** Portrait
- **L** Landscape

Gamut mapping

- h₁, f₁
- h₂, f₂
- h₃, f₃

Tone mapping

- sRGB

Camera (RAW)

RAW to sRGB (Ts)

White balance (Tw)

sRGB

sRGB (JPEG)
Canon EOS1Ds Mark III

White Balance

Camera (RAW)

RAW to sRGB (T_s)

Picture Styles

Picture Styles

Gamut mapping (h)

Tone mapping (f)

sRGB (JPEG)
Gamut mapping

Mapping is represented as a **displacement map** of the camera’s original RGB value to its sRGB location.

The plots above are displacement map of the function h, projected into a 2D plane. This is intended to help visualize how much deformation to the color is taking place. E.g. we can see in “Landscape style”, the green and blue colors are more manipulated for the Canon EOS 1Ds.
Experiments: Mapping sRGB back to RAW

input sRGB image

Canon EOS1D

ground truth RAW
Experiments: Mapping sRGB back to RAW

input sRGB image

estimated RAW

Canon EOS1D
Experiments: Mapping sRGB back to RAW

Our model \((f, T, h)\)

old model \((f, T)\)

We cannot handle fully saturated points.

Canon EOS1D
Experiments : Mapping sRGB back to RAW

input sRGB image

ground truth RAW

Canon EOS550D
Experiments: Mapping sRGB back to RAW

Canon EOS550D
Experiments: Mapping sRGB back to RAW

new model \((f, T, h)\) \hspace{1cm} old model \((f, T)\)

Canon EOS1D
Experiments: Mapping sRGB back to RAW

input sRGB image

ground truth RAW

Sony A200
Experiments: Mapping sRGB back to RAW
Experiments: Mapping sRGB back to RAW

Our model \((f, T, h)\)
old model \((f, T)\)

Sony A200
Application: Photo Refinishing
Canon EOS1Ds Mark III

White Balance

RAW to sRGB (T_s)

Tw1 Tw2 Tw3 Tw4

Picture Styles

S Standard
P Portrait
L Landscape

Gamut Mapping (h)

Tone Mapping (f)

sRGB (JPEG)

Camera (RAW)

White Balance (T_w)

RAW to sRGB (T_s)
Canon EOS1Ds Mark III

White Balance

Tw1 Tw2 Tw3 Tw4

Picture Styles

S Standard
P Portrait
L Landscape

h₁, f₁
h₂, f₂
h₃, f₃

Camera (RAW)
RAW to sRGB (Ts)

Gamut Mapping (h)

Tone Mapping (f)

sRGB (JPEG)
Canon EOS1Ds Mark III

White Balance

AWB, Tw1, Tw2, Tw3, Tw4

Picture Styles

- Standard (S)
- Portrait (P)
- Landscape (L)

Gamut Mapping (h)

Tone Mapping (f)

Camera (RAW)

RAW to sRGB (Ts)

sRGB (JPEG)
What if you took a photo with the wrong settings?
Canon EOS1Ds Mark III

White Balance

- AWB
- T\textsubscript{w1}
- T\textsubscript{w2}
- T\textsubscript{w3}
- T\textsubscript{w4}

Picture Styles

- **S**: Standard
- **P**: Portrait
- **L**: Landscape

- h\textsubscript{1}, f\textsubscript{1}
- h\textsubscript{2}, f\textsubscript{2}
- h\textsubscript{3}, f\textsubscript{3}

Camera (RAW)

- RAW to sRGB (T\textsubscript{s}-1)

White Balance (T\textsubscript{w}-1)

Gamut Mapping (h-1)

Tone Mapping (f-1)

sRGB (JPEG)
Canon EOS1Ds Mark III

White Balance

Camera (RAW)

RAW to sRGB (T^{-1})

White Balance (T^{-1})

Gamut Mapping (h^{-1})

Tone Mapping (f^{-1})

Picture Styles

Standard (S, h_1, f_1)

Portrait (P, h_2, f_2)

Landscape (L, h_3, f_3)

RAW to sRGB (T^{-1})
Result - Canon EOS 1Ds Mark III

Input: cloudy WB + landscape style
Result - Canon EOS 1Ds Mark III

Ground truth: fluorescent WB + standard style
Result - Canon EOS 1Ds Mark III

Photoshop result
Result - Canon EOS 1Ds Mark III

Refinished result
Result - Canon EOS 1Ds Mark III

Ground truth: fluorescent WB + standard style
Result - Canon EOS 1Ds Mark III

Input

Ground truth

Photoshop

Our refinished result
Result - Canon EOS 1Ds Mark III

Input: tungsten WB + standard style
Result - Canon EOS 1Ds Mark III

Ground truth: daylight WB + standard style
Result - Canon EOS 1Ds Mark III

Photoshop result
Result - Canon EOS 1Ds Mark III

Our refinished result
Result - Canon EOS 1Ds Mark III

Ground truth: daylight WB + standard style
Result - Canon EOS 1Ds Mark III

Input

Ground truth

Photoshop

Our refinished result
Result – Nikon D200

Input: tungsten WB + standard style
Result – Nikon D200

Ground truth: daylight WB + standard style
Result – Nikon D200

Photoshop result
Result – Nikon D200

Refinished result
Result – Nikon D200

Ground truth: daylight WB + standard style
Result – Nikon D200

Input

Ground truth

Photoshop

Photo refinish
Result - Sony α200

Input: tungsten WB + standard style
Result - Sony α200

Ground truth: daylight WB + standard style
Result - Sony α200

Photoshop result
Result - Sony α200

Our refinished result
Result - Sony α200

Ground truth: daylight WB + standard style
Result - Sony α200

Input

Ground truth

Photoshop

Our Refinished Result
Remember these guys?
Aside: Probabilistic Approach

The mapping of the function, h, is not one-to-one. Chakrabarti et al [TPAMI 2014] has a nice paper on a probabilistic approach for this inverse mapping problem.

Aside: Probabilistic Approach

Fig. 5. Probabilistic Inverse. For different cameras, we show ellipsoids in RAW space that denote the mean and covariance of \(p(x|y) \) for different JPEG values \(y \)—indicated by the color of the ellipsoid. These values \(y \) are uniformly sampled in JPEG space, and we note that the corresponding distributions can vary significantly across cameras.

Tutorial schedule

• Part 1 (General Part)
 — Motivation
 — Review of color/color spaces
 — Overview of camera imaging pipeline

• Part 2 (Specific Part)
 — Modeling the in-camera color pipeline
 — Photo-refinishing

• Part 3 (Wrap Up)
 — The good, the bad, and the ugly of commodity cameras and computer vision research
 — Concluding Remarks
Part 3: Wrap Up
The Good, The Bad, and the Ugly - 1966
Western Movie directed by Sergio Leone
One of the most influential “Western” films and one of the “Great Films of All Times”
Color on cameras is not standard

• We have already discussed the “bad” in part 2
• No camera outputs true “sRGB” with respect to the incoming light
• Each camera applies its own color rendering
• Calibration of the camera is required
• While we have good calibration methods, such calibration needs to be done for each camera, and for many different settings (not practical)
No standard for RAW color space

• RAW is good because it is linear
• However, RAW is a scene-referred color space, specific to the sensor
• This mean RAW RGB values from image on difference cameras of the same scene will be different
Example – RAW is not standard

Example
Top: RAW images from three cameras, all of the same scene.
Bot: Error plots showing the pixel-wise L_2 difference between camera pairs
Problems in academic research

1. Lack of understanding of color on cameras and relationship to “real” color spaces

2. Research and results performed “out of context” of the camera processing pipeline

3. Lack of ability to emulate full camera pipelines
Ugly Example – Color spaces

• Recall our color space transforms
• Camera images are saved in sRGB

\[
\begin{align*}
X & = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \end{bmatrix} R \\
Y & = \begin{bmatrix} 0.2126 & 0.7152 & 0.0722 \end{bmatrix} G \\
Z & = \begin{bmatrix} 0.0193 & 0.1192 & 0.9505 \end{bmatrix} B \\
\end{align*}
\]

\[
\begin{align*}
X & = \begin{bmatrix} 0.6071 & 0.1736 & 0.1995 \end{bmatrix} R \\
Y & = \begin{bmatrix} 0.2990 & 0.5870 & 0.1140 \end{bmatrix} G \\
Z & = \begin{bmatrix} 0.0000 & 0.0661 & 1.1115 \end{bmatrix} B \\
\end{align*}
\]
Ugly examples

The conversion of RBG to YCbCr is done by the equation given as in equation (2):

\[
\begin{align*}
Y &= 0.299R + 0.587G + 0.114B \\
Cb &= B - Y \\
Cr &= R - Y
\end{align*}
\]

(2)

The skin segmentation step thus employed exploits the 2D chromatic subspace to reduce the dependence of illumination. A skin color map is derived and used on the chrominance components of the input image to detect pixels that are of skin color. According to the authors the most suitable ranges of Cb and Cr that can
scaling by a different factor. This can be achieved easily with the following formula:

\[Y(x, y) = 0.299 \, R(x, y) + 0.587 \, G(x, y) + 0.114 \, B(x, y), \quad (1) \]
\[U(x, y) = 0.492 \, (B(x, y) - Y(x, y)), \quad (2) \]
\[V(x, y) = 0.877 \, (R(x, y) - Y(x, y)). \quad (3) \]

In our approach, the color image is first transformed to YUV color space. However, the proposed texture feature is based on the DCT coefficients that are calculated only from the Y (luminance) component. The main reason for this decision is that human visual system is more sensitive to Y than to other chrominance components.
II. Algorithm for Skin Detection

The Figure 4 illustrates the algorithm steps. This was implemented using the language C and openCv library. First, the image in RGB was converted to HSV color space, because it is more related to human color perception [1]. The skin in channel H is characterized by values between 0 and 50, in the channel S from 0.23 to 0.68 for Asian and Caucasian ethnics [2]. In this work we used images from different Caucasian people, from different places of the world. Figure 1 illustrates one of the original image processed.
Analyzing ugly

• One of the most common examples in the academic literature – obtaining the luminance (CIE Y) channel from an sRGB image

![sRGB image](image1) ![CIE Y image](image2)

• Goal is to often *purported* to find the imaged scene’s “brightness” (i.e. CIE Y)
Analyzing sRGB to luminance (Y)

1) Perform experiments to see just how accurate sRGB to luminance conversion

2) Examine the common mistakes made in the academic literature
Experimental setup

Generate “true CIE XYZ” images (ground truth)

Color Matching Functions

CIE XYZ

Scene (Spectral Power Distribution)

Wavelength (\(\lambda\))

\(S(x, \lambda)\)

\(C_c(\lambda)\)

Image under CIE XYZ color space

Chromaticity

Luminance

Scene (Spectral Power Distribution)

SPD1

SPD2

SPD2 (Y:38, x:0.24, y:0.61)

SPD1 (Y:50, x:0.56, y:0.37)
Test on two types of inputs

Color rendition chart

Full scenes

\[S(x, \lambda) \]
Generate synthetic camera images

Sensor Image (RAW) → White balance → Color Space Transform (CST) → CIE XYZ Linear-sRGB → Tone Curve →

Simulate different cameras using sensitivity functions
Generate images with different white balance settings on camera
Generate images with camera-specific tone-curves
Three common mistakes in the literature
(when attempting to map a sRGB camera image to CIE – Y)

• Assumption that white balance is correct

• Using the wrong equations (and calling it CIE – Y)

• Not applying the correct linearization step
1. White balance assumption

There is an implicit assumption that the white balance was estimated correctly.
2. Wrong Equations

NTSC is used instead of sRGB (often under the guise of YUV/YIQ)

\[
Y = 0.299R + 0.587G + 0.114B.
\]

Correct eq \((Y = 0.2126R + 0.7152G + 0.0722G)\) *

Average of RGB is used

\[
Y = \frac{1}{3}(R + G + B)
\]

Hue, Saturation, Value (HSV) - Value is taken to equate to scene Luminance

\[
Y = \max(R, G, B).
\]

* YUV/YIQ are actually defined with these weighted coefficients applied on the gamma-encoded RGB. So, the entire equation is an incorrect interpretation of Y.
3. Linearization is incorrect

Sensor Image (RAW) → White-balance → [# # #] → Color Space Transform (CST) → [# # #] → [3.24 -1.53 0.49] → [-0.96 1.87 0.04] → [0.05 -0.20 1.05] → CIE XYZ Linear-sRGB → Camera-specific tone-curve

Wrong tone-curve (sRGB gamma)

Apply inverse equations
3. Linearization is **not** applied

Sensor Image (RAW) → White-balance → Color Space Transform (CST) → CIE XYZ → Linear-sRGB

Apply inverse equations

Wrong tone-curve (sRGB gamma)
3. No linearization – “Luma”

Ignoring linearization has a name. It is called Luma instead of Luminance. Variable Y' is used to distinguish it from Luminance Y (e.g. YIQ, YUV)

$$Y' = 0.299R' + 0.587G' + 0.114B'$$

$$Y' = \frac{1}{3}(R' + G' + B')$$

$$Y' = \max(R', G', B')$$
How ugly is it?
White balance not correct

Nikon camera – white balance is wrong, but we have ideal CST, sRGB gamma

Overall error less than 1.5%
Wrong tone-curve (right equation)

Camera tone-curves

- **Canon 1Ds Mark II**

- **Nikon D40**

- **Sony α200**

Ground Truth Y

Result with using sRGB gamma

Error Map

Errors for some colors can be over 25-40%
Wrong equations (right tone-curve)
Wrong equations (wrong tone-curve)

Commonly found in academic papers
Wrong equations (no linearization)

All very common in academic papers
Ugly analysis

• White balance assumption violation not too serious

• Incorrect tone-curve is significant (25-40% error)

• No tone-curve (Luma) is the worse (over 40% error)

• HSV is the worst of the “wrong” equations, but not worse than using the incorrect tone-curve
Why bother with CIE-Y?

(a) sRGB image

(b) Y of YIQ

(c) RGB to Gray*

(d) SIFT features on (b)

(e) SIFT features on (c)

(f) Canny edges on (b)

(g) Canny edges on (c)

More examples . . .
Another ugly problem . . .

- Applying operations in the “wrong” context . . .
- E.g. applying white balance on sRGB images . . .
- Or, denoising an sRGB image . . .
- Or, deblurring an sRGB image . . .
Camera processing pipeline

Sensor with color filter array (CCD/CMOS)

Gain Control
A/D Converter
Possible LUT

White Balance

Tone Curve

Color Space
Transform + Color
Preferences

Noise
Reduction/
Sharpening

CFA
Demoasicing

JPEG
Compression

Save to
storage

sRGB

Exif File Info
Classic white balance results out-of-context

“Subjective” white balance results shown (images are in camera-raw color space)

These subjective results have absolutely no visual meaning.
The camera-raw is not a standard color space!

From Cheng et al. CVPR 2015
Consider image deblurring

Assumption is: linear color space (RAW or linear-sRGB)

Reality: image has been run through the pipeline and some non-linear tone-curve \(f \)
Gamma/tone-curve effect on blur

RAW vs sRGB deblurring

Input with blur

Ground Truth

Deblur on RAW

Deblur on sRGB
State of affairs (The Ugly)

• Many researchers don’t understand camera color

• Attempt to treat sRGB images as true scene measurements (ideal sRGB images)
 – Often use wrong equations, forget linearization, etc.
 – Results can be erroneous by up to 50%
 – Why even attempt CIE Y?

• Research is often applied without understanding the context of the color processing pipeline
Raw image format - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Raw_image_format
A camera raw image file contains minimally processed data from the image sensor of either a digital camera, image scanner, or motion picture film scanner.
Rationale - File contents - Processing - Software support
You've visited this page 2 times. Last visit: 10/11/15

People also ask
What is a RAW image?
What is a RAW image file?
What is a Camera Raw file?

10 Reasons Why You Should Be Shooting RAW
photographyconcentrate.com/10-reasons-why-you-should-be-shooting-r...
You've probably heard over and over that you should be shooting in RAW. But do you know why it's so important? And what it really means for your images?
Enable DNG raw capture
Adobe Digital Negative (DNG)

• Public raw-camera image file specification

• Open source SDK for processing DNG to sRGB

• After almost 10 years, this is becoming mainstream
Android Camera2 API

• Allows access to many of the onboard camera procedures

• Access to camera characteristics (CST, white balance)

• Can capture RAW images in DNG
DNG SDK “access” to the pipeline

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application

sRGB
Matlab platform for color pipeline manipulation

User has access to the image at each step in the color processing pipeline.

Parameters for each step can be modified.

All using Matlab calls.

Camera color pipeline platform

Matlab

Adobe DNG SDK

Camera raw + camera parameters (CST, WB, lens correction, etc)
Matlab platform for color pipeline manipulation

Camera color pipeline platform

Matlab

Adobe DNG SDK

Camera raw + camera parameters (CST, WB, lens correction, etc)

Output Image
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
Reading RAW Image
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application

Noise Reduction
Black light subtraction + linearization
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
Lens Correction
(non-uniform gain)
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
Demosaic
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
White balance + color space transform
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application

Steps:
1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
Hue/Sat map application
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing

5. White Balance
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
Exposure curve application
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application

- Exposure Curve Application
- Hue/Sat Map Application
- Look Table Application
- Tone Curve Application
- Final Color Space Conversion
- Gamma Curve Application
3D lookup table application
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
Tone curve application
Final color space conversion
(CIE XYZ -> linear sRGB)
Matlab camera platform / Adobe DNG

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application
sRGB gamma curve application
All together now
All together now

Black level subtraction and linearization
All together now
All together now
All together now

White balance
+ color space transform (CIE XYZ)
All together now
Using the platform - Examples

• White balance “in context”

• Camera colorimetry

• Real sRGB outputs
“White balance” in context

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. Color Space Transform
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application

sRGB
White balance example

Input Raw

White balance method 1

White balance method 2

This is how subjective WB results would have been presented before.

Results through the “full pipeline”
Colorimetry example

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application

Output: sRGB
Example - colorimetry

Can compute our own CST.
Derive a mapping from the camera raw color space to the CIE XYZ space.
This is the CST in the pipeline.
Calibrate using X-Rite software
Four Android cameras

Samsung S6-Edge HTC M9 Motorola Nexus 6 LG-G4

Goal is that the colors for all the cameras are the same.
Color chart patches
RAW– (i.e. without any color transformation)
Color chart patches
RAW + white balanced and CST from the camera
Color chart patches
X-Rite profile calibration (CST)
Color chart patches
Our CST estimation

Based on a method by Bastani and Funt, SPIE 2014
Applied to other materials

81 Paint chips
Additional materials

RAW– (i.e. without any color transformation)
Additional materials
RAW (white balanced and CTM of camera)
Additional materials

X-rite Profile

- Equilateral triangle
- Samsung-S6-edge
- Motorola-nexus6
- LG-G4
- HTC-one-m9
Additional materials

Our CST estimation

- Equilateral triangle
- Samsung-S6-edge
- Motorola-nexus6
- LG-G4
- HTC-one-m9
True sRGB Example

1. Reading RAW Image
2. Black Light Subtraction Linearization
3. Lens Correction
4. Demosaicing
5. White Balance Color Space Conversion
6. Hue/Sat Map Application
7. Exposure Curve Application
8. Look Table Application
9. Tone Curve Application
10. Final Color Space Conversion
11. Gamma Curve Application

sRGB
True sRGB vs. camera RGB

“True sRGB”

Camera sRGB
True sRGB vs. camera RGB

“True sRGB”

Camera sRGB
State of affairs (The Good)

• DNG allows access to processing pipeline parameters

• Android Camera2 API now supports DNG capture

• Developing a Matlab platform for researcher working on low-level vision
Concluding remarks

• Your camera performs a great deal of processing
• RAW
 – Represents relatively unprocessed sensor response
 – Does not represent CIE XYZ
 – Transform to CIE XYZ is not readily available
 – There is no standard RAW!
• sRGB
 – Is defined with respect to CIE XYZ
 – However, incoming radiant energy (SPDs) to sRGB is not standardize (otherwise all camera images would look the same)
Concluding remarks

• Our experiments found
 – Mapping from RAW to sRGB changes for different picture styles (portrait, landscape, vivid, standard, etc. .)
 – Picture styles can be modeled with a 3D function + tone-map
 – White-balance (so far) seems independent of picture styles
Good, Bad, Ugly Summary

- Cameras are black boxes
- sRGB is not standard across cameras
- Makes it hard to develop apps

- Researchers need more education
- Lack of understanding
- Research being performed “out of context”

- Situation is (slowly) changing
- DNG + Android
- Platforms to support research are coming
Embrace the in-camera processing

• Onboard photofinishing make our photos look great
• Embrace the technology!
Thank you for attending

Special thanks to my students and colleagues for contributing images, code, and materials to this tutorial.
Understanding Color Perception

Hermann Grassmann

Johannes von Kries

W. David Wright

James Clerk Maxwell

Hermann von Helmholtz

Thomas Young
Digital Cameras

Bryce E. Bayer

Willard Boyle and George Smith
(Nobel Prize for inventing the CCD)
Photo: Reuters

Eric R. Fossum
(Invented CMOS)
“The Standard Observers”
References/additional materials

Books
· M. Fairchild, Color Appearance Models, Wiley, 2005
· C. Poynton, Digital Video and HD Algorithms and Interfaces, Morgan Kaufmann, 2012

Articles/Conference Papers
· H. Fairman et al “How the CIE 1931 Color-Matching Functions Were Derived from Wright–Guild Data”, Color Research & Application, Feb 1997
· S. J. Kim et al “A New In-Camera Imaging Model for Color Computer Vision and its Application”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Dec 2012
· E. Garcia, M. Gupta, “Building accurate and smooth ICC profiles by lattice regression”, Color and Imaging Conference, 2009
References/additional materials

Websites/Online Resources

Photo Tech Edu Series Jan 2007 (Google)

Available on youtube

Richard Lyon: Digital Camera Image Processing Pipelines

http://www.photo-mark.com
Mark Meyer Photography
Professional photography blog with nice tie-ins to color from a photographers point of view

http://dougkerr.net
Doug Kerr postings
A large collection of self-published articles on various aspects of imaging in an “accessible language” to most readers
Acknowledgements

This work was supported in part by generous gifts from:

• Adobe Research
• Google Research (Faculty Award 2015)