
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021 273

A Scalable Hardware Accelerator for
Mobile DNA Sequencing

Karim Hammad , Member, IEEE, Zhongpan Wu, Member, IEEE, Ebrahim Ghafar-Zadeh, Senior Member, IEEE,
and Sebastian Magierowski, Member, IEEE

Abstract— DNA sequencers are being miniaturized and
increasingly targeted toward mobile applications. However,
the intense bioinformatic computing needs of sequencers present
a challenge for remote use with limited energy supply. This article
presents a step toward realizing a low-power and high-speed
bioinformatic engine, a hardware-accelerated basecaller, for
mobile sequencing applications. The design is targeted for
nanopore-based sequencers and is architected to easily scale to
the complexity of this sensor. In addition to accelerating the CPU
in real time with a custom field-programmable gate array (FPGA)
through a high-speed serial link, the proposed framework
envisages the challenging memory requirement of high-order
nanopore sensors. The framework proposes a memory manage-
ment scheme, which provisions the memory requirement problem
in three dimensions: the basecalling speed, the circuit’s area, and
power consumption. The implementation results demonstrate a
142× basecalling speed improvement over a 12-core CPU-only
reference, as well as significant speedup compared with other
existing solutions. Also, an energy efficiency improvement of three
orders of magnitude is measured.

Index Terms— Field-programmable gate array (FPGA) accel-
eration, hidden Markov model (HMM) basecalling, memory
design, mobile DNA sequencing, nanopore, peripheral component
interconnect express (PCIe), reusable integration framework for
FPGA accelerator (RIFFA).

I. INTRODUCTION

DNA sequencing is an important experimental procedure
in genomics. Over the decades, advances in this proce-

dure have greatly influenced the cost and scale of genome
analysis. This influence has accelerated substantially since
2003, the year that the Human Genome Project [1] was
declared complete. Recent studies [2] showed that the cost
to sequence a human genome over time is a stark record of
just how profound this improvement has been; since 2001,

Manuscript received May 28, 2020; revised August 29, 2020 and
November 13, 2020; accepted November 29, 2020. Date of publication
January 5, 2021; date of current version January 28, 2021. This work was
supported in part by the Canadian Food Inspection Agency (CFIA), in part by
CMC Microsystems, in part by the Natural Sciences and Engineering Research
Council (NSERC), and in part by the Southern Ontario Smart Computing
Innovation Platform (SOSCIP). (Corresponding author: Karim Hammad.)

Karim Hammad is with the Department of Electrical Engineering and
Computer Science, York University, Toronto, ON M3J 1P3, Canada, and also
with the Arab Academy for Science, Technology and Maritime Transport,
Cairo, Egypt (e-mail: khammad@eecs.yorku.ca; khammad@aast.edu).

Zhongpan Wu, Ebrahim Ghafar-Zadeh, and Sebastian Magierowski are
with the Department of Electrical Engineering and Computer Science, York
University, Toronto, ON M3J 1P3, Canada (e-mail: zhongpan@eecs.yorku.ca;
egz@eecs.yorku.ca; magiero@eecs.yorku.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2020.3044527.

Digital Object Identifier 10.1109/TVLSI.2020.3044527

sequencing costs have plummeted by eight orders of magni-
tude, an average doubling in “performance” every 8.5 months.
This impressive progress is the result of numerous improve-
ments made by industrial and academic sectors to improve
the DNA sequencing “pipeline” (the set of steps comprising a
genome-measurement procedure).

Among the most exciting recent developments in the field is
its expansion toward mobile contexts. In particular, palm-sized
DNA measurement machines have emerged [3] that weigh
less than 100 g. These machines can be injected with “short”
and specially prepared DNA samples (“strands”), in a contin-
uous manner and, in response, continually output electronic
time-series representations of these input molecules. These
output signals are drawn from a parallel array of DNA sensors.
From a sensor array spread across an area of roughly 1 cm2,
ideally, the equivalent of one human genome can be measured
in about 3.5 h [4], [5]. The emerging nature of this technology
suggests that even greater throughput may be achieved as these
devices mature. Such technology promises to greatly expand
the reach of biomolecular analysis beyond specialized research
laboratories.

One barrier to large-scale deployment of such miniature
DNA measurement machines is computing. Although a vast
amount of data can be drawn from them, converting the
electronic outputs to their text-equivalent (i.e. the DNA “base”
molecule labels A, C, G, T) requires intense bioinformatic
computation. Presently, this is accomplished outside the device
itself, with off-the-shelf computing elements (CPU and GPU).
The power needs of such computers limit the opportunity
for sequencing in mobile settings. Hence, this article is
motivated by developing a low-power accelerator for such
power-sensitive sequencers.

In this article, we describe a hardware-accelerated bioin-
formatics compute engine of promise for use in mobile
sequencing. Our focus is on the “basecalling” phase of the
sequencing pipeline, the first major bioinformatic step in the
process. Basecalling is a detection step that classifies physical
measurements (e.g., such as the aforementioned electronic
signals) of DNA strands into their text equivalent. A DNA
measurement machine may have thousands or millions of
such sensors working in parallel. Billions of DNA strands,
each composed of dozens to thousands of bases, are randomly
distributed across such arrays. The bioinformatic steps that
follow basecalling (outside the scope of this article) correct
and assemble the basecalled “reads” into contiguous segments
of the test subject’s genome, stretching tens of thousands or
billions of bases.

1063-8210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2311-3230

274 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

The probabilistic nature of the basecalling problem for
nanopore signals (i.e., arising from the additive noise accu-
mulated by the thermal variation of the nanopore sensor and
its subsequent signal conditioning circuits) was addressed in
the literature by two approaches. First, the hidden Markov
model (HMM) has demonstrated a great potential in address-
ing the stochastic characteristic of the nanopore signal [6]. The
authors have studied a small-scale 3-mer solid-state nanopore
sensor model and a 64-states HMM basecaller to decode
the sensor’s electrical signal. The studied HMM method has
shown a significant potential for an accurate modeling of
the studied nanopore without reflecting upon the computa-
tional challenges. Hence, our recent work reported in [7]
has offered a field-programmable gate array (FPGA) accel-
eration framework for the CPU implementation of the HMM
approach reported in [6]. The speedup factor for the proposed
FPGA-accelerated basecaller in [7] compared to the CPU-only
basecaller was 172× with three orders of magnitude improve-
ment in energy efficiency. Another prime example reported in
the literature for the application of the HMM approach is the
basecaller, denoted as Nanocall, presented in [8]. Nanocall has
been fully implemented on a 4-core CPU in C++ employing
a 4096-states HMM basecalling scheme (i.e., 6-mer nanopore
model). Nanocall has demonstrated a maximum basecalling
speed of 6.7 Kbases/s.

Second, the deep learning neural network (NN) approach
has been noted to be widely addressing the nanopore base-
calling problem. In [9], various NN-based basecallers known
as Albacore, Guppy, and Scrappie were comparatively eval-
uated. These 5-mer basecallers have demonstrated different
performances in terms of speed based on the underlying
recurrent NN (RNN) architecture. Guppy was reported to be
the fastest with 1.5 Mb/s due to hosting an NVIDIA GTX
1080 GPU as an accelerator, whereas Albacore and Scrappie
are only CPU-based. Despite the significant potential of the
RNN basecallers presented in this study, the computational
complexity of the HMM is still noted to be lower than RNN.
This essentially raises a sp between both approaches when
considering hardware accelerators in a mobile sequencing
context. It should be noted that the NN class of the basecaller
is out of this article’s scope.

In this article, we present a design architecture that par-
titions an HMM-based basecalling algorithm across a com-
modity CPU and an accompanying FPGA-based accelerator.
Importantly, the design can be scaled with the complexity
of the DNA sensor. The design is tuned for nanopore-based
sequencing machines, currently the only portable DNA mea-
surement devices available [5], [10]. Within this architec-
ture, we use an efficient memory design to maximize the
basecaller’s speed/power ratio. The design is realized and its
performance is experimentally assessed. To our knowledge,
this is the first such basecaller design to be reported in the
open literature. Preceding work [7], [11] has begun to address
this issue, but for a DNA sensor model that is roughly two
orders of magnitude less complex. On the other hand, to the
best of our knowledge, the hardware acceleration challenges
for the more realistic 4096-states HMM basecaller have not

been reported yet in the open literature. Hence, we put this
problem as the subject of this article.

The rest of this article is organized as follows. Section II
presents the nanopore sequencing methodology and its chal-
lenges. The algorithm used by our proposed basecaller and its
architectural transformation to match our scalable basecalling
acceleration engine design is discussed in Section III. The
proposed FPGA architecture for the proposed acceleration
engine is described in Section IV. The implementation results
are presented in Section V. Section VI concludes this article.

II. MOBILE SEQUENCING TECHNOLOGY

DNA sequencing based on nanopore sensors [5] is an excel-
lent example of the potential to extend molecular measurement
to mobile contexts. Although the process by which it is real-
ized is complex, the nanopore sensor concept is simple; it is an
opening (or pore) located in an otherwise impermeable support
membrane. For DNA sequencing purposes, the diameter of
such sensors is about 2 nm, just enough for a single DNA
strand to thread through (translocate) at-a-time. The nanopore
is surrounded by a complex electrical and fluidic apparatus.
Thus, as a strand translocates a step-wise electronic signal is
ultimately generated (see Fig. 1). This signal is indicative of
the DNA’s base molecule make-up. In existing nanopore-based
sequencers, hundreds of such measurements can be generated
simultaneously from nanopore sensors arrayed across areas as
small as 1 cm2.

Ideally, only four distinct levels, each indicative of one of
the four base types would be apparent in the signal. However,
the interaction between the DNA molecule and the nanopore is
complicated. For example, multiple DNA bases interact with
the nanopore at a single time instant essentially “blurring” the
measurement. Also, the noise induced by the sensor and its
associated apparatus further distorts the measurement. Thus,
to basecall any one strand’s signal, a sophisticated statistical
detector is needed. Many possibilities are available to imple-
ment this, and in this work, we focus on sequence detectors
employing the hidden Markov model (HMM) formalism.

In the literature, only a few studies have been noted
to consider the hardware acceleration problem in the DNA
sequencing context in general [12], [13] and in basecalling
nanopore signals in particular [9]. It is worth noting that the
GPU-accelerated nanopore basecaller reported in [9] is based
on an NN solution that is out of the scope of this article. This
further supports the motivation of this work.

III. DNA BASECALLING USING HMM

HMM-based detectors consider the history of measurement
in classifying any particular input. This makes them suitable
for situations such as nanopore basecallers where some subset
of k bases (a k-mer) is contributing to the measured signal
at any one time. By tracking a history of such measurements,
an HMM detector can better distinguish which of the DNA’s
four possible bases was actually responsible for the signal
at any one measurement instant. HMM algorithms are used
across a variety of applications in bioinformatics with more

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

HAMMAD et al.: SCALABLE HARDWARE ACCELERATOR FOR MOBILE DNA SEQUENCING 275

Fig. 1. Example of a nanopore signal output.

details available in [14] and [15]. Its application specifically to
nanopore basecalling is given in [8], an approach we employ
here as well.

A. Emission and Transitions Models

For our application, the hidden states of the HMM model
describe the possible k-mers present inside the nanopore
sensor at a given measurement time instant. HMM-based
prediction of the pore state is achieved with the help of
emission and transition models.

The emission model considers each new measurement xi

(e.g., each new level as shown in Fig. 1, indexed across
measurements of unique levels) and computes the likelihood
of this measurement given its model of the sensor. A sensor
model consists of a set of expected measurement levels, {μ j },
and a corresponding set of expected standard deviations from
these levels, {σ j}, one set for each possible pore state j .
For models of sensors with a resolution of k bases (roughly,
nanopores that produce signals in response to k bases at-a-
time), j ∈ {0, 1, . . . , 4k − 1} one for each possible k-mer
combination in the nanopore. Assuming that xi conforms to a
Gaussian distribution, this likelihood, for each possible model
parameter, can be expressed as

ε j(xi) =
(
2πσ 2

j

)− 1
2 exp

[
(xi − μ j)

2/2σ 2
j

]
. (1)

The number of these computations (i.e., the number of HMM
“states”), and hence the complexity of the emission model,
scales linearly with j and hence exponentially with the reso-
lution of the detector.

The HMM’s transition model governs which sequence of
k-mer observations are possible from measurement to mea-
surement. In particular, it specifies the possible ways that a
certain pore state j at measurement i can make a transition to
another state at the ensuing measurement i + 1. Naturally, not
all transitions are possible. Ideally, only four transitions would
be expected from any measurement i to the next measurement
at i + 1 since only one of four bases can enter the pore at any
particular time and thus result in only four different possible
measurement values. In practice, however, a more complex
transition scheme must be accounted for. An example of this

Fig. 2. Example of 21 transitions model for a 6-mer nanopore.

is shown in Fig. 2 for one state in a 6-mer HMM. The example
considers the transition for the state j associated with the
AAGATC 6-mer, but the same general transition pattern would
be present for all 4096 states in such an HMM.

As shown in Fig. 2, rather than just making one of four
possible step transitions, 17 other transition possibilities are
included, and thus, a total of 21 possible transitions are
accounted from present measurement states at i to the fol-
lowing measurement states at i + 1. These include one stay
transition that accounts for the possibility that a previous
measurement is mistaken for a new one and 16 skip transitions
that account for the possibility that a base was not registered
and hence that a new measurement actually contains contri-
butions from the last two bases to enter the nanopore. More
discussions on these mechanisms are available in [7] and [8].
The probability of a transition from one state to the next is
denoted with τ (state at i, state at i + 1). As with μ j and σ j ,
these are nanopore model parameters.

B. Basic Basecalling Algorithm

The HMM basecaller employs a dynamic programming
strategy to execute its text labeling. As with the Viterbi
algorithm [16] upon which it is based, the basecaller can be
viewed as searching for an optimum path across a trellis of
M = 4k states (j ∈ {0, . . . ,M−1}) spanning N measurements
(x0 to xN−1). The details of the HMM detection method are
described in the pseudocode provided in Algorithm 1.

The basecaller is composed of two main parts. First,
the HMM trellis (which utilizes the emission and transition
models of the sensor) is used to compute the posterior prob-
abilities (as explained below) for the M states, a computation
repeated over N measurements. Second, the traceback proce-
dure, guided by the posterior values, then goes backward over
the HMM trellis to find the most likely sequence of states
(i.e., π∗ = (π∗i)N−1

i=0) and, hence, the most likely sequence of
bases (i.e., â = (âi)

N−1
i=0) associated with the measurements.

In more detail, first, the Initialize block (lines 1–2) is
invoked once at beginning for the first event x0 of the input
sequence. The M emission probabilities for x0, ε j (x0), are

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

276 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Algorithm 1 HMM Basecalling—CPU-Only Version

sequentially calculated in a loop based on (1), and the result
is stored as the posteriors of x0 and α0(j).

Second, the Iterate block constructs the HMM trellis. Con-
structing the trellis is carried out by two nested loops: the
outer loop (lines 4 and 9) traverses the N input events,
whereas the inner loop (lines 5–8) traverses the M states
for each input event xi . In other words, for each new event
xi , the Iterate block calculates the M posterior probabilities
αi (j) in line 6. In addition, line 7 computes M βi(j) values,
and these are pointers to the trellis state at i most likely
to have followed those at i−1. The most probable transition
is selected from the 21 possible transitions, ω(j), as shown
in Fig. 2. It should be noted that the posteriors calculation
in line 6 implies calculating the states’ emission probabilities,
ε j (xi), as in line 2.

Third, the EndState block (lines 10–12) determines the
end-state index, π∗N−1, and the end-state bases, âN−1. The
end-state index is essential for the Traceback procedure
(i.e., explained in the following paragraph) and acts as the
starting point for the optimal path of the nanopore states.

Fourth, the Traceback block (lines 13–17) is the HMM
decoder’s second computational portion that utilizes the point-
ers calculated by the HMM trellis in finding the most prob-
able sequence of states, π∗, over which the nanopore has
experienced. Knowing the states sequence then directly helps
determining the resulting DNA bases â leading to it and,
hence, finalizing the basecalling task.

C. Unrolled Basecalling Algorithm

The posterior calculation in Algorithm 1 (lines 6–7) is
especially suitable for unrolling, ideally across all M states.
For hardware accelerators, this could be directly met with M
parallel compute blocks. However, given the complexity of
existing nanopore sensors in DNA sequencing applications,
such one-step unrolling is not practically feasible. In con-
temporary cases, nanopore models depend on as many as
M = 4096 states, the 6-mer case. The complexity of each state
calculation coupled with power constraints precludes most
current technologies from economically dealing with this in
a mobile context.

Algorithm 2 HMM Basecalling–FPGA-Accelerated Version

Therefore, we propose another version of Algorithm 1,
which could be efficiently accelerated using an accompa-
nying hardware device such as an FPGA. The modified
FPGA-accelerated algorithm is shown in Algorithm 2.

The essence of Algorithm 2 is breaking-up the inner loop
(lines 6–7) of Algorithm 1, and essentially the initializa-
tion loop in line 2, into smaller size loops. In particular,
the 4096 loop interactions are chopped to 64 iterations each
of which loops 64 times. In other words, the 4096 states are
divided over 64 time segments. Each segment s is responsible
for computing 64 “adjacent” states, r (i.e., segment 0 contains
states 0–63, segment 1 contains states 64–127, . . ., segment
63 contains states 4032–4095) in a parallel fashion. In sum-
mary, each global state index j in Algorithm 1 is mapped to
a local state index r , which belongs to specific segment index
s in Algorithm 2 using the following formula:

j = s × 64+ r (2)

where s, r ∈ {0, . . . , 63} and j ∈ {0, . . . , 4095}.
The motivation of the loop segmentation is to take advantage

of constructing a parallel structure composed of 64 slices to
compute the 64 posteriors of a single segment of states at
a time on a hardware accelerator such as an FPGA. This
potentially overcomes the logic resource limitation of target
hardware and the power consumption challenge they would
face if intended for a 4096-state design.

The 64-state parallel structure is time-multiplexed over
64 cycles to finalize the posterior computations of the
4096 states for one measurement xi . Thus, the loops of the
Initialize, Iterate, and EndState blocks in Algorithm 1 are
divided over 64 segments and sent to the FPGA for accelerated

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

HAMMAD et al.: SCALABLE HARDWARE ACCELERATOR FOR MOBILE DNA SEQUENCING 277

computing. This can be seen in lines 2–4, 7–12, and 16–22 in
Algorithm 2, respectively. On the other hand, the loop of the
Traceback block loop remains unchanged as it is executed on
the CPU side. It is worth mentioning that reading/writing the
4096 posteriors from/to the memory on the FPGA accelerator
throughout the 64 segments of each event follows a certain
memory management scheme that we propose and describe in
the next section. That scheme speeds up the computations of
lines 9 and 10 in Algorithm 2.

IV. BASECALLING ACCELERATOR ARCHITECTURE

In this section, we present an FPGA basecalling acceler-
ator architecture for decoding 6-mer nanopore signals. The
design is guided by the modified HMM basecaller outlined in
Algorithm 2. The proposed architecture addresses the tradeoff
between parallelizing the significant computational require-
ment for a 6-mer nanopore signal and the power requirement.
To strike that balance, our proposed architecture comes up
with a custom memory management scheme on the FPGA
side of the basecalling system. One unique aspect, elaborated
in the following discussions, of our architecture is that it can
seamlessly scale down to deal with 5- and 4-mer nanopore
signals if needed.

A. Proposed Basecalling Acceleration Engine

The block diagram of the proposed FPGA architecture
for the basecalling acceleration engine is shown in Fig. 3.
The double-stroke arrows denote multiple signal channels
(the number of channels is indicated above the arrow); the
single-stroke arrows denote only one signal. The engine is
designed to execute the Initialize, Iterate, and EndState blocks
of Algorithm 2. The remaining function, Traceback, is left for
execution on the CPU itself. Besides being a suitable workload
for the CPU, this also helps avoid overloading the FPGA’s
limited resources which we reserved for the compute-intensive
HMM trellis processing kernels.

As mentioned in Section III, the calculations of both the
Initialize and Iterate blocks for the 4096 states are partially
parallelized. Also, as commonly done in stochastic detection,
we replace the linear probability terms used in lines 3,
9, and 10 of Algorithm 2 with the negative log-likelihood
representations. This allows the probability chain rule to be
computed using addition rather than multiplication. Conse-
quently, the max[·] operations in lines 9, 10, 15, 18, and 19 in
Algorithm 2 are replaced with min[·], and (1) reduces to

− ln εs
r (xi) = ln

(
σ s

r

)+ (
xi − μs

r

)2
(3)

where εs
r (xi) is the emission probability of state r ∈

{0, . . . , 63} of segment s ∈ {0, . . . , 63} when observing xi ;
μs

r and σ s
r are the level mean and level standard deviation

model parameters for state r of segment s, respectively. Thus,
the FPGA block for a single-state emission calculation is
comprised of a two-input subtractor, a two-input multiplier,
and a two-input adder.

Similarly, the logarithmic posterior and pointer calculations
in lines 9 and 10, respectively, of Algorithm 2 are computed

Fig. 3. FPGA architecture of the proposed basecalling acceleration engine.

for each state r of segment s as follows:

ln αs
i (r) ← ln εs

r (xi)+ min
ν∈ωs(r)

[ln αi−1(ν)+ ln τ (ν, r)] (4)

βs
i (r) ← arg min

ν∈ωs(r)
[ln αi−1(ν)+ ln τ (ν, r)]. (5)

The function of each building block for the proposed engine
architecture in Fig. 3 is summarized as follows.

1) The Controller block maintains the data flow config-
uration and timing for all other components of the
engine. In particular, it signals to enable permissions
for each block to indicate the start and end of operation
cycles, and it receives valid status signals indicating
elapsed calculations for event pointers and the end-state
pointer. Another major function for the controller is to
ensure that the engine’s data path is time-multiplexed
64 times for each input event. The number of seg-
ments handled by the Controller can be seamlessly
programmed, thus allowing the engine to scale across
3 to virtually any nanopore model without the need
for any structural changes. For each new input and
each segment, the controller also manages the engine’s
external communication with the CPU.

2) The Model Memory is a memory block that stores the
HMM’s transition and emission model parameters.

3) The Emission Calculator block calculates the negative
logarithm of the 64 emission probabilities − ln εs

r (xi) in
parallel for each segment.

4) The Mux block passes the posterior of x0 (from Emis-
sion Calculator) at initialization and then the posterior
for xi>0 (from Transition Calculator for all ensuing
calculations). In each case, the Mux output is sent to
the Transition Calculator via the Posterior Memory as
explained in the following section.

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

278 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 4. Architecture of a single slice from the transition calculator.

5) The Posterior Memory is the engine’s main memory
block that is used for sequentially storing the 4096 pos-
teriors of input xi across its 64 segments and retrieving
the stored posteriors again for the following input xi+1

according to a custom memory control and addressing
scheme. For this purpose, the memory is composed of
three-block random access memory (BRAM) subblocks
to address the three transitions model explained in Fig. 2.
The details of the BRAM subblocks sizes, arrange-
ment and read/write addressing, and enable schemes are
explained in the following section.

6) The Adders layer after the Posterior Memory is
responsible for two functions. First, adding the transition
probabilities to the previous event posteriors which
corresponds to the addition operation in the arguments
of the min[·] and arg min[·] in (4) and (5), respectively.
Second, subtracting the global minimum posterior prob-
ability (among the 4096 states) of the previous event
from the BRAM output to avoid the numerical overflow
possibly accrued over a long run of inputs.

7) The Memory Mapper block links each state with the
21 possible states that may transition between inputs
i−1 and i , as shown in Fig. 2. More specifically, it is a
crossbar switch that allows any state r in segment s to
draw preceding posteriors αi−1 from the set ωs(r) of its
possible 21 preceding states. The delivery of appropriate
values through this crossbar is ultimately guaranteed by
the BRAM design as explained in the following subsec-
tion. In other words, the memory mapper has 64 output
lines, each of which carries 21 numbers (i.e., previous
event posteriors). Each line goes to a single-state slice
within the Transition Calculator block, which corre-
sponds to the line’s carried posteriors according to the
transition model shown in Fig. 2. It is worth mentioning
that the increased data width of the memory mapper’s
output compared to its input pertains to the repetitive
characteristic of the transition model. In particular, each
of the 16 consecutive HMM states has the same 16 skip
transitions, whereas each of the four consecutive states
has the same four-step transitions. These repetitive tran-
sition patterns cause multiplying the 64 posteriors loaded
from the skip and step BRAMs (within the Posterior
Memory block) by 16 and 4, respectively, at the output
of the memory mapper.

Fig. 5. Architecture of the minimum posterior and end-state block.

8) The Transition Calculator block is used to simulta-
neously compute the 64 posteriors, ln αs

i (r), in (4)
and pointers, βs

i (r) in (5), across 64 parallel “slices.”
As usual for our design, these 64 computations are
done one segment at-a-time for models that consist
of more than 64 states. The structure of each slice is
shown in Fig. 4. The slice is composed of a min[·]
function, arg min[·] function, and two-input adder. The
min[·] and arg min[·] functions are those adopted in (4)
and (5), respectively. The adder finalizes the calculation
of state r posterior probability in segment s, ln αs

i (r),
by adding the state’s emission probability, ln εs

r (xi),
according to (4).

9) The Minimum Posterior and End-state Block has two
functions, as shown in Fig. 5. The first is to find
the global minimum posterior probability, − ln αi,min,
for each xi (i.e., stored in the GM (global minimum)
Register) and use it in normalizing the BRAM readout
for the following xi+1 as discussed earlier. The global
minimum posterior probability for each event is searched
among the 64 segments using two min[·] functions. The
first min[·] function finds the local minimum posterior of
each segment (among the 64 posteriors at the Transition
Calculator’s output port). The second min[·] function
keeps a running track of the global minimum and stores
it in the TGM (temporary global minimum) Register.
The second function of the block is to find the end-state
index (i.e., π∗N−1) for the last event as in line 19 of
Algorithm 2. The global end-state index for xN−1 is
found using the arg min[·] function and placed in the ES
(End state) Register upon finding the global minimum
posterior for xN−1.

The basecalling engine starts off by receiving x0 from the
CPU’s main memory and enters the Initialize phase of its com-
putation. Over 64 segments, it computes the 4096 emissions
of x0, − ln εs

r (x0). These results are stored, for each segment s,
in the Posterior Memory using the 2-to-1 Mux, as shown
in Fig. 3. This operation (as well as other operations) is con-
trolled by the engine’s Controller block. In particular, at this
phase, the Controller only enables the Emission Calculator
block while disabling all other blocks of the engine. It also
controls the read/write mechanisms for the three BRAMs
during each segment as explained in the following subsection.

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

HAMMAD et al.: SCALABLE HARDWARE ACCELERATOR FOR MOBILE DNA SEQUENCING 279

For subsequent inputs xi , the engine works as follows. For
each segment s, the Emission Calculator and the Memory
Mapper feed the Transition Calculator. The first provides
the logarithm of the current segment’s emission probabilities,
whereas the second provides the appropriate preceding event
(i.e., xi−1) posterior probabilities that correspond to the current
segment states. The preceding posteriors come from the Mem-
ory Mapper after being added to the transition probabilities
and normalized using the minimum posterior (αi−1,min) of the
previous event xi−1. The Transition Calculator then calculates
the current segment posteriors and pointers according to (4)
and (5), respectively. The segment pointers βs

i (r) are sent
to the CPU through the peripheral component interconnect
express (PCIe) interface (as discussed in the following sub-
section), whereas the segment posteriors are stored in the
three BRAMs and sent to the normalization stage. The whole
process is repeated in the same manner for all states’ segments
until reaching the last segment, s = 63, of xi .

Similar to the sequential calculation of pointers and pos-
teriors across the event’s segments, the normalization stage
keeps updating the TGM Register with the segment’s local
minimum posterior, − ln αs

i,min, every new segment. This is
done until finding the global minimum posterior (among the
4096 states), − ln αi,min, at the last segment (i.e., s = 63). The
global minimum posterior is then stored in the GM Register to
be used for normalizing the BRAMs readout in the following
event xi+1. Once the engine reaches the last event (i = N−1),
the end state index (π∗N−1) is found (by the arg min[·] function)
concurrently while searching for the global minimum posterior
among the succession of segments. The end state index is sent
to the CPU’s main memory with the last segment pointers
of xN−1 (i.e., equivalent to line 19 of Algorithm 2). The
stream-line communication between the CPU and FPGA is
discussed at the end of this section.

B. Engine’s Memory Design

The main purpose of the Posterior Memory is to efficiently
store the 4096 posteriors of each trellis state at input i
and successively retrieve them for update at input i + 1.
As introduced above, this is accomplished for 64 states—
one segment—at-a-time. The reading and writing needed to
accomplish this are managed by the engine’s Controller block.

The Posterior Memory is composed of three BRAM blocks:
one for storing/retrieving the posteriors of the Skip states,
one for the Step states, and one for the Stay states of each
segment. In particular, when processing the posteriors of xi ,
the Skip BRAM block first retrieves the 64 skip posteriors of
xi−1 that correspond to each state’s segment of xi . Meanwhile,
the Skip BRAM block stores the calculated 64 posteriors of
each segment for event xi . The BRAM block is specially
arranged to ensure that both the reading and writing processes
are executed in one clock cycle. The same concept applies to
the Step and Stay BRAM blocks.

The arrangement of the Skip BRAM block is shown
in Fig. 6. The number provided inside each memory location
corresponds to the state index of the posterior probability
that should be stored in that location (e.g., 0 corresponds to

Fig. 6. Arrangement of the dual-port Skip BRAM block for the 4096-states
HMM.

αi (j = 0), 256 corresponds to αi (j = 256), and so on).
The memory block has two independent ports (i.e., port A
for writing and port B for reading). The block contains
1024 dual-port BRAMs, each of which has a width of n
and depth of 8. The width is discussed in the next section
with respect to the design’s accuracy and the FPGA power
consumption budget. The eight locations of each BRAM are
used interchangeably for reading and writing with each new
event. In particular, for xi , the locations with the address range
0–3 are used for writing xi data, whereas the address range
4–7 is used for reading xi−1 data. For the following xi+1,
the reading address range becomes 0–3, whereas the writing
address becomes 4–7. The writing and reading addresses
keep alternating in such a ping-pong fashion [17] with the
succession of events to avoid memory collisions (i.e., reading
and writing from/to the same memory location).

The arrangement of the 64 posteriors of each segment inside
the BRAM block follows the indexing scheme highlighted
in Fig. 6. In particular, the index set of the enabled Skip
BRAMs for reading the previous event’s 64 Skip-posteriors
corresponding to segment s, where s ∈ {0, 1, 2, 3, . . . , 63},
of the current event is

φrd
sk (s) = {(s%16) ∗ 64 : 63+ (s%16) ∗ 64}. (6)

The read address of the selected Skip BRAMs in each seg-
ment s is

ψrd
sk (s) =

{
�s/16� + 4, i%2 = 0

�s/16�, i%2 = 1.
(7)

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

280 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 7. Arrangement of the dual-port step BRAM block for the 4096-states
HMM.

On the other hand, the index set of the enabled Skip BRAMs
for writing the 64 posteriors of each segment s for the current
event is

φwr
sk (s) = {�s/4� : 16 : 1008+ �s/4�}. (8)

The write address of the selected Skip BRAMs in each
segment s is

ψwr
sk (s) =

{
s%4, i%2 = 0

s%4 + 4, i%2 = 1.
(9)

For instance, consider any even input index (i.e., i =
2, 4, 6, . . .). For segment 0, the Skip BRAM block readout
comes from address 4 of BRAMs 0–63 and the Transition
Calculator output posteriors (with indices 0–63) are written to
address 0 of BRAMs 0, 16, 32, 48, . . . , 1008. For segment 1,
the readout locations are from address 4 of BRAMs 64–127,
whereas the write locations are address 1 of BRAMs 0, 16, 32,
48, . . . , 1008. It should be noted that for x0, the BRAMs are
used only during the writing cycle according to (8) and (9)
since no posteriors for a preceding event are stored in the
BRAMs to be read. The same case applies for the Step and
Stay BRAMs, which is explained in the following.

The arrangement of the Step BRAM block is shown
in Fig. 7. The block contains 256 dual-port BRAMs each
of which has a width of n and a depth of 32. Similar to
Skip BRAMs, the 32 locations of the 256 Step BRAMs are
half-swapped across the succession of xi for reading and writ-
ing the previous and current inputs’ posteriors, respectively.
The index set of the enabled Step BRAMs for reading the
previous inputs’s 64 Step-posteriors corresponding to segment
s of the current input is

φrd
st (s) = {(s%4) ∗ 64 : 63+ (s%4) ∗ 64}. (10)

Fig. 8. Arrangement of the dual-port Stay BRAM block for the 4096-states
HMM.

The read address of the selected Step BRAMs in each
segment s is

ψrd
st (s) =

{
�s/4� + 16, i%2 = 0

�s/4�, i%2 = 1.
(11)

On the other hand, the index set of the enabled Step BRAMs
for writing the 64 posteriors of each segment s for the current
input is

φwr
st (s) = {�s/16� : 4 : 252+ �s/16�}. (12)

The write address of the selected Step BRAMs in each
segment s is

ψwr
st (s) =

{
s%16, i%2 = 0

s%16+ 16, i%2 = 1.
(13)

The arrangement of the Stay BRAM block is shown
in Fig. 8. The block contains 64 dual-port BRAMs, each of
which has a width of n and a depth of 128. Similar to the Skip
and Step BRAM blocks explained previously, the 128 locations
are split into two 64 deep memory sections for simultaneous
reading and writing operations for each input’s segment and
used in an alternating fashion across inputs. The Stay BRAMs
indexing and the read and write memory addressing in each
event segment are simple compared to that for the Skip
and Step BRAM blocks. The index set of the enabled Stay
BRAMs for reading the previous event’s 64 Stay-posteriors
corresponding to segment s of the current event is

φrd
sy (s) = {0 : 63}. (14)

The read address of the selected Stay BRAMs in each
segment s is

ψrd
sy (s) =

{
s + 64, i%2 = 0

s, i%2 = 1
. (15)

On the other hand, the index set of the enabled Stay BRAMs
for writing the 64 posteriors of each segment s for the current
input is

φwr
sy (s) = {0 : 63}. (16)

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

HAMMAD et al.: SCALABLE HARDWARE ACCELERATOR FOR MOBILE DNA SEQUENCING 281

Fig. 9. Timing diagram for the proposed acceleration engine while processing
single event.

The write address of the selected Stay BRAMs in each
segment s is

ψwr
sy (s) =

{
s, i%2 = 0

s + 64, i%2 = 1
. (17)

C. CPU-Accelerator Communication

This section focuses on the physical and logical links
between the proposed accelerated basecaller explained in
Algorithm 2 and the proposed FPGA acceleration engine
in Fig. 3. In particular, it describes the physical interface and
the communication protocol utilized by the CPU to offload the
computations of the Initialize (lines 1–4), Iterate (lines 5–13),
and EndState (lines 14–23) blocks of Algorithm 2 to our
FPGA-engine (i.e., described in Fig. 3) in a real-time stream-
ing fashion.

Our acceleration engine includes the Reusable Integration
Framework for FPGA Accelerators (RIFFA) IP [18]. RIFFA
is an open-source communication architecture, which allows
real-time exchanging of data between the user’s FPGA IP
core(s) and the CPU’s main memory via PCIe. To establish its
logical channel, RIFFA has a collection of software libraries
on the CPU-side and IP cores on the FPGA-side. For each
segment’s set of 64 pointers, βs

i (r), and the end-state index of
the last event, π∗N−1, computed by the accelerator, the RIFFA
IP’s Tx module generates the PCIe packets, which carries
the calculated data. The flow of these packets to/from the
FPGA is controlled using two sets of handshaking signals [18]
one of which controls the data flow in the CPU-to-FPGA
direction and the other for the FPGA-to-CPU direction. The
hardware interfacing between our acceleration engine and the
handshaking protocol is carried out by our engine’s Controller
block as explained in the following paragraph.

Taking a closer look at the processing cycle of a single event
xi sent from the CPU, the picture is shown in Fig. 9. To avoid
confusing the reader, it should be noted that the Clk waveform
shown in Fig. 9 does not represent the exact number of cycles
spared by our accelerator to fit the column width. Instead,
the exact number of clock cycles for most waveforms has
been explicitly indicated in the figure. Each segment requires
11 clock cycles to calculate the corresponding 64 pointers
and 64 posteriors and to store the calculated posteriors in
the Posterior Memory. In particular, nine clock cycles are
consumed to calculate the pointers, one clock cycle to calculate
the posteriors, and one clock cycle to store the posteriors in
the three BRAM subblocks explained in the previous section.

With the arrival of a new 128-bit PCIe packet (which con-
tains four measured events) from the CPU, the RIFFA driver

signals Rx_Vld to our BC engine. The engine’s Controller
arranges processing the four encapsulated events (each of
which is 32 bits) within the arrived packet in sequence of
one event at a time. In other words, the Controller globally
enables the engine’s data path block shown in Fig. 3 using
En for the time required by each event (i.e., 712 clock cycles)
in response to Rx_Vld. For simplicity, the detailed signaling
scheme of each individual block within the engine’s data path
is not included in this discussion.

During the processing cycle of each event, the Controller
organizes the 64-segment calculations using the Seg_Rdy
pulse. The calculation of the 64 pointers of each segment is
then announced by the data path block using the Ptr_Vld
signal. Upon receiving Ptr_Vld, the Controller asserts the
Tx_Rdy signal for the Tx channel to allow sending the seg-
ment’s calculated 64 pointers to the CPU in four consecutive
clock cycles. It is worth noting that the eight clock cycles
shown in Fig. 9 at the end of the event’s processing cycle
are needed for carrying out the minimum posterior calculation
locally for the last segment (i.e., s = 63) and globally across
the 64 segments. It could also be inferred from the timing
waveform in Fig. 9 that the same eight clock cycles (for the
segments from s = 0 to s = 62) for a specific segment are
being overlapped with the 11 clock cycles for the following
segment. The overlapped minimum posterior calculation for
a certain segment with the core processing cycles of the
following segment is intended to reduce the event’s processing
latency and, hence, the overall basecaller’s speed and power
efficiency.

D. Accelerator’s Scalability

The previous sections have focused on the extreme 4096-
states HMM case of our accelerator’s architecture, which
addresses the 6-mer nanopore signal. However, this does
not undermine the scalability of our proposed accelerator
architecture in Fig. 3 to implement HMM-basecaller for lower
resolution nanopore signals. In particular, if the required
number of HMM states is reduced by 4× to 1024-states
(i.e., the 5-mer nanopore case), the accelerator’s hardware
architecture is adapted as follows.

1) The accelerator’s datapath runs 16 segments
(i.e., 1024/64) for each input event instead
of 64 segments in case of 4096-states HMM. The
time-mulitplexing period of the accelerator’s datapath is
seamlessly modified by its Controller block by setting
the En signal for 184 clock cycles corresponding to
16 segments (i.e., 16 × 11 + 8), as previously shown
in Fig. 9 for the 64 segments case.

2) The storage of the accelerator’s Model Memory block is
modified by the 1024-HMM model parameters.

3) The three BRAM blocks constituting the accelerator’s
Posterior Memory block are downsized (compared to
the 4096-states case) to accommodate 1024 states’ pos-
teriors in each event. In particular, the depth for three
memory blocks is reduced by a factor of 4 while keeping
the number of BRAMs within each, as shown Figs. 6–8.
Hence, the depth of the Skip BRAM block is set to 2

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

282 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 10. Proposed basecaller hardware test setup.

(i.e., one address location for the write port and one
address location for the read port), whereas the depth
for the Step and Stay BRAM blocks is set to 8 and 32,
respectively.

4) Equations (6)–(17), which govern the reading and writ-
ing operation for the three BRAM blocks, are modified
to match the aforementioned new depths within the
segment range s ∈ {0, 1, 2, 3, . . . , 15}.

V. EXPERIMENTAL EVALUATION

A. System Setup

In this section, an implementation of the proposed basecall-
ing acceleration engine in Fig. 3 is evaluated. The implementa-
tion is realized on a Virtex-7 FPGA device (i.e., XC7VX485T-
2FFG1761C) hosted on a Xilinx VC707 evaluation board,
as shown in Fig. 10. The FPGA device contains 75 900 slices,
each of which has four look-up tables (LUTs) and eight
flip-flops (FFs). The engine accelerates a 12-core Intel Xeon
E5-2620 v3 clocked at 2.4 GHz with 32 GB of RAM. A sketch
of this setup is shown in Fig. 10.

B. Test Results For 4096-States HMM Accelerator

The acceleration engine studied in Fig. 3 is implemented in
a fixed-point format on the target FPGA device while provi-
sioning the extreme computational case for 6-mer nanopore
signal. The simulation results shown in Fig. 11 demon-
strate how the choice of fixed-point resolution compares
to a floating-point implementation. With 10-bits resolution,
the fixed-point calculation is able to attain a basecalling accu-
racy of 97.6%, the percentage of bases that are called correctly;
this is on par with floating-point computations. Predictably,
lower resolution basecaller accuracy suffers, 95.7%, 91.1%,
and 79% accuracies are achieved at 9, 8, and 7 bits, respec-
tively. Nonetheless, for certain applications, these may still
prove as useful approximations and we continue to consider
these in our hardware evaluations below. It should be noted
that, for simplicity, the simulated basecalling accuracy shown
in Fig. 11 is based on an emulated input sequencing data based
on the 6-mer nanopore model reported in [8].

The results in Fig. 12 illustrate the maximum attainable
clock frequency and basecalling speed measured for the
CPU-only and CPU-FPGA-accelerated basecaller. The results

Fig. 11. Simulated fixed-point basecaller accuracy for different bit widths.

Fig. 12. Accelerator’s maximum clock frequency and the measured base-
calling speed for different bit widths.

emphasize the substantial effect of the FPGA design’s bit
width on the maximum achievable clock frequency and, hence,
the basecalling speed of our acceleration engine. First, looking
at the 10-bits case that matches the floating-point accuracy,
our accelerated basecaller achieved a basecalling speed that is
126× faster than the CPU-only basecaller. In particular, with a
10-bits resolution, the maximum attainable clock frequency for
our accelerator was recorded at 260 MHz resulting in a base-
calling speed of 364 Kbases/sec compared to the 2.9 Kbases/s
in the CPU case.

On the other hand, reducing the fixed-point bit width from
10 to 7 bits increases the maximum clock frequency of our
FPGA accelerator by 13.5%. In other words, the maximum
possible clock frequency of our FPGA accelerator is measured
at 295 MHz in case of the 7-bits fixed-point design. This leads
to a measured basecalling speed of 413 Kbases/s that is 142×
faster than CPU-only basecaller.

The speed improvement for our accelerated basecaller over
the CPU-only basecaller pertains to the full parallel com-
puting of operations in the Initialize and Iterate blocks of
Algorithm 2 realized by our FPGA design. In the Initialize,
our accelerator calculates 64 posterior values (i.e., essentially

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

HAMMAD et al.: SCALABLE HARDWARE ACCELERATOR FOR MOBILE DNA SEQUENCING 283

emission probabilities) in a single clock. In the Iterate block,
the parallel computing takes place in a hierarchical manner
that is 64 posteriors (corresponding to a single states’ segment)
are calculated in a single clock (i.e., unrolling the states loop
in lines 8–11). For each of the 64 posteriors, our accelerator
executes 21 transition additions as in (4) and (5) in a single
clock cycle. Also, the normalization subtraction of the previous
event posteriors is carried out in a single clock cycle during
each segment calculation by the three adder circuits following
the Posterior Memory in Fig. 3. Moreover, the end state
calculation, in the EndState block, is executed in an overlapped
manner across the 64 segments of the last event compared to
the CPU bubble sorting 4096 numbers to find their minimum.

It is worth mentioning that the C-implementation of the
CPU-only basecaller does not exploit specific optimizations
(e.g., multicore architectures, multithreading, cache structures,
and SIMD extensions). Such kind of optimization techniques
is important for developers focusing on improvements for
their particular platforms. We rather implemented the code
in the manner reflected in the pseudocode presented in Algo-
rithm 1 and relied on the compiler to achieve an appropri-
ately mapped code. In particular, we used the gcc compiler
(ver. 4.8.5) while specifying both -O2 and -O3 as the opti-
mization settings both of which, separately, result in the same
performance. Our goal was to provide a simple and standard
benchmark for our proposed hardware accelerator that could
be widely adopted on commodity CPUs for performance
evaluation.

In a mobile sequencing context, the processing speed is
not the sole objective for the designer (and the user as well).
The power consumption margin is another important limiting
factor that determines the practical feasibility of the adopted
computing platform. This pertains to the fact that mobile
DNA sequencers are essentially battery-enabled devices and,
thus, long lifetime for these devices while being used in
the field requires low power consumption levels. The results
reported in Fig. 13 shows the dynamic range of the average
power consumed by our accelerator for the four fixed-point
designs we are studying. The power consumption spans a
range from 2.5 to 6.1 W over the clock frequency range from
50 to 295 MHz. The results also confirm that the effect of the
bit width on the accelerator’s power consumption is dominat-
ing that of the clock frequency. This can be seen for the 8-bits
design at 290 MHz compared to the 7-bits design at 295 MHz
and the 9-bits design at 275 MHz compared to the 7-bits design
at 295 MHz. On the other hand, the CPU’s measured average
power for running Algorithm 1, over the same event sequence
as our accelerator, is 25.16 W (i.e., after subtracting the
CPU’s idle power of 61.99 W). Thus, our FPGA accelerator
(i.e., the 8-bits accelerator clocked at 290 MHz) consumes at
least 4× less power than the CPU for executing the exact same
calculations while being faster by 140×.

It should be noted that the measurements reported
in Figs. 12 and 13 for both the CPU-only and the proposed
accelerated basecallers did not account for the traceback stage
in Algorithms 1 and 2, respectively. In particular, the traceback
stage execution time on the CPU for a file with events’
sequence length of 7000 is measured at 10 μs compared to

Fig. 13. Measured average power consumption.

17-ms execution time on the FPGA (i.e., for the Initialize,
Iterate, and EndState stages). Also, the CPU power consumed
for executing the traceback stage is measured at only 0.5 W.
Hence, the traceback stage adds marginal latency and power
for the basecaller’s overall computational budget and can be
safely removed from the analysis. This stems from the fact
that the core compute-intensive tasks of the basecaller exist
in its trellis calculations. From another perspective, the power
measurements of our proposed basecaller reported in Fig. 13
does not consider the CPU’s idle power since this power is
totally independent of our basecaller’s operation (i.e., base
power consumed by the desktop computer upon power it
up and running the OS). Also, due to RIFFA’s streamline
communication, the CPU does not spare any waiting idle times
during the data exchange with our FPGA accelerator while
consuming only 0.3 W on top of its idle power (i.e., 61.99 W),
which only presents 5% of the FPGA’s 6 W power budget.
It is also important to note that the basecalling speed results
reported in Fig. 12 have completely considered the data
movement latency in both directions (i.e., CPU-to-FPGA
and FPGA-to-CPU data-paths). In essence, the timer function
placed in the C-code on the CPU side starts its operation at the
beginning of sending the CPU data and stops after the CPU
successfully receives all the FPGA results. Hence, the reported
basecalling speed is inclusive and considers the CPU sending
latency, FPGA processing latency, and the CPU receiving
latency. In sum, focusing our analysis on the accelerator’s
power and latency budgets does not undermine the proposed
collaborative CPU/FPGA framework.

Combining both the speed and power performances to
evaluate the energy efficiency (i.e., the bases per joule metric)
provides more insightful means to compare our proposed
accelerated basecaller with the CPU-only basecaller. As such,
the energy efficiencies for both basecallers are calculated
in Fig. 14 using the speed and power results previously
reported in Figs. 12 and 13, respectively. The results show
that our basecaller is more energy efficient than the CPU-only
basecaller by two orders of magnitude. These results confirm
that the increase in the basecalling speed for our basecaller
is outpacing the increase in its power budget with increasing

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

284 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

Fig. 14. Energy efficiency.

TABLE I

PROPOSED ACCELERATOR’S RESOURCE UTILIZATION ON

VIRTEX-7 XC7VX485T-2FFG1761C DEVICE

the clock frequency. Thus, it is generally favorable for our
basecaller to run at faster clock frequencies for a specific
sequencing volume of data since it leads to less computational
time and energy, and longer battery lifetime for the sequencing
device.

To summarize, the bit-width analysis of our basecaller’s
design emphasizes an essential tradeoff between its accuracy
and energy efficiency, that is, cutting the basecaller’s bit width
from 10 to 7 bits results in dropping the accuracy by 19%
while boosting the basecaller’s speed by 13.5% (i.e., from
364 Kbases/s at 260 MHz to 413 Kbases/s at 295 MHz,
respectively) and reducing the power consumption by 6.3%
(i.e., from 5.9 to 5.53 W at 260 MHz).

The resource utilization for each of the four fixed-point
configurations of our proposed accelerator on the target Virtex-
7 device is reported in Table I. The utilization of LUTs and FFs
steadily increases with the bit width due to the requirement
of more combinational logic elements and wider registers to
handle wider data bus. However, the DSPs (i.e., DSP48 blocks)
is doubled only in case of the 10-bits accelerator due to the
multiplication operation of the Emission Calculator block,
which essentially doubles the data width. In other words, each
of the 64 slices of the Emission Calculator block consumes
only one DSP block in case of the 7-, 8-, and 9-bits designs,
whereas two DSP blocks are allocated for each slice in case
of the 10-bits design.

The utilization of the BRAM blocks is invariant with the
bit width of our accelerator. This stems from the flexibility
of the Virtex-7 architecture, which allows allocating either a
complete 36-Kb BRAM block or a partial 18-Kb subblock

according to the required memory width and depth. Our accel-
erator only utilizes 18-Kb BRAMs to build the Model Memory
(i.e., 64 BRAMs for storing the emission parameters) and the
Posterior Memory (i.e., 64 Stay BRAMs, 256 Step BRAMs,
and 1024 Skip BRAMs). For the maximum required depth in
case of the Stay BRAM (i.e., 128), a single 18-Kb BRAM can
accommodate a bit width of up to 36 bits. Therefore, all of
our fixed-point configurations in Table I are similarly realized
by 18-Kb BRAM primitives, and consequently, the number of
BRAMs is the same.

As explained in the previous section, the engine’s memory is
structured to ensure fitting the model data (i.e., the posteriors
for the 4096 HMM states) in the on-chip limited storage
resources of our target FPGA device while maintaining the
fastest possible speed for reading and writing data (i.e., one
clock cycle for each). The BRAM resources needed scale
linearly with the number of slices adopted by the Emission and
Transition calculator blocks. As apparent from our utilization
levels, doubling the number of slices (which essentially leads
to doubling the basecalling speed) would exceed our FPGA’s
available BRAM resources. Hence, a clear tradeoff is pre-
sented to the system design in terms of the power and circuit
area/cost from one side and the speed from another side.

C. Accelerator’s Scalability Use-Case

To support the scalability of our proposed accelerator archi-
tecture (i.e., shown in Fig. 3) as explained in Section IV-D,
we present in this section a specific use case, which scales
down the 4096-states HMM implementation case studied
above to a 1024-states HMM accelerator. The purpose is
to demonstrate the adaptability of our proposed acceleration
architecture and to show its performance for a nanopore model
with lower computational requirements.

The accelerator’s hardware design for the 4096-states HMM
engine (i.e., evaluated in the previous subsection) has been
adapted to implement a 1024-states HMM engine instead
according to the steps discussed in Section IV-D. In addition,
the CPU-only version of the 1024-states HMM basecaller has
been developed to ensure that the CPU comparison is still
in place as the case with the previous results. As expected
from the discussion provided in Section IV-D, the measured
power consumption for the 1024-states HMM accelerator
stayed at the same level compared to that of the 4096-states
accelerator, as previously shown in Fig. 13. This pertains to
the fact that downsizing the depth of the internal BRAM
blocks of the accelerator’s Posterior Memory and Model
Memory blocks in the 1024-states HMM case does not lower
the number of the physical BRAM blocks utilized on our
FPGA device (i.e., the resources utilization shown in Table I
does not change). However, the measured basecalling speed
of the 1024-states HMM accelerator is approximately 4×
faster than that for the 4096-states HMM due to the reduced
number of states’ segments for each input event by the same
approximate factor (i.e., the event calculation latency inside
the 1024-states accelerator is 184 clock cycles compared to
the 712 cycles for the 4096-states accelerator shown in Fig. 9).
As a result, the 1024-states HMM accelerator demonstrated a

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

HAMMAD et al.: SCALABLE HARDWARE ACCELERATOR FOR MOBILE DNA SEQUENCING 285

TABLE II

PERFORMANCE COMPARISON OF THE PROPOSED HMM-BASECALLER WITH EXISTING HMM IMPLEMENTATIONS

Fig. 15. Energy-efficiency comparison for different HMM complexities.

boost in the energy-efficiency by a factor of 4 compared to
the 4096-states accelerator as shown in Fig. 15 for the 7-bits
implementation. On the other hand, the CPU-only version of
the 1024-states basecaller has consumed the same incremental
power on the CPU (i.e., 25.16 W) while running at a speed
of 13.14 Kbases/s compared to 2.9 Kbases/s for the 4096-states
basecaller, as reported in Fig. 12. In sum, reducing the HMM
computational complexity for our proposed hardware acceler-
ator results in improving the energy-efficiency performance by
a similar factor.

D. Comparison With Existing Works

The results reported in Table II compare our HMM accelera-
tor, its bases/second output speed, its operations/second (OPS)
peak performance, and its power consumption to other HMM
implementations. The numbers reported for both versions of
our accelerator (i.e., 4096-states and 1024-states HMM) are
based on the highest accuracy 10-bits design, which is clocked
at 260 MHz. The OPS calculation in Table II is based on
the number of operations carried out by the basecaller for
each input event. As discussed in the previous subsection,
the core operations of the basecaller for each input event exist
is its trellis algorithm (i.e., the traceback algorithm performs
single memory load operation per event). Besides its use in
nanopore basecalling, we include an HMM implementation
in a DNA sequencing-related context, that is, variant calling.
David et al. [8] reported a 6-mer HMM nanopore basecaller
on a 4-core 3.4-GHz 12-GB CPU, which achieved a maximum
basecalling speed of 6.7 Kbases/s and peak performance
of 1.8 GOPS. Our previous work in [7] has studied the

hardware acceleration problem for the HMM basecaller that
suits a 3-mer solid-state nanopore sensor model proposed
in [6]. Hence, that accelerator handles the HMM problem on a
scale that is 64× smaller than that of our proposed 4096-states
HMM accelerator in this work can address. However, as shown
in Table II, the speed of our proposed 4096-states HMM
accelerator is only 34× slower than the 64-states HMM
accelerator proposed in [7]. This is due to the relatively
faster clock frequency and shorter processing latency for each
64-states segment computation of our proposed accelerator
compared to that in [7]. In [12], a PCIe-mediated FPGA DNA
variant call accelerator capable of calling 1.579 Mbases/s is
reported. This variant caller is based on the PairHMM Forward
Algorithm [15], a variant of the approach adopted in our
algorithm. Although about 4.3× faster than our 4096-states
design’s basecalling speed, our implementation requires about
104× more transition calculations per data point. It is worth
mentioning that, in a related context to the variant caller
reported in [12], other studies in [19] and [20] have devel-
oped FPGA-accelerated computing architectures for aligning
DNA sequences. However, we could not add these studies to
Table II due to the fact that these studies considered different
algorithms other than HMM.

Finally, we believe that the flexibility presented for the
proposed scalable acceleration architecture allows it to accom-
modate computing requirements for future complex nanopore
models, that is, partitioning the accelerator’s operations across
multiple FPGA devices with multiple independent PCIe chan-
nels (i.e., supported by RIFFA) will be achievable, albeit,
an ASIC realization for the accelerator in such a case would
be more power and cost-effective solution.

VI. CONCLUSION

In this article, we have developed a scalable real-time FPGA
acceleration framework for basecalling nanopore-derived DNA
measurements of varying k-mer resolution. To investigate
a challenging case in terms of the hardware design and
performance, the presented implementation has specifically
addressed the 6-mer (i.e., 4096-states) nanopore signal, a com-
plexity on-par with existing nanopore-based sequencers.

We introduced the architecture of the proposed basecalling
acceleration engine. The engine accelerates the basecaller by
realizing the compute-intensive trellis-traversal functions of a
sequence detection algorithm based on dynamic programming
(the execution of the traceback kernel is deferred to the
CPU). To enable the implementation of complex basecallers
within resource-constrained FPGA hardware, the proposed

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

286 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 2, FEBRUARY 2021

architecture utilizes a time-multiplexed version of the base-
caller that processed the trellis over a sequence of 64 time
segments. To enable such a time-multiplexed approach, our
design employs an efficient memory structure based on the
FPGA BRAM resources. The proposed architecture also
accommodates real-time streaming of data between our FPGA
acceleration engine and the CPU’s main memory (over PCIe).

We experimentally evaluated the effectiveness of our accel-
erated basecaller and compared its performance to the clas-
sical CPU-based implementation. The implementation results
demonstrated the superiority of our 28-nm FPGA-accelerated
basecaller relative to a 12-core Intel Xeon CPU-basecaller in
terms of both speed and power. In particular, our basecaller
outperformed the CPU-only basecaller’s speed by a factor
of 142× when clocking the FPGA at 295 MHz while con-
suming an average of only 24% of the CPU’s average power.

Based on its physical performance and its relatively mod-
est resource needs, the proposed framework offers a poten-
tial solution for emerging low-power mobile sequencing
devices and provides a useful benchmark for future embedded
solutions.

REFERENCES

[1] L. Gannett, “The human genome project,” The Stanford Encyclopedia
Philosophy, E. N. Zalta, Ed. Stanford, CA, USA: Stanford Univ.,
Metaphysics Research Lab, 2019.

[2] (Oct. 2019). National Human Genome Research Institute. [Online].
Available: https://www.genome.gov/sequencingcosts

[3] P. M. Ashton et al., “MinION nanopore sequencing identifies the
position and structure of a bacterial antibiotic resistance island,” Nature
Biotechnol., vol. 33, no. 3, pp. 296–300, Dec. 2014.

[4] Oxford Nanopore Technologies. Accessed: Jan. 2020. [Online]. Avail-
able: https://nanoporetech.com/products/minion

[5] C. Brown and J. Clarke, “Nanopore development at Oxford nanopore,”
Nature Biotechnol., vol. 34, no. 8, pp. 810–811, Aug. 2016.

[6] W. Timp, J. Comer, and A. Aksimentiev, “DNA base-calling from a
nanopore using a viterbi algorithm,” Biophys. J., vol. 102, no. 10, pp.
L37-L39, May 2012.

[7] Z. Wu, K. Hammad, E. Ghafar-Zadeh, and S. Magierowski, “FPGA-
accelerated 3rd generation DNA sequencing,” IEEE Trans. Biomed.
Circuits Syst., vol. 14, no. 1, pp. 65–74, Feb. 2020.

[8] M. David, L. J. Dursi, D. Yao, P. C. Boutros, and J. T. Simpson,
“Nanocall: An open source basecaller for Oxford nanopore sequencing
data,” Bioinformatics, vol. 33, no. 1, pp. 49–55, Jan. 2017.

[9] R. Wick, L. Judd, and K. Holt, “Performance of neural network base-
calling tools for Oxford nanopore sequencing,” Genome Biol., vol. 20,
no. 1, p. 129, 2019.

[10] S. Ko, L. Sassoubre, and J. Zola, “Applications and challenges of real-
time mobile DNA analysis,” in Proc. 19th Int. Workshop Mobile Comput.
Syst. Appl., 2018, pp. 1–6.

[11] Z. Wu, K. Hammad, R. Mittmann, S. Magierowski, E. Ghafar-Zadeh,
and X. Zhong, “FPGA-based DNA basecalling hardware acceleration,”
in Proc. IEEE 61st Int. Midwest Symp. Circuits Syst., Aug. 2018,
pp. 1098–1101.

[12] D. Sampietro, C. Crippa, L. Di Tucci, E. Del Sozzo, and
M. D. Santambrogio, “FPGA-based PairHMM forward algorithm for
DNA variant calling,” in Proc. IEEE Int. Conf. Appl.-Specific Syst.,
Archit. Processors, Jul. 2018, pp. 1–8.

[13] Y. Li and Y. Lu, “BLASTP-ACC: Parallel architecture and hardware
accelerator design for BLAST-based protein sequence alignment,” IEEE
Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1771–1782, Oct. 2019.

[14] O. Ibe, Markov Processes for Stochastic Modeling. Amsterdam, The
Netherlands: Elsevier, 2013.

[15] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cam-
bridge, U.K.: Cambridge Univ. Press, 1998.

[16] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-13,
no. 2, pp. 260–269, Apr. 1967.

[17] O. Teig, “Ping-Pong scheme uses semaphores to pass dual-port-memory
privileges,” EDN, vol. 41, no. 12, p. 4, 1996.

[18] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1:
A reusable integration framework for FPGA accelerators,” ACM Trans.
Reconfigurable Technol. Syst., vol. 8, no. 4, p. 22, Sep. 2015.

[19] K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized and effi-
cient FPGA-based skeleton for pairwise biological sequence alignment,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 4,
pp. 561–570, Apr. 2009.

[20] N. Sebastiao, N. Roma, and P. Flores, “Integrated hardware architecture
for efficient computation of the n-best bio-sequence local alignments
in embedded platforms,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 20, no. 7, pp. 1262–1275, 2012.

Karim Hammad (Member, IEEE) received the
B.Sc. and M.Sc. degrees in electronics and com-
munications engineering from the Arab Academy
for Science, Technology and Maritime Transport
(AASTMT), Cairo, Egypt, in 2005 and 2009, respec-
tively, and the Ph.D. degree in electrical and com-
puter engineering from the University of Western
Ontario, London, ON, Canada, in 2016.

In 2018, he joined the Department of Electri-
cal Engineering and Computer Science, Lassonde
School of Engineering, York University, Toronto,

ON, Canada, as a Post-Doctoral Visitor. He is currently an Assistant Pro-
fessor with the Department of Electronics and Communications Engineering,
AASTMT, Cairo. His research interests include wireless networks cross-layer
design and digital circuit design.

Zhongpan Wu (Member, IEEE) received the B.E.
degree in software engineering from DaLain Jiao-
tong University, China, in 2015, and the M.Sc.
degree in electrical engineering and computer sci-
ence from York University, Toronto, ON, Canada,
in 2019, where he is currently pursuing the Ph.D.
degree.

He was employed as a Research Assistant with
York University, from May 2016 to 2017. His
research interests include ASIC and FPGA accel-
erators design, computer architecture, and machine
learning.

Ebrahim Ghafar-Zadeh (Senior Member, IEEE)
received the B.Sc. degree from the K.N. Toosi
University of Technology, Tehran, Iran, in 1994,
the M.Sc. degree from the University of Tehran,
Tehran, Iran, in 1996, and the Ph.D. degree
from Ecole Polytechnique, Montreal, QC, Canada,
in 2008, all in electrical engineering.

He continued his research, as a Post-Doctoral
Fellow with the Department of Electrical and Com-
puter Engineering, McGill University, Montreal, and
the Department of Bioengineering, University of

California at Berkeley, Berkeley, CA, USA. In 2013, he joined the Department
of Electrical Engineering and Computer Sciences, York University, Toronto,
ON, Canada, where he currently serves as an Associate Professor and the
Director of biologically inspired sensors and Actuators (BioSA) Laboratory.
His research focuses on BioSA for cell and molecular analysis. He has
authored or coauthored more than 125 articles, in various BioSA topics in
high-quality journals and international conferences.

Sebastian Magierowski (Member, IEEE) received
the Ph.D. degree in electrical engineering from
the University of Toronto, Toronto, ON, Canada,
in 2004.

From 2004 to 2012, he served on the Faculty of the
Department of Electrical and Computer Engineer-
ing, University of Calgary, Calgary, Italy. In 2012,
he joined the Department of Electrical Engineer-
ing and Computer Science, Lassonde School of
Engineering, York University, Toronto, where he is
currently an Associate Professor. As part of his

industrial experience (Nortel Networks, PMC-Sierra, Protolinx Corp.) he
has worked on CMOS device modeling, high-speed mixed-signal IC design,
and data networks. His research interests include analog/digital CMOS cir-
cuit design, communication systems, biomedical instrumentation, and signal
processing for biomolecular sensing and analysis.

Authorized licensed use limited to: York University. Downloaded on May 21,2022 at 20:49:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

