
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2020 65

FPGA-Accelerated 3rd Generation DNA Sequencing
Zhongpan Wu, Member, IEEE, Karim Hammad , Member, IEEE, Ebrahim Ghafar-Zadeh , Member, IEEE,

and Sebastian Magierowski, Member, IEEE

Abstract—DNA measurement machines are undergoing an
orders-of-magnitude size and power reduction. As a result, the
analysis of genetic molecules is increasingly appropriate for mobile
platforms. However, sequencing these measurements (converting
to the molecule’s A-C-G-T text equivalent) requires intense com-
puting resources, a problem for potential realizations as mobile
devices. This paper proposes a step towards addressing this issue,
the design and implementation of a low-power real-time FPGA
hardware accelerator for the basecalling task of nanopore-based
DNA measurements. Key basecalling computations are identified
and ported to a custom FPGA which operates in tandem with a
CPU across a high-speed serial link and a simple API. A mea-
sured speed-up over CPU-only basecalling in excess of 100X is
realized with an energy efficiency improvement of three orders of
magnitude.

Index Terms—Basecalling, DNA sequencing, FPGA
acceleration, HMM, nanopore, PCIe, RIFFA.

I. INTRODUCTION

S EQUENCING is the multi-step process by which DNA
is sensed and by which all of its constituent molecules

(‘bases’) are identified in terms of their four possible text sym-
bols:A,C,G,T [1]. For reference, the totality of a human genome
consists of about six billion such letters arranged in three billion
‘base pairs’ (bp) – A paired with T, G paired with C – forming
the molecular links between the two complementary strands of
the iconic DNA double-helix structure. The ability to extract
DNA’s textual equivalent is fundamental to a number of the
life sciences and is of growing importance in medicine [2], [3].
Recently, significant advances have been achieved in sequenc-
ing technologies with implications for the design of associated
computational hardware [4], [5], the main concern of this paper.

Among the recent sequencing technology advances is the
adoption of nanopore sensors [6], [7]. Nanopores are nanometer-
sized holes formed in a crystalline or organic material through

Manuscript received September 6, 2019; revised October 28, 2019; accepted
November 23, 2019. Date of publication December 9, 2019; date of current
version February 4, 2020. This work was supported in part by CFIA, in part by
CMC Microsystems, in part by the Natural Sciences and Engineering Research
Council, and in part by SOSCIP. This paper was recommended by Associate
Editor M. Carminati. (Corresponding author: Karim Hammad.)

Z. Wu, E. Ghafar-Zadeh, and S. Magierowski are with the Department
of Electrical Engineering and Computer Science, York University, Toronto,
ON M3J 1P3, Canada (e-mail: zhongpan@eecs.yorku.ca; egz@eecs.yorku.ca;
magiero@eecs.yorku.ca).

K. Hammad is with the Department of Electrical Engineering and Computer
Science, York University, Toronto, ON M3J 1P3, Canada, and also with the
Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt
(e-mail: khammad@eecs.yorku.ca, khammad@aast.edu).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBCAS.2019.2958049

Fig. 1. An example of the time-series signal available from a nanopore sensor.

which only one DNA strand at-a-time may pass. As it passes,
the DNA’s sequence of base molecules produce a correspond-
ing electrochemical current signature. With a microelectronic
readout system interfaced closely to the sensors, this current
is electronically amplified, digitized, and passed to a basecaller
system as a time-series [8]; from this input the basecaller extracts
the DNA’s representative text string. An example of such a
time-series is shown in Fig. 1 where each level is indicative
of a new portion of DNA translocating through the sensor.

Nanopores interact with individual DNA molecules at-a-time,
effectively making them single-molecule, real-time, DNA sen-
sors, unlike existing methods that inspect aggregates of DNA
copies. Such characteristics are a significant departure from
incumbent techniques (e.g. ‘sequencing-by-synthesis’), war-
ranting nanopores’ association with so-called 3rd generation
DNA sequencing technologies [9]. Further, nanopore-based se-
quencing methods offer excellent opportunities for rapid DNA
processing in a small device. Their ability to pass DNA at
rates exceeding 106 bases-per-second (bp/s) per sensor [10]
and the possibility of arraying 1000s of nanopores across a
thumbnail-sized area [11]–[13] offers the chance for extremely
high-throughput DNA processing in mobile platforms.

One impediment to this vision, and the focus of this paper, is
the aforementioned basecaller. Due to sensor and measurement
system limits, the quality of the time-series from which the
basecaller must extract the equivalent text labels (the ‘base
calls’) is relatively poor. As a result, the basecaller must employ
a sophisticated detection scheme to achieve a sufficient accuracy,

1932-4545 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2311-3230
https://orcid.org/0000-0002-7090-2304
mailto:zhongpan@eecs.yorku.ca
mailto:egz@eecs.yorku.ca
mailto:magiero@eecs.yorku.ca
mailto:khammad@eecs.yorku.ca
mailto:khammad@aast.edu
http://ieeexplore.ieee.org

66 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2020

a scheme that needs significant computing resources if the calls
are to keep up with the time-series input rate. This compromises
the potential of nanopore-based sequencers to serve in mobile
platforms. To address this, we propose and demonstrate a base-
caller distributed across a CPU/FPGA-accelerator tandem. We
show that such a system is capable of increasing the basecaller’s
throughput by 100× while reducing the power by 20× relative
to a CPU-only solution.

Although the application of FPGAs to the acceleration of
bioinformatics is not uncommon it has tended to focus on
problems at the front-end stage (i.e. dealing with biological sam-
ples preparation and DNA-to-signal transduction) and further
down the analysis pipeline. For example, contributions have
addressed issues such as nanopore signal amplification [14],
alignment [15], [16], variant calling [17], and DNA error
correction [18]. Thus, we focus in this work on accelerating the
basecalling task as it was found to be less studied in the literature
in the context of specialized hardware. In particular, this paper
strives to bring the basecalling method proposed in [19] into
reality by investigating the practical computing challenges of
its implementation in emerging mobile DNA sequencing appli-
cations. The motivation of this work, in addition to its novelty,
pertains to the significant potential for the basecalling accuracy
demonstrated by the method in [19] which has reached 98%.

The paper is organized as follows, Section II outlines the
manner of the signals available from nanopore sensors; Section
III outlines the basecalling detection method considered in this
work; Section IV describes the CPU/FPGA acceleration sys-
tem design while Section V reports on the system’s measured
performance followed by a concluding discussion in Section VI.

II. NANOPORE SIGNALS

A vast number of nanopore sensors for DNA identification
have been discussed in the literature. A common trait among
them is their limited fidelity, these sensors cannot directly re-
solve DNA to the level of its individual base constituents. Rather,
the electrochemical current signals emerging from nanopores
tend to reflect the interaction of groups of k bases (i.e. k-mer)
with the pore at-a-time. As a result, rather than outputting four
levels, each indicative of a different base, a nanopore signal may
express 4k signal levels.

A specific example of one such sensor, and the reference
design for the detection hardware discussed in this paper, is
a solid-state nanopore exhibiting a 3-mer sensitivity [19]; the
simulated current characteristics of this nanopore are shown in
Fig. 2. The plot depicts the average current levels, μj , expected
for any 3-mer base group – a state to which we ascribe the integer
label j ∈ {0, 1, . . . , 43−1} – that happens to be interacting with
the pore at a given moment, i ∈ N. Actual measured values
(events) from the sensor are x[i] = xi = μj + n[i], where n[i]
is a noise term (due to the sensor and ensuing signal conditioning
electronics). In Fig. 2 the states are arranged in lexical order from
AAA (state, j = 0) to TTT (state, j = 63).

In Fig. 2 the nanopore’s 64 possible outputs are distributed,
frommax(μj) tomin(μj), over a current range of about 280 pA.
This is equivalent to an average separation of only 4.5 pA

Fig. 2. 3-mer-to-current characteristics of an example nanopore. The 3-mer
state indexes (j ∈ {0, 1, . . . , 63}) on the abscissa are arranged in lexical order.

between events, a very small headroom considering the potential
noise contributions to which such a signal may be subject before
entering the basecaller.

Besides having to deal with a corrupted amplitude, it is
also likely that the basecaller will encounter an input signal
expressing a degree of temporal jitter. In cases with no jitter,
adjacent events in time, xi and xi+1, represent states corre-
sponding to 3-mers differing by only one base, that is, a simple
step ‘transition’. For example, normally we expect to advance
from the observation of say xi ∼ CAT to xi+1 ∼ ATβ where
β ∈ {A,C,G,T} denotes the new base to enter the pore at i+ 1
(while the leading/prefix C in present for xi exits the pore).

But it may be possible, due to a pause in the molecule’s
translocation through the pore, that exactly the same 3-mer is
registered at i and i+ 1; this is a stay transition. It is also possible
that at least one base was not registered at all between adjacent
events, a miss indicative of a skip transition.

Next, we outline a basecalling detection scheme to deal with
signals of the characteristics sketched above. This is followed by
a discussion of its realization FPGA hardware accelerator form.

III. BASECALLING DETECTION

Above we highlighted the coarse nature, in both amplitude
and time, of the nanopore’s output signal characteristics. Con-
sequently, the basecaller must employ a form of sequence de-
tection [20] to articulate the DNA bases ultimately encoded by
the N -event time-series x = (xi)

N−1
i=0 . To achieve this, we focus

on methods that employ a hidden Markov model (HMM) of the
sensor. Detailed discussions of HMMs for such problems, from
a bioinformatics perspective, are given in [21]. Consequently,
in the following, we only sketch the essence of the approach
(Algorithm 1 provides pseudocode details).

Based on the sensor HMM and on x, the basecaller computes
64×N ‘emission’ probabilities, εj(xi) ∀ (j, i), associated with
the states that the nanopore can possibly exhibit over N event

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FPGA-ACCELERATED 3rd GENERATION DNA SEQUENCING 67

Fig. 3. Trellis representation of the basecaller’s computational activity.

Algorithm 1: HMM Basecalling Algorithm.
1: Initialize (on FPGA):
2: α0(j)← εj(x0) ∀ j ∈ {0, . . . , 63}
3: Iterate (on FPGA):
4: for: i← 1, N − 1 & ∀ j do
5: αi(j)← εj(xi)maxν∈ω(j)[αi−1(ν)τ(ν, j)]
6: βi(j)← argmaxν∈ω(j)[αi−1(ν)τ(ν, j)]
7: end for
8: EndState (on FPGA):
9: π∗N−1 ← argmaxj [αN−1(j)]

10: âN−1 ← π∗N−1 & 3
11: Traceback (on CPU):
12 for i← N − 1 to 1 do
13: π∗i−1 ← βi(π

∗
i)

14: âi−1 ← π∗i−1 & 3
15: end for

observations. These calculations are represented by the trellis
diagram in Fig. 3 where the circles denote (in part) the afore-
mentioned state emission probability calculations.

The HMM also specifies the ‘transition’ probabilities,
τ(ji−1, ji), (grey lines in Fig. 3) that quantify the probability
of nanopore states at i−1 evolving to states at i. Generally, any
state at i may have 64 such connections within the trellis; as we
note below however, in our HMM, only select sets ω(j), each
unique to their corresponding state j, of 21 such transitions are
accounted for.

Using an iterative dynamic programming technique (the
Viterbi algorithm), the basecaller utilizes its emission and transi-
tion values to compute the most likely sequence of states through
the trellis, the path π∗ = (π∗i)

N−1
i=0 (represented by the red line

in Fig. 3) and thus the most likely sequence, â = (âi)
N−1
i=0 , of

bases associated with the measured time-series.
The pseudocode listed in Algorithm 1 provides a succinct de-

scription of the basecaller’s computational process, we highlight
its pertinent components now.

The Iterate block comprises a significant part of the basecaller
and is the focus of our accelerator hardware. This block is as
nested for-loop sweeping across all 64 possible state calculations
for all N events being measured. Therein, the computation in

line 5 combines the emission, εj(xi), and transition, τ(ν, j),
probabilities (we elaborate on these terms shortly) to update
a running measure of each state’s posterior αi(j); formally
the basecaller’s main computation results in estimates of the
maximum likelihood for each state after N input observations:

αN (j) = α0(j)

N−1∏

i=1

εj(xi)τ(ν, j)|ν∈ω(j). (1)

In concert (line 6), a pointer, βi(j) ∈ {0, . . . , 63}, is computed;
βi(j) denotes the state at event i−1 most likely to have tran-
sitioned into state j at event i. βi(j) is drawn, as noted above,
from a set ω(j) of 21 possible predecessors to j (elaboration
below).

Keeping track of the most likely preceding steps allows the
Traceback block to sequentially consult the accumulated point-
ers and to compute the most likely sequence of states, π∗, and
bases â thus completing the basecalling effort.

To complete our sketch, we highlight some details related to
the emission and transition terms. The emission characteristics
relate the probability that an event xi may be associated with any
of the expected outputs μj . This is usually depicted according
to the Gaussian distribution as

εj(xi) = (2πσ2)−
1
2 exp[(xi − μj)

2/2σ2], (2)

where σ denotes the standard deviation of the observations
around the anticipated levels, a measure of the noise in the
system.

The term τ(ν, j) denotes the probability that a state, ν ∈
{0, 1, . . . , 43−1}, transitions to a state j. As noted above, for
each j, we account for 21 such transitions; one for a transition
via a stay mechanism where ν = j; another four that account
for four possible step transitions,

ν = 16·l + �j/4�,

with l ∈ {0, 1, 2, 3}; and another 16 that account for 16 possible
skip transitions over one base,

ν = 4·L+ �j/16�,

where L ∈ {0, . . . , 15}. Thus the set of states preceding j, ν ∈
ω(j), consists of 1 + 4 + 16 = 21 = |ω(j)| ∀ j.

IV. BASECALLING ACCELERATOR DESIGN

The inner-loop of Algorithm 1 (i.e. lines 5 and 6 iterated over
64 states j) constitutes the basecaller’s most compute-intensive
basic block. Thus, we propose an FPGA-based computing en-
gine, depicted in Fig. 4, to efficiently accelerate that loop. The
calculation of both εj (implicit in line 5) and αi(j) for the
64 states, possesses no loop-carried dependencies, and thus, of-
fers a direct path to speed-up via explicit parallel hardware. The
recurrence relationship, αi ∝ αi−1, imposes a bottleneck that
may nonetheless be mitigated with judicious use of pipelining
and reduction operations as described below.

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

68 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2020

Fig. 4. FPGA architecture of the proposed basecalling acceleration engine.

A. Basecalling Engine

The block diagram shown in Fig. 4 represents the general
architecture of our proposed FPGA basecalling acceleration
engine, in essence an implementation of the 64-step inner-loop
(lines 5 and 6) of Algorithm 1. The engine receives its input,
the event xi, from the CPU’s main memory and sends its output,
the event pointersβi(j) and the end-state indexπ∗N−1, back to the
CPU’s main memory in a real-time streaming fashion through
the PCIe bus. More details about this CPU-FPGA communica-
tion interface are provided in the following subsection.

A couple of design choices immediately occur for this system.
First, as previously mentioned and also detailed below, to accom-
modate the level of independence present across the 64 iterations
of states j, we employ a fully-unrolled loop-level parallel hard-
ware implementation. Thus, as illustrated in Fig. 4, 64 parallel
emission and posterior calculation blocks (“slices”) comprise
the datapath and simultaneously compute the 64 pointers βi(j)
corresponding to each new event input xi. These slices carry out
the majority of the design’s arithmetic.

A second important consideration, directed at improved com-
putational speed and efficiency, is to simplify the arithmetic
computations of εj(xi) and αi(j) themselves. In this vein, fol-
lowing standard practice [22], the basecalling engine computes
the negative logarithm of the underlying probabilities rather
than the exact probabilities themselves. This requires that the
max operation be replaced with a min and, most importantly,
it reduces (2) to

− ln εj(xi) = (xi − μj)
2 (3)

where the terms, ln(2π) and 1/2σ2, have been removed as they
serve only as constant offsets to the calculations, without any
contribution to the relative probabilities of the states upon which
the choice of a final optimal sequence relies. Thus, the FPGA
block for a single state emission calculation is comprised of a
2-input subtractor and a 2-input multiplier as portrayed by Fig. 5.
It should be noted that the arithmetic logic in Fig. 5, as well as in
Fig. 6, is pipelined by placing registers in between consecutive

Fig. 5. The arithmetic arrangement of a single slice from the emission
calculator.

Fig. 6. The architecture of single slice from the Transition Calculator.

logic stages. For simplicity, the provided figures do not include
those pipelining registers and other detailed logic of the actual
hardware synthesised by our design tools.

Similarly, the hardware-computed logarithmic posterior and
pointer updates become

lnαi(j)← ln εj(xi) + min
ν∈ω(j)

[lnαi−1(ν) + ln τ(ν, j)] (4)

βi(j)← argmin
ν∈ω(j)

[lnαi−1(ν) + ln τ(ν, j)]. (5)

The function of each building block for the proposed engine
architecture in Fig. 4 is as follows.
� The Controller block maintains the data flow configuration

and timing for all other components of the engine. In
particular, it signals enable permissions for each block to
indicate the start and end of operation cycles, and receives
valid status signals indicating elapsed calculations for event
pointers and the end-state pointer. It also manages the
engine’s external communication with the CPU, relying on
valid and ready signals to register the arrival of new input
events and to indicate that the engine is done calculating a
new set of 64 pointer values, respectively.

� The Transition Calculator block is the engine’s main
processing chain used to compute the 64 posteriors and
pointers for each new incoming event xi using a parallel
structure. Each slice of the Transition Calculator handles
the computations in (4) and (5) for each new event. Fig. 6
shows the detailed structure of each slice instance which is
composed of twenty one 2-input adders, argmin function,

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FPGA-ACCELERATED 3rd GENERATION DNA SEQUENCING 69

multiplexer, and 2-input adder. The twenty one adders are
responsible for adding lnαi−1(ν) to ln τ(ν, j) as in (4).
The argmin function and the multiplexer are then used
to find the state pointer βi(j) as in (5) and the minimum
value as in (4), respectively. More specifically, the argmin
function is implemented as a 21-input comparator circuit
which outputs the index of the minimum value of the
21 input values coming from the adder circuits. The last
adder finalizes the addition of ln εj(xi) to the mux output
and calculates lnαi(j) as in (4).

� The HMM Parameters Memory is a memory block which
stores the HMM’s transition and emission models’ param-
eters (i.e. ln τ(ν, j) and μj , respectively).

� The Emission Calculator block calculates the negative
logarithm of the 64 emission probabilities − ln εj(xi) for
each new input event xi according to (3) and Fig. 5.
Similar to the Transition Calculator block, the 64 emission
calculations are executed in a parallel fashion using 64
identical hardware instances (slices) based on the emission
model parameters (i.e. μj) stored in the HMM Parameters
Memory block.

� The Min block ensures that the engine’s recursive com-
putations across the succession of input events do not
experience overflow, a functionality not described in the
Algorithm 1 pseudocode. Thus, the Min block finds the
minimum of the 64 posteriors calculated by the Transition
Calculator block for each event. The minimum value is
then subtracted from the event posteriors before storing
the result (i.e. lnα′i(j)) in the buffer array.

� The arg min block outputs the end-state index (i.e. π∗N−1)
for the last event as in line 9 of Algorithm 1. In particular,
the argmin block is implemented as a 64-input comparator
circuit which outputs the index of the minimum value of the
64 posterior values coming from the Transition Calculator
block at the end of processing event xN .

� The Buffer Array block is used to store the normalized
posteriors for each event (i.e. lnα′i(j)) in preparation for
the iteration triggered by the arrival of the next event xi.

� The Memory Mapper block is used to allocate the posterior
set, ω(j), designated to each instance of the transition
calculator block based on the unique 21 transition states
to its state index j. Specifically, the memory mapper is
a crossbar switch (with fixed interconnect links) which
maps the 21 posterior values to each state slice based on
its index j. For each state slice instance, the 21-posteriors
set is fetched from the 64 normalized posteriors calculated
for the previous event and stored in the buffer array.

For the first event (i = 0) only the 64 emission values (i.e.
− ln εj(xo)) need to be calculated (since all preceding values
are assumed to be zero). Thus, the engine’s controller puts the
Transition Calculator in an idle state for the first input event and
only the Emission Calculator block is allowed to initialize the
Buffer Array.

For the second and all other subsequent events, the engine
operates in the same manner as follows. The HMM Parameters
Memory, Emission Calculator and the Memory Mapper pro-
vide the Transition Calculator with the logarithm of transition

Fig. 7. High-level architecture for the CPU-FPGA hardware interface.

probabilities, the current event’s emission probabilities, and the
previous event’s posterior probabilities. Based on these three
inputs, the transition calculator evaluates the current event pos-
teriors and pointers according to (4) and (5), respectively. Only
the pointers are sent to the CPU through the PCIe interface (as
discussed in the following subsection). Once the engine reaches
the last event (i = N − 1), the end-state index (i.e. the argmin
function’s output) is sent to the CPU with the pointers (i.e.
equivalent to line 9).

B. CPU-FPGA Communication Interface

In this subsection we describe how the proposed FPGA ac-
celeration engine illustrated in Fig. 4 is linked to and coordi-
nated with a CPU. This interface allows our proposed FPGA
accelerator to serve as a rapid real-time co-processor for a CPU
basecaller and thus allows it to fit conveniently within a larger
DNA sequencing pipeline. To simplify the understanding of
this communication framework, Fig. 7 shows the high-level
architecture of the CPU-FPGA communication interface. The
proposed core acceleration engine (i.e. discussed in the previous
subsection) is implemented on a Virtex-7 FPGA device whereas
the basecaller’s main C-program is running on a host CPU.

On the FPGA (hardware) side, our proposed core engine
is wrapped by the Reusable Integration Framework for FPGA
Accelerators (RIFFA) [23]. RIFFA is an open-source collection
of software libraries and hardware designs to enable real-time
streaming between CPUs and FPGAs through PCIe. In particu-
lar, RIFFA allows stitching our core engine to a PCIe endpoint
(i.e. Xilinx PCIe IP) using so-called Rx and Tx engines which
receive and generate PCIe packets, respectively. The RIFFA
packet size may be configured by the user to 32-bits, 64-bits
or 128-bits.

On the CPU (software) side, the HMM basecaller (i.e. the
user application) described in Algorithm 1 is implemented using
C. As discussed in the previous subsection, this code offloads
the basecaller’s computation-intensive loop in lines 5 and 6 of
Algorithm 1 to our proposed acceleration engine. This takes
place with the aid of a simple RIFFA API that includes send
and receive functions that are inserted by a developer directly
in a C program to facilitate data exchange between the CPU
and hardware-mapped kernels (i.e. fpga_send() for CPU
transmission to the FPGA, and fpga_recv() for CPU recep-
tion from the FPGA). The RIFFA driver then allows these API

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

70 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2020

Fig. 8. Simplified timing diagram for RIFFA interface/core engine handshak-
ing protocol.

functions to access the CPU’s main memory. The CPU’s PCIe
controller then allows communicating the CPU’s main memory
data via the memory controller in the form of PCIe packets. As
previously illustrated in Fig. 4, the data sent from the CPU to
the FPGA is the sequence of nanopore events xi whereas the
FPGA sends back 64 pointers βi(j) for each event as well as the
end-state index of the last event (i.e. π∗N−1) to the CPU.

The interaction between the proposed acceleration engine and
the RIFFA interface signals can be illustrated with the aid of
Fig. 8. This simplified timing diagram provides a high-level
description for the processing of a single event (which repeats
until the last event). First, the CPU-side basecalling C program,
with the aid of the RIFFA driver, packs the N events in a se-
quence of 128-bit event message packets. Each event is alloted a
32-bit word, thus, each message packet carries four events. When
the C program hosted by the CPU invokes the fpga_send()
function to send a message packet to the FPGA over the PCIe
bus, the arrival of the packet is signified by the status signal
Rx_Vld.

Once the valid signal is received by the basecalling engine’s
Controller, it enables the appropriate datapath blocks for pro-
cessing the first event in the received message packet using the
En signal for 18 clock cycles (i.e. the overall latency of the data
path blocks for processing a single event).

As soon as the arg min block has the 64 states’ pointers
calculated, the Transition Calculator block sends the Ptr_Vld
signal to the Controller. The Controller then arranges the 64 cal-
culated pointers (each allotted 1 byte) into four 128-bit pointer
message packets, queues these message packets on the core
engine’s output data port, and asserts a ready signal, Tx_Rdy
informing the remainder of the transmission-side IP that data
intended for the CPU is ready to be sent. Four cycles of the
basecalling engine’s clock are needed to send the four pointer
messages. The processing of the remaining three input events
in the received message packet is handled in the same fashion
before receiving the following packet’s valid signal.

For the first event the Controller does not signal Tx_Rdy
since no pointers are calculated for the first event. On the other
hand, at the last event the Controller signals Tx_Rdy for five
clock cycles (instead of four) to send one extra RIFFA packet
carrying the end-state index (i.e. π∗N−1) to the CPU.

V. IMPLEMENTATION RESULTS

In this section, the performance of our proposed FPGA-
accelerated basecalling engine (Section IV) for Timp’s
basecaller in [19] is evaluated in terms of speed and power
consumption for different accuracy levels. The performance
of our proposed basecaller is evaluated comparatively with a

Fig. 9. Fixed-point basecaller accuracy as a function of bit resolution under
different input SNR settings.

traditional CPU-based implementation (i.e. coded in C). The
CPU used in our testing platform is the 12-core Intel Xeon
E5-2620 v3 clocked at 2.4 GHz with a 32 GB of RAM. The
proposed basecalling engine is designed and implemented using
Xilinx Vivado HLx v2016.1 tools. Our target FPGA device
is a Virtex-7 (i.e. XC7VX485T-2FFG1761 C) which contains
75,900 slices each of which has 4 look-up tables (LUTs) and 8
flip-flops (FFs).

To guide our FPGA implementation, we built a bit-true MAT-
LAB system-level simulator to evaluate the fixed-point base-
caller’s prediction accuracy performance at different bit-widths.
To account for possible noise effects in the measurement system
we examined the basecaller’s behaviour at different input signal-
to-noise ratios (SNRs) from the sensor channel. In addition
to the sensor’s additive noise, our HMM basecaller’s accuracy
depends on its ability to mitigate the stay and skip translocation
mechanisms discussed above. Lacking detailed reports on this
issue we have assumed a 10% stay probability and a 10% skip
probability as exemplary values for our hardware analysis.

The simulation results depicted in Fig. 9 show how the ac-
curacy of the fixed-point basecaller changes with the bit-width
at different SNR values for the sensor channel. At each SNR,
the accuracy is measured with respect to a floating-point equiv-
alent. As expected, the accuracy for the fixed-point basecaller
increases with increasing bit-width until it saturates at the value
attained by its floating-point counterpart.

From another perspective, the results show that the bit-width
value required to saturate the fixed-point basecaller accuracy
increases with increasing SNR (e.g. 6-bits for 20 dB, 8-bits
for 30 dB, etc). This could be justified by the dominance of
the sensor channel SNR over the bit-width in determining the
fixed-point basecaller’s accuracy. In particular, in case of a
highly corrupted sensor signal (i.e. low SNR) the ability of
the fixed-point basecaller to make accurate predictions of the
original DNA sequence is very low due to the noise distortion
level regardless of its computational resolution (bit-width). That
is why, for instance, at 20-dB SNR the accuracy (i.e. 67%)
at a resolution of 6-bits is the same as that for 12-bits. On

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FPGA-ACCELERATED 3rd GENERATION DNA SEQUENCING 71

Fig. 10. Measured FPGA-accelerated and CPU-only basecalling speed for
Timp’s basecaller [19] with the FPGA clock frequency. Numbers denote the
relative speed improvement of the FPGA-accelerated design relative to the CPU
alone.

the other hand, in case of a low-noise signal (i.e. high SNR
signal), the major limiting factor for the fixed-point basecaller’s
prediction accuracy is its resolution. This could be seen in the
50-dB SNR case at which the basecaller’s resolution must be
12-bits to match the floating-point accuracy of 99.04%. It is
worth mentioning here that besides the sensor additive noise and
the basecaller’s resolution, the skip and stay state transitions are
still an additional source of discrepancy for the sensor signal and
limit the basecaller’s accuracy, a deep study of these effects is
beyond the paper’s scope.

The results presented in Fig. 10 demonstrate a dramatic
improvement in the basecalling speed for our proposed
FPGA-accelerated basecalling engine compared to a CPU-only
implementation thanks to the parallel computing which may be
realized in FPGA devices. As expected, the basecalling speed
improvement tracks the clock frequency. Our register-transfer
language (RTL) model for the basecaller was successfully syn-
thesized and implemented on our target FPGA device at a clock
frequency of 250 MHz when using 8 lanes of the Xilinx PCIe
3.3 IP. At this frequency the FPGA-accelerated basecalling
speed exceeds the CPU-only implementation by a factor of
172×. In addition, it could be observed that despite the acceler-
ated basecaller attaining similar speeds on both the 4-lane and
8-lane PCIe configurations (i.e. the bandwidth of the 4-lane PCIe
channel is accommodating our basecalling engine bit rate), only
the 8-lane interface-based basecaller could be implemented at
a 250-MHz clock frequency. This pertains to the higher AXI
clock frequency (i.e. used to generate our basecalling engine
clock) of the 8-lane interface (250 MHz) compared to that for
the 4-lane (125 MHz). However, the higher maximum clock
frequency attained by the 8-lane interface compared to the 4-lane
comes at the expense of the circuit power consumption as will
be shown in the following paragraphs.

It should be noted that the 172× speed-up in favor of our
proposed accelerator compared to the CPU is due to the parallel
computing for three major parts of Algorithm 1. The first part

Fig. 11. FPGA-accelerated basecalling power consumption (FPGA only).

is unrolling the inner loop in lines 5 and 6 for the 64 hidden
states of the HMM. The second part is the 21 transition additions
in (4) executed for each of the 64 states’ calculations. The
third part is the normalization subtraction which is executed in
parallel on our FPGA accelerator for the 64 posteriors output
from the Transition Calculator block (in Fig. 4) at the end
of the processing cycle of each input event. Therefore, the
aforementioned parallel computations lead to a speed-up factor
of 147× (i.e. (21 × 64 + 64)/(2.4 GHz/250 MHz)) for our
250 MHz clocked FPGA compared to the 2.4 GHz CPU. The
residual speed-up factor is attributable to other PC computer
architecture-related factors (e.g. cache misses, procedure calls,
multi-core communications, etc.).

The practical significance of the results reported in Fig. 10,
should be considered with respect to the corresponding power
consumption and hardware utilization costs. This will better
enable the system designer (or even the application layer user)
to select the most efficient configuration for the whole sys-
tem to meet the target application requirements (e.g. energy-
efficiency).

We start by considering the measured average operational
power consumption of the FPGA accelerator in Fig. 11 as a
function of clock frequency. Both the 4 and 8-lane configurations
consume on average 8% and 16%, respectively, of the CPU’s
average “incremental” power, 25.16 W (i.e. the extra power
consumed while the CPU executes the basecalling algorithm,
otherwise the PC’s total consumed power is 87.15 W). For
further illustration, in Fig. 12, the results of Fig. 10 and Fig. 11
are utilized to demonstrate the energy efficiency (bases com-
puted per joule) of our proposed accelerator compared to the
CPU. Fig. 12 confirms that our proposed accelerator is more
energy-efficient than the CPU by at least 225× for the 8-lane
design at 50 MHz (and 1390× for the 4-bit design with 4 lanes
at 200 MHz). The relative energy-efficiency improvement of our
proposed accelerator with increasing clock frequency reflects
its consistent linear increase in basecalling speed (as shown in
Fig. 10) relative to a marginal increase in the corresponding
power consumption (as shown in Fig. 11). The power-frequency

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

72 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2020

Fig. 12. Basecalling energy-efficiency of the FPGA and CPU, numeric labels
denote the relative efficiency improvement of the FPGA.

change ratio demonstrated in Fig. 11 is ∼1 : 3.5 (rather than
the theoretical 1 : 1). This pertains to the fact that the power
consumption reported in Fig. 11 encapsulates not only that of
the core basecalling engine, but also the PCIe and RIFFA IP
while the abscissa refers only to the basecalling engine’s clock
frequency. Thus, increasing the clock frequency only increases
the power consumption of the basecalling engine while the
power consumed by the communications IP portions remains
invariant. Moreover, the power of the basecalling engine occu-
pies an average of 8.25% of the total power consumption budget
of our accelerator circuit reported in Fig. 11. Due to these facts,
the marginal increase in the power consumption with the clock
frequency illustrated in Fig. 11 could be understood.

It should be noted that the PCIe IP and RIFFA IP in our
proposed accelerator communicates with a different and in-
dependent clock frequency (i.e. AXI interface clock) to the
basecalling clock frequency (i.e. used in Figs. 10, 11, 12). Hence,
the divergence of the EE lines when increasing the basecalling
clock frequency is notable in Fig. 12 especially for the 4-lanes
curves for different circuit resolution. This stems from the fact
that at low basecalling clock frequencies the dynamic power
consumed by our core basecalling engine is still not big enough
compared to the bigger constant power (i.e. dependant on the
constant AXI clock) consumed by the PCIe and RIFFA logic
elements to show a reasonable difference in the total power
consumed by the whole circuit. However, at higher basecalling
clock frequencies, the dynamic power of our core basecalling
engine starts to show more impact as it becomes relatively closer
to the constant power component for the PCIe and RIFFA IPs.

In addition to the power consumption, the hardware utilization
and the energy density (ED) (i.e. elaborated below) of our
proposed basecalling engine on the target Virtex-7 FPGA device
is illustrated in Table I. The table shows the resource utilization
percentages for the LUTs, FFs and DSP slices with different
complexities (i.e. resolution) of our basecalling circuit. As ex-
pected, resource usage increases with bit-width. Table I does
not show a substantial difference between using 4-PCIe lanes
and 8-PCIe lanes. However, 14% of the Gigabit Transceiver
(GTX) resource (i.e. not reported in the table) is utilized in

TABLE I
FPGA DEVICE UTILIZATION AND ENERGY DENSITY

case of the 4-lanes design (i.e. using 4 transceivers out of 28)
compared to 29% for the 8-lanes (i.e. using 8 transceivers out
of 28). It is worth mentioning that the aforementioned GTX
resource utilization for the 4 and 8-lane designs directly justifies
the power offset between both designs as noticed in Fig. 11.
In addition to the resource utilization, Table I also shows the
ED at the maximum clock frequency (i.e. 200 MHz in case of
4-lanes interface and 250 MHz in case of 8-lanes interface) for
each design resolution. The basecaller is assumed to decode
a long genome with a length of 1 Gbp. The ED metric (i.e.
measured in Joules/slice) is another important metric which
determines the energy efficiency of the utilized FPGA resources
by combining the actual number of the utilized FPGA slices
and its corresponding energy consumption. All the ED values
reported in Table I are in mJoules/slice. The increase in the ED
for both 4 and 8 lanes accelerators with increasing resolution
shows consistency with the results in Fig. 12 which conveys
that the lower the basecaller’s resolution the higher the energy
efficiency.

Finally, it is worth mentioning that the utilization of the
proposed FPGA accelerator in the HMM basecalling function
in this work does not limit its applicability to other HMM-based
algorithms such as Pair HMM [17] and Profile HMM [24]. In
case of Pair HMM, our accelerator can be efficiently utilized
to accelerate the initialization and recursion sections of the
algorithm similar to the initialize and iterate blocks, respectively,
of our Algorithm 1. On the hand, our accelerator can also
speed-up the database search for the Profile HMM algorithm
by implementing parallel instances of accelerated Pair HMMs
to rapidly identify the sequence family of an arbitrary DNA
sequence.

VI. SUMMARY AND CONCLUSION

In this paper, we present an FPGA hardware accelerator for
the detection of nanopore signals. In the context of such sensors
being used for DNA sequencing, this detection step is commonly
referred to as basecalling, the identification of the base make-up
of a measured DNA molecule. Although extremely promising as
a sensory device for mobile molecular detection, the coarse and
jitter-prone nature of the nanopore signal requires a sequence
detection algorithm capable of accounting for channel memory
while accommodating for null and redundant transitions. Our
approach employed a maximum-likelihood scheme to achieve
this, with the majority of its computational load mapped onto
the FPGA. This effort is intended to demonstrate the potential
of specialized computing in this aspect of bioinformatics and

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FPGA-ACCELERATED 3rd GENERATION DNA SEQUENCING 73

sensing and to potentially suggest means by which low-power
implementations suitable for mobile molecular measurement
scenarios may be realized.

The nature of the algorithm we employed accommodates
a hardware implementation in terms of two synchronized 64-
element parallel arrays (one for emission, another for transition
calculations) capable of handling all sensor states. Inter-element
communication within the device facilitates the sharing of in-
formation across the algorithm’s iterations. On-FPGA normal-
ization hardware prevents underflow, thus making calculations
entirely self-contained and capable of sustaining continuous data
inputs. The need for excessive on-FPGA memory resources are
avoided by offloading memory-heavy functions to the host CPU.
The memory-heavy functions reside in the traceback block of
Algorithm 1 which traverse the FPGA-calculated pointers (for
all events) in the CPU memory to find the optimal path of
the nanopore states which leads to the equivalent DNA bases
sequence. As a result, the core basecalling algorithm’s resource
utilization peaks at 60% (for a Virtex-7 device with∼500 k logic
cells and ∼3 k DSP slices).

In our implementation, the CPU-accelerator communication
interface is facilitated with a PCIe link which allows a streaming
data exchange between the CPU and its accelerator in terms of
128-bit information packets; as new measured events are sent
to the FPGA, computations are aggregated and returned to the
CPU. In this manner, a continuous flow of measurements can
be managed. At its peak (clocked at 250-MHz) the accelerator
system’s measured throughput is equivalent to the equivalent
of one human genome in less than 5 minutes, a 172× rate
improvement over the CPU-only basecaller. Perhaps even more
importantly, this performance comes at a substantial savings in
power, only 16% of the CPU’s average power used for the exe-
cution of the algorithm alone. As a result, the FPGA-accelerated
system achieves a measured energy efficiency (i.e. bases called
per Joule) about 1000× better than the CPU alone.

These results portend very well for the potential of the ap-
proach described here. The low memory requirements suggest
opportunities for ASIC accelerator implementations and the
possibilities of even deeper cost-performance advantages.

REFERENCES

[1] F. Sanger and A. R. Coulson, “A rapid method for determining sequences
in DNA by primed synthesis with DNA polymerase,” J. Mol. Biol., vol. 94,
no. 3, pp. 441–448, May 1975.

[2] E. A. Ashley, “Towards precision medicine,” Nature Rev. Genetics, vol. 17,
no. 9, pp. 507–522, Sep. 2016.

[3] L. Jameson and D. L. Longo, “Precision medicine—Personalized, prob-
lematic, and promising,” Obstetr. Gynecol. Surv., vol. 70, no. 10, pp. 612–
614, Oct. 2015.

[4] Y. Wu, C. Chang, J. Hung, and C. Yang, “A 135-mW fully integrated data
processor for next-generation sequencing,” IEEE Trans. Biomed. Circuits
Syst., vol. 11, no. 6, pp. 1216–1225, Dec. 2017.

[5] Z. Beiki and A. Jahanian, “DENA: A configurable microarchitecture and
design flow for biomedical DNA-based logic design,” IEEE Trans. Biomed.
Circuits Syst., vol. 11, no. 5, pp. 1077–1086, Oct. 2017.

[6] M. Jain, H. E. Olsen, B. Paten, and M. Akeson, “The Oxford nanopore
MinION: Delivery of nanopore sequencing to the genomics community,”
Genome Biol., vol. 17, no. 1, 2016, Art. no. 239.

[7] F. D. Guzel and H. Avci, “Fabrication of nanopores in an ultra-thin
polyimide membrane for biomolecule sensing,” IEEE Sensors J., vol. 18,
no. 7, pp. 2641–2646, Apr. 2018.

[8] Z. Wu, K. Hammad, R. Mittmann, S. Magierowski, E. Ghafar-Zadeh,
and X. Zhong, “FPGA-based DNA basecalling hardware acceleration,”
in Proc. IEEE 61st Int. Midwest Symp. Circuits Syst., Aug. 2018,
pp. 1098–1101.

[9] H. Lee et al., “Third-generation sequencing and the future of genomics,”
bioRxiv, 2016, doi: 10.1101/048603.

[10] C. Chien, S. Shekar, D. J. Niedzwiecki, K. L. Shepard, and
M. Drndic, “Single-stranded DNA translocation recordings through solid-
state nanopores on glass chips at 10 MHz measurement bandwidth,” ACS
Nano, vol. 13, no. 9, pp. 10545–10554, Aug. 2019.

[11] P. M. Ashton et al., “MinION nanopore sequencing identifies the position
and structure of a bacterial antibiotic resistance island,” Nature Biotech-
nol., vol. 33, no. 3, pp. 296–300, 2015.

[12] M. Jain et al., “Nanopore sequencing and assembly of a human genome
with ultra-long reads,” Nature Biotechnol., vol. 36, no. 4, pp. 338–345,
2018.

[13] D. V. Verschueren, W. Yang, and C. Dekker, “Lithography-based fabri-
cation of nanopore arrays in freestanding SiN and graphene membranes,”
Nanotechnology, vol. 29, no. 14, Feb. 2018, Art. no. 145302.

[14] C. Hsu, H. Jiang, A. G. Venkatesh, and D. A. Hall, “A hybrid semi-digital
transimpedance amplifier with noise cancellation technique for nanopore-
based DNA sequencing,” IEEE Trans. Biomed. Circuits Syst., vol. 9,
no. 5, pp. 652–661, Oct. 2015

[15] H. M. Waidyasooriya and M. Hariyama, “Hardware-acceleration of short-
read alignment based on the burrows-wheeler transform,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 5, pp. 1358–1372, May 2016.

[16] Y. Li and Y. Lu, “BLASTP-ACC: Parallel architecture and hardware
accelerator design for BLAST-based protein sequence alignment,” IEEE
Trans. Biomed. Circuits Syst., early access, 2019.

[17] D. Sampietro, C. Crippa, L. Di Tucci, E. Del Sozzo, and
M. D. Santambrogio, “FPGA-based pairHMM forward algorithm for DNA
variant calling,” in Proc. IEEE Int. Conf. Appl.-Specific Syst., Architectures
Processors, Jul. 2018, pp. 1–8.

[18] A. Ramachandran, Y. Heo, W. Hwu, J. Ma, and D. Chen, “FPGA accel-
erated DNA error correction,” in Proc. IEEE Des., Autom. Test Eur. Conf.
Exhib., 2015, pp. 1371–1376.

[19] W. Timp, J. Comer, and A. Aksimentiev, “DNA base-calling from a
nanopore using a Viterbi algorithm,” Biophys. J., vol. 102, no. 10,
pp. L37–L39, May 2012.

[20] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication,
vol. 1, 3rd ed. Berlin, Germany: Springer, 2004.

[21] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed.
New York, NY, USA: Cambridge Univ. Press, 2007.

[23] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1:
A reusable integration framework for FPGA accelerators,” ACM Trans.
Reconfigurable Technol. Syst., vol. 8, no. 4, pp. 22:1–22:23, 2015.

[24] S. R. Eddy, “Accelerated profile HMM searches,” PLoS Comput. Biol.,
vol. 7, no. 10, Oct. 2011, Art. no. e1002195.

Zhongpan Wu received the B.E. degree in software
engineering from Dalain Jiaotong University, Dalian,
China, in 2015, and the M.Sc. degree in electrical
engineering and computer science in 2019 from York
University, Toronto, ON, Canada, where he is cur-
rently working toward the Ph.D. degree. He was a
Research Assistant from May 2016 to 2017 with York
University. His research interests include ASIC and
FPGA accelerators design, computer architecture,
and machine learning.

Karim Hammad received the B.Sc. and M.Sc. de-
grees in electronics and communications engineering
from the Arab Academy for Science, Technology
and Maritime Transport (AASTMT), Cairo, Egypt,
in 2005 and 2009, respectively, and the Ph.D. degree
in electrical and computer engineering from the Uni-
versity of Western Ontario, London, ON, Canada, in
2016. He is currently an Assistant Professor with the
Department of Electronics and Communications En-
gineering, AASTMT, and a Postdoctoral Visitor with
York University, Toronto, ON, Canada. His research

interests include wireless networks cross-layer design, physical layer security,
and digital circuit design.

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1101/048603

74 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 14, NO. 1, FEBRUARY 2020

Ebrahim Ghafar-Zadeh (M’13) received the B.Sc.
degree from the K. N. Toosi University of Technol-
ogy, Tehran, Iran, in 1994, the M.Sc. degree from
the University of Tehran, Tehran, in 1996, and the
Ph.D. degree from Ecole Polytechnique, Montreal,
QC, Canada, in 2008, all in electrical engineering.
He continued his research, as a Postdoctoral Fellow
with the Department of Electrical and Computer En-
gineering, McGill University, Montreal, and with the
Department of Bioengineering, University of Cali-
fornia, Berkeley, CA, USA. In 2013, he joined the

Department of Electrical Engineering and Computer Sciences, York University,
Toronto, ON, Canada, where he currently serves as an Associate Professor and
the Director of Biologically Inspired Sensors and Actuators (BioSA) Laboratory.
He has authored/coauthored more than 125 papers in various BioSA topics in
the high-quality journals and international conferences. His research focuses on
BioSA for cell and molecular analysis.

Sebastian Magierowski received the Ph.D. degree in
electrical engineering from the University of Toronto,
Toronto, ON, Canada, in 2004. From 2004 to 2012, he
served on the faculty of the Department of Electrical
and Computer Engineering, University of Calgary.
In 2012, he joined the Department of Electrical En-
gineering and Computer Science, Lassonde School
of Engineering, York University, Toronto, where he
is currently an Associate Professor. As part of his
industrial experience (Nortel Networks, PMC-Sierra,
Protolinx Corporation), he has worked on CMOS

device modeling, high-speed mixed-signal IC design, and data networks. His
research interests include analog/digital CMOS circuit design, communication
systems, biomedical instrumentation, and signal processing for biomolecular
sensing and analysis.

Authorized licensed use limited to: York University. Downloaded on May 23,2022 at 14:32:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

