
RATIONAL AGENTS : PRIORITIZED GOALS, GOAL DYNAMICS, AND AGENT
PROGRAMMING LANGUAGES WITH DECLARATIVE GOALS

Shakil M. Khan

A dissertation submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

Graduate Programme in Department of Electrical Engineering and Computer Science
York University
Toronto, Ontario

June 2018

c© Shakil M. Khan, 2018

Abstract

I introduce a specification language for modeling an agent’s prioritized goals and their

dynamics. I use the situation calculus along with Reiter’s solution to the frame prob-

lem and predicates for describing agents’ knowledge as my base formalism. I further

enhance this language by introducing a new sort of infinite paths. Within this language,

I discuss how to systematically specify prioritized goals and how to precisely describe

the effects of actions on these goals. These actions include adoption and dropping of

goals and subgoals. In this framework, an agent’s intentions are formally specified as

the prioritized intersection of her goals. The “prioritized” qualifier above means that

the specification must respect the priority ordering of goals when choosing between

two incompatible goals. I ensure that the agent’s intentions are always consistent with

each other and with her knowledge. I investigate two variants with different commit-

ment strategies. Agents specified using the “optimizing” agent framework always try

to optimize their intentions, while those specified in the “committed” agent framework

ii

will stick to their intentions even if opportunities to commit to higher priority goals

arise when these goals are incompatible with their current intentions. For these, I study

properties of prioritized goals and goal change. I also give a definition of subgoals, and

prove properties about the goal-subgoal relationship.

As an application, I develop a model for a Simple Rational Agent Programming

Language (SR-APL) with declarative goals. SR-APL is based on the “committed

agent” variant of this rich theory, and combines elements from Belief-Desire-Intention

(BDI) APLs and the situation calculus based ConGolog APL. Thus SR-APL supports

prioritized goals and is grounded on a formal theory of goal change. It ensures that the

agent’s declarative goals and adopted plans are consistent with each other and with her

knowledge. In doing this, I try to bridge the gap between agent theories and practical

agent programming languages by providing a model and specification of an idealized

BDI agent whose behavior is closer to what a rational agent does. I show that agents

programmed in SR-APL satisfy some key rationality requirements.

iii

Acknowledgements

In the name of The God, most Gracious, most Merciful.

First and foremost, I want to thank my supervisor Yves Lespérance for his con-

stant supply of encouragement throughout the long gestation period of this thesis, for

sharing his deep technical insights, for carefully reading numerous drafts, and above

all, for infecting me with his passion. Without his efforts, this thesis would probably

never have been completed.

It has been an honour to have John-Jules Ch. Meyer as my external examiner, and I

greatly thank him for his careful reading of my thesis and valuable feedback. I cannot

think of how someone could do a better job of appraising a thesis. I also want to

thank the other members of my committee Mikhail E. Soutchanski, Sotirios Liaskos,

Zbigniew Stachniak, Johnathan Ostroff, and Franck van Breugel, for their continuing

encouragement, stimulating questions, and constructive comments.

I am grateful to all of those with whom I have had the pleasure to work during

iv

this and other related projects, in particular, Aijun An, Ahmed Y. Tawfik, and Sotirios

Liaskos. Numerous faculty members and fellow graduate students both at York and

elsewhere have contributed to this work by their criticisms, discussions, and encour-

agements. I will mention Steven Shapiro, Sebastian Sardiña, Hojjat Ghaderi, John

Thangarajah, Gita R. Sukthankar, M. Birna van Riemsdijk, Parke Godfrey, Hamzeh

Roumani, Erick Martı́nez, Tak-Him Erich Leung, Zahid Abul-Basher, but the list could

go on and on. I am grateful to Ulya Yigit and Seela Balkissoon for all of their com-

puter and technical assistance throughout my graduate program. The department’s

administrative staff have always been cheerfully helpful. Financial support was grate-

fully received from the Department of Electrical Engineering and Computer Science

and the Government of Ontario. Finally, I want to thank my family and friends for

their love and support. A very special appreciation goes out to my wife Anika, without

whose love, patience, and encouragement, I could not have persevered in this endeavor.

v

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Tables xii

List of Figures xiii

Index to Symbols and their Definitions xiv

1 Introduction 1

1.1 Introduction . 1

1.2 The Context . 2

1.3 The Problem . 5

1.4 The Approach . 7

vi

1.5 Contributions . 8

1.6 Organization . 13

2 Literature Review 15

2.1 Introduction . 15

2.2 Agent Theories . 16

2.2.1 Informational Attitudes and Action 17

2.2.2 Motivational Attitudes . 21

2.2.3 Interattitudinal Constraints and Properties 42

2.2.4 Success Theorems and Rational Action 46

2.2.5 Multiagent Systems: Collective Mental Attitudes, Communi-

cation, and Coordination . 50

2.3 Agent Architectures . 54

2.3.1 Deliberative Architectures 57

2.3.2 Reactive Architectures . 60

2.3.3 Reactive Plan Execution Architectures 62

2.3.4 Hybrid/Cognitive Architectures 66

2.3.5 Relation to Agent Theories 67

2.4 Agent Programming Languages . 69

2.4.1 Logic-Based/Deductive Reasoning Languages 72

vii

2.4.2 Reactive Plan Execution Languages 89

2.5 Declarative Goals in Agent Programs 104

2.5.1 Advantages of Declarative Goals 105

2.5.2 Issues in Agent Programming Languages with Declarative Goals110

2.5.3 Declarative Goal Oriented Languages 114

2.6 Conclusion . 137

3 Foundations 138

3.1 Introduction . 138

3.2 The Situation Calculus . 139

3.3 Action Theory . 143

3.4 Knowledge in the Situation Calculus 153

3.4.1 Semantics . 153

3.4.2 Knowledge Change . 156

3.5 Infinite Paths in the Situation Calculus 163

3.5.1 Axiomatization of Infinite Paths 166

3.5.2 Properties . 172

3.5.3 Induction Principles . 207

3.5.4 Correctness of Axiomatization 210

3.5.5 Related Work . 227

viii

3.6 The ConGolog Agent Programming Language 229

3.7 Conclusion . 236

4 A Formalization of Prioritized Goals for Optimizing Agents 238

4.1 Introduction . 238

4.2 Prioritized Goals . 241

4.3 Goal Dynamics . 253

4.4 Properties . 259

4.4.1 Basic Properties . 259

4.4.2 Dynamic Properties . 262

4.4.3 Goal Introspection . 273

4.4.4 Persistence Properties . 285

4.5 An Example . 294

4.6 Conclusion, Discussion and Future Work 345

5 Handling Subgoals 354

5.1 Introduction . 354

5.2 Subgoal Dynamics . 356

5.3 Properties . 363

5.4 Conclusion . 375

ix

6 A Revised Logical Framework of Prioritized Goals for Committed Agents381

6.1 Introduction . 381

6.2 Specifying Prioritized Goals and Goal Dynamics for Committed Agents 383

6.3 Properties . 399

6.3.1 Basic Properties . 399

6.3.2 Dynamic Properties I: Preservation of PGoal Strong Realism

and Consistency, and its Consequences 401

6.3.3 Dynamic Properties II: Extensionality, Adoption, and Drop . . 420

6.3.4 Goal Introspection . 438

6.3.5 Goal Persistence . 455

6.4 Discussion and Conclusion . 465

7 SR-APL : Specifying A Simple Rational Agent Programming Language

with Prioritized Goals 468

7.1 Introduction . 468

7.2 A Motivating Example . 470

7.3 Agent Programming with Prioritized Goals 477

7.3.1 Components of SR-APL . 478

7.3.2 Semantics of SR-APL . 482

7.3.3 Execution Traces . 504

x

7.4 Rationality of SR-APL Agents . 511

7.5 Conclusion and Future Work . 528

8 Conclusions and Future Work 531

8.1 Conclusions . 531

8.2 Future Work . 535

Bibliography 538

xi

List of Tables

3.1 Some ConGolog Constructs . 231

5.1 Example of an Agent’s Subgoal Dynamics 361

7.1 SR-APL Plan Language . 481

7.2 Plan-Level Transition Rules . 487

7.3 Agent-Level Transition Rules . 490

xii

List of Figures

3.1 An Example of Knowledge Change 162

xiii

Index to Symbols and their Definitions

• Init(s): s is an initial situation . 141

• Σ: foundational axioms . 141− 143

• s1 ≺ s2: s1 strictly precedes s2 . 142

• s1 � s2: s1 precedes s2 . 142

• SameHist(s1, s2): s1 and s2 share the same action history 143

• Executable(s): s is an executable situation 144

• Dbat: Basic Action Theory (BAT) . 152

• Know(Φ, s): the agent knows that Φ in situation s 156

• Kwhether(Φ, s): the agent knows whether Φ holds in situation s 156

• Kref(θ, s): the agent knows who/what θ is in situation s 156

• Preconditions for informWhether and informRef 159

• Successor-state axiom for K . 160

• Dknow: BAT including knowledge . 163

xiv

• Starts(p, s): path p starts with situation s 166

• OnPath(p, s): situation s is on path p . 166

• OnPathASF(F, s, s′): situation s′ is on path defined by the situation and the

Action Selection Function pair (s, F) . 167

• Executable(F, s): the situation sequence encoded by the situation and the

Action Selection Function pair (s, F) is executable 167

• ©Φ(p): Φ holds next on path p . 169

• (Φ U Ψ)(p): Φ until Ψ holds over path p 169

• 3Φ(p): Φ eventually holds over path p . 170

• 2Φ(p): Φ always holds over path p . 170

• (ΦW Ψ)(p): Φ unless Ψ holds over path p 170

• (Φ B Ψ)(p): Φ before Ψ holds over path p 170

• WeaklyInevitable(φ, s): φ is weakly inevitable in situation s 170

• StronglyInevitable(φ, s): φ is strongly inevitable in situation s 170

• KInevitable(φ, s): φ is known to be inevitable in situation s 171

• KImpossible(φ, s): φ is known to be impossible in situation s 171

• Suffix(p, p′, s): path p is a suffix of path p′ starting in situation s 171

• Dpath: BAT including paths . 186

• PathSeq(σ): σ is a path sequence . 211

xv

• Matches(p, σ): path p matches path sequence σ 216

• Final(δ, s): program δ can legally terminate in situation s 233

• Trans(δ, s, δ′, s′): program δ starting in situation s can evolve in a single step

to δ′ in s . 234

• Do(δ, s, s′): situation s′ can be reached by performing a sequence of transitions

starting with the program δ in s, and the remaining program δ′ can legally

terminate in s′ . 235

• Trans∗(δ, s, δ′, s′): reflexive transitive closure of Trans 235

• PGoal(φ, n, s): φ is a p-goal at level n in situation s 242

• OPGoal(φ, n, s): φ is the only p-goal at level n in situation s 242

• GR(p, n, s): p is a realistic p-goal accessible path at level n in situation s . 244

• RPGoal(φ, n, s): φ is a realistic p-goal at level n in situation s 245

• G∩(p, n, s): p is in the intersection of the set of realistic p-goal accessible

paths up to level n in situation s . 246

• CGoal(φ, n, s): φ is a chosen goal at level n in situation s 248

• G∩(p, s): p is in the intersection of the set of realistic p-goal accessible

paths at all levels in situation s . 248

• CGoal(φ, s): φ is a chosen goal in situation s 248

• PrimCGoal(φ, s): φ is a primary chosen goal in situation s 251

xvi

• PrimCGoal(φ, n, s): φ is a primary chosen goal at level n in situation s . . 253

• Preconditions for adopt(φ, n) for optimizing agents 253

• Preconditions for drop(φ) for optimizing agents 254

• Successor-state axiom for G for optimizing agents (without subgoals) . . . 254

• Progressed(p, n, a, s): p is a progressed path at level n after action a happens

in situation s . 255

• Adopted(p, n,m, a, s, φ): p is a G-accessible path at level n after the

a = adopt(φ,m) action happens in situation s 255

• Dropped(p, n, a, s, φ): p is a G-accessible path at level n after the

a = drop(φ) action happens in situation s 256

• DOAgt: optimizing agent theory (without subgoals) 259

• ActiveLevel(n, s): level n is active in situation s 259

• ProgOf(φ, a)(p): progression of path formula φ after action a happens . . 271

• KGTrans(n, s): the K −G transitivity constraint on situation s 273

• KGEuc(n, s): the K −G Euclideanism constraint on situation s 275

• During(φ, from, to)(p): φ holds during from and to over path p 295

• Between(φ, from, to)(p): φ holds between from and to over path p . . . 296

• Preconditions for adoptRelTo(ψ, φ) for optimizing agents 356

• Successor-state axiom for G for optimizing agents (with subgoals) 358

xvii

• SubGoalAdopted(p, n, a, s, ψ, φ): p is a G-accessible path at level n after the

a = adoptRelTo(ψ, φ) action happens in situation s 359

• AdoptedLevel(φ, n, s): n is the level where some subgoal ψ is adopted after the

adoptRelTo(ψ, φ) action happens in situation s 359

• SubGoal(ψ, φ, s): ψ is a subgoal of φ in situation s 361

• DSGOAgt: optimizing agent theory (includes subgoals) 363

• p-goal strong realism assumption for committed agents 384

• p-goal consistency assumption for committed agents 385

• Preconditions for adopt(φ, n) for committed agents 387

• Preconditions for adoptRelTo(ψ, φ) for committed agents 387

• Preconditions for drop(φ) for committed agents 388

• Successor-state axiom for G for committed agent 388

• ProgressedAndFiltered(p, n, a, s): p is a G-accessible path at level n after

the action a happens in situation s . 389

• ProgressedCA(p, n, a, s): p is a progressed path at level n after action a happens

in situation s, and p starts with a K-accessible situation in do(a, s) 390

• AdoptedCA(p, n,m, a, s, φ): p is a G-accessible path at level n after the action

a = adopt(φ,m) happens in situation s (for committed agents) 391

• SubGoalAdoptedCA(p, n, a, s, ψ, φ): p is a G-accessible path at level n after

xviii

a = adoptRelTo(ψ, φ) happens in situation s (for committed agents) . . 392

• DroppedCA(p, n, a, s, φ): p is a G-accessible path at level n after the action

a = drop(φ) happens in situation s (for committed agents) 393

• DSGCAgt: committed agent theory (includes subgoals) 394

• KnowProdAct(agt, a): a is a knowledge-producing action for agent agt . 455

• NPGoals(n, s): n is the highest priority level where the agent’s p-goals at

level n and all lower priority levels are “empty” 478

• DoAL(σ, s, s′): situation s′ can be reached from situation s via a sequence of

transitions starting with program σ possibly along with other actions, and

the remaining program can legally terminate in s′ 484

• Γ‖: concurrent composition of the plans in Γ 485

• Handled(φ, s,D): theory D entails that goal φ has been handled in s . . . 488

• Labeled execution trace T relative to a theory D 504

• Complete trace T relative to a theory D . 505

• NoExo: axiom stating that exogenous actions are excluded 505

• Consistency of goals in Γ and D in situation s 513

• DExo: SR-APL theory without exogenous actions 513

• DExo,KPA: SR-APL theory without exogenous actions and actions that are

knowledge-producing for the agent . 514

xix

Chapter 1

Introduction

1.1 Introduction

According to cognitive scientists, theory of mind/common sense psychology is a key

component of human cognitive capabilities. In at least some cases, it allows us to pre-

dict and explain the behavior of others by ascribing high-level mental attitudes such as

beliefs, goals, intentions, etc. to them, and assuming that they will behave rationally

by performing actions that best satisfy their goals and intentions based on what they

believe. Philosopher Daniel Dennett [58] called this adopting the intentional stance.

This turned out to be one of the most successful abstractions proposed to date in an

attempt to unveil the mysteries of human mind: how mind works, and how we are

able to predict the behavior of others with surprising accuracy and to adjust our own

behavior accordingly. Following on this success, AI researchers have also been ask-

1

ing whether such an abstraction is useful in designing, analyzing, and predicting the

behavior of complex artificial systems. Adopting the intentional stance for these sys-

tems, often refereed to as agents, has at least a couple of advantages. First, it allows the

designer of an agent to specify it from a high level. Secondly, and more importantly,

it allows an agent to reason about other cooperating or competing agents with little or

no knowledge about their internal design, and only in terms of their mental states.

Today the term ‘agent’ is used in so many different ways and contexts that its use

here requires some clarification. I consider an agent to be an artificial, intelligent,

adaptive, and autonomous system that can be described using mental states such as

beliefs, knowledge, goals, intentions, etc., and whose behavior, at least to some ex-

tent, can be predicted in terms of these associated mental states. Agents are typically

situated in an environment inhabited by other agents with whom they communicate,

cooperate, negotiate, and compete.

1.2 The Context

Research on intelligent agents can be divided into three related areas that focus on

integrated treatments of agents: agent theories, architectures, and languages [251].

All three of these areas are concerned with different aspects of the same enterprise,

namely, the specification and implementation of intelligent agents.

2

Agent theories (e.g. [151, 35, 36, 181, 213, 130, 249, 97, 201, 113, 89, 203]) use

formal logic to model various mental attitudes of an agent, such as beliefs, desires,

goals, intentions, commitments, abilities etc., and the dynamics of these attitudes.

They also formalize how these mental attitudes relate to each other and to the agent’s

behavior, i.e. they specify the inter-attitudinal constraints that are required to manage

the rational balance needed among an agent’s beliefs, goals, plans, commitments, and

intentions. Finally, these theories have also grappled with problems associated with

multiple agents, such as the coordination of and communication between a group of

agents, and the modeling of joint mental attitudes.

Agent architectures (e.g. [174, 108]) provide mechanisms for managing the mental

and physical resources of an agent to meet the demands of complex, dynamic environ-

ments.

Agent programming languages (e.g. [205, 172, 140, 51, 13, 47, 101, 186]) attempt

to bridge the gap between theory and practice by specifying mechanisms for agents

to dynamically select and execute plans to achieve their goals. These languages often

have representational primitives corresponding to various mental state components of

the agent. An agent performs reasoning on these primitives to decide which plan she

should commit to and what action she should execute next. The key issue in agent

programming language design concerns the “right way” of programming an agent, i.e.

3

an autonomous, reactive, proactive, situated, and interacting computing element. In

other words, what kind of programming language components should these languages

contain so as to allow the programmer to design an agent in the most convenient,

most natural, most succinct, most efficient, and most comprehensible way, and how to

effectively execute these agent programs.

Recently, there has been a fair amount of work on establishing a link between agent

logics and agent programming frameworks by incorporating declarative goals in agent

programming [100, 247, 233]. In addition to supporting the definition of procedures

which are executed to try to achieve a goal, these programming languages also for-

malize goals as declarative descriptions of the states of the world which are sought.

These declarative goals can be used to decouple plan failure/success from goal fail-

ure/success. An agent may be able to successfully execute a plan. However, this does

not necessarily mean that the agent was successful in achieving the associated goal,

since the environment may interfere with this. Similarly, external interferences may

render a user-defined plan impossible to execute; but this does not necessarily mean

that the agent will never be able to achieve the associated goal. Thus, these declarative

goals play an essential role for monitoring goal achievement and performing recovery

when a plan has failed. Since these goals capture the reason for executing plans, it’s

not hard to see that they are also necessary to model rational deliberation and action,

4

and to model rational response to changes in goals that result from communication,

e.g. requests.

1.3 The Problem

There has been much work on modeling agents’ mental states, beliefs, goals, and in-

tentions, and how they interact and lead to rational decisions about action. As well,

there has been a lot of work on modeling belief change. But the dynamics of motiva-

tional attitudes has received much less attention. Most formal models of goals and goal

change assume that all goals are equally important and many only deal with achieve-

ment goals (an achievement goal is a goal to eventually establish some state property;

other types of temporally extended goals include maintenance goals, i.e. goals to main-

tain some property over some time interval). Moreover, most of these frameworks do

not guarantee that an agent’s goals will properly evolve when an action/event occurs,

e.g. when the agent’s beliefs/knowledge changes or a goal is adopted or dropped. Also,

they do not model the dependencies between goals and the subgoals and plans adopted

to achieve these goals. For instance, subgoals and plans adopted to bring about a

goal should be dropped when the parent goal becomes impossible, is achieved, or is

dropped. Dealing with these issues is important for developing effective models of

rational agency. It is also important for work on belief-desire-intention (BDI) agent

5

programming languages, where handling declarative goals is an active research topic.

In addition, while current agent programming languages with declarative goals

have evolved over the past few years, to keep them tractable and practical, they sac-

rifice some principles of rationality. In particular, while selecting plans to achieve a

declarative goal, these agent programming languages ignore other concurrent inten-

tions of the agent. As a consequence, the selected plan may be inconsistent with the

agent’s other intentions. Thus the execution of such an intended plan can render other

contemporary intentions impossible to bring about. Moreover, most of these languages

typically rely on syntactic formalizations of declarative goals, subgoals, and their dy-

namics, whose properties are often not well understood. Again, most assume that all

the goals of the agent are equally important. Finally, only a few formalize temporally

extended goals and thus most are restricted to achievement goals.

One of the primary reasons for these deficiencies in agent programming languages

is the fact that it is quite challenging to formalize an agent programming language

that is sufficiently expressive and that can also be implemented relatively efficiently.

To cope with the complexity that comes with expressiveness, most existing agent pro-

gramming languages with declarative goals follow a similar pattern: they start with an

agent theory that has very little expressive power, and specify an agent programming

language based on this theory. The inherited limited expressiveness of these agent

6

programming languages in turns pushes the agents specified using them further away

from rationality and contributes to the aforementioned limitations. The lack of proper

formalizations of goals and their dynamics in the agent theory literature also partly

contributes to these limitations.

1.4 The Approach

Here, I focus on the specification of prioritized goals and agent programming lan-

guages with prioritized declarative goals. First, I develop a logical account of pri-

oritized goals and their dynamics. My model of goals supports the specification of

general temporally extended goals, not just achievement goals, and handles goal dy-

namics and goal-subgoal dependency; a model-theoretic semantics is provided. In my

framework, goals are revised appropriately when knowledge changes and when new

goals are adopted or existing goals are dropped. I use an action theory based on the

situation calculus [148] along with my formalization of paths in the situation calculus

as my base formalism for this. I prove that the proposed account has many intuitively

desirable properties.

As an application of my theory, I provide a specification for an agent programming

language with declarative goals that is based on a version of this rich theory, com-

bining elements from BDI agent programming languages (e.g. [172]) and from the

7

situation calculus based ConGolog agent programming language [51]. While doing

this, I address some of the aforementioned problems of current agent programming

languages. In particular, my agent programming language supports prioritized goals

and is grounded on a formal theory of goal change. I ensure that the agent’s declarative

goals and her procedural goals (i.e. plans) are consistent with each other and with the

agent’s knowledge. I also show that agents programmed in my language satisfy some

key rationality requirements.

1.5 Contributions

The contributions of this thesis can be divided into the five following parts. First of all,

to support modeling temporally extended goals, I introduce a new sort of infinite paths

in the situation calculus, and propose an axiomatization of infinite paths. The rationale

behind introducing infinite paths as a sort is that of expressiveness: it allows first-order

quantification over paths and one can also evaluate goals over these infinite paths and

handle arbitrary temporally extended goals, e.g. unbounded maintenance goals; such

unbounded goals can’t be modeled in terms of finite paths. I prove the correctness

of my axiomatization and show that infinite paths in the situation calculus are well

behaved and indeed correspond to an intuitive notion of paths.

Secondly, I present a formalization of prioritized goals and their dynamics within

8

the agent theory paradigm. An agent specified using this theory always tries to opti-

mize her prioritized goals. My contributions to this end are as follows: I support a rich

specification of the goals of an agent. In my agent theory, an agent can have multiple

goals/desires at different priority levels, possibly inconsistent with each other. I assume

that goals are totally ordered w.r.t. the priority ordering. I define intentions/chosen

goals, i.e. the goals that the agent is actively pursuing, as the maximal set of highest

priority goals that are consistent with each other and with the agent’s knowledge. My

model of goals supports the specification of general temporally extended goals, not

just achievement goals.

I also specify how these goals evolve when actions/events occur, when the agent’s

knowledge changes, or when the agent adopts or drops a goal. My formalization of

prioritized goal dynamics ensures that the agent always optimizes her chosen goals.

She will abandon a chosen goal φ if an opportunity to commit to a higher priority

goal, that is inconsistent with φ, arises (cf. Chapter 4 for a concrete example). As

such my model displays an idealized form of rationality. In Chapter 4, I discuss how

my proposal compares to Bratman’s [20] model of practical rationality that takes into

consideration the resource-boundedness of real world agents. Note that, being ideally

rational, my theory is computationally costly as it requires the agent to constantly

deliberate about her intentions, and thus may not be suitable as a foundation for an

9

agent programming language, which are supposed to be more practical, often at the

cost of rationality.

I show that my agent theory for “optimizing agents” has some basic desirable prop-

erties such as the consistency of chosen goals, that adopting and dropping goals have

the expected effects, that agents can introspect their goals, etc. I also prove some

properties that specify the conditions under which an agent’s achievement prioritized

goals and achievement chosen goals persist. Finally, I show that the framework sat-

isfies some goal change postulates found in the literature [43, 44, 107]. To illustrate

the use of the framework, I then specify a personalized travel planning domain in the

framework and prove some properties of the specification.

Thirdly, I propose an account of subgoals and their dynamics within my theory

of prioritized goals for optimizing agents. More specifically, I give a definition of

subgoals and discuss how subgoals change when an agent’s knowledge changes as a

result of the execution of an action, or when she adopts a subgoal relative to a parent

goal. I show that my formalization of subgoal dynamics ensures that a subgoal is

dropped when its parent goal becomes impossible or is dropped, but not necessarily

vice versa.

As mentioned above, my formalization of prioritized goals (and subgoals) for op-

timizing agents presents difficulties for resource-bounded agents. To deal with this,

10

fourthly, I develop a modified version for more committed agents that maintain a com-

mitment to a prioritized goal φ as long as φ is known to be possible, φ is not inconsis-

tent with other (already adopted) higher priority goals, and φ is not explicitly dropped.

Unlike in the optimizing agent framework, in this committed agent framework the

agent’s prioritized goals are dropped permanently as soon as they become unrealistic

or conflicting with other higher priority goals. So a goal cannot be dropped because a

conflicting higher priority goal has become consistent with the agent’s higher priority

goals (cf. Chapter 6 for a concrete example). As discussed in Chapter 6, this “com-

mitted agent” framework is closer to Bratman’s original proposal since it accounts for

the resource-boundedness of the agent by limiting her deliberation.

I also prove properties about committed agents that are similar to those I proved

for optimizing agents, and in light of these properties, I discuss the similarities and

the differences between these two frameworks. In particular, I show that prioritized

goals/desires are more persistent in the optimizing agent framework than in the com-

mitted agent framework, while in the latter chosen goals/intentions are more persistent.

Finally, I contribute to the foundations of BDI agent programming languages/frame-

works with declarative goals by developing the specification of a Simple Rational

Agent Programming Language, SR-APL, that is based on my theory of prioritized

goals and subgoals for committed agents. To this end, I discuss the components of SR-

11

APL, and give a set of transition rules that specifies the semantics of SR-APL. I focus

on developing an expressive agent programming language that allows one to specify

agents that are rational without worrying about tractability. I maintain that while effi-

ciency is essential for an agent programming language, one needs to first understand

what rationality in a programming context really means. With such an understanding,

one can then try to identify restricted versions of the language that are more tractable.

This bridges the gap between agent theories and agent programming languages by en-

suring that the behavior of any agent specified using the agent programming language

is close to what a rational agent does.

Using an example, I discuss how the proposed programming framework compares

to existing agent programming languages with declarative goals. In particular, I show

that when effects of actions are not reversible or when goals with deadlines are consid-

ered, agents specified in other programming languages may behave irrationally in the

sense that they can adopt and execute plans that make some of their other goals/plans

impossible to achieve/execute. I then show that in the absence of external interferences,

an agent specified in SR-APL behaves rationally in that in each state she satisfies some

key rationality principles, and the evolution of her agent program is rational. In the fu-

ture, I would like to investigate restricted versions of SR-APL that are practical, with

an understanding of how they compromise rationality.

12

Parts of these contributions or their preliminary versions have been published ear-

lier. In particular, part of the work on infinite paths appeared in a recent publication in

KR 2016 [122]. Some of the work on prioritized goals and subgoals were published

in AAMAS 2009 [115], Commonsense 2009 [114], DALT 2009 [117], and AAMAS

2010 [116, 112]. Finally, preliminary versions of the work on simple rational agent

programming language appeared in the proceedings of DALT 2010 [118], AAMAS

2011 [120], and ProMAS 2011 [119].

1.6 Organization

The thesis is organized as follows: in the next chapter, I discuss previous work on

agent theories and agent programming languages. I focus primarily on existing for-

malizations of goals and goal change and BDI agent programming languages with

declarative goals. In Chapter 3, I present the foundational work that my theories are

based on: I discuss a formalization of action in the situation calculus and an account

of knowledge and knowledge change in the situation calculus. I then propose my ax-

iomatization of infinite paths in the situation calculus, followed by some properties of

paths. I also discuss the situation calculus-based ConGolog agent programming lan-

guage. In Chapter 4, I develop my account of prioritized goals and their dynamics for

optimizing agents. In Chapter 5, I formalize subgoals and their dynamics within the

13

optimizing agent framework. In Chapter 6, I propose a modified version of the frame-

work to model committed agents. Then based on this committed agent framework, I

present a model for a rational agent programming language with prioritized declarative

goals in Chapter 7. Finally in Chapter 8, I summarize my results and discuss possible

future work.

14

Chapter 2

Literature Review

2.1 Introduction

In this chapter, I review previous work on agent theories, agent architectures, and

agent programming languages. In the next section, relevant work on agent theories

are considered. In this, my discussion is primarily centered around previous proposals

on motivational attitudes such as goals, desires, and intentions, and how they relate to

agents’ knowledge/beliefs and future actions. In Section 2.3, I review previous work

on agent architectures.1 Then in Section 2.4, I review work on agent programming

languages in general, followed by those with declarative goals in Section 2.5.

1Some of the material in these sections is adapted from [180].

15

2.2 Agent Theories

Viewing an entity as an agent involves ascribing high-level cognitive attitudes such as

beliefs, goals, desires, and intentions to agents. As mentioned earlier, this is called

taking an intentional stance. Often, we design agents by representing such attitudes

explicitly and implementing reasoning procedures over them. Theories that formalize

various aspects of agents are often known as belief-desire-intention (BDI) theories.

Most of the existing BDI theories attempt to deal with one or more of the following

questions:

• What are the connections between agents’ informational attitudes and their ac-

tions, i.e. what are the informational preconditions of actions and what effects

do actions have on these attitudes?

• What motivational attitudes (e.g. goal, choice, and intention) are necessary, and

how should these attitudes be formalized? How should agents’ motivational

attitudes change as a result of actions?

• What inter-attitudinal constraints are required to manage the rational balance

needed among an agent’s beliefs, goals, plans, commitments, and intentions?

• How should one formalize ability, i.e. under what conditions can one expect an

agent to succeed in achieving her intentions?

16

• What does it mean for an agent to behave rationally? How should an agent’s

future behavior depend on her current mental attitudes?

• How can multiple agents coordinate to achieve a common goal?

In the following, I discuss previous work that attempts to address some of these ques-

tions.

2.2.1 Informational Attitudes and Action

One concern of BDI logic theories has been to formalize informational attitudes, such

as knowledge and belief, and their relationship to action. This relationship can be

broken down into two aspects, namely, the informational preconditions of actions,

and the effects of actions on agents’ information. In BDI logic theories, the informa-

tional attitudes of the agents are almost always modeled using accessibility relations

on possible worlds [125, 126, 127]. However, along with the associated computational

complexity, possible worlds reasoning suffers from a number of other problems, such

as logical omniscience (i.e. that of knowing all valid formulae, and that of knowledge

being closed under logical consequence). To deal with this, various other approaches

has been proposed in the literature [70].

Moore [151, 152] was a pioneer to integrate knowledge and action into a single

framework. In his formal theory, he accomplished this by formalizing Hintikka’s

17

modal logic of knowledge [102] within McCarthy’s first order situation calculus [148].

Variants of this model were later proposed in [134, 188, 50]. Others added informa-

tional modalities to other logics of action, such as dynamic logic [232] and CTL∗

[174, 213].

Moore’s main concern was to study the problem of knowledge preconditions for

actions, that is, the question of what an agent needs to know in order to be able to

perform some action. Moore formalized the ability to perform an action using an

agent’s knowledge of the referent of the action. In his framework, an agent knows the

referent of an action, if it denotes the same action in all of the agent’s possible worlds.

If the agent knows that the action is also executable, then she is able to perform the

action.

Moore, and later others [52, 134, 213, 50], also define what it means for an agent

to satisfy the knowledge preconditions of complex actions. The underlying concept

in these accounts is that to know how to do a parameterized action, the agent must

know the “procedure” (i.e. the action function), and know the value of the arguments

of the action. For instance, an agent can perform the action of dialing the combination

of a safe Safe1 (i.e. dial(combOf(Safe1))) if she knows the procedure the dial

action refers to, and knows the value of the term combOf(Safe1). Also, an agent can

perform a complex action if she knows that she can execute a sequence of primitive

18

actions that implements the complex action. However, the agent is not required to

know in advance the exact sequence of actions she will execute, since the sequence

could depend on information the agent gathers along the way. At all time points the

agent must know how to execute the current step of the complex action, know that

she will eventually complete the execution of the complex action, and that she will

know when the execution is complete. Both Moore’s and Singh’s theories are limited

to determinate complex actions, but Davis, Sardiña et al., and Lespérance et al. handle

indeterminate complex actions. Although Moore’s framework allows multiple agents,

the definition of ability with respect to a complex action involves only action by a

single agent. Also, Moore does not address the frame problem for actions, that is,

how to specify what remains unchanged after an action is performed. Finally, the

framework ignores the formulation of ability to achieve a goal and its relation with

being able to perform a complex action. Others, however, do mention how it is a

simple matter to add.

A different account was presented in [227], where van der Hoek et al. introduce a

primitive capability operator in a propositional modal logic. This operator indicates,

for each primitive action and world, whether an agent is capable of performing that

action in that world. In this account, the capabilities of complex actions are defined in

terms of capabilities of primitive actions. This approach is more flexible than the oth-

19

ers, since concepts such as moral capacity can be easily incorporated in this account.

However, in this account, one has to specify for each agent, world, and primitive action

whether the agent is capable of performing that action in that world. In other words,

every instance of a procedure/parameterized action needs to be handled distinctly in

this account.

An agent is unable to perform some action when she does not satisfy the infor-

mational prerequisites of that action. In that case, it would certainly be useful if the

agent had the means to acquire the necessary information. Thus, any agent framework

should formalize actions that an agent can use to increase her information. These ac-

tions are often known as informative actions [152], test actions [230], and knowledge

producing actions [188]. In most agent frameworks, the effect of these actions on

agents’ knowledge are handled in a similar manner. The result of performing an action

that tests the value of a proposition p is that the worlds that disagree with the value

of p in the real world are removed from the epistemic accessibility relation. With the

situation calculus based formalisms [152, 188, 189], there is an additional requirement

that after performing any action a in situation s, the situations that are epistemically

related to s are projected/extended by a to get the updated state. In other words, the

situations which have not resulted from performing a in an epistemic alternative in

s cannot be in the epistemic accessibility relation at do(a, s). So, in this case, even

20

“non-informative actions” affect the knowledge of the agent in the sense that the agent

gets to know that it has just performed a. On the other hand, in [230], non-informative

actions do not affect the epistemic accessibility relation; also, in their dynamic logic

based language, there is no way to say that the agent has just performed action a.

Most of the work already mentioned assumes that new information is consistent

with existing knowledge (this is called belief expansion). There has also been much

work on belief revision (and contraction) where this may not be the case [86, 231].

Also various researchers have proposed mechanisms for iterated belief change, possi-

bly with noisy sensors [86, 202, 195].

2.2.2 Motivational Attitudes

Along with agents’ informational states, a general theory of agency must also take

their motivations into account, since agents are expected to act to achieve their goals.

To this end, the general trend followed in the literature is to specify a primitive moti-

vational attitude, and then to define compound and more useful motivational attitudes

using this. There are two main categories of motivational primitives, namely goal

[35, 174] (variously known as choice [181], wish [20], and preference [232]), and in-

tention. While goals are sometimes allowed to be inconsistent and thus difficult to

formulate [20], intentions are mostly considered to be consistent. Another difference

21

between these attitudes lies in the agent’s level of commitment towards them. Inten-

tion is sometimes primitive [174, 124, 97] and sometimes a defined concept, specified

in terms of goals [35, 181, 213]. In his philosophical work [20], Bratman argues that

intention is different from goals. He identifies the following important properties of

intention:

1. Intentions pose problems for agents; they need to determine a way of bringing

about their intentions.

2. Intentions provide a filter for adopting new intentions; intentions that are incom-

patible with an agent’s currently held intentions can not be adopted.

3. Agents will maintain an intention if they attempt to achieve it, the attempt fails,

but they still believe the intention is achievable.

Previous work on motivational attitudes mostly concern two aspects of these atti-

tudes, namely, when goals are satisfied, and how long should goals persist. The former

differentiates maintenance goals and achievement goals, while the latter can be used to

specify different levels of commitments to a goal. Maintenance goals are propositions

that are currently true, and the agent wants it to remain true. Achievement goals, on

the other hand, are propositions that are currently false, which the agent would like to

be true eventually. Most of the research in the literature focuses on achievement goals.

22

In the literature, there have been various proposals characterizing different types of

persistence of motivational attitudes.

In their linear time temporal model, Cohen and Levesque [35] define a primitive

goal modality with its own accessibility relationG similar to the belief modality. Since

their model does not have branching futures, it cannot be used to distinguish between

some/all branches; rather it can only be used to talk about the actual future. Intuitively,

the G-accessible worlds are the ones where all the goals of the agent are satisfied. The

goals of the agent are formally defined to be the propositions that are true in all the

agent’s G-accessible worlds. According to Cohen and Levesque’s definition, an agent

has a proposition p as an achievement goal if she has the goal that p eventually be

true, and believes that it is currently false. Others have adopted a similar primitive

motivational operator [174, 181, 232].

Cohen and Levesque point out, following Bratman [20], that since an agent’s goals

should be compatible with her beliefs, her goal worlds should be constrained to be a

subset of the believed worlds. This constraint is known as realism. It ensures that the

agent does not have an impossible goal. I discuss whether this constraint is actually

desirable in the next section.

Cohen and Levesque [35] also investigated the persistence of achievement goals.

To ensure that agents do not procrastinate forever, they assume that eventually all

23

achievement goals get dropped. Using this assumption, they then define two types

of persistence. According to them, an agent has p as a persistent goal if p is one of

her achievement goals, and if she does not drop the goal until either she believes the

goal has been achieved, or believes that the goal will never be achieved. Cohen and

Levesque acknowledge that agents with persistent goals are fanatically committed to

their goals. To remedy this, they therefore define the notion of a relativized persistent

goal, which is a persistent goal with the further condition that the agent may drop the

goal if she comes to know that some proposition q has become false. Typically, the

goal p is a means to achieving the super-goal q, or q can be some requester agent’s in-

tention. The idea behind this is that the agent adopted the goal relative to the condition

q being true, so if q becomes false the agent can freely drop the goal. By Cohen and

Levesque’s definition, it is not known whether an agent has a persistent goal until the

agent drops the goal.

Cohen and Levesque [35] define intention as a special kind of persistent goal. In

their framework, they distinguish between an intention to perform an action and an

intention to achieve a proposition. An agent intends to perform action a, if she has a

persistent goal to perform a, immediately after believing she would perform a. Here,

the constraint about the agent’s belief is required to prevent the agent from intending to

accidentally or unknowingly perform the action. An agent intends to achieve proposi-

24

tion p if she has the persistent goal to perform some sequence of actions a, after which

p is true. Moreover, immediately before performing a, it is required that the agent

believes that she is about to perform some (possibly different) sequence of actions a0,

after which p holds, and that she does not have the goal that it not be the case that

p is true immediately after doing a. Note that the believed sequence of actions can

be different from the actual sequence. The reason for this is that it allows the agent

to intend to bring about a state of affairs without knowing in advance exactly how to

do it. It is also required that in at least one of the agent’s chosen worlds, the agent

performs a, i.e., the sequence of actions that the agent really does, after which p holds.

This is meant to rule out cases in which the agent is trying to do, say, a1 to bring about

p, but in the course of doing a1, she accidentally ends up bringing about p in a com-

pletely unforeseen way before completing a1. Both these definitions of intention can

be relativized to a condition q by replacing the persistent goal with a relativized per-

sistent goal. Cohen and Levesque [35] show that their definition of intention satisfies

the properties of intention given by Bratman [20].

Rao and Georgeff [174] adopt a primitive intention modality in addition to the

goal modality. Their formal language is based on a first-order modal logic that is a

variant of the Computation Tree Logic (CTL∗) framework [67]. This is a branching-

time temporal logic, so it can refer to possible or optional futures (i.e. formulae that

25

hold in at least one branch among the paths emanating from the current situation) and

inevitable futures (i.e. formulae that hold in all branches emanating from the current

situation), in contrast to Cohen and Levesque’s account, where one can only talk about

the actual/inevitable future. However, unlike in the latter, there is no way to talk about

the actual future, i.e. the path that represents the actual evolution of the world. In their

framework, the intention accessible worlds are the worlds that the agent is committed

to trying to actualize. The intentions of the agent are then defined as the propositions

true in all the intention accessible worlds.

Rao and Georgeff [174] studied the persistence of intentions rather than the persis-

tence of goals. Like Cohen and Levesque, they assume that all intentions eventually get

dropped. They define three types of commitments, namely, blind commitment, single-

minded commitment, and open-minded commitment. An agent is blindly committed to

an intention if she maintains her intention to achieve a goal until she believes that the

goal holds. An agent is single-mindedly committed to an intention if she maintains

her intention to achieve a goal until she believes the goal is true, or until she doesn’t

believe the goal might eventually be true. Finally, open-minded commitment is the

same as single-minded commitment, except that the agent can drop the intention if she

drops the goal that the proposition might eventually be true, instead of dropping that

belief.

26

Sadek [181] revises Cohen and Levesque’s account to incorporate a branching time

temporal logic. He uses a primitive goal modality called choice. One problem with

Cohen and Levesque’s realism constraint is that there is no way to distinguish between

the goals due to realism (i.e. a goal that φ provided that the agent believes that φ is

inevitable) and the goals that the agent actually wants. To distinguish between agents’

free choices and choices due to the realism constraint, Sadek [181] introduces the

concept of relevant choice. According to Sadek, an agent i relevantly chooses that φ,

if she chooses that φ, and that if she does not believe that φ is not the case, then she

chooses that φ (i.e. RC(i, φ)
.
= C(i, φ∧ (¬B(i,¬φ) ⊃ C(i, φ)))). However, this does

not fix the “problem”. Sadek’s definition of relevant choice along with his KD45 logic

of choice implies that any chosen proposition is a relevantly chosen one. Thus Sadek’s

choice modality seems to be similar to Cohen and Levesque’s goal modality.

Sadek uses a weaker definition of achievement goals than Cohen and Levesque. In

his branching time temporal model, he only requires that in every chosen world, p will

eventually be true in some possible future. In contrast, Cohen and Levesque requires

p to be eventually true in all possible futures (i.e. in their case, the only, inevitable

future) of every chosen world. Sadek [181] modified Cohen and Levesque’s definition

of a persistent goal, by requiring that the agent choose not to drop the goal until either

the agent believes that the goal has been achieved, or she believes that the goal will

27

never be achieved. Sadek’s definition is meant to allow agents to have some awareness

that they were adopting a persistent goal. However, a problem with this definition is

that it does not guarantee that the persistent goal will actually persist. This is due to

the fact that an agent may have a persistence goal at some time-point, but at a later

time-point she might change her preferences and thus drop the goal.

In [181], Sadek presents a definition of an intention to achieve a proposition p,

where an agent is allowed to include actions by other agents in her plan to achieve

p (as long as the initial actions are done by the agent herself). Unfortunately, this

definition has some problems. For example, despite claims to the contrary, the given

definition allows the agent to intend p when there is no sequence of actions that the

agent believes will bring about p.

Another account of both achievement and maintenance goals was presented in

[199, 194, 200] where Shapiro et al. define goals using a knowledge accessibility

relation K and a primitive “want” accessibility relation W (or H). Intuitively, the W -

accessible worlds for an agent are the happy worlds where all her goals are satisfied.

They then define goal accessible worlds G as the intersection of W and the knowledge

accessible relation K, in the sense that a G-accessible world is a W -accessible world

that has a K-accessible world in its history. The reason for imposing this constraint is

that this assures that agents’ goals are realistic, i.e. an agent does not have a goal that

28

she knows is impossible to achieve (this also holds in Cohen and Levesque’s frame-

work, as discussed below). Goals are then defined to be all the formulae that are true

over the interval [now, then], where now is a K-accessible world, and then is a G-

accessible world. Their account is more flexible than others as it handles both types of

goals in a uniform way.

One principle that a logic of intention should satisfy is the side-effect-free principle,

i.e. that an agent should not necessarily intend all the believed “side-effects” of their

intentions. For instance, consider the following example (adopted from [35]): suppose

that an agent has the intention to go to the dentist to get her teeth fixed, and also

believes that getting her teeth fixed will always involve pain. A normal modal logic2 of

intention along with the realism constraint entails that the agent also has the intention to

have pain. Thus, even if after the surgery, she finds out that the procedure didn’t cause

any pain, she will actively pursue her intention to have pain! This causes problems for

many of the normal modal logics of intentions seen so far. I discuss this in detail in

the next section. To avoid the problem altogether, various researchers have proposed

to use non-normal model logics to model motivational attitudes.

Konolige and Pollack’s [124] only motivational operator is a primitive intention

operator. The main advantage of their account is that it follows directly from their

2A normal modal logic is one that satisfies the K axiom, i.e. G(φ ⊃ ψ) ⊃ (Gφ ⊃ Gψ). Modal
operators with a classical possible worlds semantics satisfy this axiom.

29

non-normal modal semantics that intention is not closed under logical consequence

and conjunction. Thus it does not suffer from the side-effect problem, unlike Cohen

and Levesque and Sadek’s account. In their semantics, intentions are associated with a

set of scenarios I. A scenario is the set of possible worlds that satisfies some sentence

in the non-modal sub-language of their language. An interpretation satisfies Intend(p)

if there is an I ∈ I that is a scenario for p, i.e. p is true in all the worlds in I and every

world that satisfies p is in I . Their non-normal semantics of intention is equivalent to

the minimal model semantics of Chellas [31]. Unfortunately, in their framework they

have no requirements that intentions persist, and thus their intention modality is closer

to what others use as the goal modality.

In an attempt to obtain a minimal logic of intention, Herzig and Longin [97] model

intention using a primitive modal operator. Their semantics of intention modality is a

non-normal one, and thus in their framework intention is neither closed under logical

truth, nor under logical consequence, conjunction, and material implication.

Other researchers have incorporated a procedural motivation component in their

framework; sometimes these are used to define the agent’s intentions, and sometimes

to model the agent’s commitment towards actions. In his branching future logic, Singh

[213] offers such a model of intention. The underlying temporal logic of his frame-

work is a very expressive one, and one can model true concurrent execution of actions

30

(modeled not just as interleaved actions, but parallel execution of actions), and actions

with varying durations. Moreover, unlike Rao and Georgeff’s model, Singh’s interpre-

tations single out a branch that corresponds to the actual future. Thus, his language

can talk about what will really happen. Singh also introduces a procedural motivation

component, called a strategy. A strategy is an abstract plan or program built-up from

constructs such as primitive actions, waiting for conditions, sequences, conditional

strategies, and conditional loops, and is viewed as a description of what the agent is

currently trying to achieve. In this framework, agents are assigned a strategy in each

state. This is modeled using a function CY that associates a strategy with an agent

at a world and a time. Singh defines intentions in terms of the strategy the agent is

following. An agent is said to intend proposition p if it is a necessary consequence of

executing her strategy. Singh uses a strong notion of the persistence of intentions, and

stipulates that agents do not change their strategies as long as they are able to continue

to follow them.

van Linder et al. [232, 149] use a primitive preference modality called wish.

Wishes are interpreted as a necessity operator over an accessibility relation W . Thus,

agents can have contradictory wishes. They offer a strong definition of achievement

goals, where the agent is required to know that there is a sequence of primitive actions

that she is able perform and whose execution will achieve the goal, i.e. that the goal is

31

implementable. In their framework, achievement goals are known to be currently false.

Furthermore, they constrain that a goal must be known to be an explicit preference of

the agent (defined using the awareness approach of [69]). To this end, they introduce

a special action called select. The result of performing select φ marks the wish φ as

selected. They then define achievement goals as selected wishes that are unfulfilled

and implementable. The advantage of this formalization of goals is that it does not

suffer from the side-effect problem, and the transference problem, i.e. the problem

that all logical tautologies are goals of the agent. This is due to the fact that goals are

defined not just as wishes, but explicitly chosen wishes/preferences. van Linder et al.

require that agents never drop any of their wishes. However, in their framework, goals

are dropped as soon as they are fulfilled or become non-implementable, as required by

their definition of goals. Due to this, their goals are really intentions.

To model an agent’s commitment, van Linder et al. use a semantic primitive called

an agenda. They define two meta-actions, commit(a) and uncommit(a), that update the

agenda of the agent so that the agent becomes committed to and uncommitted from

the complex action a. An agent can only be committed to a single complex action at

any one time. To commit to a complex action, the agent must be able to perform this

action and it must achieve one of her goals; she must also have finished executing her

previous commitments (i.e. the agenda must be empty). An agenda is a function that

32

maps an agent and a world to a finite sequence of primitive actions and test actions.

This action sequence corresponds to one of the terminating executions of the complex

action that the agent is committed to achieving. The result of committing to a com-

plex deterministic action (built from primitive actions, tests, sequences, conditional

compositions, and iterations) in a given world w is defined in way such that it updates

the agent’s agenda by adding the appropriate sequence of primitive and test actions to

the agenda not only in w, but also in all the knowledge-accessible worlds in w, and

in all the worlds that lie along the execution trajectory of the action (i.e. that can be

reached from these worlds by performing some prefix of this sequence). This ensures

that commitments are known, and that a commitment to a complex action is linked to

commitments to its constituents. On the other hand, an agent can uncommit from a

complex action if it is no longer useful in achieving any of her goals. Thus the agenda

along with the two meta-actions can be used to model an agent’s commitment towards

actions that achieve one of her goals. While this account links an agent’s declarative

intentions with her intended actions, it abstracts from how an agent comes to know

that a plan is appropriate for a goal. Also, nothing in the framework prevents an agent

from performing something that is not in her agenda.

Most of these logical accounts of goals do not deal with goal dynamics properly. In

particular, these frameworks do not guarantee that an agent’s goals will properly evolve

33

when an action/event occurs, when the agent’s beliefs/knowledge changes, or when a

goal is adopted or dropped. In their situation calculus based framework discussed

above, Shapiro et al. [194, 200] incorporate goal expansion and a limited form of goal

contraction. They formalize goal dynamics by providing a successor-state axiom [178]

for their want or W -accessibility relation. An agent’s intentions are expanded when

it is requested something by another agent. After the request(req, agt, ψ) action, agt

adopts the goal that ψ, unless she has a conflicting goal or is not willing to serve req

for ψ. This is modeled by ensuring that (under appropriate conditions) this action

causes agt to drop any situations s′ in W s.t. ψ does not hold over [now, s′] (as dis-

cussed above, here now is a knowledge accessible situation in the history of s′). Their

framework also handle a limited form of intention contraction. Suppose that the agent

req requests agt that ψ and later decides it no longer wants this. The requester req

can perform the action cancelRequest(req, agt, ψ), which causes agt to drop the goal

that ψ. cancelRequest actions are handled by determining what the W relation would

have been if the corresponding request action had never happened. Essentially, this

involves restoring the W relation to the way it was before the corresponding request

action occurred, considering all the actions that occurred in the history of the current

situation starting just after the request, and if required removing situations from W to

reflect the occurrence of these actions. A cancelRequest action can only be executed

34

if a corresponding request action has occurred in the past. Thus in this framework, an

agent remains committed to a requested goal unless the requester cancels this request.

Note that, a goal is retained even if the agent learns that it has become impossible, and

in this case the agent’s goals become inconsistent.

Shapiro and Brewka [196] modify this framework to ensure that goals are dropped

when they are believed to be impossible or when they are achieved. In addition, their

account assume a priority ordering over the set of requested goals, and in every situ-

ation they compute chosen goals by computing a maximal consistent goal set that is

also compatible with the agent’s beliefs. In their framework, goals are only partially

ordered and inconsistencies between goals at the same level (given goals at higher lev-

els and knowledge) can be resolved differently in different models. In fact, the agent’s

chosen goals in do(a, s) in a model may be quite different from her goals in s, al-

though a did not make any of her goals in s impossible or inconsistent with higher

priority goals, simply because the inconsistencies between goals at the same priority

level are resolved differently in s and do(a, s). This is rather unintuitive.

There has been a lot of work on belief revision/update, and researchers have pro-

posed postulates to specify the change in an agent’s beliefs due to these operators. For

instance, the AGM theory [1, 86] can be viewed as the prototypical example of a be-

lief revision specification. However, there has been very little work on goal/intention

35

change postulates. Part of this can be explained by the fact that these postulates are

harder to formulate compared to their belief revision counterparts since the agent’s

future goals depend on both her current beliefs and goals. To the best of my knowl-

edge, there are only two attempts to propose a set of goal change postulates that can

be found in the literature. The first set of postulates is proposed by da Costa Pereira et

al. in a series of papers on goal revision for rational agents (e.g., see [43, 44, 42]). In

their framework, an agent’s state S is a triple 〈σ, γ,RD〉 that consists of a belief-base

σ and a desire-base γ (these are presumably achievement goals), each of which is a

set of propositional formulae taken from an object language L containing the standard

Boolean connectives, and a desire adoption rule-baseRD. The latter consists of rules,3

which depending on the agent’s current beliefs and desires, allow her to derive new de-

sires, and are meant to serve as a justification for having a desire. Given a state S, a

rule whose antecedent is entailed by the agent’s current beliefs and desires is called an

active rule. An agent’s desires are updated both as a result of a new/revised belief b

and of adoption of a new desire d. When the agent’s beliefs are revised/updated, she

removes from her desire-base any desire d for which there is no justification in the

desire adoption rule-base, i.e. there is no active desire adoption rule inRD that can be

used to derive d. In addition, she adds the new desires that can be derived from her

3These rules are similar to those in PRS [88]; see Section 2.3.3 for details.

36

active desire adoption rules. Thus γ is closed under the application of rules from RD.

When the agent adopts a new desire d, a new goal update rule with the antecedent that

True is added to her rule-base, which in turns makes her add d to her desire-base. The

authors then suppose that an intention/goal selection function I is provided, which

given a belief-base and a desire-base, decides which of these desires the agent should

actively pursue, i.e. intend.

Their notion of consistency of goals/desires appeals to a specification of consis-

tency of plans for these goals. Consistency of plans is specified in terms of consistency

in ordinary propositional logic, as opposed to using a proper formalization for actions

and their preconditions and effects in a suitable temporal framework.

To model prioritized desires, they assume a preference relation � over desires in γ

that is reflexive and transitive, which they extend to apply to sets of desires.

In the following, I give their postulates which constrain I. Suppose that ⊗ is the

desire-base γ revision operator, ⊕ is the desire adoption rule-baseRD update operator

(that adds an unconditional rule toRD when the agent adopts a new desire), and Sd =

〈σ, γ ⊗ d,RD ⊕ d〉 is the updated state resulting from the adoption of desire d in S.

Then:

I1 : For all S, I(S) is a feasible goal set, i.e. a consistent set of goals that are

possible.

37

I2 : For all S, if γ′ ⊆ γ is a feasible goal set, then I(S) � γ′, i.e. a rational agent

always selects the most preferable intention set.

I3 : If d is consistent with I(S), then d ∈ I(Sd).

I4 : If d is inconsistent with I(S) and there is an intention i in I(S) that is conflicting

with d and i � d, then I(Sd) = I(S).

I5 : If d is inconsistent with I(S) and for all intentions i in I(S) that are conflicting

with d, we have d � i, then d ∈ I(Sd) and i /∈ I(Sd).

While these postulates are based on notions of consistency of sets of desires and exe-

cutability of desires that seems problematic, given an appropriate interpretation, these

postulates are in fact sound. I will come back to this issue in Chapter 4.

Another set of goal change postulates is proposed by Icard et al. [107], who studied

the problem of joint belief and intention revision as a database management problem

[206] in the spirit of the AGM theory [1]. In their logic, they incorporate explicit time

indices, (primitive) actions, and pre- and post-conditions of actions. They define a

path π as Z → (P × Act), i.e. a mapping from the set of natural numbers, used to

represent time indices t on π, to a set of propositions and “proposition-like formulas”,

representing what is true at some time index t on π, and what pre- and post-conditions

of actions hold at t on π, respectively, and a set of actions, giving the next action a at t

38

on π. These paths include impossible or “imaginary” ones as there is no requirement

that pre-conditions of actions hold; post-conditions are however guaranteed. Given a

path π and time index t on π, they have a modal operator for talking about what holds

on all paths that share the same past with π up to time t.

A belief set in this framework is defined using a set of paths Π and a total pre-

order ≤ on this set; in particular it is the minimal set under ≤, i.e. {π ∈ Π : π ≤

π′ for all π′ ∈ Π}. Note that while paths include imaginary ones, the set Π above is

required to be appropriate in the sense that if there is a path π in Π where the precondi-

tions of some action a holds at time t, then Π must include at least one path that share

the same history as π up to t and where the next action performed is a. Intentions in

this framework is simply a finite set of action/time pairs.

A belief-intention-base 〈B, I〉 consists of a consistent and closed set of formulaeB

representing the beliefs of the agent, and a finite set of action/time pairs representing

the intentions of the agent. Given a set B, ρ(B) is defined to be the set of paths where

all formulae in B hold at time 0. The belief base B is said to be coherent w.r.t. the

intention base I if there is a path in B (presumably, in ρ(B), i.e. in the set of paths

induced by B) over which the preconditions of all actions a, s.t. (a, t) ∈ I , is satisfied

at the corresponding time t. Since ρ(B), being a belief set, is also appropriate, a path

where a happens at t (with the preconditions of a met) must be included in it. Thus, in

39

this framework, belief-intention consistency is defined via the existence of a path over

which each of the intended actions a is performed in the appropriate time step t, and a

is executable in t. Oddly, there is no requirement that the path is indeed a realistic one;

e.g. nothing in their framework seem to constrain that other (non-intended) actions on

this path are in fact executable.

Having discussed their framework, let me now list their intention revision postu-

lates. Suppose ◦ is the intention revision operator, and 〈B′, I ′〉 is the result of revising

〈B, I〉 with intention (a, t). Then:

BI1 : 〈B′, I ′〉 is coherent.

BI2 : If 〈B, (a, t)〉 is coherent, then (a, t) ∈ I ′.

BI3 : If 〈B, I ∪ {(a, t)}〉 is coherent, then I ∪ {(a, t)} ⊆ I ′.

BI4 : I ′ ⊆ I ∪ {(a, t)}.

BI5 : B = B′.

BI1 says that intention revision should restore coherence. BI2 states that the new in-

tention (a, t) takes precedence over existing ones, and thus if coherence can be attained

after adding (a, t), the agent must do so, even if this means that she must give up some

of the existing intentions. BI3 and BI4 together states that if it is possible to maintain

40

coherence by simply adding the new intention, then this is the only change that should

be made. BI4 in addition says that unlike in the case for belief revision, no extraneous

intentions are ever added. Finally, BI5 states that beliefs do not change with intention

revision.

Since belief revision should trigger the revision of intentions, for every belief revi-

sion operator ∗ they also include its own intention revision operator ◦∗. In addition to

the AGM belief revision postulates, they propose two more relevant intention revision

postulates. Suppose 〈B, I〉 ∗ φ = 〈B′, I ′〉. Then:

BI6 : 〈B′, I ′〉 = 〈B′, I〉 ◦∗ ε.

BI7 : If 〈B, I ′′〉 ∗ φ = 〈B′′, I ′′′〉, then B′ = B′′.

BI6 says that if intention revision is needed to maintain coherence after beliefs are

revised, then intentions must be revised (with an empty intention ε). BI7 on the other

hand states that the underlying intention set is irrelevant to belief revision.

The authors presented a representation theorem showing that for every belief-

intention-base and belief and intention revision function that satisfy the above proper-

ties, there is a corresponding model in their theory.

Note that, intentions in this framework are limited to primitive actions. Also, as

mentioned above, their notion of consistency via the existence of a path is problematic

41

as the path is not guaranteed to be realistic. Moreover, clearly the second postulate is

disputable and is only acceptable if the intention (a, t) is indeed more valuable to the

agent than her existing intentions. BI5 (and BI7) also seem problematic for a general

framework, specially one where agents are considered to be introspective – the agent

needs to revise her beliefs about her intentions when the latter change. Finally, their

framework inherits the issues with iterated revision from the AGM theory. Otherwise,

the rest of the postulates seem sound. I will return to this discussion in Chapter 4.

2.2.3 Interattitudinal Constraints and Properties

In order to capture some of our intuitions about the intentional attitudes and to prove

desirable properties about them, the primitive attitudes discussed in previous sections

need to be constrained. One constraint introduced by Cohen and Levesque [35] that

received some attention is the realism constraint. This is a semantic constraint that says

that the goal worlds should be a subset of the believed worlds. The reason for imposing

this constraint is that it is unintuitive for a rational agent to adopt an achievement

goal that she believes will never hold (this property is also known as intention-belief

inconsistency [20]). This constraint rules out these states of affairs. Since, each of the

agent’s goals must be satisfied in at least one of the believed worlds, the agent cannot

believe the negation of any of its goals. This constraint is also adopted by Sadek [181]

42

and Konolige and Pollack [124], although Konolige and Pollack constrain the intended

worlds (in contrast to the goal worlds, as in Cohen and Levesque’s framework) to be a

subset of the believed worlds. As mentioned earlier, this constraint also follows from

Shapiro et al.’s [199] definition of goal.

Rao and Georgeff [173, 174] introduce two variants of the realism constraint,

namely, weak realism and strong realism. Weak realism constrains the intersection

of the believed worlds and the chosen/intended worlds to be non-empty, and is thus

weaker than realism. Rao and Georgeff [173] also adopt a similar constraint between

chosen worlds and intended worlds. The strong realism constraint [174], that can only

be defined for worlds that have branching futures, requires that for every believed

world, there is a goal world that is a sub-tree of the believed world with the same truth

assignments and accessibility relations at all timepoints. They also adopt a similar

constraint between goal worlds and intended worlds. This constraint is stronger than

realism in the sense that it restricts the agent to choose only goals that it believes it

will always be able to achieve, regardless of what happens in the future. Singh [213]

imposes a constraint that ensures that if an agent intends a proposition p, then it does

not believe that p will never hold in the real future.

As discussed earlier, another property of intentions proposed by Bratman [20] is

that agents need not always intend the believed side-effects of their intentions. There

43

are various forms of this “side-effect-free” principle. The weak version states that

an agent should be able to consistently intend that p, believe that p always implies

q, and not intend that q. Cohen and Levesque [35] and Singh [213] show that their

theories are consistent with this. A stronger version of the principle says that an agent

should be able to consistently intend that p, and always believe that p always implies

q, without intending that q. Cohen and Levesque [35], Rao and Georgeff [173, 174]

and Sadek [181] show that their theories are consistent with this version of side-effect-

free principle. However, for Cohen and Levesque, this holds for the wrong reason,

i.e. because the agent may believe that the side-effect already holds, and thus will not

have the persistent goal that the side effect hold, and hence the intention to achieve

it. Rao and Georgeff’s weak and strong realism constraints are meant to ensure that

side-effects need not be intended; these constraints do not rule out the existence of an

intention/goal-accessible world that does not agree with the belief-accessible worlds

on the truth values of a formula, and thus there may be goal/intention-accessible worlds

where p ⊃ q does not hold. However, their theory is still closed under conjunction.

Both van Linder et al.[232] and Konolige and Pollack [124] show that their frameworks

are consistent with yet another stronger version of the side-effect-free principle, which

says that if p logically implies q, and the agent prefers or intends p, then the agent may

consistently not prefer q.

44

Rao and Georgeff [173] argue that although agents’ goals should be potentially

achievable, no rational agent should be forced to choose all her beliefs; they call this

property belief-goal transference. They point out that Cohen and Levesque’s realism

constraint sanctions this property. Since the chosen worlds are a subset of the believed

worlds, the agent chooses all of its beliefs. Sadek [181] argues that transference is

not problematic, if one can differentiate between choices made due to the realism

constraint and choices made freely by the agent. Rao and Georgeff [173], on the other

hand, argue that transference is irrational, and show that both strong and weak realism

avoid transference. One could claim that the realism constraint causes problems in

Cohen and Levesque’s framework because their logic deals with the actual future,

rather than possible futures. For instance, in Shapiro’s branching future framework,

the realism constraint seems unproblematic. What the realism constraint sanctions in

Shapiro is that you can’t have the goal that p if you believe that ¬p is inevitable, and

this seems unproblematic.

Finally, another useful property for goals is that of introspection. If an agent has

a goal that φ, then it is useful to believe/know that she has this as her goal. This

is known as positive introspection of goals. On the other hand, if an agent does not

have a goal, she should also believe/know this. This is called negative introspection

of goals. In their framework, Shapiro et al. [194, 200] showed how positive and

45

negative introspection of intentions can be modeled by placing some constraints on K

and W which are similar to transitivity and Eucledeanism. They showed that in their

framework, if these constraints are prescribed for the initial situations, they continue

to hold for all situations since they are preserved by the successor-state axiom for their

want accessibility relation W .

2.2.4 Success Theorems and Rational Action

One important aspect of an agent theory is the connection between beliefs, goals, and

intentions and the agent’s action. Theorems that link these attitudes to an agent’s future

behavior and the achievement of her goals have been called Success Theorems [213],

since they characterize conditions under which one can expect an agent to succeed in

fulfilling her intentions. Success theorems are important for motivating goal delegation

via communication. For instance, to plan a complex action that involves delegating

subgoals to other agents, waiting for those subgoals to hold, and then resume working

on the goal, it is necessary for the agent to know that the delegated subgoals will

eventually become true. Using a success theorem, it is adequate for the agent to know

about the other agent’s intentions and abilities to infer this.

In [35], Cohen and Levesque present a success theorem which states that if an

agent has proposition p as a persistent goal, is always competent with respect to p

46

(i.e., whenever the agent believes p, p is true), and it is not the case that the agent will

believe p will never occur before she drops p, then eventually p will hold. To relate

agents’ intentions with their actions, Cohen and Levesque assume that all intentions

eventually get dropped. This implies that the agents do not procrastinate indefinitely

with respect to their intentions (AKA the no infinite deferral assumption). According

to the definition of persistent goal, it can only be dropped if the agent believes that

the goal has been achieved or is impossible to achieve. The latter case is ruled out by

the premise of the theorem, therefore the agent eventually believes p. Moreover, since

the agent is competent with respect to p, it follows that p eventually holds. Note that,

this theorem does not imply that the agent will eventually act, because some external

event might achieve p. But Cohen and Levesque claim that if the agent knows that it is

the only one that can act to realize p, then under certain (unstated) circumstances, the

agent will act. Nevertheless, this account can be criticized since the no infinite deferral

assumption should follow from other axioms of the theory, rather than be imposed

separately [113]. Rao and Georgeff [174] also offer similar theorems for their three

forms of commitments to intentions.

Singh [210] criticizes these success theorems as being too powerful. In particular,

he points out that they do not take into account the abilities of agents. He requires that

agents always perform actions that they know will ensure the eventual success of their

47

strategies. Using this assumption, he showed that if an agent knows how to follow her

strategy, and if her strategy necessarily leads to p (and thus she intends that p), then

eventually p will hold. Both Shapiro et al. [198] and Khan and Lespérance [113] also

prove success theorems in which the agent is only guaranteed to achieve her intentions

if she is able to achieve them. The latter consider multiple agents, in the sense that

agents are allowed to delegate actions to other agents.

One important concept that has largely been left out of agent theories is that of

rational choice of action. If agents are not acting rationally, then they cannot be ex-

pected to achieve their intentions even if they have the required commitment. Singh’s

agents are trying to “achieve strategies”. His assumption that agents perform actions

that they know will achieve their strategies actually ensures that agents act rationally.

In their earlier work, Shapiro et al. [198] formalize strategies as functions from situ-

ations to actions (called Action Selection Function (ASF)). They use the agent’s goals

to provide an ordering on ASFs for each situation. For a given situation s, an ASF σ1

is said to be as good as another ASF σ2 iff σ1 achieves all of the agent’s goals in all

the alternative situations where σ2 does. They then define an ASF σ to be a rational

course of action for a given situation s iff it is maximal in the ordering for s. In [187],

Sardiña and Shapiro extended this concept of domination of strategies to deal with

prioritized goals. Building on Shapiro et al.’s model of goals in [199, 194], Khan and

48

Lespérance [113] also use an agent’s goals to provide an ordering on complex actions

(i.e. plans) for each situation. Plans in their framework can include actions by other

agents. They then define a plan to be rational for an agent in a situation iff the plan is

maximal in that ordering for that agent in that situation, and the plan is epistemically

and intentionally feasible for the agent. The additional condition on epistemic feasi-

bility ensures that the agent fulfills the knowledge preconditions required to execute

the plan. In case the plan includes actions by others, the agent is also required to know

that the executing agent fulfills the knowledge preconditions of the actions delegated

on her, and that she intends to execute the appropriate actions in the plan when it is

her turn to act. In other words, the plan must be both epistemically and intentionally

feasible with respect to the agent. Most work on rational action selection has been

done in the decision theory setting, where the outcomes of actions are assigned numer-

ical probabilities and utilities [19, 243, 61]. Boutillier [19] provides a framework for

analyzing rational action selection in a logical setting using qualitative orderings for

preferences and likelihoods.

49

2.2.5 Multiagent Systems: Collective Mental Attitudes, Communication, and

Coordination

So far, I have mainly discussed work on modeling individual agents. The study of

collective mental attitudes and collaborative action has also received attention. The

motivation for such collaborative action is that it is often the case that although no in-

dividual member of a group can bring about some goal, collectively they can achieve it

if they coordinate and cooperate with each other. Work in this field is variously known

as teamwork, cooperative problem solving, team activity, and cooperative plans.

Researchers in multiagent systems have formalized various collective mental atti-

tudes. Common knowledge can roughly be modeled using infinite nesting of a group

knowledge (i.e. “everyone in the group knows that”) modality. It is possible to for-

mulate common knowledge as a fixed point formula [96]. Joint intentions are often

formalized as a non-primitive construct built using concepts such as mutual belief and

intention [192, 38, 39, 91, 92, 109, 110, 138, 218]. Although joint intentions imply

individual commitments for the team members, these collective intentions are usually

not reducible to summation of individual intentions. Others formalize group inten-

tion from an external perspective by utilizing an explicit social structure for a group

[208, 212]. Examples of work on joint ability include [91, 94, 160, 161, 209, 228, 246,

250, 252].

50

When multiple agents are working together to solve a problem, they need some

mechanism for exchanging information, such as beliefs, plans, intentions, synchro-

nization information, and so on. Communication plays an important role in the co-

ordination of multiple agents. Agent communication theories are founded on Speech

act theory [4, 191], which originated in the philosophy of language. The key idea in

speech act theory is that communication acts can be viewed as regular actions. While

most actions are performed to change the physical state of the world, communication

actions are mainly done to alter the hearer’s mental states. Speech acts can be cate-

gorized into assertives (e.g. informing), directives (e.g. requesting), commissives (e.g.

promising), declaratives, permissives, and prohibitives.

The literature on speech act theory is quite extensive. Cohen and Levesque showed

that in a BDI framework, many properties of speech act theory can be derived from

an independently motivated theory of rational interaction, which is in turn grounded in

the rational theory of action [36, 37]. Following this approach, they proposed formal

semantics for speech acts. They model speech acts as attempts to bring about some

effects by performing some sequence of events, but with the intent to produce at least

some result. For instance, a request to achieve φ is considered as an attempt by the

speaker to have the hearer bring about φ, with the intent of at least making the hearer

believe that it is mutually believed that the speaker has the goal that the hearer brings

51

about φ. Singh [211], on the other hand, argued that the semantics of speech acts cor-

responds to their satisfaction conditions, and identified these conditions for different

types of speech acts. For instance, an assertive is satisfied if its propositional content

is true at the time of the utterance. A directive is satisfied if its proposition comes to

hold at a later point in the future, and the hearer has the know-how and the intention

to achieve it. A commissive is almost like directive except that the role of hearer and

speaker is switched, and so forth for permissive, prohibitive, and declarative speech

acts. Herzig and Longin [97] proposed some cooperative principles, and showed how

these rules can be used to infer the effects of a yes-no question and that of a request

from that of an associated assertive. Their model provides a simpler logical account

where only assertives are primitive.

In the ARTIMIS rational agent model [182], Sadek formalizes planning for com-

municative actions using a backward chaining planning mechanism that utilizes the

feasibility preconditions (FP) and perlocutionary effects (PE) of the speech acts. Here,

the FP specify the conditions that have to be satisfied in order to plan for the act, and

the PE correspond to the rational effects of the action. For instance, consider the action

of i informing j that φ is true. The preconditions for this inform action is that i should

believe that φ holds, and i should not know that j knows that φ holds. On the other

hand, the rational effects of this action are that j will learn that φ holds. Sadek argues

52

that rational effects of a communicative act serve as the reason for planning that act, in

the sense that an agent should select an action only if she needs to achieve the rational

effect of that action.

One problem with this account is that it fails to specify the conditions under which

the rational effects become actual effects; one cannot reason about these conditions.

Moreover, the planning mechanism in [182] is incomplete and many rational plans can-

not be inferred. Louis [142] extended this framework to incorporate a more general

model of planning (state space planning by regression and hierarchical planning) and

plan adoption. His framework is more complex, and uses defaults (as does Sadek’s).

The approach supports multiagent plans and has been implemented. But there is no

formalization of epistemically feasible plans, and no success theorem. Also, commit-

ment to a plan is modeled using a special predicate rather than using the intention

attitude.

Examples of other interesting agent communication theories include [245, 244,

163, 40, 164, 128]. Using these theories, researchers have developed artificial lan-

guages for agent communication (e.g. FIPA-ACL [79], KQML [68]), proposed seman-

tics for agent communication protocols [83, 82, 80, 81], and implemented cooperative

spoken dialogue systems (e.g. ARTIMIS [183, 184]).

There have been many proposals for semantics of communication acts based on

53

social commitments [214, 254, 78, 239]. The commitments associated with a conver-

sation would be accessible to an observer and relevant social rules could be enforced.

While it is very important to capture and enforce the social aspects of agent commu-

nication, i.e. the obligations that go with membership in an agent society, it should

be noted that communication cannot be reduced to this public social commitments

level [113]. There has also been a suggestion that public social commitment semantics

support more efficient reasoning and are more “tractable”. However, it has been also

pointed out that this is an orthogonal issue [113].

Another way of coordinating agents is to use social laws [9, 207, 155]. These

laws are often modeled by incorporating various deontic logic notions [30], such as

obligations, prohibitions, and rights into the framework.

2.3 Agent Architectures

The aim of agent architectures is to shift the emphasis from theory to practice. Thus,

researchers in this field are concerned with issues surrounding the construction of com-

puter systems that satisfy the properties specified by agent theorists. In classical plan-

ning, the agent is given a model of the actions available and their preconditions and

effects on the domain states and a goal, and her job is to find a sequence of actions

whose execution brings about this goal. Thus classical planning assumes a static en-

54

vironment. However, real environments tend to be dynamic, that is, they often change

in unexpected ways at run-time. They may include exogenous actions (i.e. actions by

other agents or natural events) and the world may change during planning. The initial

state could change before the agent starts executing the plan. The world might not

change as a result of plan execution as expected due to the occurrence of exogenous

actions. Thus, a classical planning agent will often not do well in such environments.

This is one of the areas where work on agent architecture contributes, by taking into

account the resource limitations of the agent. Researchers in this area are concerned

with designing agents that may have incomplete information about the current state of

the world, are not always able to accurately predict the effects of their actions, can deal

with external interference, and do not have arbitrary time to deliberate.

One important issue addressed by the agent architecture community is the tradeoff

between commitment vs. intention reconsideration, i.e. how strongly should an agent

be committed to her intentions in a changing environment. Generally, intentions are

considered to be persistent, and are only dropped when they are achieved or they be-

come impossible to achieve, as discussed in Section 2.2. However, prior intended plans

may be subject to reconsideration or abandonment when the agent’s beliefs change in

various ways, for instance, when the agent becomes aware of a more attractive way

of achieving her goal. But, according to Bratman [21], “...if an agent constantly re-

55

considers her plans, they will not limit her deliberation in the way they need to for a

resource-bounded agent.” Nevertheless, if an opportunity with very high utility arises,

the agent should take advantage of this by weighing competing alternatives and recon-

sidering her current intentions. Thus, there exists a tension between the stability of

intended plans that is required for practical reasoning, and the revocability inherent in

these plans, as these are often formed based on incomplete information.

Another related issue in agent architecture is the tradeoff between reactivity and

deliberation. While agents need some mechanism to support goal-directed reasoning

and deliberation, they must also be able to react rapidly to unanticipated changes in

the environment. Moreover, since they only have incomplete information about their

environment, it is not always possible for them to produce a complete plan for a given

goal. Rather, information about how to best achieve a goal can often be acquired after

executing some initial part of the plan.

Researchers have proposed various agent architectures that differ depending on

how the agent’s ability to act is realized. Previous work on agent architecture can

be classified roughly into four categories, namely, deliberative architectures, reactive

architectures, reactive plan execution architectures, and hybrid architectures. In the

following I discuss these categories.

56

2.3.1 Deliberative Architectures

A deliberative architecture is one that contains an explicitly represented symbolic

model of the world (i.e. beliefs, desires, intentions, and actions), and where deci-

sions, such as what actions to perform next, are made via logical reasoning (i.e. plan-

ning). Thus deliberative architectures are based on Newell and Simon’s [157] physical-

symbol system hypothesis –they use a physically realizable set of symbols that can be

combined to form structures and are capable of running processes that operate on those

symbols according to symbolically coded sets of instructions, in order to produce intel-

ligent action. Most innovations in deliberative architecture design have come from the

AI planning community. Since deliberative architectures have a planning process as

their central component, these architectures can deal with unanticipated goals. How-

ever, the disadvantage of a purely deliberative approach lies in the computational com-

plexity of planning: the agent may not be able to find plans in a timely manner. Also,

the plans generated by a deliberative architecture often fail in a dynamic environment.

Examples of deliberative architectures whose primary component is a planner include

the Integrated Planning, Execution, and Monitoring (IPEM) system [2] (based on a

sophisticated non-linear planner), and Wood’s AUTODRIVE system [248] (a traffic

simulation with planning agents).

One particularly interesting class of deliberative architectures is plan-based delib-

57

erative architecture. The role of commitment to adopted plans or intentions is a critical

component in plan-based architectures. Thus, these architectures use adopted plans to

limit practical reasoning. The range of reasoning modeled by these frameworks in-

clude means-ends analysis (planning), choosing between alternative courses of action

(decision analysis), checking consistency of plans and beliefs, and revising beliefs and

goals in response to external events.

Building on Bratman’s philosophical work in [20], Bratman et al. [21] consider

adopted partial plans to structure and focus practical reasoning in their (mostly) de-

liberative architecture IRMA (Intelligent Resource-bounded Machine Architecture).

IRMA has four key data structures: a plan library, and explicit representations of be-

liefs, desires, and intentions. In this architecture, once an agent adopts a plan, she

becomes committed to executing this plan. The agent’s commitment to a plan implies

that she will not reconsider this adopted plan, unless the environment has changed in a

relevant way, and reconsidering this plan will result in a reasonable increase in utility.

Also, she will not adopt any further intentions that are inconsistent with achieving her

adopted plans.

The adopted plans can be both temporally and structurally partial, meaning that

these plans schedule actions for some time period, but not for others, and that these

plans specify goals to be achieved leaving open the means to achieve these ends. As

58

discussed above, the motivation for this is that often at plan time, the agent only has

partial knowledge about the world, and thus it is not always possible to decide on

a complete course of action. These adopted intentions limit the agent’s deliberation

since they focus means-ends reasoning, and they constrain the number of alternative

options for actions that are fed to the decision process.

A partial plan needs to be filled out using means-ends reasoning. Thus, these

adopted partial plans focus the means-ends reasoning of the agent. Given a partial

plan, the means-ends reasoning process outputs some options for courses of actions

that refine this plan. But not all suggested courses of actions will be consistent with

the already adopted plans. Thus, before these suggested courses of actions are supplied

to the decision-making process, they need to be passed through a ‘compatibility filter’.

After filtering out the inconsistent plans, the compatible options are then fed to the

decision-maker for further deliberation. Bratman et al. remarked that the compatibility

filter must be computationally efficient relative to the deliberation process.

In addition to allowing deliberation, IRMA also attempts to provide some form of

reactivity unlike most deliberative architectures. IRMA utilizes an ‘opportunity ana-

lyzer’ and ‘filter override mechanism’ in an attempt to model reactivity. The opportu-

nity analyzer takes the agent’s beliefs and goals as input, and watches for opportunities

to satisfy the agent’s desires when some change in the environment is detected. While

59

doing this, it ignores the agent’s adopted plans. When it detects such an opportunity,

it suggests a course of action to fulfill the goal to the compatibility filter. While the

compatibility filter’s job is to detect and eliminate inconsistent plans, the filter override

mechanism can be used to allow some of these inconsistent options to be passed to the

decision-maker for deliberation. If the filter override mechanism passes such an op-

tion to the decision-maker, it must be the case that at least one of the agent’s adopted

plans are incompatible with this option. So, in that case, the decision-maker needs

to decide to either ignore this incompatible option, or to revise the adopted plans that

conflict with this option. Note that, although this process is able to handle unantici-

pated changes in the environment, it is not a completely reactive mechanism, due to

the deliberation involved.

2.3.2 Reactive Architectures

Some architectures that have been proposed are completely reactive in nature. In these,

all the deliberation is done in advance and compiled into the architecture itself. In some

approaches, the designer is responsible for this compilation (e.g. [24]). Another way of

doing this is to use an automatic compilation process [179]. Thus these architectures

neither contain a symbolic model of the world nor a reasoner for manipulating rules

and finding plans (i.e., they are not knowledge-based). Although such architectures

60

are very efficient and can perform simple tasks quite well, a major problem is that

they are ineffective in environments that deviate from those expected by the designer.

The primary reason for this is that the behavior of the agents in these frameworks is

essentially hardwired. Also, it is often hard to design agents with multiple complex

goals in these frameworks.

Perhaps the best known reactive agent architecture is Brooks’ subsumption archi-

tecture [25, 26, 27]. Brooks proposed that intelligent behavior can be generated with-

out explicit representations of symbols and without explicit abstract reasoning, and

that intelligence is an emergent property of certain complex systems. He identifies

two key properties of intelligence – ‘real’ intelligence is situated in the world and not

disembodied (such as theorem provers or expert systems), and intelligence arises as a

result of a system’s interaction with its environment.

To demonstrate the validity of his claims, Brooks built a number of robots using his

subsumption architecture. A subsumption architecture consists of a hierarchy of task-

achieving behaviors/layers. Each layer in this hierarchy is used to implement a certain

goal of the robot. These behaviors compete with each-other to exercise control over

the robot. Lower layers are used to encode more primitive kinds of behavior, and have

precedence over the layers further up in the hierarchy. Each layer’s goal subsumes

that of the underlying layers. Each of these layers accesses some of the sensor data

61

and generates actions for the actuators. It should be emphasized that the generation

of actions in this system is extremely computationally efficient and does not involve

any explicit reasoning, or even pattern matching. A layer can inhibit inputs or overrule

outputs of the layers below it. This allows the lowest layers to work like fast-adapting

mechanisms, while the higher layers control the main direction to be taken in order

to achieve the overall goal. Thus this architecture is capable of reacting quickly to

changes in the environment.

2.3.3 Reactive Plan Execution Architectures

A reactive plan execution architecture is one that includes a user-defined library of

hierarchical plans. Each of these plans consists of a trigger condition (i.e. goal), a

precondition (i.e. context), and a body. The trigger condition specifies what the plan

is good for, that is, what goal can be achieved using the plan. The context condition

describes the conditions under which the plan should be considered for execution.

Another component of a reactive plan execution architecture is triggering events. An

agent in this kind of architecture responds to events from an event-queue by adopting

the appropriate plan, and by eventually executing it. In addition to primitive actions,

the body of a plan can contain subgoals (i.e. events), which may in turn trigger the

selection and execution of other plans (sub-plans). Thus, in these architectures, the

62

changes in the environment determine which plans should be executed, and how these

plans are decomposed.

The most well known version of this architecture is the Procedural Reasoning Sys-

tem (PRS) [88, 87]. A PRS agent consists of a belief-base, a goal-base, a set of plans,

and a set of intention structures. Beliefs in PRS are facts about both the external world

and the agent’s internal state expressed in first-order logic. Goals are represented as

temporal formulae, which include formulae for achieving a property, testing for a con-

dition, waiting for a condition to hold, and preserving/maintaining a condition. These

goals are meant to be used in the triggering event part of a plan. Like IRMA, PRS

also uses plans to structure reasoning. Plans in PRS are complex structures called

Knowledge Areas (KA). Each of these KAs is a rule, and consists of an invocation

condition that specifies when it is applicable, and a body that describes a set of steps

to be achieved. The body of a KA can be viewed as a graph with a single start node

and possibly multiple end nodes. Arcs in this graph represent subgoals. A successful

execution of a KA amounts to achieving each of the subgoals in a path between the

start node and one of the end nodes. Intentions of a PRS agent consist of the set of

active KA stacks, each of which keeps track of all the subgoals of the original KA.

PRS uses KAs to encode procedural knowledge about the domain. KAs may be

activated in a goal-driven fashion, i.e. as a result of acquisition of a new goal, or in a

63

data-driven/reactive fashion, i.e. as a result of some change in the agent’s beliefs. These

adopted KAs can be used to structure the practical reasoning, since they constitute the

entire reasoning process. At each iteration of the PRS interpreter, the set of applicable

KAs are determined (by unification) using the agent’s beliefs and active goals. Then

one or more of these KAs are selected and inserted into the intention structure for

execution. Finally, one of the intentions from the (root of the) intention structure

is selected, and a step of this intention is executed. This execution can involve an

unelaborated subgoal; in that case, this goal is added to the goals of the system. The

interpreter then loops to the next iteration, where a new set of applicable KAs are

determined based on the perceived changes. Note that, if the selected KA arose as a

result of the acquisition of a new goal (called intrinsic goal) or a change in belief, then

it is inserted into the intention structure as a new intention. On the other hand, if the

selected KA was triggered due to the execution of an already existing intention (called

operational goal), this KA is pushed on top of the KA stack comprising that intention.

PRS uses a special class of KAs (namely, meta-level KAs) to update the beliefs,

goals, and intentions of the PRS agent. Meta-level KAs can also be used to control the

adoption of lower-level KAs (e.g. in case more than one KA is applicable), create new

subgoals, handle failures, reorder the intentions in the intention structure, etc. Thus

KAs are very powerful and can be used to capture procedural domain knowledge as

64

well as decision knowledge.

PRS can be used to guarantee some form of reactivity. In fact, it was shown in

[88] that there exists a bound on the ‘reaction time’ of a PRS agent. Note that, in each

iteration, the interpreter checks for applicable KAs and places one or more appropriate

KAs in the intention structure. This process uses unification and is able to ‘react’ in a

timely manner. Note however that, although a PRS agent is able to promptly recognize

changes in the environment and adopt intentions accordingly, she may take arbitrarily

long to ‘react to the environment’ by executing some action. This is due to the fact

that there is nothing in the framework that ensures that the process of hierarchical

plan decomposition will quickly converge to a sequence of a primitive actions. In

other words, the execution of a knowledge area may involve a long and possibly even

an infinite chain of subgoaling. Thus the term ‘react’ above (as used by Georgeff et

al. [88]) is used in a weak sense, and should be read as ‘recognize’. Nevertheless,

it should be noted that PRS assumes that the designer is responsible to ensure that

plan decomposition completes in a reasonable time. In practice, these architectures

generally respond fairly quickly to changes in the environment.

65

2.3.4 Hybrid/Cognitive Architectures

There has also been work on architectures that handle the tradeoff between reactivity

and deliberation by implementing reactive mechanisms and a deliberation module in

two different but interacting layers. Some architectures also include additional layers

for plan execution and/or coordination. These architectures are known as layered archi-

tectures. A typical layered architecture works as follows: the reactive layer generates

potential courses of action in response to time critical events that happen too quickly to

be handled by the other layers. It is often implemented using a set of situation-action

rules, and thus does not involve complex reasoning. The reactive execution layer (or

scheduler) selects precompiled plans to achieve current goals and schedules them for

execution. The deliberation layer uses an explicit model of the world and a planner to

generate new plans. Finally, the multiagent coordination (A.K.A. the modeling) layer

contains models of the cognitive states of other agents in the environment (including

human agents). These models are used to manage the dependencies between the activ-

ities of the agent and those of other agents (e.g. to identify and resolve goal conflicts).

Some of these architectures have control mechanisms to decide which layer controls

execution at a given time. Depending on what layers are included in the framework,

layered architectures are capable of providing a guaranteed level of responsiveness,

performing resource-bounded deliberation to cope with exceptional events, as well as

66

providing the flexibility to adapt ongoing plans as required by changes in the envi-

ronment. Examples of layered architectures include Touring Machines [71], Inhabited

Dynamical Systems [143], and InterRRap [156].

Some proposals were made to capture human-like functionalities and capabilities.

Since these architectures model structures for performing a wide variety of cognitive

tasks, they are often called cognitive architectures. Examples of cognitive architectures

are SOAR [129], Homer [240], and OSCAR [171], to name a few. In addition to as-

cribing to the agents intentional modalities such as beliefs, goals, and intentions, these

architectures often attempt to formalize learning, problem-solving, natural language

processing and generation, planning, memory, defeasible reasoning, etc. However,

cognitive architectures have not dealt with the main problems faced by researchers in

agent architecture, namely, the tradeoff between deliberation and reactivity, and han-

dling resource boundedness.

2.3.5 Relation to Agent Theories

In [175], Rao and Georgeff attempt to relate their agent theory in [174] to a simpli-

fied version of the PRS interpreter. This “abstract” interpreter operates on a (logically)

closed and consistent set of beliefs, goals, and intentions. Also, the belief-base is

closed w.r.t. an agent’s plans, i.e. the agent knows all her plans, and all possible de-

67

compositions of her plans are pre-computed. Using these, it generates all the options

for action in a single cycle. Then it selects an action for execution, executes this ac-

tion, and updates the agent’s mental states. Rao and Georgeff informally discuss how

to constrain various procedures called by this interpreter, and thus implement some of

the basic axioms of their theory in this architecture. This includes axioms that relate

various mental states (such as belief-goal compatibility), and axioms that model vari-

ous forms of commitment (e.g. blind commitment). They also have an axiom which is

similar to Cohen and Levesque’s ‘no infinite deferral’ assumption (i.e. that all inten-

tions must be eventually dropped). Unfortunately, they do not consider axioms related

to agents’ abilities required to achieve goals, and axioms that deal with rationality (e.g.

that agents should not adopt plans that are very unlikely to achieve a goal). They then

present a “practical” interpreter that is similar to the PRS interpreter, in the sense that

it operates on a knowledge-base of explicit (and grounded) beliefs and goals that is

not closed under logical consequence, and that it computes the decomposition of the

adopted plans over an arbitrary number of cycles of the interpreter. At every step of

the interpreter, in response to an event, the option generator iterates through the plan

library and returns the plans whose invocation condition matches this event and whose

context condition follows from the agent’s beliefs. The deliberator then utilizes meta-

level rules to decide which of these options should be selected. In the next step, one

68

of the intentions is executed. Like in PRS, the execution of an intention may involve

triggering of another event, or execution of a primitive action. While Rao and Georgeff

acknowledge that this practical interpreter does not obey all the axioms of their agent

theory, no suggestions for revising the axioms were given. They did however hint that

under certain circumstances, namely when no external events occur during the execu-

tion of a goal, the practical interpreter behaves like the abstract one, and satisfies these

axioms. However, it is not clear that this is the case. For instance, there is no way of

preventing the adoption of a plan that is inconsistent with the agent’s adopted inten-

tions, since no lookahead mechanism is incorporated in this practical interpreter. Thus

the axiom which states that the agent’s intentions should be consistent clearly does not

follow from this interpreter.

2.4 Agent Programming Languages

The beginning of the current interest in agent programming languages (APLs, hence-

forth) might be attributed to Shoham’s proposal of Agent-Oriented Programming (AOP)

[204, 205], as a ‘new programming paradigm based on a societal view of computation’,

and as a specialization of object-oriented programming. The key idea of this AOP

paradigm is to use mentalistic and intentional notions formalized by agent theorists to

design and program agents.

69

Another front that pushed the concept of agent-oriented programming is Rao and

Georgeff’s PRS architecture. As we have seen, the key concept in the PRS architecture

is that of using events for selecting hierarchically decomposed plans, and thus avoiding

planning from scratch. In the following, we will see that many APLs in the literature

are based on a simplified version of the PRS architecture.

Thus, most of the APLs in the literature can be classified into two classes, namely

deductive reasoning languages and reactive plan execution languages. While the for-

mer was derived from various agent theories, logics, and calculi, the roots of the latter

can be traced back to reactive plan execution architectures (viz. PRS and dMARS

[123]).

Logic based APLs are usually more expressive and strongly grounded into the

underlying logic. The latter means that programs written in these can often be verified

easily by theorem proving or model checking. However, this expressiveness and ease

of verification usually comes at the cost of computational complexity. Most of these

languages also suffer from other significant limitations, such as poor scalability and

modularity, and no support for physical distribution of the computation, nor for the

integration of external packages and languages. Examples of logic-based APLs include

AGENT0 [204, 205] (based on modal and deontic logic), Concurrent METATEM [72,

73] (based on modal and temporal logic), the Golog family [140, 51, 55] (based on

70

the situation calculus), FLUX [222] (based on the fluent calculus), and MINERVA

[131, 132] (based on a non-monotonic logic).

In contrast, efficiency and modularity are two areas where the reactive plan execu-

tion languages shine. In addition, these languages provide means for encoding con-

trol knowledge by using user-defined plan/rule libraries. Nevertheless, most of these

PRS-based languages often have limited expressiveness. Examples of reactive plan

execution languages include AgentSpeak(L) [172], 3APL [99], and CAN [247].

APLs also differ on how they handle several issues. For instance, some of these in-

corporate BDI concepts such as beliefs, desires, goals, etc (e.g. AgentSpeak(L), 3APL,

PLACA, etc.), while others do not (e.g. Golog and Concurrent METATEM). A few of

these languages handle incomplete knowledge and sensing actions (e.g. Golog and

FLUX). Some languages allow planning with lookahead; others only allow reactive

plan selection (from a user-defined plan library) and execution. Examples of APLs

that allow offline planning include Golog and CAN-PLAN [185]. Some of these lan-

guages allow modeled exogenous actions (e.g. ConGolog), have constructs to support

communication (e.g. PLACA, Jason), support multiple agents (e.g. JACK), or provide

a programming logic on top of the associated programming language to specify agent

properties, such as liveness and safety properties (e.g. GOAL, Dribble).

Besides these two classes of APLs that I have identified, there has also been work

71

on purely behavior-based or reactive languages [26, 27, 3, 145]. However, these are

closer to agent architectures than APLs. Also, researchers have developed various

agent-oriented software engineering methodologies (e.g. Prometheus [159] and Gaia

[253]) and tools. Surveys of these can be found in [12] and [13].

In the following, I review work on APLs in our two classes. Later in Section

2.5, I focus on more recent work on agent programming languages that incorporate

declarative goals.

2.4.1 Logic-Based/Deductive Reasoning Languages

AOP, AGENT0, PLACA

Shoham [205] identifies three essential components of an AOP language: a theory for

defining the mental state of agents; an interpreted programming language for program-

ming agents, whose semantics must be faithful to the theory; and an ‘agentification’

process, which wraps components of physical systems into agents. He acknowledges

that the agentifier is not necessary for systems designed with AOP in mind. However,

he envisions applying the AOP framework even to ordinary devices, such as watches

and cameras, for which the agentification process is required.

AOP incorporates a quantified multi-modal logic with direct reference to time-

points. The theory contains three modalities, namely, belief, commitment (also re-

72

ferred to as choice or decision), and ability. Commitment is a derived operator, and

defined in terms of obligation to oneself. An example of a formula of the logic is as

follows: CAN7
a open(safe)9 ⊃ B7

b CAN
7
a open(safe)9. This says that if at time

7, agent a can ensure that she is able to open a safe at time 9, then at time 7, agent b

believes this. Unfortunately, AOP does not include a formal semantics for this modal

logic.

Shoham’s first attempt at an AOP language resulted in the AGENT0 programming

language [205]. In AGENT0, an agent is specified in terms of a set of initial beliefs

and commitments, a set of (fixed) capabilities, and a set of commitment rules. The

set of commitment rules is a key component in AGENT0, and it determines how the

agent acts. A commitment rule associates a message condition and a mental condi-

tion with an action. If the message conditions match an incoming message and the

mental conditions are true in the agent’s current mental state, then the corresponding

commitment rule fires, and as a result, the agent becomes committed to the associated

action. Commitment to an action in AGENT0 amounts to no more than scheduling

an action. The AGENT0 interpreter maintains a database of committed to actions and

their scheduled times, and when the appropriate time arrives, the action is executed.

Along with private actions (i.e. internally executed subroutines), AGENT0 also pro-

vides communicative actions in the spirit of speech-act theory [4, 191, 40]. The basic

73

loop of the AGENT0 interpreter consists of two steps: in the first step, it reads the

current incoming message and updates the mental state (i.e. the agent’s beliefs and

commitments) by applying all applicable commitment rules; in step 2, it executes the

commitments for the current time, possibly further updating the mental state.

In her 1993 Doctoral thesis [223], Thomas introduces the PLAnning Commu-

nicating Agents (PLACA) language as a more refined implementation of AGENT0.

PLACA addresses a severe drawback to AGENT0, namely the inability of agents to

plan and to communicate their declarative goals (via requests). The overall struc-

ture of PLACA is very similar to that of AGENT0. To handle planning, the initial

mental state now also contains a declarative motivational intention-base, and a proce-

dural plan-base. Also, commitment rules are now replaced with mental-change rules,

each of which associates a set of mental state changes with a set of message con-

ditions/mental conditions/(outgoing) message-list. At every tick of the global clock,

these mental change rules are used to update the agent’s declarative intentions. Plans

on the other hand are fed to the system using an external planner, described as a black

box in [224], which is responsible for updating the plan-base at every tick of the clock.

For longer deliberations, the planner may request the ‘mental-rule checker’ module

to skip some cycles (while queuing the incoming messages) and allow uninterrupted

planning. The architecture also utilizes a separate executor module that is responsible

74

for sending outgoing messages, and for executing the scheduled actions when the time

has come.4 Thus, PLACA separates deliberation about which intentions to adopt from

considerations of means of achieving the adopted intentions. While the agent program

is used to formalize the former, the latter is modeled using a black-box external planner

and not properly fleshed out (i.e. mostly unspecified) by the framework.

In [219], Tan and Weihmayer discuss an AOP-based framework for cooperative

problem solving that integrates AGENT0 and the state-space planner PRODIGY [150].

The major difference between PLACA and this framework is that in the latter, planning

occurs directly as a result of the firing of commitment rules, and thus is not interrupt-

ible. Therefore, planning in this account behaves like a single primitive action. Also,

since many rules may fire during a cycle, several planning processes may be triggered,

which is computationally demanding and may hamper reactivity.

All of these languages were only intended as prototypes. Thus, various simpli-

fying assumptions were incorporated. For example, AGENT0 lacks a formal seman-

tics. Also, agents can only commit to primitive actions that can be directly executed.

AGENT0 and PLACA both assume a global clock. Although PLACA includes declar-

ative goals that trigger planning, it does not formally specify how plan generation and

commitment to plans are handled.

4Recall that every action is dated, i.e. has a time-stamp associated with it.

75

Concurrent METATEM and its BDI-Extensions

A problem with AGENT0 and PLACA is that no formal semantics for agent program

execution is provided. Also, the execution of these languages cannot be said to truly

execute the associated logic. A desirable property of any APL semantics is that it

should be strongly coupled to the underlying (BDI) logic. In other words, the program

execution semantics should satisfy the underlying logic. This ensures that these two

are compatible with each-other; for instance, if the underlying theory sanctions that

an agent is (physically and mentally) able to perform some action in some situation,

then it is only intuitive that the APL execution semantics agrees with this and that one

could derive that there is a legal transition of the agent program with this action in

that situation. The Concurrent METATEM language proposed by Fisher and Barringer

[74], and its extensions [72, 73] attempt to address these issues.

A Concurrent METATEM system is a collection of concurrently executing objects,

whose behavior is specified directly using an executable temporal logic. These ob-

jects can communicate via asynchronous broadcast message passing. Each object is

specified using an object-interface and a set of executable temporal rules. An object-

interface identifies the messages that an object can recognize, together with the mes-

sages that it can produce. The temporal rules associated with the objects form the bulk

of a Concurrent METATEM program. These have the following general form: ‘past

76

and present formula’ ⊃ ‘present and future formula’, and are assumed to hold at all

time-points. In Concurrent METATEM, an object’s specification is directly executed

to generate its behavior. The execution of an object involves iteratively constructing

a model from the corresponding temporal formulae, in the presence of input from the

program’s environment. Starting from the initial state, at each step the program rules

are consulted to check which of the rules have antecedents that are satisfied by the

partial model constructed so far. The consequents of all such rules are collected to-

gether. These consequents represent constraints on present and future properties of

this model, and these along with any outstanding constraints generated in some pre-

vious steps are used to construct the current state. Any outstanding constraints are

passed to the next step. If at any point, a contradiction is generated, the system may

backtrack (i.e. undo some actions) to a previous choice-point and attempt to construct

a model for the program in a different way, giving up indicating an execution fail-

ure when no choice-points are remaining. Note that, sources of non-determinism (i.e.

choice-points) include the execution of a rule whose consequent contains a disjunction

or an 3-formula, i.e. the execution of eventual satisfaction of some formula.

To summarize, Concurrent METATEM differs from other languages in that it based

on a satisfiability point of view. As mentioned, an advantage of Concurrent METATEM

is that in this framework, the theory and the programming language are strongly cou-

77

pled. Also, the semantics of program execution is closely related to the semantics of

the associated temporal logic. Thus, verifying agents’ properties specified in the lan-

guage is a viable proposition. In [73], Fisher uses a series of examples to demonstrate

that Concurrent METATEM can be used to specify intelligent objects that exhibit an in-

teresting range of behaviors, which include cooperation and competition, negotiation,

obeying safety and liveness constraints, and so forth. Also it can be used to specify

groups of objects (societies) and hierarchical problem solving objects. Unfortunately,

Concurrent METATEM has some limitations. For instance, recall that building a model

may require backtracking; it seems that this is not always possible, e.g., in some do-

mains, the effects of actions may not be reversible. Also, like satisfiability, it requires

complete knowledge.

Recently, Fisher and Ghidini [75] extended Concurrent METATEM by incorporat-

ing the notions of belief, ability, and the “motivational” operator confidence. Agents’

beliefs are represented using a (KD45) multi-context logic [90]. Multi-context logic is

a formal framework for modular representation of (nested) beliefs of multiple agents,

and is based on the notion of belief contexts. A belief context is a representation of a

collection of beliefs that an agent ascribes to herself and to other agents. For example,

an agent i may have some beliefs about the world; in addition she may have some

beliefs about another agent j, beliefs about j’s beliefs about another agent k, etc. In a

78

multi-context logic, each of these sets of beliefs is represented using a distinct formal

language, and the interpretation of such a language is local to the belief context it is

associated with. A context structure in a multi-context logic contains an infinite tree

(where the root of the tree represents the belief context of the agent whose belief is

under consideration), and allows one to represent arbitrarily nested beliefs. Although

distinct, the contents of different belief contexts can be related. For instance, an ob-

vious relation is the following: if a sentence of the form P is in the belief context for

i’s beliefs about j (i.e. in the context ij), then a sentence of the form “j believes that

P ” is in the belief context for i. Another relation says that a sentence of the form P

is in ij, only if a sentence of the form “j believes that P ” is in the context i. Depend-

ing on the relations among different contexts, one can model agents having different

reasoning capabilities. As we can see from the above description, the key feature of

belief-contexts is modularity. Note that, the extended Concurrent METATEM incorpo-

rates the appropriate relations so that agents’ beliefs are KD45.

An agent’s abilities are constant over time. The semantics of the ability operator

is formalized using a function r that associates a belief context to a (fixed) set of

formulae. Thus, e.g. if r associates {φ} with the context for agent i, then i has the

ability that φ; on the other hand if r associates {φ, ψ} with the context for agent k’s

belief about agent j’s belief about agent i, then k believes that j beliefs that i has the

79

ability to achieve φ and ψ. Confidence in φ, which is a derived attitude, is defined

as believing that φ will eventually happen (i.e. Bi3φ). As in the original Concurrent

METATEM, agents are specified using an agent-interface and a set of temporal rules

in this framework. However, rules are now allowed to have modal operators; the rules

must be in normal forms that only allow present and future temporal operators.

The key idea in this framework is that the language provides a mechanism for de-

riving concrete specification of motivations from more abstract ones. Consider the in-

teraction between the following temporal goal formulae (in descending order in terms

of abstractness): Bi3φ, Bi3jφ, 3φ, and φ, that is, the agent i is confident about φ,

i is confident about φ and believes that j is responsible for bringing about φ, φ will

eventually hold, and φ is currently true, respectively. Fisher and Ghidini argue that by

providing rules that can be used to derive a more concrete goal formula from one of

these abstract goal formulae, we are essentially specifying a rational agent. One such

rule is as follows:

(Bi3φ ∧ Aiφ) ⊃ 3φ.

This says that, if agent i is confident about φ, and is able to achieve φ, then φ eventually

holds. Another example of this is that an agent may move from ‘confidence’ (i.e.

Bi3φ) to ‘confidence in another agent’ (i.e. Bi3jφ, where i 6= j), through deduction

or communication. Again, moving from 3φ to φ is essentially a matter of scheduling.

80

In this framework, various rules can be tailored and various constraints onBi can be

imposed to specify realism, strong-realism, and weak-realism properties (see Section

2). Also, rules can be used to implement sensing actions. Thus, this extension of

Concurrent METATEM brings it closer to other BDI languages. Even more recently,

Fisher et al. [77, 76] extended Concurrent METATEM to include groups of agents and

show how agents can be efficiently organized to collectively solve problems.

One problem with these frameworks is that in these languages, the programmer

needs to explicitly specify the behavior of the agents using temporal rules. Thus al-

though verification of agent properties is relatively straightforward, programming even

simple agents puts a heavy burden on the programmer. The examples in [73] and [75]

show this. Also, while it is possible to write chaining rules (i.e. rules whose con-

sequent fires other rules) in this language, these rules do not exactly correspond to

hierarchically decomposed procedures/plans. Finally, this model of agent program-

ming is problematic in the sense that although specifying rational actions (or in this

case, rational temporal rules) is left to the programmer, there is nothing to prevent the

programmer from writing inconsistent or non-terminating sets of rules.

81

Golog, ConGolog, and IndiGolog

Another style of agent programming is developed in the logic programming-based

Golog family [140, 51, 55]. In Golog, the programmer first declaratively specifies

the agent’s knowledge of the dynamics of the world (i.e. preconditions and effects of

actions), and the initial state of the world in a situation calculus dialect, a first-order

language for dynamic domains which incorporates a solution to the frame problem due

to Reiter [176, 178]. Then various Golog constructs, such as primitive actions, testing

for a condition, sequences, non-deterministic branch, loops, etc. are used to write pro-

grams. Given a program and the domain axioms, the interpreter attempts to prove that

the program has a terminating execution starting in the initial situation. A sequence of

actions for executing the program is uniquely identified by the terminating situation.

Once an action sequence is found, the agent executes the program, by executing one

action at a time. Thus, Golog redefines the planning problem of ‘looking for a legal

sequence of actions to achieve some goal’ as the problem of ‘searching for a legal

sequence of actions that amount to a legal execution of the high-level program’. The

program can encode search control knowledge.

In contrast to most other logic-based APLs where the agent’s state must be explic-

itly updated by the executing program, Golog and its successors employ an automatic

state update mechanism using their background action theory for the domain. Also,

82

unlike other APLs where the designer specifies the agent’s behavior using some form

of rules, Golog has the programmer specify a high-level non-deterministic program,

and the underlying interpreter’s task is to search for an execution of this program.

ConGolog extends Golog to include concurrency by providing constructs for non-

deterministic iteration, concurrency (with and without priority), and interrupts, which

makes it easier to write reactive programs. ConGolog also replaces the evaluation

semantics of Golog with a transition semantics, since a single-step semantics is better

suited for concurrency.

The ConGolog interpreter proves that some branch of the non-deterministic pro-

gram yields a terminating state of the program, and thus resolves the non-determinism

in an off-line style using lookahead planning. This offline planning cannot handle dy-

namically changing worlds too well, especially when sensing and exogenous actions

are involved. For instance, consider the following program: (a|b); senseq; if q then ∆1

else ∆2 endIf;φ?, which says that the agent should first nondeterministically choose

between a and b and execute it, then sense the truth-value of q, and based on this value,

should execute either ∆1 or ∆2, terminating successfully if the test φ? succeeds. Note

that, an offline interpreter for this program cannot commit to either a or b in advance,

since it does not know which of these will ensure that φ, and thus cannot use the

sensing action to determine whether q would hold after the action. The only option

83

available to the interpreter is to check if one of the actions a or b will lead to φ for both

values of q. Thus, early occurrences of non-deterministic choices can result in unac-

ceptable delay. The situation gets even worse when loops are involved. To deal with

this, the language IndiGolog [55] was proposed. In IndiGolog, programs are executed

incrementally to allow for interleaved action, planning, sensing, and exogenous events.

Informally, the semantics of incremental execution is as follows: an incremental exe-

cution of a program finds a next possible action, executes it in the real world, obtains

the sensing results afterwards, and repeats this cycle until the program is finished.

Since this makes it possible to quickly execute the actions without much deliberation,

this approach is suitable for realistic changing worlds. However, since the program

may contain non-deterministic choice points, some lookahead mechanism is required

to avoid unsuccessful (dead end) executions. For this reason, a search operator Σ is

introduced in IndiGolog. Intuitively, Σ(prog) selects from all possible transitions of

prog one for which there exists a sequence of further transitions that leads to a termi-

nating configuration. The IndiGolog interpreter automatically monitors the execution

of a plan generated by such a search block, and re-plans when the current plan fails or

is no longer appropriate due to changes in the environment. IndiGolog also supports a

simple form of contingent planning, where the dynamic environment is modeled as a

simple deterministic reactive program [135].

84

Thus, IndiGolog is a powerful language that is able to handle incomplete knowl-

edge, sensing, and exogenous actions, and allows the specification of prompt reactive

behavior as well as user-controlled deliberation. Note however that, the standard im-

plementation of IndiGolog makes a dynamic closed-world assumption, i.e. it assumes

that a program has sufficient knowledge to evaluate a query/test by the time it is eval-

uated, and if initially the answer to the query is not known, sensing actions will be

executed before the query is made. Thus it is assumed that the on-line interpreter has

complete knowledge of the relevant fluents by the time the query is evaluated. To

avoid this limitation, an extension of the Golog formula evaluator was presented in

[238], where the evaluator keeps track of the possible values that functional fluents

can take in a given history (i.e. a situation along with the sensing results obtained so

far). A fluent is said to be known at some history h iff it has only one possible value

at h. Note that this only handles limited forms of incomplete knowledge, namely, not

knowing the value of a fluent; general disjunctive knowledge is not handled. This work

is still at an early stage, and the issue of how to deal with efficient belief update in the

presence of incomplete knowledge is still not completely clear.

85

FLUX

One disadvantage of IndiGolog and some other logic-based non-BDI languages is that

the knowledge of the current state is represented indirectly using histories, i.e. via the

initial conditions and the actions that the agent has performed so far. A consequence

of this is that each time the agent needs to evaluate a condition, she has to consider the

entire history of actions and perform regression. Thus these languages do not handle

long running agents efficiently. The fluent calculus-based high-level programming

language FLUX (FLUent eXecutor) [222] attempts to solve this problem using an

explicit state representation and progressing it when an action is performed. FLUX

incorporates an implementation of the fluent calculus, a language for reasoning about

actions. The fluent calculus provides a basic solution to the frame problem using

the concept of state update axioms. It also addresses a variety of other aspects such

as, ramifications, qualifications, nondeterministic and concurrent actions, continuous

change, and noisy sensors and effectors.

A FLUX agent program consists of three parts, namely a background theory that

encodes the agent’s internal model of the environment, a kernel that provides the agent

with cognitive abilities to reason about her actions and acquired sensor data, and a

strategy that specifies the agent’s task oriented behavior. The types of incomplete

knowledge FLUX can encode are restricted. The underlying inference engine of FLUX

86

is sound but incomplete. However, it can be shown that reasoning in FLUX is linear

in the size of the internal state representation. Thus FLUX scales up well to long-

term control. FLUX allows the use of full expressive power of logic programming in

defining strategies. It also facilitates formal proofs of correctness of strategies.

MINERVA

The MINERVA agent programming language [131, 132] utilizes logic programming

and several non-monotonic knowledge representation and reasoning mechanisms to

provide a common multiagent framework. A MINERVA agent consists of several

specialized concurrently running sub-agents performing various tasks. These agents

can read and manipulate a common knowledge base specified in the Multi-dimensional

Dynamic Logic Programming language (MDLP). In MINERVA, agents are driven by

an observation-deliberation-action cycle. The behavior of these agents is specified in

the Knowledge and Behavior Update Language (KABUL).

MDLP provides an extension of Answer Set Programming (ASP). In MDLP, an

agent’s knowledge is represented using logic programs arranged in an acyclic digraph,

in which the vertices are sets of logic programs, and edges represent the relationship

between these programs. MDLP benefits from the advantages of ASP, such as default

negation, which can be used to deal with incomplete knowledge. Also, it can be used

87

to represent the evolution of knowledge, and preferences.

KABUL is a logic programming language that can be used to specify updates to

knowledge bases, and to the KABUL program itself. A KABUL program consists of a

set of condition-action rules that encode the agent’s behavior. Since actions in KABUL

can update both the knowledge base represented in MDLP and the KABUL program

itself, it can be used to specify agents that change their behavior over time. Conditions

in these rules can refer to external observations, the epistemic state of the agent, as

well as to occurrences of exogenous actions. Since no external stimuli are needed to

trigger the behavior of the agent, KABUL can be used to specify both reactive and

proactive behavior.

Other Logic-Based APLs

There has been work on various other logic-based APLs. Those that gained some pop-

ularity include APRIL [146], the deontic logic-based IMPACT [62, 63], the dynamic

logic-based Dylog [6], the linear logic-based εhhf [57], the ambient calculus-based

CLAIM [193], the Horn Clauses and Least Herbrand Models based DALI [41], and

ReSpecT [158]. Surveys of some of these languages can be found in [144, 12, 13]. In

the next section, I discuss some of the reactive plan execution languages.

88

2.4.2 Reactive Plan Execution Languages

AgentSpeak and its Variants and Implementations (Jason, JACK, Jadex)

As discussed in Section 2, there has been much work on agent theories, and current

theories are quite mature and well established. However, there is a large gap between

agent theories and BDI APLs.5 In [172], Rao introduced the AgentSpeak(L) language

as an attempt to show a one-to-one correspondence between the model theory, proof

theory, and the abstract interpreter of this language. Here, model theory, proof theory,

and abstract interpreter refers to the underlying BDI theory, the formal semantics of

the programming language (often specified using a transition semantics, as discussed

below), and the implemented interpreter for the language, respectively. Rao argues that

there is a better chance of unifying theory and practice by taking a simple specification

language as the execution model of an agent, and then ascribing mental attitudes to

this agent. To this end, he used the Procedural Reasoning System (PRS) and its more

recent incarnation the distributed Multi-Agent Reasoning System (dMARS) [123] as

a starting point for the AgentSpeak(L) implemented system. To establish the link be-

tween agent theories and APLs, it is necessary to have a way of deriving the formal

5Here, BDI APLs refers to APLs that incorporate concepts such as beliefs, desires, goals, and inten-
tions. Also, note that the original proposal of Concurrent METATEM, the Golog family, and many other
declarative APLs are tightly coupled to the associated logic/theory. However, most of these languages
are not per se typical BDI-languages.

89

semantics of program execution from the underlying agent logic. To do this, Rao first

defined program states of an APL using agent configurations. An agent configuration

consists of a sentential description of an agent’s beliefs and her motivational states,

derived from associated components of the underlying agent theory. Intentions in a

configuration are represented procedurally as in PRS. He then defined program ex-

ecution or agent behavior as transitions from configuration to configuration. These

transitions are guided by a set of transition rules (A.K.A. proof rules), which specify

how an agent configuration and its components may change as a result of executing an

action, and what actions can be executed. AgentSpeak(L) is based on reactive plan ex-

ecution architectures, where rather than deliberating on which action to execute next,

the agents utilize the changes in the environment to decide which given hierarchical

plan should be adopted, and how to decompose and execute this hierarchical plan.

An AgentSpeak(L) agent consists of a belief-base, a set of plans, and a set of in-

tentions. When an agent acquires a new goal, or notices a change in her environment,

she may trigger additions or deletions to her goals or beliefs. These events are referred

as triggering events. Agents in this framework respond to triggering events. Plans in

AgentSpeak(L) are rules of the form: (e : cc ← p). Intuitively, this says that in re-

sponse to the event e, the agent should adopt the plan-body/intention that p, provided

that the context condition cc follows from her belief. The plan-body can be built us-

90

ing sequences of goals and actions. Goals in AgentSpeak(L) are of two types, namely

achievement goals, and test goals. Achievement goals are an abstraction mechanism,

and serve the same purpose as procedure calls in imperative programming. In other

words, the execution of an achievement goal triggers an event, and as a result, the

agent adopts the appropriate plan as her intention, just as the execution of a procedure

in imperative programming amounts to the execution of the procedure body. These

plans may in turn include achievement goals in them, and in that case when executed,

they will trigger the adoption of other plans. Thus achievement goals and plans to-

gether provide a mechanism for event-invoked hierarchical decomposition of goals.

AgentSpeak(L) also uses these plans to revise agents’ beliefs and goals by generat-

ing primitive addition/deletion events. Test goals involve testing the belief-base and

may be used to compute variable bindings. Intentions in AgentSpeak(L) are stacks

of partially instantiated plans. At any time, the agent may have multiple intentions.

Initially, each of these intention stacks contain only one element, namely, the plan that

was adopted in response to an external event (i.e. due to a change in the external en-

vironment). The execution of these intentions may involve executing an achievement

goal, which triggers the adoption of new intentions. In that case, this new intention is

pushed on top of the intention stack that triggered the adoption of this intention.

The overall control flow of the system is determined by the AgentSpeak(L) in-

91

terpreter, and goes as follows. The interpreter uses a given selection function SE to

determine which pending event to process next. Then it computes the relevant plans

by checking the plans whose associated event matches (i.e. can be unified) with this

event. From these plans, it then computes the set of applicable plans by checking

whether an instance of the context condition follows from the agent’s beliefs. An-

other selection function SO is used by the interpreter to choose one of the applicable

plans, and this plan is then added to the intention base. The interpreter uses a third

selection function SI to decide which of these intentions should be executed next. As

discussed above, these adopted intentions can in turn post so called internal events.

Internal events are processed similarly to regular or external events. However, rather

than adding the selected applicable plan to the intention base, it is now pushed on top

of the intention-stack that posted this event. Only the plans that are on top of an in-

tention stack are considered for execution, and only one of them are executed in each

cycle.

For instance, suppose that an agent has the following plans in her plan-base:

+!φ1 : true←!ψa; a1; a2,

+!ψa : true← a3; a4.

Here + and !φ refers to an addition event and an achievement goal φ, respectively.

The first plan says that in response to the event where the agent acquires the goal to

92

achieve φ1, she should adopt the plan to achieve the goal ψa first, and then execute the

primitive action a1 followed by a2. Similarly, the second plan says that in response to

the event where the agent acquires the goal to achieve ψa, she should adopt the plan

to execute the primitive action a3 followed by a4. For simplicity, I assume that both

of these rules have a true context condition. Now, suppose that the agent acquires the

goal to achieve φ1 through some external event (such as, via a request action), and that

SE chooses to process this event next. Since the first rule’s trigger condition matches

(unifies) with this event, the context condition trivially follows, and there is only one

applicable rule (i.e. SO returns this plan), she will adopt this plan as her intention.

Thus, a new intention [+!φ1 : true ←!ψa; a1; a2] will be added to her intention base

(let’s call this intention i1). Similarly, each time she acquires an intention due to an

external event, a new intention will be added to the intention-base. Now, suppose that

SI chooses to execute i1. Since executing the first action of i1 involves executing the

achievement goal ψa, it will generate the event that +!ψa, and this event will be added

to the event queue. In the next cycle, suppose that SE chooses to process the event

+!ψa. In response to this event and after unifying the trigger condition and verifying

the context condition, the agent will adopt the intention that [+!ψa : true ← a3; a4],

since there is only one applicable rule. But, since this event was generated due to the

execution of another intention, namely i1, it will be pushed on top of the stack for

93

i1 rather than being added as a new intention. Recall that, when deciding on which

intention to execute next, only the plans that are on top of the intention stack are

considered. This ensures that the agent will execute a3; a4 before executing a1; a2.

An AgentSpeak(L) agent is specified by a tuple 〈E,B, P, I, A, SE , SO, SI〉, where

E is a set of possible events, B is a set of possible base beliefs (defined using a ground

set of atoms), P is a set of possible plans, I is a set of possible intentions, A is a set

of actions (denoting the possible set of actions that the agent has performed so far),

and SE , SO, and SI are the three selection functions. An AgentSpeak(L) agent can

have a number of executions defined in terms of the configurations reachable from

the initial configuration. A BDI configuration is a tuple of 〈Ei, Bi, Ii, Ai, i〉, where

Ei ⊆ E,Bi ⊆ B, Ii ⊆ I, Ai ⊆ A, and i is the label of the configuration. Note that,

an agent’s plans are considered to be static, and thus are not included in a configu-

ration. The semantics of the AgentSpeak(L) programming language is defined using

a labeled BDI transition system that specifies how agents can evolve from one con-

figuration to another. A BDI transition system is a pair 〈Γ,`〉, where Γ is a set of

BDI configurations, and ` is a binary transition relation Γ × Γ defined using a set of

proof (transition) rules. A BDI derivation/execution is defined to be a (possibly infi-

nite) sequence of BDI configurations γ0, γ1, · · · , γi, · · · such that for all i, γi ∈ Γ, γ0

is the initial configuration, and for any consecutive pair of configurations (γj, γj+1),

94

γj ` γj+1. For the AgentSpeak(L) programming logic, the notion of ‘refutation’ is

defined in terms of an intention: it starts when the agent adopts an intention, and ends

when her intention stack becomes empty. Rao argued that this programming logic can

be used to formally prove certain properties about an agent’s behavior, such as safety

and liveness of the agent system. Also, there is an one-to-one correspondence between

the AgentSpeak(L) interpreter and AgentSpeak(L) transition rules.

Since Rao’s original proposal [172], other researchers have proposed various ex-

tensions and implementations of the AgentSpeak(L) language. In [60], d’Inverno and

Luck use the Z specification language to formally specify a complete abstract inter-

preter for AgentSpeak(L) similar to that given to dMARS [59]. In [153], the op-

erational semantics of AgentSpeak(L) is specified using a more standard Plotkin-style

structural approach [168]. The three major implementations of AgentSpeak(L) include

JACK [105], Jason [16, 13], and Jadex [22, 170]. In the following, I briefly discuss

these, and also point out the extensions provided by these implementations.

The Java Agent Compiler and Kernel (JACK) Intelligent AgentsTM framework

[105] is a commercial agent-oriented programming tool developed by Agent-Oriented

Software Pty. Ltd. Unlike Jason and Jadex, JACK does not provide a logic-based

language to specify agents’ beliefs and intentions; rather, it uses an extension of Java

to implement some features of the underlying logic, such as logical variables, events,

95

beliefs, and plans. One of the design goals of JACK was to provide developers with a

robust, stable, light-weight product that can be used to develop components of larger

environments, such as legacy software systems. To this end, JACK provides three

extensions of Java. It extends the Java syntax to include BDI-related keywords, dec-

laration of attributes, and statements. It provides a compiler that compiles these BDI

syntactic additions into pure Java classes that can be used by other ordinary Java code.

Finally, it incorporates a set of kernel classes that provide the required runtime support

to the generated code.

From a functionality point of view, JACK incorporates six components, namely,

agent, capability, belief-set, view, event, and plan. The agent construct defines the

behavior of an agent by including the capabilities an agent has, the types of events

she responds to, and the plans she uses to achieve her goals. The capability con-

cept structures the reasoning capabilities of agents into clusters. Capabilities are built

up from events, beliefs, plans, Java code, etc. They simplify agent design by allow-

ing code reuse and encapsulate agent functionality. This allows the agent architect

to build up a library of capabilities over time, and create an agent promptly by sim-

ply plugging in the required capabilities. JACK uses a generic relational model to

represent the agents’ beliefs. A belief-set consists of relations of the following form:

relationName(key1, key2, · · · , data1, data2, · · ·). Each relation can be identified by

96

the relation name and any number of keys. The data fields are used to encode the at-

tributes of a relation. Elements of a belief-set can be retrieved using unification as in

Prolog. The view construct is central to JACK’s data modeling capability. It is built up

from multiple belief-sets or arbitrary Java data structures, and allows general purpose

queries to be made about an underlying data model. Events and plans are similar to

AgentSpeak(L).

On top of these architecture independent facilities, JACK provides a set of plug-in

components that address the requirements for specific agent architectures. Currently

it supports two such plug-ins, namely a PRS/dMARS-based BDI interpreter, and a

plug-in for building teams of agents, called SimpleTeam. The underlying concept be-

hind SimpleTeam is that it allows the programmer to specify a high-level view of the

coordinated behavior of a team, and then map this high-level view to the individual ac-

tivities of the participating agents. JACK also include a graphical agent development

environment, a debugger, and an object modeling toolkit to support object transport

and interaction with existing applications in Java and C++. JACK has been used to

develop commercial applications, such as decision support and defense simulation for

analysis applications.

Recently, Bordini and Hübner developed a Java-based open source practical in-

terpreter for AgentSpeak(L) called Jason [16, 13], that incorporates an extension of

97

the AgentSpeak(L) semantics to support speech-act based inter-agent communication

[154]. To allow for both closed-world and open-world belief-bases, Jason also allows

the use of strong negation in beliefs and plans of agents. Jason also has provision for

handling plan failure. This is done by generating a “deletion of goal” event when some

action fails (or when some subgoal fails as a result of the absence of an applicable plan

for achieving that subgoal), and then handling that goal deletion event by searching for

an applicable plan in the rule library, eventually executing one of these plans. How-

ever, for this to work properly, the user must define appropriate responses to various

plan failures. In case no such plans are defined, the Jason interpreter just drops the

intention altogether. In Jason, it is possible to design plan failure handling rules in a

way so that plan failure is propagated up the intention stack. To do this, Jason provides

some special actions called internal actions. Internal actions only change an agent’s

mental states and have no effect on the world. These actions can be used both in the

context and the body of plans. For instance, if the designer under certain conditions

wants to propagate a plan failure up the intention stack, he/she can write a plan failure

handling rule whose context condition encodes these conditions, and whose body has

an internal action that removes the appropriate intentions.

In [11], Bordini et al. aim to provide a more practical programming language by

specifying various selection functions of AgentSpeak(L). In particular, they provide

98

specifications of relations between plans and quantitative criteria (such as the quality,

duration, and cost of plans, and the deadlines specified for them) for their execution,

and then use efficient decision-theoretic task scheduling to automatically guide the

choices made by an agent’s intention selection function. The design of the Jason APL

allows atomic formulae and plans to have annotations [241, 154] which can be used

by various user-defined selection functions.6 For instance, annotations within the be-

lief base can be used to register the source of the associated information, and can later

be utilized by the (user-defined) belief update function. Annotations in action expres-

sions can be used to implement sophisticated applicable plan selection and efficient

decision theoretic intention selection functions. Another interesting feature of Jason

is that it can be easily configured to run on various hosts. This is done using an agent

communication infrastructure called SACI [106].

Another implemented agent programming framework is the Jadex software frame-

work [22, 170]. Jadex is implemented as an agent reasoning layer that sits on top

of the middleware agent infrastructure JADE [10]. The reasoning engine of Jadex is

similar to that of AgentSpeak(L). Jadex utilizes both declarative and procedural ap-

proaches to define various components of an agent. It uses Java to procedurally define

plan bodies (i.e. actions), and the XML language to declaratively define all other men-

6However, these sophisticated selection functions are not yet provided with the current distribution
of Jason.

99

tal attitudes. While Jadex provides a semantics for declarative goals (as discussed in

the next section), the current implementation does not utilize these goals. The Jadex

toolkit comes with a graphical debugger and various other tools to help the application

developer. Jadex has been used in various applications such as simulation, scheduling,

and mobile computing.

Bordini and Moreira [17] use the transition semantics in [153] to prove various

BDI properties of AgentSpeak(L) agents, including the intention-belief inconsistency

principle. There has also been some work on automatic verification of AgentSpeak(L)-

like programs. In [18, 14, 15], Bordini et al. introduce a toolkit called CASP which

can be used to translate a simplified version of AgentSpeak(L) into the input language

of existing model checkers for linear temporal logic, such as SPIN [103] and JPF2

[242].

An Abstract Agent Programming Language (3APL)

Another major PRS-based agent programming language that can be found in the litera-

ture is An Abstract Agent Programming Language (3APL) [99]. Like AgentSpeak(L),

3APL utilizes a procedural notion of goals/intentions, and specifies a static set of rules,

now called Practical Reasoning rules or PR-rules, which operate on these goals. How-

ever, 3APL differs from AgentSpeak(L) in various ways and I discuss these differences

100

below.

3APL incorporates the notion of basic actions, which are used to specify agents’

basic capabilities. These actions are viewed as application dependent mental state

transformers in that these change agents’ beliefs. The specification of belief updates

associated with a basic action is formally represented using a partial function T that

returns the result of updating a belief base by performing an action. Note that T is

a partial function, since the action may not be executable in some belief states. In

contrast, recall that in AgentSpeak(L) one uses rules to update beliefs by generating

a primitive addition/deletion event which triggers some update rules (treated like any

other plan).

A 3APL agent consists of a belief-base, a goal-base, and a set of rules. While

AgentSpeak(L) agents respond to events, 3APL agents respond to goals in their evolv-

ing goal-base. The concept of event is missing from 3APL. 3APL rules are triggered

by conditions on the goals and belief-bases, rather than events. If an agent has reacted

to some new goal or belief, she should memorize it so that the relevant rule won’t

fire twice. In [98], it has been shown that 3APL can bi-simulate AgentSpeak(L).7 In

response to a goal in the goal-base, a 3APL agent searches for a rule whose trigger

7The underlying idea for this involves the generation of an event-queue from the goal-base, and the
creation of an intention-base from the goal-base and rule-base. However, this technique does not cover
the deletion of goal events, and the addition and deletion of belief events (i.e. it only handles the addition
of goal events).

101

condition can be unified with this goal, and whose context-condition follows from

her beliefs. The agent then replaces the goal in the goal-base with the body of one

such rule. Thus, the agent’s goal-base in 3APL evolves over time and works like the

intention-base in AgentSpeak(L).

3APL provides a richer set of rules than AgentSpeak(L). Also, the plan-body of a

rule can now be constructed using various imperative programming constructs, rather

than only using sequences as in AgentSpeak(L). PR-rules can be classified into four

types, namely, failure rules, reactive rules, plan rules, and optimization rules. The roles

of these rules are as suggested by their names. A typical failure or optimization rule is

of the form πh ← φ | πb, where π (possibly with subscripts) denotes a plan/program.

This says that if πh is part of the agent’s plan, and she believes that φ, then this plan

should be replaced by πb. Note that failure rules with empty bodies can be used to drop

a goal (plan). Reactive rules are rules with an empty head (i.e. of the form← φ | π),

and state that whenever the agent believes that φ, it should adopt the plan/goal that π.

These rules are used to create new goals. Finally, a plan rule is of the form G(
−→
t) ←

φ | π, and states that when the agent believes that φ, one way of achieving the (atomic)

goal G(
−→
t) is π. In addition to facilitating planning for simple achievement goals,

these rules in some sense provides a mechanism for revision and monitoring of goals.

Thus, a 3APL agent is a tuple 〈Π, σ,Γ〉, where Π is a possible goal-base, σ is a

102

possible belief-base, and Γ is a possible PR-base. The operational semantics of 3APL

is provided using a transition semantics. 3APL provides two sets of transition rules,

one for specifying the execution of individual plans, and another for specifying the

execution of an agent. Plan-level execution rules define what it means to execute a

single goal, and include rules for executing basic actions, test goals, sequential goals,

non-deterministic choice, and application of PR-rules. Agent-level execution rules,

which are defined in terms of these plan-level execution rules, specify what it means

for an agent to execute multiple goals in parallel. The overall semantics of 3APL is

defined in terms of computations. A computation is a finite or infinite sequence of

mental states such that the first mental state in this sequence is the initial mental state

of the agent, and the successive mental states can be derived using the agent-level

transitions.

Another novel feature of 3APL is that it separates the semantic specifications for

the agent language, and its control structure, by introducing a distinction between an

object-level and meta-level semantics. The control structure at the meta-level specifies

which goals should be executed and which rules should be applied next. To this end,

3APL introduces a meta-language that includes some meta-actions and a meta-level

transition system. To determine which goals (rules) should be executed (applied, re-

spectively) next, the meta-language assumes that there is a fixed user-defined ordering

103

on goals (rules, respectively). The transitions of the meta-actions are derived in terms

of the object-level transitions. For instance, if there is a rule in the object-level transi-

tion system that says that a goal g is executable, then a meta-level transition rule selects

g for execution provided that g is maximal w.r.t. the ordering on the set of all goals.

The overall control structure of 3APL is a specialization of the update-act cycle. In

the planning/application phase, the ordering on rules and goals is used to determine

the strongest applicable reactive, plan, or optimization rule, and if there is such a rule,

it is then applied to the agent’s plan. After this, in the filtering phase, the controller

uses the ordering on goals to choose a goal, searches for failure rules applicable on that

goal, and applies all such rules. Finally, in the execution phase, it executes a single

step of the chosen goal, provided that the first action of the chosen goal is executable.

While AgentSpeak(L) has a similar control mechanism provided via the three selec-

tion functions SE , SO, and SI , the major difference is that (the original proposal of)

AgentSpeak(L) [172] does not handle plan failure, and thus the filtering phase of 3APL

is omitted from AgentSpeak(L).

2.5 Declarative Goals in Agent Programs

As mentioned, an important concept in the context of agent programming is that of

declarative goals. I start the discussion on declarative goals by pointing out the differ-

104

ences in expressiveness between declarative and procedural goals, and the advantages

of incorporating these goals in APLs.

2.5.1 Advantages of Declarative Goals

Declarative goals in agent programs are necessary for a variety of reasons. The major

difference between declarative and procedural goals lies in the way they express an

agent’s degree of commitment towards a goal. Being committed to a procedural goal

amounts to nothing more than being committed to a plan, i.e. to execute a (possibly in-

finite) sequence of actions that the procedural goal can be decomposed to. On the other

hand, being committed to a declarative goal is much more expressive, and it amounts

to being committed to one of all possible plans that achieve the goal. Thus, the differ-

ence between them can be viewed as commitment towards some means to an end vs.

commitment towards an end. For a static environment, where the agent programmer

has a complete model of the world and knows about all possible exogenous actions in

advance, it may be possible for him/her to specify an extensive set of hierarchical rules

that covers all the ways to achieve some goal (like a policy). However, this may require

much effort; also this becomes even harder when the agent designer only has partial

knowledge about the domain, and cannot predict all possible interruptions (generally

a fixed utility function is assumed). Also, from a technical point of view, procedural

105

goals have limited expressiveness. Procedural goals cannot be combined using logical

operators. For instance, even if the agent programmer specifies two procedures for

achieving two separate goals P and Q, he/she needs to write a third procedure for the

conjunctive goal (P ∧Q).

Motivations for declarative goals in agent programs can be roughly classified into

two categories, namely theoretical and practical motivations. From a theoretical point

of view, it has been argued that declarative goals are required in order to bridge the gap

between agent theories and APLs [100, 247, 233]. The reason for this is that in agent

theories, goals are declarative concepts, and thus the incorporation of these goals is

viewed as a necessary prerequisite for bridging this gap. From a practical perspective,

various advantages of declarative goals have been pointed out in the literature. In the

following, I discuss these advantages.

One reason for using declarative goals is to decouple plan execution and goal

achievement. A declarative (achievement) goal represents a state that is to be reached.

Declarative goals can be used to decide whether a plan was successful in achieving

the associated goal or not. The successful execution of a plan does not necessarily

indicate the successful achievement of a goal. Also, failure to execute a plan does not

mean that the goal can’t be achieved, since there might be another way of achieving

the goal, one that is not described by the procedural goal. For instance, consider the

106

following example of a hungry cat (from [247]). Initially, the cat knows that some

food has been left on the table, and has the goal of reaching the food. If we are

using a procedural representation of goals, one way to define this goal is using the

cat’s plan that leapOnChair(chair); fromChairJumpToTable(chair, table), i.e. it

should first jump on a chair that is close to the table, and then jump from the chair to

the table, where the food is located. Suppose, with this goal in mind, the cat leaps on to

the chair. At this point, a nearby human, realizing the cat’s intention, moves the chair

further away from the table. Thus, since the second action is no longer executable,

the cat’s plan has failed, and since we are using a procedural definition of goal, the

cat’s goal has also failed. Note that, by using only procedural goals, the reason for

performing the plan is lost. On the other hand, if we were using a declarative defini-

tion of goals, we can use NextTo(Cat, Food) as the goal. In that case, even though

the cat’s plan fails, it can try to plan again using this goal. Consider another example

in the same domain: suppose that the cat was successful in jumping on to the table.

Note that, this does not necessarily mean that it was successful in reaching food, since

somebody might have removed all the food from the table. These examples illustrate

that the success and failure of a plan do not tell us much about the success or failure

of the associated goal. Once again, this is especially true in dynamic environments

where unexpected events may occur, and it is impossible for the designer to predict all

107

possible interruptions caused by exogenous actions.

Declarative goals can also be used to detect fortuitous achievement of goals. For

instance, suppose that some food was left on the chair. So after leaping onto the chair,

the cat can detect this, and since its goal to reach the food has been achieved, it can

drop the plan to jump to the table. Now, consider why an APL that does not incorporate

declarative goals, such as 3APL, cannot detect this. Recall that in 3APL, the agent

programmer specifies rules that can be triggered due to the presence of procedural

goals in the goal-base. Then the procedural goal is decomposed to/replaced with the

rule-body, and eventually executed to achieve the goal. Suppose that the programmer

only has partial knowledge about the cat’s environment, and wrote the following rule

that can be used to achieve the cat’s goal:

goNextToFood(Cat)← true | leapOnChair(Chair);

fromChairJumpToTable(Chair, Table).

Assume that the programmer does not know that unusual situations such as one where

food is left on the chair can occur. In response to the procedural goal goNextToFood

(Cat) in the goal-base, the cat will adopt the plan leapOnChair(Chair); fromChair−

JumpToTable(Chair, Table). After executing the first action, the cat is on the chair.

However, although food is at its current location, the 3APL-cat not knowing that the

state that needs to be reached (i.e. NextTo(Cat, Food)) has been reached, will not

108

drop the goal of jumping to the table. Thus, if goals are defined procedurally, the cat

still has the plan to jump on the table even though its goal has been satisfied. Note

that, while a 3APL PR-rule of the form (δ ← φ | nil), which says that if the agent

believes that φ and has the plan that δ, then she should give up this plan, can be used

to detect this, it involves the use of a declarative goal φ in the context condition. Also,

in order to do this, the agent programmer needs to specify an extensive set of such

rules. The reason for this is that an exogenous action could occur at any stage dur-

ing the execution of the plan, and thus the dropping of the current plan due to early

achievement of the associated goal should be considered for all possible configurations

of the plan. For instance, even for a simple plan a1; a2; a3 that includes three primi-

tive actions in sequence, the programmer needs to specify the three following rules:

(a1; a2; a3 ← φ | nil), (a2; a3 ← φ | nil), and (a3 ← φ | nil).

Another important motivation for using declarative goals is communication. While

an agent can delegate a procedural goal to another agent, she is required to plan for the

goal before she can delegate it. Moreover, the requester may not know how to achieve

the goal. Thus the use of declarative goals allows distribution of both computation and

knowledge, in the sense that the requesting agent need not plan for all of her goals.

Declarative goals are also necessary for reasoned responses to communication. For

instance, to determine if an agent should adopt a request to achieve a goal, she must

109

know whether this requested goal conflicts with her own goals. Moreover, even if this

requested goal conflicts with one of her plans, she (being a very helpful agent) might

still decide to adopt it provided that it does not conflict with the associated declarative

goal.

Declarative goals are essential for rational behavior. In addition to allowing an

agent to plan from scratch when all her plans in the plan library have failed, declarative

goals facilitate reasoning about interferences among goals. An agent may have two

conflicting goals in the goal base. To decide which goal to achieve, it can do some

reasoning with these declarative goals to find out which of these is more important to

the agent.

2.5.2 Issues in Agent Programming Languages with Declarative Goals

As mentioned earlier, recently there has been some work on APLs with declarative

goals. Before going over these frameworks, I briefly discuss the common issues in

APLs with declarative goals.

One issue in APLs with declarative goals concerns the type of goals handled by an

APL. Most APLs use achievement goals as the only type of goals. Achievement goals

refer to a goal that needs to be achieved once. Some APLs also allow the use of other

types of goals, e.g. maintenance goals and perform goals (i.e. a goal to execute some

110

actions). Some also allow the use of inconsistent goal bases (e.g. GOAL [100], Dribble

[237]). They assume that two inconsistent achievement goals need to be achieved at

different times. Thus, although in these frameworks the goal-base can be inconsistent,

the adopted declarative goals (i.e. intentions) must be consistent with each-other. Note

that, the need for such inconsistent goal-bases arises from the fact that these APLs take

goals to be state formulae, rather than general temporal formulae. For instance, if an

agent has two inconsistent achievement goals φ and ¬φ, the agent’s goal state could

be represented by the temporal formula 3φ ∧3¬φ, i.e. the goal to eventually achieve

φ and to eventually achieve ¬φ, which is consistent. One exception to this is [187],

that defines a goal as a path formula; however it does not deal with the dynamics of

declarative goals. Some frameworks model goals with different priorities (e.g. [187]).

Another issue concerns the representation of declarative goals and intentions. In

other words, how can one incorporate these goals as a part of the programming lan-

guage, and what features of these goals are included in the framework. Most APLs

keep declarative goals and procedural plans in two separate databases. They then use

these goals to trigger some AgentSpeak(L) or 3APL-like rules. Other frameworks

treat declarative goals as individual and active components that manage their own

state and post events as required (e.g. Jadex [23]). These events are then handled

by AgentSpeak(L)-like agents. These frameworks also define the life-cycle of these

111

goals explicitly.

A third issue concerns the consistency of intentions. Two intended goals can be

conflicting in various ways, such as:

• A goal can be directly inconsistent with another goal. In that case, all the plans

for achieving that goal conflict with all of the plans to achieve the other goal.

• A goal can be inconsistent with some of the plans to achieve another goal, and

not others. In that case, any plan to achieve the first goal is in conflict with some

of the plans to achieve the second.

• Two goals may be mutually consistent. However, it may be the case that some of

the plans to achieve one goal are inconsistent with some of the plans to achieve

the other.

Thus, while selecting a plan to achieve a goal, the agent must check that only consistent

plans are selected. This ensures that the agent will not commit to and execute a plan

that makes one of her goals impossible to achieve. Unfortunately, in most APLs with

declarative goals, there is no requirement that a declarative goal be consistent with a

procedural goal, i.e. plan. The fact that these APLs maintain intended goals and plans

in two separate databases makes it even harder to ensure this consistency. In fact, to

the best of our knowledge, no APL in the literature handles these issues.

112

A fourth issue involves the representation of means-ends relationship between

goals and subgoals or plans adopted to achieve these goals, i.e. how these frameworks

capture the dependency between subgoals and their parent-goals. Recall that, PRS-

based agents adopt plans in response to procedural goals. Similarly, in PRS-based

declarative goal oriented APLs, agents adopt plans in response to declarative goals in

the goal-base. These plans may in turn involve the achievement of other declarative

(sub)goals that may trigger the adoption of other plans. Note that, the only reason the

agent intends any of these subgoals and plans is due to her commitment towards the

parent goal. In other words, the agent’s commitments towards these subgoals can be

viewed as conditional intentions, (implicitly) conditioned on intending the super-goal.

Thus, if in any situation the agent drops the super-goal, she should also drop all these

subgoals. Most APLs do not model this dependency, and thus fail to give up subgoals

or plans when the associated goal is dropped. The ones that do, share a similar un-

derlying technique: they introduce some construct in the language that captures the

fact that a subgoal was adopted to achieve a goal (and a sub-subgoal was adopted to

achieve the subgoal, etc.). Then, when the goal is dropped, they use this information

to drop all such subgoals (and the sub-subgoals etc., if any). For instance, GD-3APL

[48] attaches a declarative goal with each intended plan, and this information can be

used to abandon plans when necessary. However, no mechanism is provided to use this

113

information to effect the appropriate goal contraction. CAN [247] includes a procedu-

ral construct that includes both the associated declarative goal and its failure condition

with an adopted plan.

Another issue concerns how these declarative goals are used by these frameworks,

i.e. which of the aforementioned advantages of declarative goals are realized. As men-

tioned earlier, the literature identifies three major uses of declarative goals: selecting

plans using these goals, decoupling plan success/failure from goal success/failure, and

planning for goals on-the-fly.

In the following, I discuss in more detail various declarative goal-oriented APLs

found in the literature.

2.5.3 Declarative Goal Oriented Languages

GOAL

The programming language Goal Oriented Agent Language (GOAL) [100] can be

identified as one of the first to attempt to incorporate declarative goals in agent pro-

gramming languages. Like 3APL, GOAL integrates theory and programming in a

single framework by providing both an agent programming framework and a program-

ming logic, the latter derived from the operational semantics of the former. Thus state-

ments proven in the logic concern properties of agents specified in the programming

114

language. Unfortunately, GOAL does not take most of the advantages of declarative

goals (as discussed in Section 5.1) into account, and only uses declarative goals to

select plans.

A GOAL agent keeps a propositional belief-base and a declarative goal-base. To

consider the possibility of mutually inconsistent goals (to be achieved at different time

steps), the goal-base is allowed to be inconsistent. However, individual goals need to

be consistent, and believed propositions cannot be in the goal-base. An agent’s goals

are then defined to be the formulae that are entailed by an entry in the goal-base, rather

than those that are entailed by the entire goal-base. The reason for doing this is that,

since the agent can have mutually inconsistent goals, defining goals using the latter

can trivialize the logic. Thus agents’ goals are modeled using a weak logic that does

not include the K axiom, and as a result, goals do not distribute over implication, and

two goals cannot be conjoined to form another goal. Note that, this formalization of

goals is very “syntactic” and can only handle achievement goals.

A central idea in GOAL is that of conditional actions. These actions are used

to help agents decide what actions to perform next, and thus can be viewed as very

simple action selection rules. Intuitively, a conditional action φ → do(a) states that

the agent may consider executing the basic action a if the mental state condition φ

holds. Basic actions are defined similarly as in 3APL, i.e. using a (unspecified) partial

115

function on the belief-base. Also, two special actions adopt and drop are introduced

to respectively adopt a new goal, or drop some old goals. The semantics of adopt,

drop, and conditional actions are specified in terms of the semantics of basic actions.

GOAL adopts a simple blind commitment strategy [35]. The authors argue that this is

just a default strategy, and that conditional actions (with a drop in the consequence)

can be used to override this commitment strategy. However, it is not obvious how any

other strategies can be adopted. E.g., say one wants to specify a commitment strategy

that enables an agent to give up her goals when they become impossible to achieve.

Without a temporal component built into the goal semantics, this is clearly impossible

to express.

A GOAL agent is thus defined to be a tuple 〈Π,Σ0,Γ0〉 consisting of a set of condi-

tional actions Π and an initial mental state 〈Σ0,Γ0〉, where Σ0 is the initial belief-base

and Γ0 is the initial goal-base. While AgentSpeak(L) and 3APL agents search for ap-

plicable rules and execute intended actions at every step, a GOAL agent searches for

an appropriate conditional action. Since a conditional action associates a basic (prim-

itive) action with a mental condition, the deliberation mechanism of GOAL is indeed

a very primitive one. The overall operational semantics of GOAL agents is given us-

ing traces, which are infinite sequences of consecutive mental states interleaved with

scheduled conditional actions, where the first state of each of the traces is the agent’s

116

initial mental state.

The specification for basic actions provides the basis for the programming logic

of GOAL. Actions are specified using Hoare triples of the form {φ} a {ψ}, where

φ and ψ are mental state formulae. Hoare triples for conditional actions are inter-

preted relative to the set of traces associated with the GOAL agent, and a time-point in

these traces. These user-defined Hoare triples are used to specify preconditions, post-

conditions, and frame conditions of actions. On top of the Hoare triples for specifying

actions, a temporal logic is defined for specifying properties of GOAL agents. One

can then express various liveness and safety properties of an agent A by considering

the temporal formulae that are valid with respect to the set of traces SA associated

with A. It can be shown that such properties are equivalent to a set of Hoare triples.

Thus the properties can be proven by showing that the Hoare triples are entailed by the

specifications of the actions that appear in the program. Thus it is very straightforward

to verify the properties of agents in GOAL.

Note that, a rich notion of action structure is missing in the GOAL programming

language. All one has is simple condition-action rules. Moreover, the only deliberation

and planning mechanism in GOAL is provided via conditional actions that allow the

agents to select primitive actions based on their mental states.

117

Dribble

Unlike GOAL, Dribble [237] incorporates a procedural motivation component (i.e.

plans) in the language. In particular, Dribble takes 3APL’s [99] mechanism for creating

and modifying plans during the execution of the agents, and GOAL’s facility for using

declarative goals for selecting actions into account, and combines these in a single

framework. Thus, Dribble uses declarative goals to allow agents to select and modify

plans when required. Moreover, as in GOAL, Dribble also includes a dynamic logic

on top of its operational semantics to specify and verify properties of agents.

In addition to beliefs and declarative goals, the mental state of a Dribble agent

also includes a plan component. Only a single plan can be handled at any one time (no

concurrency). The plan of an agent can be changed through application of rules as well

as execution of executable actions. Dribble defines two types of rules, namely Goal

rules, and Practical Reasoning (PR) rules. A goal rule g is a pair ϕ→ π such that ϕ is

a propositional formula involving beliefs and goals, and π is a plan. Intuitively a goal

rule says that the plan π can be adopted if the mental condition ϕ holds. Goal rules

are used to select plans for the first time (i.e. when the plan component of the agent is

an empty plan). The condition in ϕ specifies what the plan π is good for. On the other

hand, PR rules are similar to rules in 3APL, and can be used to create plans (possibly

from abstract plans), to modify plans, and to model reactive behavior (using rules with

118

empty heads).

Programming a Dribble agent amounts to specifying its initial beliefs and goals

and writing sets of goal rules and PR rules. Formally, a Dribble agent is a triple

〈〈σ0, γ0, E〉,Γ,∆〉, where 〈σ0, γ0, E〉 is the initial mental state with initial belief-base

σ0, initial goal-base γ0, and an empty plan E, and where Γ is a set of goal rules and

∆ is a set of PR rules. Note that the initial plan of a Dribble agent is the empty plan

E. The reason for this is that a Dribble agent should be able to select a plan (using

rules) based on its declarative goal specification, and giving the agent a plan at start

up is counter-intuitive in this respect. The operational semantics of the Dribble pro-

gramming language is specified using a transition system. A computation run CR(s0)

is a finite or infinite sequence s0, · · · , sn or s0, · · · , where si = 〈σi, γi, πi〉 are mental

states (where πi denotes the plan of the agent), and for all i there exists a transition

from si−1 to si as defined in the transition system for the Dribble agent. The meaning

of a Dribble agent 〈〈σ0, γ0, E〉,Γ,∆〉 is then defined to be the set of its computation

runs CR(〈σ0, γ0, E〉). Thus the first state of the computation runs is the initial mental

state of the Dribble agent.

As mentioned, Dribble is an expressive language that improves on GOAL by adding

complex plans and rules to manipulate goals. Nevertheless, it has some limitations.

Although the authors argue that goal rules and PR rules together can be used as a re-

119

gression planning mechanism, this is misleading, since no lookahead is incorporated.

Also, Dribble does not support exogenous actions; e.g., suppose that the agent has δ as

a plan, and some exogenous action happens, which makes the preconditions of δ false

forever. While a PR rule with an empty body can be used drop this plan, without a

temporal component built into the language, it is impossible to detect that the plan has

become forever impossible to execute. Note that, such a mechanism is important if one

wants to ensure that the agents do not intend unachievable goals. Moreover, Dribble

only allows sequential plan adoption and execution. In other words, agents cannot con-

currently commit to two different plans. Finally, one major problem in Dribble is that

it uses distinct databases for two types of intentions, i.e. declarative goals and procedu-

ral plans, and there is no mechanism for ensuring consistency between these two. Put

otherwise, Dribble semantics allows agents with an inconsistent intention-base, e.g.

an agent can have a declarative goal φ and a plan that makes φ unachievable. While

other programming languages address some of the problems mentioned earlier, to the

best of our knowledge, no BDI agent programming language with both declarative and

procedural goals offers a solution to this problem.

120

Goal Directed 3APL (GD-3APL)

In [48], Dastani et al. present an extension of 3APL [99], called Goal Directed 3APL

(GD-3APL), that incorporates both declarative and procedural goals into a single frame-

work. GD-3APL agents are similar to Dribble agents, in that they have beliefs, goals,

plans, and rules. The overall semantics is also very similar. The major difference is

that GD-3APL uses a more expressive first order language, and that it defines an addi-

tional rule type to allow the agents to reason about and modify their declarative goals.

GD-3APL provides three types of rules: Goal Revision (GR) rules, Plan Selection (PS)

rules, and Plan Revision (PR) rules. GR rules can be used to revise goals, and variants

of GR-rules can be used to generate, extend, or drop goals. In some sense, these rules

allow agents to reason about their declarative goals. PS rules are like Dribble’s Goal

rules and PR rules are similar to practical reasoning rules in Dribble and 3APL.

Another advantage of GD-3APL is that an agent’s plans/procedural intentions are

modeled using a 〈plan-body, goal〉 pair, where the second element is added to record

the goal for which the plan was selected. So if the goal gets dropped for some reason

or revised by a GR rule before the agent has finished executing this plan, this infor-

mation is used to also drop the plan. This facilitates decoupling of plan success from

goal success. However, exactly how this information can be utilized is left open in

the framework. Finally, GD-3APL agents can concurrently handle several goals, by

121

committing to and executing multiple plans, unlike Dribble agents. Note that, GD-

3APL does not provide a logic to verify properties of agent programs. Also, an offline

lookahead mechanism for planning is still missing.

2APL

Another extension of the 3APL language called 2APL was proposed in [47]. In ad-

dition to incorporating first-order features and declarative (achievement) goals, 2APL

extends the original proposal of 3APL in many different ways. In particular, 2APL has

programming features to support multiple agents, their environments, sensing actions,

goal modification actions (for the adoption/dropping of goals), and agent communi-

cation (speech acts). Moreover, in addition to the plan selection/generation and plan

repair rules, a new type of rules called PC or “Procedure Call” rules is introduced to

process internal and external events and received messages. Finally, it extends the

plan language of the APL to include a new plan construct to implement atomic (non-

interleaving) execution of plans.

A BDI Extension of the Golog-Family

One problem with all of the above frameworks is that although they may support

declarative goals, they do not support planning in the sense that there is no looka-

122

head mechanism built into these frameworks. Also, most of these frameworks are

not grounded on a formal theory of action, and thus only allow limited reasoning.

The agent programming language proposed by Sardiña and Shapiro [187] (let us call

it S&S) combines two existing approaches to agent theory (viz. the work in [198])

and to agent programming (namely, IndiGolog) to provide an expressive BDI-agent

programming language that supports planning/lookahead. S&S is built on top of a

situation calculus-based action theory.

In S&S, an agent program consists of a high-level procedural specification of the

agent’s behavior (i.e. a single non-deterministic program), a declarative specification

of the agent’s mental states, and an underlying action theory. The interpreter’s job

is to search for a rational execution of the given program (i.e., one that satisfies the

agent’s goals, as discussed below). An agent’s mental state consists of her beliefs and

her goals. S&S incorporates a KD45 model of knowledge and a KD model of goals,

both specified in terms of accessibility relations over possible worlds. The model

of goals has a temporal component associated with it, and thus it can handle both

achievement and maintenance goals. Also, S&S supports prioritized goals through

prioritized accessibility relations and all goals are not assumed to be equally important.

(φ1 > φ2 > · · · > φn)s is used to represent that the agent in situation s has n prioritized

goals, where φi denotes all the goals of the agent at level i, φ1 being the highest priority

123

goal. Moreover, S&S’s language is rich enough to allow queries of whether the agent

is able to achieve certain goals in a given situation.

To help the agents decide which plans are preferable, S&S defines an ordering

on plans/strategies, which are modeled using action selection functions (as discussed

in Section 2.4). It then defines a rational course of action to be a strategy that the

agent knows-how (i.e. is able) to execute, and she knows is one of the most preferred

strategies w.r.t. her prioritized declarative goals.

As discussed above, most reactive plan execution languages that incorporate declar-

ative goals include a pre-compiled plan library. The agents use their declarative goals

as triggers to select plans from this library, and hierarchically decompose and execute

these plans. Unlike these APLs, S&S uses an IndiGolog-style controller. Recall that, in

IndiGolog, the programmer’s job is to model the domain using the appropriate axioms,

and specify the agent’s behavior using a high-level non-deterministic program. Given

a starting situation, the IndiGolog interpreter tries to (incrementally) find an execution

of this non-deterministic program. S&S uses a similar control strategy. However, the

S&S interpreter also needs to take the agent’s declarative goals into account.

To this end, the rational-search operator ∆rat(δ : XG) was introduced in S&S. The

idea of this construct is that, given a non-deterministic IndiGolog program δ and a set

of prioritized goals XG = φ1 > φ2 > · · · > φn, the ∆rat(δ : XG) operator will

124

produce a simple and ready to execute terminating deterministic plan (i.e. sequence

of actions or conditional plans) δ′, whose execution respects both the given program

δ, in the sense that δ′ is an instantiation of δ, and the set of declarative goals, in that

it achieves as many highest priority goals as possible (i.e. it is a rational course of

action w.r.t. the given set of declarative goals). S&S assumes that the given program

has the highest priority, and thus any declarative goals that conflict with this program

will not be achieved. This operator provides a mechanism for combining a procedural

specification of behavior and a set of prioritized declarative goals, and is meant to be

used by the agent programmer to specify when lookahead is necessary.

To the best of my knowledge, S&S is one of the only two BDI agent program-

ming frameworks8 that offers deliberation with lookahead, and thus supports planning.

Thus, S&S combines a procedural representation of behavior and prioritized declara-

tive goals in an expressive language that is able to model ability and know-how, the

temporal aspects of goals and actions, and the relative importance of goals. However,

this expressiveness of S&S comes at the cost of complexity – determining whether a

plan is rational or not involves searching the plan space defined by the given high-level

non-deterministic program, and comparing all the strategies that can be induced by this

program. This is clearly problematic in a dynamic environment. In fact it is unknown

8Another such language, as discussed below, is CAN-PLAN.

125

whether there exists a practical procedure to implement this mechanism. Also, it can

be argued that agents in S&S are not so goal-directed, since their overall behavior is

controlled by the given program.

CAN and CAN-PLAN

As mentioned earlier, another agent programming language that supports lookahead/pl-

anning is CAN-PLAN [185], which is an extension of the Conceptual Agent Notation

language (CAN) [247]. In contrast to the situation calculus based S&S, CAN-PLAN

is a PRS-based language.

The underlying basic infrastructure of CAN is similar to that of AgentSpeak(L).

Agents in CAN have a first-order belief-base, a set of plans, and a first-order intention-

base, and thus an agent configuration is modeled as a tuple 〈B,A,Γ〉, where B is a

possible belief-base, A denotes the actions performed by the agent so far, and Γ rep-

resents a possible intention-base. Plan-bodies or programs in CAN can be constructed

from primitive actions, operations to add/delete beliefs, tests for conditions, events or

achievement goals !e, sequences, parallelism, the operator I{· : ·}J which is used

to represent a set of guarded alternatives as discussed below, the choice operator dual

of sequencing P1 � P2 which executes P1 and then executes P2 only if P1 fails, and

the operator Goal(φs, P, φf) (discussed later). CAN uses a set of transition rules to

126

specify the evolution of an agent. Agents in this language respond to events. In re-

sponse to an event e, a CAN agent uses the plan-library Π with rules of the form

(e′ : φi ← Pi) to collect all context condition-plan-body pairs φi : Pi whose event e′

can be unified with e, places these pairs inside the special construct I{}J to form the

plan I1 = Iφ1 : P1, · · ·φn : PnJ,9 and inserts I1 into the intention-base. Another tran-

sition rule is then used to (non-deterministically) choose from one of the plan-bodies

in I1 whose context condition holds. Suppose that the context condition φ1 holds, and

the agent chooses to try P1 first. In that case, I1 will be replaced with the new intention

P1 � I2, where I2 = I1 − {φ1 : P1}, i.e. with the plan that P1 should be tried first, and

if the execution of P1 fails for some reason, the intention I2 (which is similar to I1 but

now does not include the pair φ1 : P1) will be attempted. Thus, unlike AgentSpeak(L)

and similarly to Jason and 3APL, CAN provides a mechanism for handling failure of

plans. However, this is very different from 3APL failure rules.

In addition to this basic infrastructure, CAN provides a mechanism for represent-

ing both declarative and procedural goals in a uniform manner. For this purpose, it

uses the procedural construct Goal(ψs, P, ψf), which can be read as: the agent should

achieve the declarative goal ψs using the set of procedures P (which is of the form

I1 discussed above), failing if ψf becomes true. CAN provides a set of transition

9Note that I simplified the notation a bit by getting rid of the variable bindings.

127

rules for Goal(ψs, P, ψf) defined in terms of the above rules. The execution of a

Goal(ψs, P, ψf) construct is specified such that at every step, it only updates the asso-

ciated P (by executing a step of P), giving up only when the goal ψs is achieved, or

when it is no longer possible (i.e. when ψf holds). Using these rules, CAN guarantees

that the execution of Goal(ψs, P, ψf) will obey some of the properties of declarative

goals discussed in Section 5.1. For example, the explicitly specified success condi-

tion can be used by the semantic specification to detect early/fortuitous achievement

of goals (i.e. achievement of goals before the associated plan has been fully executed)

and drop the associated goal and plan. Also, it can be used decouple successful execu-

tion of plans from successful achievement of goals. This is done by checking whether

the success condition φs holds after the execution of a plan from P ; if the plan has

been successfully executed, but the goal has not been achieved yet, the CAN agent

will try another plan from P . If the goal remains false after all plans in P have been

executed, the CAN agent will retry the plans in P . This mechanism is provided by

replacing the intention Goal(ψs, P, ψf) with Goal(ψs, P � P, ψf) at the beginning of

the execution, and whenever P is not of the form P1�P2 (i.e. after it has already tried

P but failed to achieve the associated goal). Similarly, the failure condition is speci-

fied to decouple plan failure from goal failure, and to remove any committed-to plans

when the associated goal has failed (or becomes impossible). This special construct

128

is meant to appear in the plan body part of rules specified by the agent programmer.

Thus, this mechanism of CAN can be used for both failure handling and monitoring of

declarative goals.

CAN-PLAN [185] extends CAN by including a lookahead mechanism to support

offline planning. To perform offline planning, one needs an action theory. To this

end, agents in CAN-PLAN are equipped with a simple STRIPS-like action descrip-

tion library Λ that contains rules of the form a : ψa ← Φ−a ; Φ+
a , one for each ac-

tion a in the domain. Here ψa corresponds to the preconditions of a and Φ+
a and

Φ−a denotes the add and delete list of atoms, respectively. CAN-PLAN incorporates

the additional Plan(P) operator in the plan language. This operator searches for a

complete hierarchical decomposition of P before executing a single step in a simi-

lar way to an HTN planner. It is very similar to the IndiGolog Σ search operator,

in that Plan(P) can evolve to Plan(P ′), provided that P can evolve to P ′ and can

reach a final configuration in a finite number of steps. In CAN-PLAN, the agent pro-

grammer can mix the Goal() and Plan() operators in various ways to produce dif-

ferent types of failure handling and lookahead. For example, consider the construct

Goal(φs, P lan(Goal(φs, P, φf)), φf);

• The external Goal() operator ensures that the agent will use the program P ∗ =

Plan(Goal(φs, P, φf)) towards the eventual satisfaction of the goal φs. The

129

agent is committed to φs, in that P ∗ is reinstantiated and retried until φs holds.

Also, it is not necessary to completely execute the plan returned by the planner

(i.e. P ∗), e.g. if φs is satisfied before P ∗ has been fully executed. Finally, the

goal φs is dropped when failure condition φf becomes true.

• The Plan() operator guarantees that the program P ∗ has a terminating execu-

tion. Note that, an exogenous action might render this program non-executable;

however, as mentioned above, in that case the external Goal() operator will call

the planner again.

• The internal Goal() operator ensures that the agent will use the program P to-

wards the eventual satisfaction of the goal φs. Also, at plan-time, P is solved up

to the point where the goal is met.

It can be shown that for a restricted class of CAN-PLAN agents,10 the Plan() operator

indeed corresponds to an HTN-planner in the sense that for an agent, there is an execu-

tion of Plan(P) in CAN-PLAN, if and only if there is a solution to the corresponding

planning problem in a HTN-planner. Also, any execution of Plan(P) corresponds to

a HTN-plan solution.

Thus, CAN-PLAN provides a mechanism for on demand lookahead planning to

10This constraint restricts the belief-base language of an CAN-PLAN agent to that of an HTN planner.

130

the agent programmer. While the Plan() operator itself does not consider potential

interaction with exogenous actions, in some sense Goal() and Plan() can be mixed

to handle external interferences. For instance, Goal(φs, P lan(P), φf) will re-plan if

the initial plan obtained fails due to an external interference. Nevertheless, CAN-

PLAN’s lookahead feature is local in the sense that it does not take into account other

concurrent intentions. In other words, the result of planning may include actions that

are in conflict with other goals of the agent. Also, while CAN-PLAN uses an action

theory for deliberation, it does not utilize this for updating the agent’s state, which is a

bit inconsistent.

Jadex

Following [45, 229, 136], Braubach et al. [23] propose to treat declarative goals as

first class objects in the Jadex framework. Declarative goals in Jadex are individual

entities that manage their own state (in contrast to being managed by the agent), and

post appropriate events as necessary. Recall that Jadex agents are PRS based agents

that have a built-in plan library, and that respond to events. Thus, to handle these

declarative goals, all an agent has to do is to listen to and respond to these events

posted by the goal objects by adopting, executing, or dropping the appropriate plan.

Note that, the current implementation of Jadex [22] does not utilize these declarative

131

goals, and thus it only provides a specification of an extended version of the language.

Braubach et al. studied various goal oriented agent programming languages, archi-

tectures, and methodologies, and identified four different types of goals: achievement

goals, maintenance goals, perform goals, and query goals. Here, a perform goal spec-

ifies some activities to be done, and hence the success of the perform goal depends

only on the fact that the activity was performed. They argued that perform goals are

different from achievement or maintenance goals, since they do not require any state to

be achieved or maintained. Query goals serve the purpose of information acquisition.

If there is enough information in the agent’s knowledge-base to answer a query goal,

it succeeds with that answer; otherwise it becomes the achievement goal of collecting

enough information to answer that query.

By analyzing these goals, Braubach et al. identified various states that a goal can

be in during its lifecycle. The basic three states of a generic goal are new, adopted, and

finished. An adopted goal can in turn be in various sub-states, such as option, active,

and suspended. Adopting a goal makes it desirable to achieve it and thus it can be seen

as an option that the agent can possibly pursue when the actual circumstances allow.

To actively pursue a goal, the agent’s deliberation mechanism must activate the goal

to initiate goal processing. Active goals can be later deactivated by the deliberation

mechanism, and saved as an option. For instance, an active goal needs to be deactivated

132

when it conflicts with another higher priority goal. On the other hand, an active or

option goal can be suspended when its context becomes invalid. For example, a robot

that has a goal of guarding some property during the night can suspend this goal in

the day. Unlike options, suspended goals are not fed to the deliberator when it is

deciding on what goal to actively pursue next. When the context becomes valid again,

the suspended goal is added as an option.

For each of the four goal types, Jadex specifies a refinement of the active state by

considering various attributes and the specific life cycle of these goals. For instance, an

achievement goal has three sub states of the active state, namely in process, succeeded,

and failed. It also consists of two conditions, a target condition, and a failure condition.

The target condition specifies the world state that the achievement goal wants to bring

about, and the failure condition specifies the conditions under which the goal should be

dropped and considered to have failed. An active achievement goal will first check the

target condition for fulfillment of the goal, and if the condition is met, the goal can be

moved to the succeeded state and eventually dropped. If both the target and the failure

conditions are false, the active achievement goal can post a goal addition event to the

event queue. In response to this event, the agent will eventually adopt an applicable

plan, and execute this plan to achieve the goal. At any stage of this execution, if the

target or failure conditions are met, the goal will move to the succeeded or failed state,

133

and post a drop event. To handle this event, the agent needs to drop this plan (along

with all subgoals adopted for this goal). Braubach et al.’s proposal also specifies how

the other three types of goals are processed (see [23] for details).

Thus, like CAN, Jadex allows full decoupling of goals and plans by monitoring

declarative goals. In other words, this framework provides a way to decouple both

goal-plan failure and success. Moreover, as in CAN, it provides a mechanism for de-

tecting fortuitous or early achievement of goals. Unfortunately, Jadex does not provide

a formal semantics for these goals and their dynamics. While it allows the use of in-

compatible goals, it does not deal with the relationships between these incompatible

goals. For instance, it does not require a plan adopted to process a goal to be compati-

ble with another adopted goal.

Other Recent Work

Recently, there has been work on incorporating more expressive types of temporally

extended goals in APLwDGs [236, 235, 49]. In their APL-based framework, van

Riemsdijk et al. [236] studied various types of goals commonly found in the literature.

By investigating the commonalities among these goals, they proposed an abstract uni-

fying framework that handles four types of temporally extended goals, namely achieve-

ment goals, query/test goals, perform goals, and limited forms of maintenance goals

134

(e.g. a reactive maintenance goal, i.e. the goal to always make some proposition φ

eventually true when it becomes false: 2(¬φ → �φ)). In contrast to Jadex, they gave

a generic definition of goals and a generic transition system that is based on the life-

cycle of goals and that includes generic rules specifying the conditions under which

such a goal can become active, suspended, or dropped, and under which a plan for a

goal can be adopted or dropped. In their framework, they define a generic goal con-

struct as g(C,E, S, π). Here, S ∈ {Active,Suspended} is the current state of the goal,

and π is the plan of the goal. Also, C is a set of condition-action pairs that speci-

fies when the goal changes state, provided that the agent’s plan is non-empty. C is of

the form 〈condition, action〉 with action ∈ {Suspend,Activate,Drop}; each of these

pairs represents that if the condition follows from the agents beliefs, and the plan π is

non-empty, then the action should be applied on the corresponding goal. Similarly, E

is a set of condition-action pairs that specifies when the goal changes state, provided

that the agent’s plan is empty (a distinction between C and E, i.e. conditions that are

checked during plan execution and those that are checked when a plan completes or

has not been generated yet was made as the authors found it useful to do so). Then for

each type of goal, they specify these condition-action pairs for C and E. For instance,

for an achievement goal 3φ, the corresponding C is of the form {〈s ∨ f,Drop〉},

i.e. the goal with its non-empty plan can be dropped if the success condition s of the

135

goal holds, or if its failure condition f holds. On the other hand, E is of the form

{〈s ∨ f,Drop〉, 〈true,Activate〉}, i.e. the goal with its empty plan can be dropped if

the success condition s of the goal holds, or if its failure condition f holds. Also, if

the plan for the goal is empty, it can be unconditionally activated. The framework thus

provides a uniform way of handling multiple types of goals. However, their account

do not handle other types of temporally extended goals, e.g. regular maintenance goals

(i.e. 2φ).

Dastani et al. [49] formalized this framework and extended it with various other

types of temporally extended goals. They use LTL to specify goals, and showed that

many kinds of temporally extended goals can be operationalized via that of achieve-

ment and maintenance goals. In particular, they include five additional types of goals

that involve maintaining a formula φ over an interval: 2φ (which maintains φ over all

states), φ U τ (where φ is maintained until its terminating condition τ becomes true),

�(τ∧2φ) (where φ is maintained after its triggering condition τ holds), �(τ∧(φ U τ ′))

(where φ is maintained once its triggering condition τ holds and until its terminating

condition τ ′ becomes true), and2(τ → (φ U τ ′)) (where whenever the triggering con-

dition τ becomes true, φ is maintained until its terminating condition τ ′ holds). They

proved that their operational semantics produces correct results by showing that the

traces produced by them satisfy the LTL formula. Since this is an abstract framework,

136

the ideas here can be implemented in any APLwDG that provides a proper operational

semantics for achievement and maintenance goals. However, being an abstract frame-

work, many of the components are left abstract; for instance, while these frameworks

assume the existence of a means-end reasoner that given a new goal g and an existing

set of goals and plans, returns a plan that is consistent with the current goals and plans

and that can be used to bring about g, no details about the reasoner or how to actually

enforce and maintain this consistency are given.

2.6 Conclusion

In this chapter, I reviewed previous research on three related areas that focus on in-

telligent agents, namely agent theories, agent architectures, and agent programming

languages. In these, I focused on logical formulations of motivational attitudes, both

from the agent theory and the agent programming language perspectives. In the sequel,

I will refer to some of these and compare them with my contributions.

137

Chapter 3

Foundations

3.1 Introduction

In this chapter, I first discuss previous work that my formalization of prioritized goals

and their dynamics is founded on. I start by introducing the situation calculus [148],

which is a (mostly) first-order language for representing dynamically changing worlds,

and by examining a class of action theories within the situation calculus [178] that can

be used to succinctly specify dynamic domains. Then I talk about previous work to

formalize knowledge and knowledge change in the situation calculus. Following this,

to support modeling temporally extended goals in the situation calculus, in Section

3.5, I introduce a new sort of infinite paths in the situation calculus and propose an

axiomatization for infinite paths. I also show some properties of the axiomatization.

The material in this section is new work. Finally, I review ConGolog [51], a rich pro-

138

gramming/process specification language in the situation calculus that the semantics

of my proposed agent programming language SR-APL borrows from.

3.2 The Situation Calculus

The formal basis of my agent theory is Reiter’s [178] version of the situation calcu-

lus [148]. The situation calculus is a sorted, (mostly) first-order language where all

changes are the result of named actions. I will use sorts for actions, situations, paths,

agents, and domain-specific objects. I use a, s and now, p and path, and agt (possibly

with decorations) to quantify over actions, situations, paths, and agents, respectively.

In addition, I use ~x and ~y to denote sequences of variables, ∀~x to denote universal

quantification over a sequence of variables, and P and Q as predicate variables and F

and σ as function variables in second order quantification. I adopt the convention that

function symbols begin with a lowercase letter while predicate symbols begin with an

uppercase letter. I also assume that unless otherwise noted, all free variables in a for-

mula are implicitly universally quantified in the widest scope. Finally, I use standard

notations for logical connectives and quantifiers, and the constants True and False for

the true and false propositions.

A situation in the situation calculus represents a possible partial history of the do-

main. The initial situations are situations in which no actions have yet occurred. In

139

general, a situation s describes a possible finite evolution of the domain that results

from the occurrence of a certain finite sequence of actions (those in the history of s)

starting from the initial situation associated with s.

The set of initial situations correspond to the ways the agent believes the domain

might be initially. There can be multiple initial situations to facilitate modeling the

fact that the agent may have incomplete knowledge initially. The actual initial state

of the domain is represented by the distinguished initial situation constant S0. The

distinguished binary function symbol do(a, s) is used to denote the successor situation

of s resulting from action a being performed in situation s. In the situation calcu-

lus, actions are denoted by function symbols, possibly with parameters, and situations

(world histories) are first order terms. For domains with multiple agents, the actions

will include arguments specifying the agents involved in these actions, usually the

first few arguments. For example, if put(agt, x, y) stands for an agent agt’s action of

putting object x on object y, then the situation term do(put(Agt1, X1, Y1), S0) denotes

the situation resulting from Agt1’s putting X1 on Y1 when the world is in situation

S0. Also, do(putDown(Agt1, X1), do(walk(Agt1, P1), do(pickUp(Agt1, X1), S0)))

is a situation denoting the world history consisting of the following sequence of ac-

tions:

[pickUp(Agt1, X1), walk(Agt1, P1), putDown(Agt1, X1)].

140

We want to define situations to be the smallest set that can be obtained by executing

a sequence of actions starting from some initial situation. To define the structure of the

situations, I adopt a set of foundational axioms given by Shapiro [194] that is based

on the foundational axioms listed by Lakemeyer and Levesque [130], which in turns

extend those given by Reiter [176] by incorporating multiple initial situations to model

agents’ knowledge and goals. The initial situations are first defined to be those that

have no predecessors.

Definition 3.2.1.

Init(s′) def
= ¬∃a, s. s′ = do(a, s).

Secondly, S0 is declared to be an initial situation.

Axiom 3.2.2.

Init(S0).

Another axiom is needed to state that performing different actions yields different

situations, i.e. that do is injective.

Axiom 3.2.3.

∀a1, a2, s1, s2. do(a1, s1) = do(a2, s2) ⊃ (a1 = a2 ∧ s1 = s2).

141

The next axiom is a second-order induction axiom for situations. It says that if a

property P holds for all the initial situations, and if P holds for all successors to a

situation s provided that it holds for s, then P holds for all situations.

Axiom 3.2.4.

∀P. [(∀s. Init(s) ⊃ P (s)) ∧ (∀a, s. P (s) ⊃ P (do(a, s)))] ⊃ ∀s. P (s)).

The next axiom defines precedence for situations: s1 strictly precedes s2 if s2 can

be obtained by executing a non-empty sequence of actions starting in s1.

Axiom 3.2.5.

∀s1, s2. s1 ≺ s2 ≡ (∃a, s. s2 = do(a, s) ∧ (s1 � s)),

where s1 � s2 denotes that s1 precedes s2 and is defined as follows:

Definition 3.2.6.

s1 � s2
def
= s1 = s2 ∨ s1 ≺ s2.

Shapiro [194] showed that this axiomatization of ≺ is equivalent to the one given by

Levesque et al. [139].11

I also borrow another axiom from Shapiro to recursively define the concept of

situations having the same history. Two situations are said to have the same history if

11Note that [178] uses the notation < and v to denote strict precedence and precedence when situa-
tions are not assumed to be executable (see below for a definition of executable situations).

142

they can be obtained by performing the same sequence of actions, but perhaps starting

from different initial situations.

Axiom 3.2.7.

SameHist(s1, s2) ≡ (Init(s1) ≡ Init(s2)) ∧

(¬Init(s1) ⊃ ∃a, s′1, s′2. s1 = do(a, s′1) ∧ s2 = do(a, s′2) ∧ SameHist(s′1, s
′
2)).

Relations and functions whose value may change from situation to situation are

called fluents, and are denoted by predicate and function symbols taking a situation

term as their last argument. These fluents are used to specify the dynamic aspects of

the domain. For example, Holding(r, x, s), which is a relational fluent, might mean

that a robot r is holding an object x in situation s; position(r, s) is a functional fluent

that might denote the position of robot r in situation s. There is also a special predicate

Poss(a, s) meaning that the action a is executable (physically possible) in situation s.

3.3 Action Theory

Within this language, action theories can be formulated to describe how the world

changes as a result of available actions. I use a theory that includes a set of axioms

due to Reiter [178]. In the following, I discuss and provide examples of these axioms.

To specify the actions in a domain, one must state the conditions under which it is

143

physically possible to perform these actions. This is done by providing an action

precondition axiom for each action in the domain. Poss is used to specify these axioms.

For each action function f , an axiom of the following form is included in the theory:

Poss(f(~x), s) ≡ Φf (~x, s),

where Φf is a formula whose free variables are among ~x, s. For example,

Poss(pickup(agt, x), s) ≡ ∀y ¬Holding(agt, y, s) ∧ NextTo(agt, x, s) ∧ ¬Heavy(x)

says that the action pickup(agt, x), i.e., an agent agt picking up an object x, is possible

in situation s if and only if agt is not already holding something in situation s, she is

positioned next to x in s, and x is not heavy.

A situation is called executable if every action in its history was executable:

Definition 3.3.1.

Executable(s)
def
= ∀a, s′. do(a, s′) � s ⊃ Poss(a, s′).

One must also specify how an action affects the state of the world; this can be done

by providing effect axioms. For relational fluents, these axioms come in two varieties:

positive effect axioms say what fluents become true when an action is executed under

some conditions, while negative effect axioms specify what fluents become false when

an action is executed under some conditions. For example, the following positive

144

effect axiom says that dropping an object x causes it to become broken provided that

x is fragile:

Fragile(x, s) ⊃ Broken(x, do(drop(agt, x), s)).

For functional fluents, we only need a single type of effect axioms. These specify what

functional fluents change their values when an action happens under certain conditions.

While these effect axioms provide some causal laws for the domain of application,

McCarthy and Hayes [148] showed that they are not sufficient if one wants to reason

about change. If the agent wants to form a plan that involves dropping an object, she

might need to know that many fluents are not affected by dropping the object. For

example, if an agent intends to sort some objects according to their color, she needs

to know that the color of an object is not affected by picking it up, walking to another

location, or by dropping it. Thus it is usually necessary to add so called frame axioms

to specify when fluents remain unchanged following an action. Again for relational

fluents, frame axioms also come in positive and negative varieties, while for functional

fluents, we have a single type of frame axioms. For example, the following frame

axiom says that dropping an object does not affect the color of things:

color(y, s) = c ⊃ color(y, do(drop(agt, x), s) = c.

The frame problem [148] arises because the number of these axioms is of the order of

the product of the number of fluents and the number of actions [178]. Reiter [176, 178]

145

proposed a solution to the frame problem using what he called successor-state ax-

ioms (SSA). Building on proposals by Haas [95], Pednault [162], and Schubert [190],

he developed a solution to the frame problem for domains that do not involve non-

deterministic actions or state constraints. His solution allows the specifier to only state

the effect axioms; from these, a single successor-state axiom is obtained for each fluent

by performing a syntactic transformation and using a causal completeness assumption

and a consistency assumption. The causal completeness assumption says that before

performing the syntactic transformation, effect axioms have been given for all possible

ways the fluent may change value. The consistency assumption states that the condi-

tions under which a fluent becomes true when an action is executed in some situation

and those under which it becomes false are never jointly satisfied. As an alternative

to the theory transformation on effect axioms, the axiomatizer can write the successor

state axioms directly.

The successor-state axiom for a domain-dependent relational fluent R has the fol-

lowing form:

R(~x, do(a, s)) ≡ (γ+
R(~x, a, s) ∨ (R(~x, s) ∧ ¬γ−R(~x, a, s))),

where γ+
R(~x, a, s) (γ−R(~x, a, s), respectively) specifies all the conditions under which

R(~x, do(a, s)) becomes true (false, respectively). It is assumed that γ+
R(~x, a, s) and

γ−R(~x, a, s) are never jointly satisfied. Such a successor-state axiom encodes both effect

146

and frame axioms and specifies exactly when the fluent changes.12 While in general

successor-state axioms are more complex than effect axioms, there will be much fewer

successor-state axioms (one per fluent) than effect axioms and frame axioms com-

bined. Note that to define regression for situation calculus formulae, Reiter restricts

the right-hand side of a successor-state axiom of the above form to be uniform in s,

which essentially requires s to be the only situation term mentioned in it. But this is too

restrictive for my theory, since both the successor-state axioms of my knowledge and

goal accessibility relations quantify over situations, making these non-uniform. There-

fore, I do not impose this restriction for accessibility fluents. For similar reasons, I also

do not require the right-hand side of action precondition axioms, i.e. Φf (~x, s), to be

uniform in s. This does not pose a problem for my theory as I do not address regres-

sion here. Note that, Scherl and Levesque [189] have shown how regression can be

performed for action theories with knowledge.

Let me give an example of a successor-state axiom for the Broken(x, s) fluent. The

actions that affect this fluent are drop(agt, x) and repair(agt, x), which stands for the

action of dropping and repairing, respectively, object x by agent agt. The successor-

12I do not discuss the ramification problem here; see [141] for a treatment compatible with my theory.

147

state axiom for Broken is as follows:

Broken(x, do(a, s)) ≡ (a = drop(agt, x) ∧ Fragile(x, s)) ∨

(Broken(x, s) ∧ a 6= repair(agt, x)).

It says that an object x is broken in the situation resulting from action a being per-

formed in s, if and only if a is dropping x and x is fragile, or x was already broken in

situation s prior to the action and a is not the action of repairing x.

The successor-state axiom for a domain-dependent functional fluent can also be

specified in a similar manner. Assume that the only action that affects the color(x, s)

fluent is the paint(agt, x, c) action, which stands for the action of painting object x

with color c by agent agt. Then the successor-state axiom for the color fluent can be

specified as follows:

color(x, do(a, s)) = c ≡ a = paint(agt, x, c) ∨

(color(x, s) = c ∧ ¬∃c′. c′ 6= c ∧ a = paint(agt, x, c′)).

It says that an object x has color c in the situation resulting from action a being per-

formed in s, if and only if a refers to the action of painting x with color c, or x was

already of color c in situation s prior to the action and a is not the action of painting x

with a different color.

To specify successor-state axioms, Reiter relied on the assumption that different

148

action terms represent different actions. For example, the above successor-state ax-

iom for the Broken fluent is only meaningful if for all agt and x, drop(agt, x) and

repair(agt, x) represent two different actions. Otherwise, the agent agt might end up

with a broken object x after repairing it. This assumption can be formalized using

unique names axioms for actions. For any pairs of distinct action functions f1 and f2,

an axiom of the following form is needed:

Axiom 3.3.2.

f1(~x) 6= f2(~y).

Also, another axiom of the following form is needed for every action function f :

Axiom 3.3.3.

f(~x) = f(~y) ⊃ ~x = ~y.

For example, (a) below says that a drop action and a repair action are two different

actions, and (b) says that two drop actions are not the same if they do not have the

same agent or do not involve dropping the same object:

a) drop(agt, x) 6= repair(agt′, x′),

b) drop(agt, x) = drop(agt′, x′) ⊃ (agt = agt′ ∧ x = x′).

In general, for n action functions, O(n2) unique names axioms are required. However,

these can be automatically generated from a list of action names and arities.

149

To define the domain, one also needs to specify what fluents hold initially and

the agents’ knowledge and goals in the initial situation. This is done using initial

state axioms that only mention initial situations. For example, consider the following

axioms:

a) Init(s) ⊃ ¬Broken(Obj1, s),

b) Know(Agt1,¬Broken(Obj1, now), S0).

(a) says that the object Obj1 is intact in all the initial situations, and (b) states that the

agent Agt1 knows in the actual initial situation S0 that Obj1 is intact. I will discuss the

formalization of knowledge in Section 3.4.

When there are multiple agents in the domain, one also needs to include axioms

for identifying the agent of an action, axioms such as:

agent(drop(agt, x)) = agt,

which says that the agent of the drop(agt, x) action is agt; this uses a distinguished

function ‘agent’.

Finally, on some occasions I will need to quantify over formulae, use formulae as

arguments of actions, and use predicates that take programs as arguments and these

programs may contain formulae in wait/test conditions, etc. Thus I must encode for-

mulae and programs as terms and formalize their relationship to the associated situ-

150

ation calculus formulae. This is tedious but can be done essentially along the lines

of [51], where a Holds predicate relating an encoded formula to the corresponding

situation calculus formula is axiomatized. Variables in the argument formulae must

be represented as terms and substitution must be axiomatized. I assume that we have

such an encoding and axiomatization of Holds in the rest of this thesis. For notational

simplicity, I will suppress this encoding and use formulae and programs as terms di-

rectly. Also, note that if, for a particular domain, the set of formulae that will be used

is known in advance, one can write the Holds axioms directly for those formulae only.

A basic action theory is a theory that contains the following kinds of axioms:

• Foundational axioms Σ, i.e. Axioms 3.2.2-3.2.7;

• Unique name axioms for actions Duna, i.e. Axiom schemata 3.3.2 and 3.3.3;

• Action precondition axioms Dap;

• Successor-state axioms Dss;

• Initial state axioms Dinit;

• Axioms identifying the agent of each action Dagt (if needed);

• Encoding Axioms Denc (if needed).

From now on, I will refer to the union of these sets of axioms as Dbat:

151

Definition 3.3.4.

Dbat
def
= Σ ∪ Duna ∪ Dap ∪ Dss ∪ Dinit ∪ Dagt ∪ Denc.

Note that here and in the sequel, I just use standard Tarskian semantics of first

and second order logic (except for the semantics of SR-APL in Chapter 7). Sorts

are handled in the standard way. I define modal operators simply as abbreviations

with their semantics in terms of accessibility relations added to the situation calculus

language.

I believe that Reiter’s relative satisfiability theorem [178], which states that a BAT

D is satisfiable if and only if DUNA ∪ DS0 is, can be extended to my framework. In

Section 3.5, I introduce a new sort of infinite paths in the situation calculus. Note that

paths are already there in the standard situation calculus models (satisfying Reiter’s

foundational axioms), but one needs to use second order quantification to refer to them.

I think that the relative satisfiability theorem can be extended to include these paths

axioms too. Such infinite paths are used to define the semantics of well known logics

such as LTL and CTL∗.

A word on axiomatizability/decidability: Reiter has shown that regressable projec-

tion queries within the situation calculus can be answered using first-order entailment.

Others have proven decidability results for reasoning in interesting fragments of the

language; for example, see [220] for an argument-less fluents fragment and [93] for

152

a description logic like 2 variables fragment. Also, recently De Giacomo et al. [53]

showed that verification of an expressive class of first-order µ-calculus temporal prop-

erties in the situation calculus with bounded action theories (i.e. where in all situations

the number of ground fluent atoms that hold is bounded) is decidable.

3.4 Knowledge in the Situation Calculus

I allow the specifier to model the agents in terms of their mental states by including

operators to specify agents’ information and their motivation. In my framework, I

work with knowledge rather than belief. Although much of my formalization should

extend to the latter, I leave dealing with belief and belief revision for future work (see

[194] for an account in the situation calculus). In the following, I discuss the formal

basis of my information operator, i.e. knowledge.

3.4.1 Semantics

The logical foundation of my knowledge operator can be traced back to Hintikka’s

[102] reinterpretation of Kripke’s possible world semantics of necessity [125]. Moore

[151] was a pioneer in integrating knowledge and action into a single logical frame-

work. In his formal theory, he accomplished this by formalizing Hintikka’s modal

logic of knowledge within McCarthy’s first order situation calculus [148]. The basic

153

idea is to use situations as possible worlds and to use a relation on situations as the

accessibility relation for knowledge.

Scherl and Levesque [188] extended Reiter’s successor-state axiom approach to

model the effects of actions on agents’ knowledge, combining ideas from Reiter and

Moore. They use K(s′, s) to denote that in situation s, the agent thinks that she could

be in situation s′.13 s′ is called a K-alternative situation to s. Also, the abbrevia-

tion14 Know(Φ, s) is used to denote that the agent knows that Φ in situation s. The

fluents in Φ will usually contain a situation constant or placeholder now that stands

for the situation in which Φ must hold, e.g. Broken(obj, now). Φ(s) denotes the for-

mula that results from replacing now with s in Φ. For ease of readability, I will

suppress the placeholder where the intended meaning is clear from the context, e.g.

Know(Broken(obj), s). Shapiro [194] generalized the Know and K notation to handle

multiple agents by adding an agent argument to them. I adopt this convention, but I

will suppress the agent argument when dealing with single agent domains.

Scherl and Levesque require that initial situations can only be K-related to other

initial situations:

13To comply with the situation calculus convention for fluents, which says that the last argument
represents the actual situation, Scherl and Levesque reversed the order of the arguments of K.

14Note that the knowledge operator Know is an abbreviation or macro and not a predicate in the
language, and thus it does not require formulae Φ to be encoded as a first-order term.

154

Axiom 3.4.1.

Init(s) ∧K(agt, s′, s) ⊃ Init(s′).

As we will see later, the successor-state axiom for K ensures that in all the situations

that are K-accessible from do(a, s), a was the last action performed. This implies that

all K-related situations share the same history. Since I am dealing with knowledge, I

also constrain K to be initially reflexive (which also implies that K is initially serial):

Axiom 3.4.2.

Init(s) ⊃ K(agt, s, s).

Finally, to get positive and negative introspection of knowledge, I require K to be

initially transitive and Euclidean:

Axiom 3.4.3.

Init(s) ⊃ ∀s1, s2. K(agt, s1, s) ∧K(agt, s2, s1) ⊃ K(agt, s2, s).

Axiom 3.4.4.

Init(s) ⊃ ∀s1, s2. K(agt, s1, s) ∧K(agt, s2, s) ⊃ K(agt, s2, s1).

As shown in Scherl and Levesque [188] and later in Shapiro [194], once these con-

straints are imposed on the initial situation, they continue to hold after any executable

155

sequence of actions since they are preserved by the successor-state axiom for K.15

Using K, the knowledge of an agent, Know(agt,Φ, s), is defined as follows:

Definition 3.4.5.

Know(agt,Φ, s)
def
= ∀s′. K(agt, s′, s) ⊃ Φ(s′).

Two useful abbreviations Kwhether and Kref are also defined. Kwhether(agt,Φ, s)

means that the agent agt knows whether the formula Φ holds in situation s.

Definition 3.4.6.

Kwhether(agt,Φ, s) def
= Know(agt,Φ, s) ∨ Know(agt,¬Φ, s).

Kref(agt, θ) means that the agent agt knows in situation s who/what the term θ refers

to.

Definition 3.4.7.

Kref(agt, θ, s) def
= ∃t. Know(agt, t = θ, s).

3.4.2 Knowledge Change

Scherl and Levesque [188] showed how to capture the changes in knowledge of agents

that result from actions in the successor-state axiom for K. In their framework, an

15Scherl and Levesque consider sensing actions as their only type of knowledge-producing actions
while Shapiro deals exclusively with some inform communication actions (as discussed below).

156

agent’s knowledge is affected by every action in the sense that she comes to know that

the action was performed. It is assumed that agents know the successor-state axioms

for actions, so the agents also acquire knowledge about the effects of these actions.16

In addition, they allow the specifier to include actions that change the agent’s knowl-

edge in non-trivial ways. These actions, called knowledge-producing actions, come in

two varieties: binary sensing actions and non-binary sensing actions. A binary sensing

action is a sensing action that senses the truth-value of an associated proposition; e.g.,

the binary sensing action senseonTable(agt, b) could be performed to sense whether the

block b is on the table or not. On the other hand, non-binary sensing actions refer

to sensing actions where the agent senses the value of an associated term; e.g., the

non-binary sensing action countBlocksOnTable(agt) could be performed to get the

number of blocks that are on the table. Following [137], the information provided by

a binary sensing action is specified using the predicate SF(a, s), which holds if the ac-

tion a returns the binary sensing result 1 in situation s. A guarded sensed fluent axiom

is used to associate an action with the property sensed by this action. For example, one

might have a guarded sensed fluent axiom to assert that the action senseonTable(agt, b)

tells the agent agt whether the block b is on the table in the situation where it is per-

16One consequence of this is that agents are assumed to be aware of all actions that may happen in
the environment. This in part allows us to avoid belief revision and its difficulties.

157

formed, provided that agt, b, and the table are located in the same room:

InRoomWithTable(agt) ∧ Collocated(agt, b) ⊃

(SF(senseonTable(agt, b), s) ≡ OnTable(b, s)).

Similarly for non-binary sensing actions, the term sff(a, s) is used to denote the sens-

ing value returned by the action. For example, the following guarded sensed fluent ax-

iom asserts that the action countBlocksOnTable(agt) tells agt the number of blocks

that are currently on the table, provided that agt and the table are collocated:

InRoomWithTable(agt) ⊃

(sff(countBlocksOnTable(agt), s) = numOfBlocksOnTable(s)).

When communication between agents is allowed, it is necessary to include ad-

ditional types of knowledge-producing actions. Shapiro [194] considers the inform

communication action as his only type of knowledge-producing action. The inform(agt1,

agt2,Φ) action can be used by an agent agt1 to inform another agent agt2 that the for-

mula Φ currently holds. agt1 can inform agt2 that Φ if she currently knows that Φ:

Poss(inform(agt1, agt2,Φ), s) ≡ Know(agt1,Φ, s).

Note that, since in this framework all actions are public (see footnote 16), whenever

an inform action occurs, every agent learns the informed formula Φ (as they know

158

that since the inform action occurred, its preconditions must have been true, i.e. they

know that the informer knows that Φ; this along with the reflexivity of K implies

that Φ). This may be problematic in some domains where some sort of privacy is re-

quired, e.g., when there are other competing agents in the environment. One solution

is to encrypt the content Φ of the inform action [197, 194]. Another solution to this

problem was proposed by Lespérance [133]. He further extends the set of knowledge-

producing actions in [188] to include two variants of the inform communication ac-

tion, informWhether and informRef . informWhether(agt1, agt2,Ψ), which is

a primitive action, denotes that the agent agt1 informs the agent agt2 about the current

truth value of the formula Ψ. agt1 can inform agt2 whether Ψ holds if she knows the

current truth-value of Ψ:

Axiom 3.4.8.

Poss(informWhether(agt1, agt2,Ψ), s) ≡ Kwhether(agt1,Ψ, s).

On the other hand, the informRef(agt1, agt2, θ) communication action is also a

primitive action and it means that the agent agt1 informs the agent agt2 of who/what

the term θ is. agt1 can inform agt2 who/what θ is if she knows the current value of θ:

Axiom 3.4.9.

Poss(informRef(agt1, agt2, θ), s) ≡ Kref(agt1, θ, s).

159

Returning to our discussion on private communication, note that both of these actions

hide the actual content of the message. For example, when the informWhether(agt1,

agt2,Φ) action happens, every agent learns that the informer agt1 informed the in-

formee agt2 whether Φ holds, but does not acquire any knowledge about the actual

truth-value of Φ.

The version of the successor-state axiom for K that I adopt specifies how agents’

knowledge is updated as a result of sensing actions as well as the informWhether

and the informRef communication actions:

Axiom 3.4.10.

K(agt, s∗, do(a, s)) ≡ ∃s′. [K(agt, s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′)

∧ CompatWithKnowledgeAcquired(agt, a, s′, s)],

where

CompatWithKnowledgeAcquired(agt, a, s′, s)
def
=

BinarySensingAction(a) ∧ agent(a) = agt ⊃ SF(a, s′) ≡ SF(a, s)

∧ NonBinarySensingAction(a) ∧ agent(a) = agt ⊃ sff(a, s′) = sff(a, s)

∧ ∀agt′,Ψ. a = informWhether(agt′, agt,Ψ) ⊃ Ψ(s′) ≡ Ψ(s)

∧ ∀agt′, θ. a = informRef(agt′, agt, θ) ⊃ θ(s′) = θ(s).

160

This says that after an action happens, every agent learns that it has happened. This

is formalized by ensuring that any situation that is K-related to do(a, s) must have

a as the last action performed. Since action precondition axioms and successor-state

axioms are assumed to be common knowledge, agents also learn the preconditions

and effects of actions – this is usually called knowledge update. Moreover, if the

action is a sensing action, the agent performing it acquires knowledge of the associ-

ated proposition or term. Furthermore, if the action involves someone informing agt

whether Ψ holds, then agt comes to know the truth-value of Ψ afterwards. Finally, if

the action involves someone informing agt who/what θ is, then agt knows the value

of θ afterwards. Note that this axiom only handles knowledge expansion, not revi-

sion. Handling belief revision complicates the framework somewhat, and therefore I

focus on knowledge rather than belief. Also, the above axiom only handles completely

accurate sensors. After performing a sensing action, the agent learns whether the as-

sociated proposition actually holds. See [202, 195] for a treatment of belief revision in

the situation calculus and [195] for an account that deals with noisy sensors.

I illustrate the successor-state axiom for K using the scenario in Figure 3.1. In this

figure, situations are nodes in the graph, and the edges are labeled by actions. Part of

the K-relation is represented by the ovals around the nodes. If a situation s appears in

the same box as another situation s′, then K(agt, s′, s). Finally, in this figure s denotes

161

Figure 3.1: An Example of Knowledge Change

the actual situation, i.e. the one representing the true state of the world. First, con-

sider the case for knowledge expansion due to regular actions, as depicted in Figure

3.1(A). Assume that initially s, s1, and s2 are accessible from each other. Then after

a happens in s, according to the successor-state axiom for K, only do(a, s), do(a, s1),

and do(a, s2) will be accessible from do(a, s), but not do(b, s2), etc. Thus, in do(a, s)

the agent knows that the action a has just happened and knows that its effects hold.

If a makes P become true, then the agent knows that P holds afterwards. Next, con-

sider the case for knowledge expansion as a result of knowledge producing actions, as

illustrated in Figure 3.1(B). Assume that initially s, s1, and s2 are in the same equiv-

alence class w.r.t. K, and that Φ(s),Φ(s1), and ¬Φ(s2). Then after the agent senses

162

the value of Φ in s, according to the successor-state axiom for K, only do(senseΦ, s)

and do(senseΦ, s1) will be K-accessible from do(senseΦ, s), but not do(senseΦ, s2).

Since Φ holds in all situations that areK-accessible from do(senseΦ, s), the agent will

thus know that Φ in do(senseΦ, s).

Henceforth, I will refer to the set of axioms for modeling knowledge (i.e. Axioms

3.4.1-3.4.10) as Dknow. See Chapter 2 for a review of other dynamic epistemic log-

ics/frameworks.

3.5 Infinite Paths in the Situation Calculus

In this section, I set the stage for formalizing agent motivation by introducing a new

sort of infinite paths in the situation calculus.

Agents’ goals are future oriented.17 For example, an agent might have a goal to

eventually achieve some property. Therefore unlike knowledge formulae that take a

single situation as argument, goal formulae are evaluated over a (possibly infinite)

sequence of consecutive situations, i.e. a path. While some work has been done to

capture the notion of paths in the situation calculus, all of these approaches have draw-

backs. I discuss some of these here; see the end of this section for a discussion of other

17I use the word “goal” here as an umbrella term for any motivational operator, including goals,
desires, intentions, etc. See Chapter 2 for the precise distinction between these notions.

163

related work. While specifying agents’ goals and behavior, Shapiro [194] considers

only finite paths. He formalized a finite path using a pair of situations representing the

beginning state and the ending state of the path. Unfortunately, a temporal framework

based on such finite paths has limited expressiveness and can’t capture arbitrary tem-

porally extended formulae, e.g. the goal to maintain a property φ indefinitely far in the

future, 2φ. Also, quantification over these finite paths requires dealing with a pair of

situations explicitly which is somewhat clumsy. Lespérance et al. [134] on the other

hand looked at infinite paths. They introduced the notion of action selection functions

(also called strategies in [198]), which are mappings from situations to primitive ac-

tions. The idea is that given a situation s, a strategy σ prescribes an action that the

agent must perform in s if she were to follow the path induced by this strategy. An

infinite path can then be formalized as a tuple (s, σ), where s is the starting situation

of the path, and σ is a strategy that defines an infinite sequence of situations by spec-

ifying an action for every situation starting from s. Their account however does not

have paths as a sort and thus does not allow for first-order quantification over paths.

To support modeling temporally extended goals, I adopt Lespérance et al.’s notion

of infinite paths. Following [134], I only consider “realistic” paths; paths involving

non-executable actions cannot really occur as they are not realistic. Thus a path in my

framework is essentially an infinite sequence of situations, where each situation along

164

the path can be reached by performing some executable action in the preceding situ-

ation. To allow (first-order) quantification over infinite paths, I in addition introduce

a new sort called paths in the language with (possibly sub/super-scripted) variables p

ranging over paths. In the next subsection, I give an axiomatization for infinite paths.

Thus my formalization of infinite paths is more general than Shapiro’s finite paths.

Arbitrary temporally extended formulae such as unbounded maintenance goals can be

interpreted using my paths. Moreover, my account is simpler than that of Lespérance

et al., and unlike them, I allow quantification over paths, which makes my language

easier to use.

Before delving into the technical details, let me point out some notational conven-

tions that I adopt. I will use both state and path formulae. I use uppercase Greek letters

and lowercase Greek letters to denote state formulae and path formulae, respectively.

A state formula Φ(s) is a formula that has a free situation variable s in it, whereas a

path formula φ(p) is one that has a free path variable p. State formulae are used in

the context of knowledge while path formulae are used in that of goals. As with a

state formula that will usually contain a situation constant now, a path formula φ will

usually contain a path constant/placeholder path that stands for the path over which φ

must be evaluated. φ(p) denotes the formula that can be obtained by replacing path

with p in φ. I often suppress the path variable p in a path formula φ(p) when the intent

165

is clear from the context.

3.5.1 Axiomatization of Infinite Paths

I now give my axiomatization for infinite paths. I have a predicate OnPath(p, s), mean-

ing that the situation s is on path p. Also, the abbreviation Starts(p, s) means that s

is the starting situation of path p. A path p starts with s if and only if s is the earliest

situation on p:

Definition 3.5.1.

Starts(p, s) def
= OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s � s′.

As shown in Lespérance et al., one can use action selection functions (ASFs) to

model infinite paths. Recall that ASFs or strategies are mappings from situations to

primitive actions. The idea is that given a situation s, an ASF F prescribes an action

that the agent must perform in s if she were to follow the path induced by this strategy.

An infinite path can then be formalized as a tuple (s, F), where s is the starting situ-

ation of the path, and F is a strategy that defines an infinite sequence of situations by

specifying an action for every situation starting from s. Thus, one way of axiomatizing

paths is by making them correspond to such pairs (s, F):

166

Axiom 3.5.2.

(i). ∀p. (∃F, s. Executable(F, s) ∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),

(ii). ∀F, s. Executable(F, s) ⊃

(∃p. Starts(p, s) ∧ ∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′)).

This second-order axiom says that for every path p, there is an action selection func-

tion F and a situation s such that F starting in s is executable, and that F produces

exactly the same sequence of situations on p starting from situation s. Also, for ev-

ery executable action selection function F and situation s, there is a path p that starts

with s and that corresponds exactly to the sequence of situations produced by F start-

ing from s. Here, OnPathASF(F, s, s′) means that the situation sequence defined by

(s, F) includes the situation s′:

Definition 3.5.3.

OnPathASF(F, s, s′)
def
= s � s′ ∧ ∀a, s∗. s ≺ do(a, s∗) � s′ ⊃ F (s∗) = a.

Also, the situation sequence encoded by a strategy F and a starting situation s is ex-

ecutable if and only if s is executable, and for all situations s′ on this sequence, the

action selected by F in s′ is executable in s′.

Definition 3.5.4.

Executable(F, s)
def
= Executable(s) ∧ ∀s′. OnPathASF(F, s, s′) ⊃ Poss(F (s′), s′).

167

Another axiom is needed to state that different situation sequences represent dif-

ferent paths.

Axiom 3.5.5.

∀p, p′. (∀s. OnPath(p, s) ≡ OnPath(p′, s)) ≡ p = p′.

Note that, for every situation s on a path, there must be an action that is possible in

s:

∀p, s. OnPath(p, s) ⊃ ∃a. Poss(a, s).

I consider that situations where no action is possible are “artificial”. One can always

introduce a dummy action noOp that has the precondition that True, and consequently

is always executable. Taking paths to be sequences of executable situations means that

there may be infinite sequences of successor situations that are not paths; even if the

situations on a prefix of a sequence are executable, the presence of a non-executable

situation in the sequence means that it is not a path. One could easily modify the above

axiomatization to include paths with non-executable situations, and identify the subset

of such paths that are executable.

Also, while I focus on infinite paths, finite (executable) paths can be viewed as

prefixes of paths since a finite path can always be extended to an infinite one, e.g. by

extending the prefix with an infinite sequence of noOp actions.

168

I next define some useful path-related constructs that I will need to use. First, I

define a set of Linear Temporal Logic (LTL) operators [169, 64].18 Formulae defined

using these operators will be evaluated w.r.t. a path p and a time index/situation s on

p. In these, I will use the starting situation s of the path p as the time index, and since

s can be obtained from p, I will suppress this index.19 I say that©Φ(p), i.e. Φ holds

next over a path p if Φ holds in the successor to the starting situation of p:

Definition 3.5.6.

©Φ(p)
def
= ∃s, a. Starts(p, s) ∧ OnPath(p, do(a, s)) ∧ Φ(do(a, s)).

Φ U Ψ (Φ until Ψ) holds over a path p if there is a situation s′ on p in which Ψ holds,

and Φ continuously holds in every situation from the starting situation of p until s′:

Definition 3.5.7.

(Φ U Ψ)(p)
def
= ∃s, s′. Starts(p, s)∧OnPath(p, s′)∧Ψ(s′)∧∀s∗. s � s∗ ≺ s′ ⊃ Φ(s∗).

Other LTL operators can be defined as usual, e.g. eventually Φ (denoted by 3Φ), al-

ways Φ (denoted by 2Φ), Φ unless Ψ (denoted by Φ W Ψ), Φ before Ψ (denoted by

Φ B Ψ), etc.

18In addition, Khan and Lespérance [121] show how arbitrary CTL∗ [66] formulae can be interpreted
over situation calculus with paths defined here.

19Note that one can evaluate a temporal formula w.r.t. any time index/situation s along a path p just
by evaluating it w.r.t. the suffix p′ of p that starts with s (see Definition 3.5.16). Also, the following
semantics closely corresponds to the one given by Emerson [64].

169

Definition 3.5.8.

3Φ(p)
def
= (True U Φ)(p).

Definition 3.5.9.

2Φ(p)
def
= ¬3¬Φ(p).

Definition 3.5.10.

(ΦW Ψ)(p)
def
= (Φ U Ψ)(p) ∨2(Φ ∧ ¬Ψ)(p).

Definition 3.5.11.

(Φ B Ψ)(p)
def
= ¬(¬Φ U Ψ)(p).

Let us also introduce a few more definitions. Firstly, I say that φ is weakly in-

evitable in s if φ holds over all paths that start with s:

Definition 3.5.12.

WeaklyInevitable(φ, s)
def
= ∀p. Starts(p, s) ⊃ φ(p).

Secondly, I say that φ is strongly inevitable in s if φ is weakly inevitable in all

situations that have the same history as s:

Definition 3.5.13.

StronglyInevitable(φ, s)
def
= ∀s′. SameHist(s′, s) ⊃WeaklyInevitable(φ, s′).

170

Thus, φ is strongly inevitable in situation s if φ holds over all paths that start with a

situation that has the same action history as s.

Thirdly, an agent knows in s that φ is inevitable if she knows that φ is weakly

inevitable in s, i.e., φ holds over all paths that start with a K-accessible situation in s:

Definition 3.5.14.

KInevitable(φ, s)
def
= Know(WeaklyInevitable(φ, now), s).

Note that KInevitable(φ, s) is similar to StronglyInevitable(φ, s), except for the fact

that in this case φ is weakly inevitable only in the situations that are knowledge acces-

sible from s – a subset of the set of situations that share the same history with s.

An agent knows in s that φ is impossible if she knows that ¬φ is inevitable in s:

Definition 3.5.15.

KImpossible(φ, s)
def
= KInevitable(¬φ, s).

Finally, I define what it means for a path p′ to be a suffix of another path p w.r.t. a

situation s:

Definition 3.5.16.

Suffix(p′, p, s)
def
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s � s′ ⊃ (OnPath(p, s′) ≡ OnPath(p′, s′)).

171

That is, a path p′ is a suffix of another path p w.r.t. a situation s if and only if s is on p,

and p′ which starts with s, contains exactly the same situations as p starting from s.

3.5.2 Properties

I now show some properties of my axiomatization of paths. All my arguments and

claims in the proofs of these will be semantic in nature. I will use the following lem-

mata in these proofs (here Σ is the set of foundational axioms).

Σ entails that all initial situations are executable:

Lemma 3.5.17.

Σ |= ∀s. Init(s) ⊃ Executable(s).

Proof. Follows from Axiom 3.2.5 and Definitions 3.2.1 and 3.3.1.

Σ entails that doing an action yields a different situation:

Lemma 3.5.18.

Σ |= ∀a, s. s 6= do(a, s).

Proof. See Proposition 2.4.1 in [194].

Σ entails that a situation s strictly precedes the situation that results from doing an

action in s:

172

Lemma 3.5.19.

Σ |= ∀a, s. s ≺ do(a, s).

Proof. See Proposition 2.4.2 in [194].

Σ entails that ≺ is transitive:

Lemma 3.5.20.

Σ |= ∀s, s1, s2. s ≺ s1 ∧ s1 ≺ s2 ⊃ s ≺ s2.

Proof. See Proposition 2.4.6 in [194].

Σ entails that ≺ is irreflexive:

Lemma 3.5.21.

Σ |= ∀s. s ⊀ s.

Proof. See Proposition 2.4.7 in [194].

Σ entails that ≺ is asymmetric:

Lemma 3.5.22.

Σ |= ∀s1, s2. s1 ≺ s2 ⊃ ¬(s2 ≺ s1).

Proof. Follows from the transitivity of ≺ (i.e. Lemma 3.5.20) and irreflexivity of ≺

(i.e. Lemma 3.5.21).

173

Σ entails that if a situation strictly precedes another situation, then they are differ-

ent:

Lemma 3.5.23.

Σ |= ∀s, s′. s ≺ s′ ⊃ s 6= s′.

Proof. (By contradiction) Fix situations S1 and S2 and assume that S1 ≺ S2 and

S1 = S2. If we substitute S1 for S2 in the former, we have S1 ≺ S1, but this is

contradictory to Lemma 3.5.21.

Σ entails that the result of doing a in s does not precede s:

Lemma 3.5.24.

Σ |= ∀a, s. do(a, s) ⊀ s.

Proof. See Proposition 2.4.9 in [194].

Σ entails that a situation s precedes doing an action in s:

Lemma 3.5.25.

Σ |= ∀a, s. s � do(a, s).

Proof. See Corollary 2.4.3 in [194].

Σ entails that � is reflexive:

174

Lemma 3.5.26.

Σ |= ∀s. s � s.

Proof. Trivial.

Σ entails that � is antisymmetric:

Lemma 3.5.27.

Σ |= ∀s, s′. s � s′ ∧ s′ � s ⊃ s = s′.

Proof. See Proposition 2.4.11 in [194].

Σ entails that � is transitive:

Lemma 3.5.28.

Σ |= ∀s, s1, s2. s � s1 ∧ s1 � s2 ⊃ s � s2.

Proof. See Proposition 2.4.12 in [194].

Σ entails that if do(a, s) is executable, then it is possible to execute a in s, and s is

executable:

Lemma 3.5.29.

Σ |= ∀a, s. Executable(do(a, s)) ⊃ Poss(a, s) ∧ Executable(s).

Proof. See Proposition 2.4.16 in [194].

175

Σ entails that if two situations do(a, s) and do(b, s) obtained by performing two

actions a and b in the same situation s each precedes a third situation s′, then a and b

represent the same action.

Lemma 3.5.30.

Σ |= ∀a, b, s, s′. (do(a, s) � s′ ∧ do(b, s) � s′) ⊃ a = b.

Proof. (By induction on s′) For the base case, fix A1, B1, S1, and S ′1, and assume that:

do(A1, S1) = S ′1,

do(B1, S1) = S ′1.

From this, we have:

do(A1, S1) = do(B1, S1).

From this and Axiom 3.2.3, we have A1 = B1.

For the inductive hypothesis, fix S ′′1 and assume that:

(do(A1, S1) � S ′′1 ∧ do(B1, S1) � S ′′1) ⊃ A1 = B1. (3.1)

Fix action C1. We have to show that:

(do(A1, S1) � do(C1, S
′′
1) ∧ do(B1, S1) � do(C1, S

′′
1)) ⊃ A1 = B1.

Assume that (do(A1, S1) � do(C1, S
′′
1) ∧ do(B1, S1) � do(C1, S

′′
1)). Then we have 4

cases to consider.

176

Case 1. do(A1, S1) = do(C1, S
′′
1) and do(B1, S1) = do(C1, S

′′
1). In this case, by

Axiom 3.2.3, we have A1 = C1 and B1 = C1, and thus A1 = B1.

Case 2. do(A1, S1) = do(C1, S
′′
1) and do(B1, S1) ≺ do(C1, S

′′
1). From the former

and Axiom 3.2.3, we have S1 = S ′′1 . If we substitute S1 for S ′′1 in the latter, we have

do(B1, S1) ≺ do(C1, S1). From this, Axiom 3.2.5, and the fact that do is a function,

we have do(B1, S1) � S1; but by Definition 3.2.6 and Lemmata 3.5.18 and 3.5.24, this

is impossible.

Case 3. do(A1, S1) ≺ do(C1, S
′′
1) and do(B1, S1) = do(C1, S

′′
1). As in Case 2, this

case is also not possible.

Case 4. do(A1, S1) ≺ do(C1, S
′′
1) and do(B1, S1) ≺ do(C1, S

′′
1). From these, Axiom

3.2.5, and the fact that do is a function, we have:

do(A1, S1) � S ′′1 ∧ do(B1, S1) � S ′′1 .

Thus we can apply the inductive hypothesis (3.1), which gives us A1 = B1.

I say that two situations are co-linear if they are the same or if one of them strictly

precedes the other. Assume that s1 and s2 are successors of two different situations,

obtained by performing two different actions a and b, respectively, in the same situation

s. Σ entails that s1 and s2 are not co-linear.

177

Lemma 3.5.31.

Σ |= ∀s, s1, s2, a, b. a 6= b ∧ do(a, s) � s1 ∧ do(b, s) � s2 ⊃

s1 6= s2 ∧ s1 ⊀ s2 ∧ s2 ⊀ s1.

Proof. (By contradiction) Fix A1, B1, S1, S
1
1 , and S2

1 and assume that:

A1 6= B1, (3.2)

do(A1, S1) � S1
1 ∧ do(B1, S1) � S2

1 , and (3.3)

S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1 . (3.4)

Now, (3.3) above gives us the following four cases:

Case 1. Assume that:

S1
1 = do(A1, S1), and (3.5)

S2
1 = do(B1, S1). (3.6)

From these, (3.2), and Axiom 3.2.3, we have:

S1
1 6= S2

1 . (3.7)

Thus from (3.4) and (3.7), we have: S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1 . Assume that S1
1 ≺ S2

1 . Then

from this, (3.5), and (3.6), we have: do(A1, S1) ≺ do(B1, S1). From this, Axiom 3.2.5,

and the fact that do is a function, we have: do(A1, S1) � S1. From this and Definition

178

3.2.6, it follows that either do(A1, S1) = S1 or do(A1, S1) ≺ S1. But by Lemma

3.5.18, the former is impossible. By Lemma 3.5.24, the latter is also impossible. It

thus follows that:

S1
1 ⊀ S2

1 . (3.8)

Similarly, it can be shown that:

S2
1 ⊀ S1

1 . (3.9)

But (3.7), (3.8), and (3.9) is contradictory to (3.4).

Case 2a. Assume that:

S1
1 = do(A1, S1), and (3.10)

do(B1, S1) ≺ S2
1 . (3.11)

I will show that ¬(S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1) by going over each case, one at

a time. First, suppose that S1
1 = S2

1 . From this and (3.10), we have S2
1 = do(A1, S1).

From this and (3.11), we have do(B1, S1) ≺ do(A1, S1). From this, Axiom 3.2.5, and

the fact that do is a function, we have do(B1, S1) � S1. But again, this is impossible

by Definition 3.2.6 and Lemmata 3.5.18 and 3.5.24. Thus we have:

S1
1 6= S2

1 . (3.12)

Now suppose that S1
1 ≺ S2

1 . Then from this and (3.10), we have:

do(A1, S1) ≺ S2
1 .

179

From this, (3.11), and Definition 3.2.6, we have:

do(A1, S1) � S2
1 ∧ do(B1, S1) � S2

1 .

From this and Lemma 3.5.30, we have A1 = B1, which is contradictory to (3.2). Thus

we have:

S1
1 ⊀ S2

1 . (3.13)

Finally, suppose that S2
1 ≺ S1

1 . Then from this and (3.10), we have S2
1 ≺ do(A1, S1).

From (3.11), this, and transitivity of ≺ (i.e. Lemma 3.5.20), we have do(B1, S1) ≺

do(A1, S1). But as shown above, this is impossible. Thus:

S2
1 ⊀ S1

1 . (3.14)

But (3.12), (3.13), and (3.14) is contradictory to (3.4).

Case 2b. Assume that:

do(A1, S1) ≺ S1
1 , and (3.15)

S2
1 = do(B1, S1). (3.16)

The proof for this case is similar to that of Case 2a.

Case 3. Assume that:

do(A1, S1) ≺ S1
1 , and (3.17)

do(B1, S1) ≺ S2
1 . (3.18)

180

Again, I will show that ¬(S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1) by going over each case

separately. First, assume that S1
1 = S2

1 . From this and (3.18), we have do(B1, S1) ≺

S1
1 . From this and (3.17), we have:

do(A1, S1) ≺ S1
1 ∧ do(B1, S1) ≺ S1

1 .

From this and Definition 3.2.6, we have:

do(A1, S1) � S1
1 ∧ do(B1, S1) � S1

1 .

From this and Lemma 3.5.30, we have A1 = B1, which is contradictory to (3.2). Thus

we have:

S2
1 6= S1

1 . (3.19)

Next, assume that S1
1 ≺ S2

1 . Then by this, (3.17), and transitivity of ≺ (i.e. Lemma

3.5.20), we have do(A1, S1) ≺ S2
1 . From this, (3.18), and Definition 3.2.6, we have:

do(A1, S1) � S2
1 ∧ do(B1, S1) � S2

1 .

From this and Lemma 3.5.30, we have A1 = B1, which is contradictory to (3.2). Thus

we have:

S1
1 ⊀ S2

1 . (3.20)

Finally, assume that S2
1 ≺ S1

1 . The proof for this case is similar to the above. Hence

we have:

S2
1 ⊀ S1

1 . (3.21)

181

But (3.19), (3.20), and (3.21) is contradictory to (3.4).

If two situations are both preceded by a third situation and they are not co-linear,

then there must be two different situations that precede them, and these situations can

be obtained by performing two different actions in the same situation.

Lemma 3.5.32.

Σ |= ∀s, s1, s2. s � s1 ∧ s � s2 ∧ ¬(s1 = s2 ∨ s1 ≺ s2 ∨ s2 ≺ s1) ⊃

∃s′, a1, a2. s � s′ ∧ do(a1, s
′) � s1 ∧ do(a2, s

′) � s2 ∧ a1 6= a2.

Proof Sketch. Fix S1, S
1
1 , and S2

1 , and assume that:

S1 � S1
1 , (3.22)

S1 � S2
1 , and (3.23)

¬(S1
1 = S2

1 ∨ S1
1 ≺ S2

1 ∨ S2
1 ≺ S1

1). (3.24)

Now (3.22) and (3.23) above give us 4 cases.

Case 1. Assume that S1 = S1
1 and S1 = S2

1 . Then we have S1
1 = S2

1 ; but then this case

is ruled out by (3.24).

Case 2. Assume that S1 = S1
1 and S1 ≺ S2

1 . Then we have S1
1 ≺ S2

1 ; but then this case

too is ruled out by (3.24).

Case 3. Assume that S1 ≺ S1
1 and S1 = S2

1 . Then we have S2
1 ≺ S1

1 ; again by (3.24),

182

this is also impossible.

Case 4. Assume that:

S1 ≺ S1
1 , and (3.25)

S1 ≺ S2
1 . (3.26)

Consider the path from S1 to S1
1 : there must be a situation s′ such that S1 ≺ s′ � S1

1

and ¬(s′ � S2
1), otherwise S1

1 and S2
1 are colinear, contradicting (3.24). Let S ′ be the

unique situation such that:

S1 ≺ S ′ � S1
1 , (3.27)

¬(S ′ � S2
1), and (3.28)

∀s∗. S1 � s∗ ≺ S ′ ⊃ s∗ ≺ S2
1 . (3.29)

From (3.27), we have S1 ≺ S ′. From this and Axiom 3.2.5, it follows that there is an

action A1 and situation S ′′ such that:

S ′ = do(A1, S
′′), and (3.30)

S1 � S ′′. (3.31)

From (3.30) and (3.27), we have:

do(A1, S
′′) � S1

1 . (3.32)

183

From (3.31), (3.30), and Axiom 3.2.5, we have: S1 � S ′′ ≺ S ′. By this and (3.29), we

have: S ′′ ≺ S2
1 . From this, (3.30), and (3.28), it follows that there exists an action A2

such that:

A1 6= A2, and (3.33)

do(A2, S
′′) � S2

1 . (3.34)

The consequent thus follows from (3.31), (3.32), (3.34), and (3.33).

Σ entails that all non-initial situations are preceded by some initial situation.

Lemma 3.5.33.

Σ |= ∀s. ¬Init(s) ⊃ ∃s′. Init(s′) ∧ s′ ≺ s.

Proof. By induction on s.

Σ ∪ Dknow entails that two K-accessible situations share the same action history:

Lemma 3.5.34.

Σ ∪ Dknow |= ∀s, s′. K(s′, s) ⊃ SameHist(s′, s).

Proof. By induction on s.

Σ ∪ Dknow entails that given a situation s, all K-accessible situations in s are

executable:

184

Lemma 3.5.35.

Σ ∪ Dknow |= ∀s, s′. K(s′, s) ⊃ Executable(s′).

Proof. (By induction on s) In the base case where s is an initial situation, the result

follows from Axiom 3.4.1 and Lemma 3.5.17.

For the inductive case, fix Sn and assume that:

∀s′. K(s′, Sn) ⊃ Executable(s′).

Fix action An; we have to show that:

∀s′. K(s′, do(An, Sn)) ⊃ Executable(s′).

Now from Axiom 3.4.10, it follows that:

∀s∗. K(s∗, do(An, Sn)) ⊃ ∃s∗∗. K(s∗∗, Sn) ∧ s∗ = do(An, s
∗∗) ∧ Poss(An, s∗∗).

From this and the inductive hypothesis, it follows that:

∀s∗. K(s∗, do(An, Sn)) ⊃ ∃s∗∗. s∗ = do(An, s
∗∗) ∧ Executable(s∗∗) ∧ Poss(An, s∗∗).

Finally, from this and Definition 3.3.1, it follows that:

∀s∗. K(s∗, do(An, Sn)) ⊃ ∃s∗∗. s∗ = do(An, s
∗∗) ∧ Executable(do(An, s

∗∗)),

and thus that ∀s∗. K(s∗, do(An, Sn)) ⊃ Executable(s∗).

185

LetDpath consist of the axiomatization for paths, i.e. Axioms 3.5.2 and 3.5.5. Then,

my first property captures the conditions under which a situation can be extended to a

path: Σ∪Dpath entails that for any executable situation, there is a path that starts with

that situation, provided that for any situation there exists an executable action.

Proposition 3.5.36.

Σ ∪ Dpath |= (∀s′. ∃a. Poss(a, s′)) ⊃ (∀s. Executable(s) ⊃ ∃p. Starts(p, s)).

Proof. Fix situation S1 and assume that ∀s. ∃a. Poss(a, s) and Executable(S1). Con-

struct an action selection function F1 as follows:

F1(s) = a, for any situation s,

where a is an arbitrary action that is executable in s, i.e. Poss(a, s); by the antecedent,

such an action is always available. Then by the antecedent, Definitions 3.5.4 and 3.5.3,

and by construction of F1, we have:

Executable(F1, S1).

The consequent follows from this and Axiom 3.5.2(ii).

Again, I maintain that situations with no executable actions are “artificial”. Hence-

forth, I will use Proposition 3.5.36 without worrying about the antecedent that there is

an executable action for any situation, i.e. that ∀s′. ∃a. Poss(a, s′); if this assumption

186

does not hold for some theory, we can simply add a dummy action noOp that has a

True precondition and that is always executable.

Next, I prove some properties of the starting situation of a path. In particular, I can

show that Σ∪Dpath entails that (a) any path starts with some situation, (b) the starting

situation of any path is unique, and (c) the starting situation of any path is executable.

Proposition 3.5.37.

(a). Σ ∪ Dpath |= ∀p. ∃s. Starts(p, s),

(b). Σ ∪ Dpath |= ∀p, s, s′. Starts(p, s) ∧ Starts(p, s′) ⊃ s = s′,

(c). Σ ∪ Dpath |= ∀p, s. Starts(p, s) ⊃ Executable(s).

Proof. (a). Fix path P1. By Axiom 3.5.2(i), there is a corresponding function F1 and

situation S1 such that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (3.35)

From (3.35) and Definition 3.5.3, it follows that:.

∀s. OnPath(P1, s) ≡ S1 � s ∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F1(s∗) = a. (3.36)

From this and Definition 3.2.6, we have:

OnPath(P1, S1), and (3.37)

187

∀s. OnPath(P1, s) ⊃ S1 � s. (3.38)

From 3.37, 3.38, and Definition 3.5.1, it follows that Starts(P1, S1).

(b). Fix path P1 and starting situations S1 and S ′1. By the antecedent, we have

Starts(P1, S1). From this and Definition 3.5.1, we have:

OnPath(P1, S1), (3.39)

∀s. OnPath(P1, s) ⊃ S1 � s. (3.40)

Again, from the antecedent, we have Starts(P1, S
′
1). From this and Definition 3.5.1,

we have:

OnPath(P1, S
′
1), (3.41)

∀s. OnPath(P1, s) ⊃ S ′1 � s. (3.42)

From 3.40 and 3.41, we have:

S1 � S ′1. (3.43)

Moreover, from 3.39 and 3.42, we have:

S ′1 � S1. (3.44)

The consequent follows from 3.43, 3.44, and Lemma 3.5.27.

(c). Fix path P1. By Axiom 3.5.2(i), there is a corresponding function F1 and situation

S1 such that:

Executable(F1, S1), (3.45)

188

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (3.46)

As in the proof of Proposition 3.5.37(a), from (3.46) and Definitions 3.5.1 and 3.5.3,

it follows that Starts(P1, S1). Moreover, by this and Proposition 3.5.37(b), it follows

that ∀s. Starts(P1, s) ≡ s = S1. Finally, from (3.45) and Definition 3.5.4, it follows

that Executable(S1).

The next two properties deal with the successor situation of a situation on a path

that is also on the path. The first states that Σ∪Dpath entails that for any situation s on

a path p, there is a successor situation s′ = do(a, s) on p, and s′ can be reached from s

by performing an executable action a.

Proposition 3.5.38.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ ∃s′, a. OnPath(p, s′) ∧ s′ = do(a, s) ∧ Poss(a, s).

Proof. Fix path P1. By Axiom 3.5.2(i), there is a corresponding function F1 and

situation S1 such that:

Executable(F1, S1), (3.47)

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (3.48)

Consider any situation Sn on P1, i.e., OnPath(P1, Sn). By (3.48), Sn must also be on

the sequence defined by (S1, F1):

OnPathASF(F1, S1, Sn). (3.49)

189

From (3.49) and Definition 3.5.3, we have:

S1 � Sn, and (3.50)

∀a, s. S1 ≺ do(a, s) � Sn,⊃ F1(s) = a. (3.51)

Assume F1(Sn) = An. Then from (3.50) and Lemmata 3.5.25 and 3.5.28, we have:

S1 � do(An, Sn). (3.52)

From (3.52), (3.51), the assumption that F1(Sn) = An, and Definition 3.5.3, it follows

that the situation do(An, Sn) must be on the sequence defined by (S1, F1):

OnPathASF(F1, S1, do(An, Sn)). (3.53)

Also, by (3.53) and (3.48), do(An, Sn) must be on path P1:

OnPath(P1, do(An, Sn)). (3.54)

Finally, by (3.47), (3.53), and Definition 3.5.4, action An must have been executable

in Sn:

Poss(An, Sn). (3.55)

The proposition follows from (3.54) and (3.55).

Moreover, Σ ∪ Dpath entails that the successor situation of a situation on a path is

unique.

190

Proposition 3.5.39.

Σ∪Dpath |= ∀p, s. OnPath(p, s)∧OnPath(p, do(a, s))∧OnPath(p, do(b, s)) ⊃ a = b.

Proof. (By contradiction) Fix path P1. By Axiom 3.5.2(i), there is a corresponding

function F1 and situation S1 such that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (3.56)

Fix S1
1 , A1, and A2 and assume that:

OnPath(P1, do(A1, S
1
1)), (3.57)

OnPath(P1, do(A2, S
1
1)), and (3.58)

A1 6= A2. (3.59)

From (3.56), (3.57), and Definition 3.5.3,it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � do(A1, S
1
1) ⊃ F1(s∗) = a. (3.60)

Similarly, from (3.56), (3.58), and Definition 3.5.3, it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � do(A2, S
1
1) ⊃ F1(s∗) = a. (3.61)

But from (3.60), (3.61), and (3.59), we have that:

F1(S1
1) = A1 ∧ F1(S1

1) = A2 ∧ A1 6= A2,

which is contradictory to the fact that F1 is a function.

191

The next property deals with the uniqueness of paths: Σ ∪ Dpath entails that if

p 6= p′, then there is a situation that is on path p but not on path p′.

Proposition 3.5.40.

Σ ∪ Dpath |= ∀p, p′. p 6= p′ ⊃ ∃s. (OnPath(p, s) ∧ ¬OnPath(p′, s)).

Proof. Follows from Axiom 3.5.5.

I can also show that Σ ∪ Dpath entails that all situations on a path are executable.

Corollary 3.5.41.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ Executable(s).

Proof. (By induction on s) Fix path P1. The base case follows from Propositions

3.5.37(b) and 3.5.37(c). For the inductive hypothesis, fix situation S1 and assume that:

OnPath(P1, S1), and (3.62)

Executable(S1). (3.63)

From this and Propositions 3.5.38 and 3.5.39, it follows that there is a unique successor

situation S2 and action A1 such that:

OnPath(P1, S2) ∧ S2 = do(A1, S1), and (3.64)

192

Poss(A1, S1). (3.65)

From (3.63), (3.65), and Definition 3.3.1, it follows that Executable(do(A1, S1)).

My next set of properties deal with the structure of situations on paths and shows

that paths are essentially linear sequences of situations. First I have Σ ∪ Dpath entails

that any pair of situations on the same path are co-linear:

Proposition 3.5.42.

Σ ∪ Dpath |= ∀p, s, s′. OnPath(p, s) ∧ OnPath(p, s′) ⊃ s = s′ ∨ s ≺ s′ ∨ s′ ≺ s.

Proof. (By contradiction) Fix path P1. By Axiom 3.5.2(i), there is a corresponding

function F1 and situation S1 such that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (3.66)

Fix Sm and Sn and assume that:

OnPath(P1, Sm), (3.67)

OnPath(P1, Sn), (3.68)

¬(Sm = Sn ∨ Sm ≺ Sn ∨ Sn ≺ Sm). (3.69)

From (3.66), (3.67), and Definition 3.5.3,it follows that:

S1 � Sm, and (3.70)

193

∀a, s∗. S1 ≺ do(a, s∗) � Sm ⊃ F1(s∗) = a. (3.71)

Similarly, from (3.66), (3.68), and Definition 3.5.3, it follows that:

S1 � Sn, and (3.72)

∀a, s∗. S1 ≺ do(a, s∗) � Sn ⊃ F1(s∗) = a. (3.73)

From (3.69), (3.70), (3.72), and Lemma 3.5.32, it follows that there is a situation S2

and actions A1 and A2 such that:

S1 � S2 ∧ do(A1, S2) � Sm ∧ do(A2, S2) � Sn ∧ A1 6= A2. (3.74)

But from (3.71), (3.73), and (3.74), we have that:

F1(S2) = A1 ∧ F1(S2) = A2 ∧ A1 6= A2,

which is contradictory to the fact that F1 is a function.

Secondly, I have Σ ∪ Dpath entails that if situations s and s′ are on a given path p,

then all situations in the interval defined by these two situations are also on p.

Proposition 3.5.43.

Σ∪Dpath |= ∀p, s, s′, s∗. OnPath(p, s)∧OnPath(p, s′)∧s � s∗ � s′ ⊃ OnPath(p, s∗).

194

Proof. Fix path P1. By Axiom 3.5.2(i), there is a corresponding function F1 and

situation S1 such that:

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (3.75)

Fix Sm, Sn, Sp and assume that:

OnPath(P1, Sm), (3.76)

OnPath(P1, Sp), (3.77)

Sm � Sn � Sp. (3.78)

From (3.75) and (3.76), it follows that:

OnPathASF(F1, S1, Sm). (3.79)

Similarly, from (3.75) and (3.77), it follows that:

OnPathASF(F1, S1, Sp). (3.80)

From (3.79) and Definition 3.5.3, it follows that:

S1 � Sm. (3.81)

From this, (3.78), and transitivity of � (i.e. Lemma 3.5.28), it follows that:

S1 � Sn. (3.82)

195

From (3.80) and Definition 3.5.3, it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � Sp ⊃ F1(s∗) = a. (3.83)

From this, (3.78), and (3.82), it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � Sn ⊃ F1(s∗) = a. (3.84)

From (3.82), (3.84), and Definition 3.5.3, it follows that OnPathASF(F1, S1, Sn). The

proposition follows from this and (3.75).

Finally, I can show that Σ∪Dpath entails that two paths can share only one common

prefix. Once they branch at some situation, they never merge after that.

Proposition 3.5.44.

Σ ∪ Dpath |= ∀p1, p2, s, a, b, s1, s2. OnPath(p1, do(a, s)) ∧ OnPath(p2, do(b, s))

∧ a 6= b ∧ s ≺ s1 ∧ s ≺ s2 ∧ OnPath(p1, s1) ∧ OnPath(p2, s2)

⊃ s1 6= s2.

Proof. (By contradiction) Fix P1, P2, S1, A1, B1, S11, and S12, and assume that:

OnPath(P1, do(A1, S1)), (3.85)

OnPath(P2, do(B1, S1)), (3.86)

196

A1 6= B1, (3.87)

S1 ≺ S11, (3.88)

S1 ≺ S12, (3.89)

OnPath(P1, S11), and (3.90)

OnPath(P2, S12). (3.91)

Also, assume that the consequent is false:

S11 = S12. (3.92)

From (3.85), (3.90), Proposition 3.5.42, and Definition 3.2.6, it follows that:

do(A1, S1) � S11 ∨ S11 � do(A1, S1). (3.93)

Now suppose that:

S11 ≺ do(A1, S1).

Then by Axiom 3.2.5, we have:

∃b, s. (do(A1, S1) = do(b, s) ∧ S11 � s).

Then from this and Axiom 3.2.3, it follows that S11 � S1. By (3.88) and Lemma

3.5.23, it follows that S11 6= S1. Thus by Definition 3.2.6, we have:

S11 ≺ S1.

197

Since by Lemma 3.5.22, ≺ is asymmetric, it follows from this that ¬(S1 ≺ S11). But

this contradicts (3.88). Thus it follows that:

¬(S11 ≺ do(A1, S1)). (3.94)

From (3.93) and (3.94), it follows that:

do(A1, S1) � S11. (3.95)

Similarly, it can be shown that:

do(B1, S1) � S12. (3.96)

Now from (3.92), we have S11 = S12. But from (3.95), (3.96), (3.87), and Lemma

3.5.31, this is impossible.

The next few properties deal with suffixes and prefixes of a given path. The first of

these states that Σ ∪ Dpath entails that for any situation s on a path p, there is a suffix

of p that starts with s.

Proposition 3.5.45.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ ∃p′. Suffix(p′, p, s).

Proof. Fix path P1. By Axiom 3.5.2(i), there is a function F1 and situation S1 such

that:

Executable(F1, S1), (3.97)

198

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S1, s). (3.98)

Fix situation Sn such that:

OnPath(P1, Sn). (3.99)

We will show that there is a path Pn s.t. Pn, that starts with Sn, is a suffix of P1.

Consider the pair (Sn, F1). From (3.98) and (3.99), we have that:

OnPathASF(F1, S1, Sn). (3.100)

From this and Definition 3.5.3, it follows that:

S1 � Sn. (3.101)

From (3.100), (3.101), (3.97), and Definitions 3.5.4 and 3.3.1, we have:

Executable(F1, Sn). (3.102)

By (3.102) and Axiom 3.5.2(ii), it follows that there is a path Pn s.t.

Starts(Pn, Sn), and (3.103)

∀s. OnPathASF(F1, Sn, s) ≡ OnPath(Pn, s). (3.104)

Now, we need show that Suffix(Pn, P1, Sn). From (3.98) and Definition 3.5.3, we have:

∀s. OnPath(P1, s) ≡ S1 � s ∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F1(s∗) = a. (3.105)

199

Similarly, from (3.104) and Definition 3.5.3, we have:

∀s. OnPath(Pn, s) ≡ Sn � s ∧ ∀a, s∗. Sn ≺ do(a, s∗) � s ⊃ F1(s∗) = a. (3.106)

From (3.105), (3.106), (3.101), and (3.99), it follows that:

∀s. Sn � s ⊃ OnPath(P1, s) ≡ OnPath(Pn, s). (3.107)

Then Suffix(Pn, P1, Sn) follows from (3.99), (3.103), (3.107), and Definition 3.5.16.

Secondly, I can show that given a path p with starting situation do(a, s), Σ ∪Dpath

entails that there is a path p′ s.t. p′ starts with s, and p is a suffix of p′ starting from

do(a, s).

Proposition 3.5.46.

Σ ∪ Dpath |= Starts(p, do(a, s)) ⊃ ∃p′. Starts(p′, s) ∧ Suffix(p, p′, do(a, s)).

Proof. Fix P1, A1, and S1 and assume that:

Starts(P1, do(A1, S1)). (3.108)

By Axiom 3.5.2(i), there is a function F1 and situation S2 such that:

Executable(F1, S2), and (3.109)

200

∀s. OnPath(P1, s) ≡ OnPathASF(F1, S2, s). (3.110)

From (3.110), Lemma 3.5.26, and Definition 3.5.3, we have:

OnPath(P1, S2). (3.111)

Again, from (3.110) and Definition 3.5.3, we have:

∀s. OnPath(P1, s) ⊃ S2 � s. (3.112)

From (3.111), (3.112), and Definition 3.5.1, we have that:

Starts(P1, S2). (3.113)

From (3.108), (3.113), and Proposition 3.5.37(b), it follows that:

S2 = do(A1, S1).

From this and (3.109) and (3.110), it follows that:

Executable(F1, do(A1, S1)), and (3.114)

∀s. OnPath(P1, s) ≡ OnPathASF(F1, do(A1, S1), s). (3.115)

Now, consider the pair (S1, F
1
1), where F 1

1 is defined as follows:

F 1
1 (s) = A1, if s = S1

= F1(s), otherwise .

201

From (3.114) and Definition 3.5.4, it follows that:

Executable(do(A1, S1)).

From this and Lemma 3.5.29, it follows that:

Poss(A1, S1), and (3.116)

Executable(S1). (3.117)

From (3.114), (3.116), Definition 3.5.4, and by definition of F 1
1 , it follows that:

∀s. OnPathASF(F 1
1 , S1, s) ⊃ Poss(F 1

1 (s), s). (3.118)

From (3.117), (3.118), and Definition 3.5.4, we have that:

Executable(F 1
1 , S1). (3.119)

Now, by (3.119) and Axiom 3.5.2(ii), there is a path P 1
1 such that:

Starts(P 1
1 , S1), and (3.120)

∀s. OnPathASF(F 1
1 , S1, s) ≡ OnPath(P 1

1 , s). (3.121)

We need to show that Suffix(P1, P
1
1 , do(A1, S1)). From Lemma 3.5.25, we have:

S1 � do(A1, S1). (3.122)

202

Also, by definition of F 1
1 , it follows that:

∀a, s. S1 ≺ do(a, s) � do(A1, S1) ⊃ F 1
1 (s) = a. (3.123)

From (3.122), (3.123), and Definition 3.5.3, it follows that:

OnPathASF(F 1
1 , S1, do(A1, S1)).

From this and (3.121), it follows that:

OnPath(P 1
1 , do(A1, S1)). (3.124)

From (3.115) and Definition 3.5.3, we have:

∀s. OnPath(P1, s) ≡ do(A1, S1) � s

∧ ∀a, s∗. do(A1, S1) ≺ do(a, s∗) � s ⊃ F1(s∗) = a.

(3.125)

Similarly, from (3.121) and Definition 3.5.3, we have:

∀s. OnPath(P 1
1 , s) ≡ S1 � s ∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F 1

1 (s∗) = a. (3.126)

Note that, by Lemmata 3.5.19, 3.5.20, and 3.5.23, it follows that:

∀s. do(A1, S1) � s ⊃ s 6= S1.

From this, (3.126), and definition of F 1
1 , we have:

∀s. do(A1, S1) � s ⊃

OnPath(P 1
1 , s) ≡ S1 � s ∧ ∀a, s∗. S1 ≺ do(a, s∗) � s ⊃ F1(s∗) = a.

(3.127)

203

From (3.125) and (3.127), it follows that:

∀s. do(A1, S1) � s ⊃ OnPath(P1, s) ≡ OnPath(P 1
1 , s). (3.128)

From (3.124), (3.108), (3.128), and Definition 3.5.16, it follows that:

Suffix(P1, P
1
1 , do(A1, S1)). (3.129)

The consequent follows from (3.120) and (3.129).

Finally, Σ ∪ Dpath entails that any path that starts with a non-initial situation can

be extended in the past; formally, for all situations s1 and s2, if s1 strictly precedes s2

and there is a path p2 that starts with s2, then there must also exist a path p1 such that

p1 starts with s1 and p2 is a suffix of p1 starting from s2.

Lemma 3.5.47.

Σ ∪ Dpath |= ∀s1, s2, p2. s1 ≺ s2 ∧ Starts(p2, s2) ⊃

∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, s2).

Proof. (By induction on situation s2) For the base case, fix Sb2 such that Init(Sb2).

Then by this, Definition 3.2.1, and Axiom 3.2.5, we have: ¬∃s. s ≺ Sb2, and thus the

antecedent is false and the thesis follows trivially.

For the inductive hypothesis, fix situation S2 and assume that:

∀s1, p2. s1 ≺ S2 ∧ Starts(p2, S2) ⊃ ∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, S2). (3.130)

204

Fix A2. We have to show that:

∀s1, p2. s1 ≺ do(A2, S2) ∧ Starts(p2, do(A2, S2)) ⊃

∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, do(A2, S2)).

Fix S1 and P2 and assume that:

S1 ≺ do(A2, S2), and (3.131)

Starts(P2, do(A2, S2)). (3.132)

By (3.132) and Proposition 3.5.46, it follows that there is a path P3 s.t.:

Starts(P3, S2) ∧ Suffix(P2, P3, do(A2, S2)). (3.133)

Also by (3.131) and Axiom 3.2.5, we have:

∃s, a. do(A2, S2) = do(a, s) ∧ S1 � s.

By this and Axiom 3.2.3, we have:

S1 � S2.

By this and Definition 3.2.6, it follows that:

S1 = S2 ∨ S1 ≺ S2.

205

Case 1. Assume that S1 = S2. Then by (3.132) and Proposition 3.5.46, it follows that:

∃p. Starts(p, S1) ∧ Suffix(P2, p, do(A2, S2)),

and we are done.

Case 2. Assume that S1 ≺ S2. Then by this, (3.133), and (3.130), it follows that there

is a path P4 s.t.:

Starts(P4, S1) ∧ Suffix(P3, P4, S2). (3.134)

We will show that Suffix(P2, P4, do(A2, S2)). By (3.133) and Definition 3.5.16, we

have:

OnPath(P3, do(A2, S2)), and (3.135)

∀s′. do(A2, S2) � s′ ⊃ (OnPath(P3, s
′) ≡ OnPath(P2, s

′)). (3.136)

By (3.134) and Definition 3.5.16, we have:

∀s′. S2 � s′ ⊃ (OnPath(P3, s
′) ≡ OnPath(P4, s

′)). (3.137)

Since by Lemma 3.5.25, S2 � do(A2, S2), it follows from (3.135) and (3.137) that:

OnPath(P4, do(A2, S2)). (3.138)

Also from (3.136) and (3.137), it follows that:

∀s′. do(A2, S2) � s′ ⊃ (OnPath(P2, s
′) ≡ OnPath(P4, s

′)). (3.139)

206

Finally, from (3.132), (3.138), (3.139), and Definition 3.5.16, we have:

Suffix(P2, P4, do(A2, S2)).

3.5.3 Induction Principles

I now prove some second-order induction principles for paths and for situations in a

path. First I have Σ∪Dpath entails that if some property Q holds for all paths that start

with an initial situation, and if wheneverQ holds for all paths that start with situation s,

then it holds for all paths that start with any successor situation to s, then the property

Q holds for all paths.

Theorem 3.5.48 (Induction on Paths).

Σ ∪ Dpath |= ∀Q. [{∀s, p. Init(s) ∧ Starts(p, s) ⊃ Q(p)} ∧

{∀a, s. (∀p. Starts(p, s) ⊃ Q(p))

⊃ (∀p′. Starts(p′, do(a, s)) ⊃ Q(p′))}]

⊃ ∀p. Q(p).

Proof. (By contradiction) Fix property Q1 and assume:

∀s, p. Init(s) ∧ Starts(p, s) ⊃ Q1(p), (3.140)

207

∀a, s. (∀p. Starts(p, s) ⊃ Q1(p)) ⊃ (∀p′. Starts(p′, do(a, s)) ⊃ Q1(p′)). (3.141)

Also assume that there is a path P1 over which Q1 is false:

¬Q1(P1). (3.142)

By Proposition 3.5.37(a,b), P1 must start with some unique situation, call it S1:

Starts(P1, S1). (3.143)

We now prove by induction on s that:

∀s, p. Starts(p, s) ⊃ Q1(p).

For the base case where s is an initial situation, the thesis follows from (3.140).

For the inductive step, fix S2 and assume that:

∀p. Starts(p, S2) ⊃ Q1(p). (3.144)

Take some arbitrary action A1. It follows from (3.141) and (3.144) that:

∀p. Starts(p, do(A1, S2)) ⊃ Q1(p). (3.145)

Thus by induction on s, we have:

∀s, p. Starts(p, s) ⊃ Q1(p). (3.146)

By (3.146) and (3.143), it follows that Q1(p); but this is contradictory to (3.142).

208

Moreover, Σ∪Dpath entails that if some property Q holds for the starting situation

of a given path p, and if whenever Q holds for a situation s on path p, then it holds for

the successor situation to s on p, then the property Q holds for all situations on path p.

Theorem 3.5.49 (Induction on Situations in a Path).

Σ ∪ Dpath |= ∀p,Q. [{∀s. Starts(p, s) ⊃ Q(s)} ∧

{∀a, s. (OnPath(p, s) ∧Q(s) ∧ OnPath(p, do(a, s))) ⊃ Q(do(a, s))}]

⊃ ∀s. OnPath(p, s) ⊃ Q(s).

Proof. (By contradiction) Fix path P1 and property Q1 and assume:

∀s. Starts(P1, s) ⊃ Q1(s), (3.147)

∀a, s. OnPath(P1, s) ∧Q1(s) ∧ OnPath(P1, do(a, s)) ⊃ Q1(do(a, s)). (3.148)

Also assume that there is a situation SP1 on path P1 over which Q1 is false:

OnPath(P1, SP1) ∧ ¬Q1(SP1). (3.149)

By Proposition 3.5.37(a,b), P1 must start with some unique situation, call it S1:

Starts(P1, S1). (3.150)

From this and Definition 3.5.1, we have:

OnPath(P1, S1). (3.151)

209

We now prove by induction on s that:

∀s. OnPath(P1, s) ⊃ Q1(s).

For the base case where s is the starting situation of P1, i.e. S1, the thesis follows from

(3.147), (3.150), and (3.151).

For the inductive step, fix S2 and assume that:

OnPath(P1, S2) ∧Q1(S2). (3.152)

Take some arbitrary actionA1 such that OnPath(P1, do(A1, S2)). Then by this, (3.152),

and (3.148), it follows that:

Q1(do(A1, S2)). (3.153)

Thus by induction on s, we have:

∀s. OnPath(P1, s) ⊃ Q1(s). (3.154)

But this is contradictory to (3.149).

3.5.4 Correctness of Axiomatization

Next, I prove the correctness of my axiomatization. Note that, a natural way of captur-

ing the notion of infinite path is by specifying it as a mapping from the set of natural

210

numbers to situations on a path. To this end, I use a function σ of the following sort

(here S denotes the set of all situations):

σ : N→ S.

I say that such a function σ models a path sequence if σ maps the number 0 to an exe-

cutable situation (representing the starting situation of the path), and for each number

n, there is an action a that is executable in the situation sn produced by σ(n) such that

σ maps the immediate successor of n (i.e. n+ 1) to the situation do(a, sn).

Definition 3.5.50.

PathSeq(σ)
def
= Executable(σ(0)) ∧ ∀n. ∃a. Poss(a, σ(n)) ∧ σ(n+ 1) = do(a, σ(n)).

When I prove results involving path sequences, I will use an axiomatization of the

natural numbers, i.e., standard second-order Peano arithmetic, for the natural number

sort, denoted by ΣN.

I will use the following to prove the completeness theorem. Given Definition

3.5.50, it can be shown that if σ is a path sequence and i < j, then the situation

given by σ(i) precedes the one given by σ(j):

Lemma 3.5.51.

ΣN ∪ Σ ∪ Dpath |= ∀σ, i, j. PathSeq(σ) ∧ i < j ⊃ σ(i) ≺ σ(j).

211

Proof. (By induction on n, where n = j − i) Fix σ1 and assume:

PathSeq(σ1). (3.155)

For the base case, fix I1 and J1 and assume that J1 − I1 = 1. Then it follows from

(3.155) and Definition 3.5.50 that there is an action A1 s.t.:

σ1(J1) = σ1(I1 + 1) = do(A1, σ1(I1)).

From this and Lemma 3.5.19, it follows that σ1(I1) ≺ do(A1, σ1(I1)), i.e. σ1(I1) ≺

σ1(I1 + 1), and thus σ1(I1) ≺ σ1(J1).

For the inductive case, fix IN , JN , and N1 and assume that:

JN − IN = N1, and (3.156)

PathSeq(σ1) ∧ IN < JN ⊃ σ1(IN) ≺ σ1(JN). (3.157)

We have to show that:

PathSeq(σ1) ∧ IN < JN+1 ⊃ σ1(IN) ≺ σ1(JN+1),

where JN+1 − IN = N1 + 1, i.e. by (3.156), JN+1 = JN + 1.

Now, from (3.155) and (3.156), it follows that PathSeq(σ1) ∧ IN < JN . From this and

the inductive hypothesis (i.e. (3.157)), we have:

σ1(IN) ≺ σ1(JN). (3.158)

212

Moreover, from (3.155) and Definition 3.5.50 it follows that there is an action AN s.t.:

σ1(JN + 1) = do(AN , σ1(JN)).

From this and Lemma 3.5.19, it follows that σ1(JN) ≺ do(AN , σ1(JN)), i.e. σ1(JN) ≺

σ1(JN + 1), and thus:

σ1(JN) ≺ σ1(JN+1). (3.159)

Finally, from (3.158), (3.159), and the transitivity of ≺, i.e. Lemma 3.5.20, we have:

σ1(IN) ≺ σ1(JN+1).

To show that for every path sequence there is a corresponding path, it is useful to

first introduce a corresponding ASF. Given path sequence σ, let Fσ be the ASF defined

as follows:

Definition 3.5.52.

Fσ(s) = an, if ∃n. σ(n) = s ∧ σ(n+ 1) = do(an, s),

Fσ(s) = b, otherwise,

where b is some fixed but arbitrary action.

I can show that given a path sequence σ, any situation s that is on the path defined by

the corresponding ASF Fσ and the initial situation of the path sequence σ(0) is in fact

on the path sequence σ at some position n:

213

Lemma 3.5.53.

ΣN ∪ Σ ∪ Dpath |= ∀s, σ. PathSeq(σ) ∧ σ(0) ≺ s ∧ OnPathASF(Fσ, σ(0), s) ⊃

∃n. σ(n) = s.

Proof. (By induction on s) Fix σ1. Construct a function from situations to actions Fσ1

such that Fσ1 is the corresponding ASF to σ1. Also, assume that:

PathSeq(σ1). (3.160)

In the base case where s is an initial situation, ¬∃s′. s′ ≺ s by Definition 3.2.1 and

Axiom 3.2.5, so the antecedent is false and the thesis trivially holds.

For the inductive step, fix SN and assume that:

σ1(0) ≺ SN ∧ OnPathASF(Fσ1 , σ1(0), SN) ⊃ ∃n. σ1(n) = SN . (3.161)

Also, fix action AN and assume that:

σ1(0) ≺ do(AN , SN), and (3.162)

OnPathASF(Fσ1 , σ1(0), do(AN , SN)). (3.163)

From (3.163) and Definition 3.5.3, it follows that:

∀a, s. σ1(0) ≺ do(a, s) � do(AN , SN) ⊃ Fσ1(s) = a. (3.164)

214

From (3.162) and Axiom 3.2.5, it follows that:

σ1(0) � SN . (3.165)

From Lemma 3.5.25, we have SN � do(AN , SN). From this and (3.164), we have:

∀a, s. σ1(0) ≺ do(a, s) � SN ⊃ Fσ1(s) = a. (3.166)

From (3.165), (3.166), and Definition 3.5.3, we have:

OnPathASF(Fσ1 , σ1(0), SN). (3.167)

Now, (3.165) and Definition 3.2.6 give us two cases. In the case where σ1(0) = SN ,

it trivially follows that ∃n. σ1(n) = SN . In the case where σ1(0) ≺ SN , from this,

(3.167), and the induction hypothesis, i.e. (3.161), it follows that ∃n. σ1(n) = SN .

Thus, in both these cases, there is a N1 such that:

σ1(N1) = SN . (3.168)

From (3.160), (3.168), and Definition 3.5.50, it follows that there is an action, let us

call it A∗N , s.t.:

σ1(N1 + 1) = do(A∗N , σ1(N1)). (3.169)

We just need to show that A∗N = AN . From the definition of Fσ1 , it follows that:

∀a. σ1(N1 + 1) = do(a, σ1(N1)) ⊃ Fσ1(σ1(N1)) = a. (3.170)

215

From (3.168), (3.169), and (3.170), it follows that:

Fσ1(SN) = A∗N . (3.171)

From (3.164), we have Fσ1(SN) = AN . Finally from this and (3.171), we have AN =

A∗N , and thus from this, (3.169), and (3.168), it follows that σ1(N1 +1) = do(AN , SN),

i.e. ∃n. σ1(n) = do(AN , SN).

I say that a path p matches a path sequence σ if σ is indeed a path sequence, σ(0)

is the starting situation of p, and for all n, s and a, if σ(n) is a situation s on path p,

then σ(n+ 1) is the successor situation do(a, s) of s on p:

Definition 3.5.54.

Matches(p, σ)
def
= PathSeq(σ) ∧ (σ(0) = s ≡ Starts(p, s))

∧ ∀n, s. [σ(n) = s ∧ OnPath(p, s) ⊃

∀a. (σ(n+ 1) = do(a, s) ≡ OnPath(p, do(a, s)))].

Given this formalization, the task of proving correctness of my axiomatization for

infinite paths can be reduced to showing that path sequences are isomorphic to paths

defined by Σ ∪ Dpath, i.e. that there is an one-to-one mapping between these two. To

this end, I first show that for any path p, there is a path sequence σ that matches p.

216

Theorem 3.5.55 (Soundness).

ΣN ∪ Σ ∪ Dpath |= ∀p. (∃σ. PathSeq(σ) ∧Matches(p, σ)).

Proof. Fix path P1. By Propositions 3.5.37(a), and 3.5.37(c), there is an executable

situation S1 such that P1 starts with S1:

Starts(P1, S1), and (3.172)

Executable(S1). (3.173)

By Axiom 3.5.2(i), there is an action selection function F1 and situation S2 such that:

Executable(F1, S2), and

∀s′. OnPathASF(F1, S2, s
′) ≡ OnPath(P1, s

′).

From this and Definition 3.5.3, it follows that S2 is the earliest situation of path P1.

Moreover, from Definition 3.5.1 and (3.172), it follows that S1 is the earliest situation

that is also on path P1. Thus it follows that S1 = S2 and hence we have:

Executable(F1, S1), and (3.174)

∀s′. OnPathASF(F1, S1, s
′) ≡ OnPath(P1, s

′). (3.175)

Let σ1 be defined as follows:

σ1(0) = S1, (3.176)

σ1(n+ 1) = do(F1(σ1(n)), σ1(n)), for n ≥ 0. (3.177)

217

We have to prove that PathSeq(σ1) ∧Matches(P1, σ1).

First, let me show that PathSeq(σ1). By Definition 3.5.50, to show this we have to

prove that:

(a). Executable(σ1(0)), and

(b). ∀n. ∃a. Poss(a, σ1(n)) ∧ σ1(n+ 1) = do(a, σ1(n)).

(a) follows from (3.173) and (3.176). By (3.177), for each n there is indeed an action

a = F1(σ1(n)) s.t. σ1(n+ 1) = do(a, σ1(n)). Thus to show (b), we have to prove that

∀n. Poss(F1(σ1(n)), σ1(n)). Now, from (3.174) and Definition 3.5.4, it follows that:

∀s′. OnPathASF(F1, S1, s
′) ⊃ Poss(F1(s′), s′).

Thus, to prove that ∀n. Poss(F1(σ1(n)), σ1(n)), we just need to show that:

∀n. OnPathASF(F1, S1, σ1(n)).

I will show this by induction on n. For the base case, i.e. when n = 0, it follows from

(3.176) that σ1(n) = S1. Thus we have to show that OnPathASF(F1, S1, S1). This

follows trivially from Definitions 3.2.6, 3.5.3, and Lemmata 3.5.20 and 3.5.21 (which

imply that there are no situations do(a, s∗) such that S1 ≺ do(a, s∗) � S1). For the

inductive case, fix N1 and assume that:

OnPathASF(F1, S1, σ1(N1)). (3.178)

218

We have to show that OnPathASF(F1, S1, σ1(N1 + 1)). From (3.178) and Definition

3.5.3, we have:

S1 � σ1(N1), and (3.179)

∀a, s∗. S1 ≺ do(a, s∗) � σ1(N1) ⊃ F1(s∗) = a. (3.180)

From (3.180) and Definition 3.5.3, it follows that OnPathASF(F1, S1, σ1(N1 + 1))

holds if the following hold:

(b1). S1 � σ1(N1 + 1), and

(b2). ∀a, s∗. σ1(N1) ≺ do(a, s∗) � σ1(N1 + 1) ⊃ F1(s∗) = a.

Now, from (3.177), we have:

σ1(N1 + 1) = do(F1(σ1(N1)), σ1(N1)). (3.181)

From this and Lemma 3.5.25, we have:

σ1(N1) � σ1(N1 + 1).

(b1) follows from this, (3.179), and the transitivity of � (i.e. Lemma 3.5.28). More-

over, (b2) follows from (3.181) and Lemmata 3.5.20 and 3.5.21 (which imply that there

are no situations between σ1(N1) and σ1(N1 + 1)). Thus, we have PathSeq(σ1).

219

Next, let me show that Matches(P1, σ1). We already proved that σ1 is a path se-

quence. Thus by Definition 3.5.54, we need to show that:

(c). σ1(0) = s ≡ Starts(P1, s) and

(d). ∀n, s. [σ1(n) = s ∧ OnPath(P1, s) ⊃

∀a. (σ1(n+ 1) = do(a, s) ≡ OnPath(P1, do(a, s)))].

(c) follows from (3.172), (3.176) and the uniqueness of starting situations of paths, i.e.

Proposition 3.5.37(b). For (d), fix N1 and Ŝ1 and assume that:

σ1(N1) = Ŝ1, and (3.182)

OnPath(P1, Ŝ1). (3.183)

For the (⊃) direction, fix A1 and assume that:

σ1(N1 + 1) = do(A1, Ŝ1).

Then by this and (3.177), we have:

do(A1, Ŝ1) = do(F1(σ1(N1)), σ1(N1)).

From this and (3.182), we have:

do(A1, Ŝ1) = do(F1(Ŝ1), Ŝ1). (3.184)

220

From (3.175) and (3.183), we have:

OnPathASF(F1, S1, Ŝ1).

From this and Definition 3.5.3, it follows that:

S1 � Ŝ1, and (3.185)

∀a, s∗. S1 ≺ do(a, s∗) � Ŝ1 ⊃ F1(s∗) = a. (3.186)

Now, consider the situation do(F1(Ŝ1), Ŝ1). From Lemma 3.5.25, we have:

Ŝ1 � do(F1(Ŝ1), Ŝ1). (3.187)

From this, (3.185), and the transitivity of � (i.e. Lemma 3.5.28), it follows that:

S1 � do(F1(Ŝ1), Ŝ1). (3.188)

Moreover, from (3.186), (3.187), and Lemmata 3.5.20 and 3.5.21, it follows that:

∀a, s∗. S1 ≺ do(a, s∗) � do(F1(Ŝ1), Ŝ1) ⊃ F1(s∗) = a. (3.189)

From (3.188), (3.189), and Definition 3.5.3, it follows that:

OnPathASF(F1, S1, do(F1(Ŝ1), Ŝ1)).

From this and (3.175), it follows that OnPath(P1, do(F1(Ŝ1), Ŝ1)), i.e. by (3.184) that

OnPath(P1, do(A1, Ŝ1)).

221

For the (⊂) direction, fix A1 and assume that:

OnPath(P1, do(A1, Ŝ1)).

Then from this and (3.175), it follows that:

OnPathASF(F1, S1, do(A1, Ŝ1)).

From this and Definition 3.5.3, it follows that:

A1 = F1(Ŝ1). (3.190)

Now, since by (3.182), σ1(N1) = Ŝ1, it follows by (3.177) that:

σ1(N1 + 1) = do(F1(Ŝ1), Ŝ1).

From this and (3.190), we have:

σ(N1 + 1) = do(A1, Ŝ1).

Thus P1 matches σ1.

Conversely, for any path sequence σ, there is a path p that matches σ.

Theorem 3.5.56 (Completeness).

ΣN ∪ Σ ∪ Dpath |= ∀σ. PathSeq(σ) ⊃ ∃p. Matches(p, σ).

222

Proof. Fix function σ1 and assume that:

PathSeq(σ1). (3.191)

From this and Definition 3.5.50, it follows that:

Executable(σ1(0)), and (3.192)

∀n. ∃a. Poss(a, σ1(n)) ∧ σ1(n+ 1) = do(a, σ1(n)). (3.193)

Construct a tuple (σ1(0), Fσ1) such that Fσ1 , which is a function from situations to

actions, is the corresponding ASF to σ1. I will now show that Executable(Fσ1 , σ1(0)).

Assume otherwise. Then from Definition 3.5.4 and (3.192), it follows that there is a

situation SN such that:

OnPathASF(Fσ1 , σ1(0), SN), and (3.194)

¬Poss(Fσ1(SN), SN). (3.195)

From (3.194) and Definition 3.5.3, it follows that σ1(0) � SN . This and Definition

3.2.6 give us two cases. In the case where σ1(0) = SN , it trivially follows that

∃n. σ1(n) = SN . In the case where σ1(0) ≺ SN , from (3.191), the assumption for

this case that σ1(0) strictly precedes SN , (3.194), and Lemma 3.5.53, it follows that

∃n. σ1(n) = SN . Thus, for both these cases, we have that there is a n, say N1, s.t.:

σ1(N1) = SN . (3.196)

223

Then from this and (3.193), it follows that there is an action AN s.t.:

σ1(N1 + 1) = do(AN , SN), and (3.197)

Poss(AN , SN). (3.198)

From (3.196), (3.197), and the definition of Fσ1 , it follows that:

Fσ1(SN) = AN .

Finally, from this and (3.198), we have Poss(Fσ1(SN), SN); but this is contradictory to

(3.195). Thus, we have:

Executable(Fσ1 , σ1(0)). (3.199)

From this and Axiom 3.5.2(ii), it follows that there is a path P1 such that:

Starts(P1, σ1(0)), and (3.200)

∀s. OnPathASF(Fσ1 , σ1(0), s) ≡ OnPath(P1, s). (3.201)

Now, we need to show that Matches(P1, σ1). By Definition 3.5.54, this amounts to

showing that:

(a). PathSeq(σ1), and

(b). σ1(0) = s ≡ Starts(P1, s) and

(c). ∀n, s. [σ1(n) = s ∧ OnPath(P1, s) ⊃

∀a. (σ1(n+ 1) = do(a, s) ≡ OnPath(P1, do(a, s)))].

224

(a) follows from the antecedent, i.e. (3.191). (b) follows from (3.200) and the unique-

ness of starting situations of paths, i.e. Proposition 3.5.37(b). For (c), fix N̂1 and Ŝ1

and assume that:

σ1(N̂1) = Ŝ1, and (3.202)

OnPath(P1, Ŝ1). (3.203)

For the (⊃) direction, fix Â1 and assume that:

σ1(N̂1 + 1) = do(Â1, Ŝ1). (3.204)

From (3.203) and (3.201), it follows that:

OnPathASF(Fσ1 , σ1(0), Ŝ1).

From this and Definition 3.5.3, we have:

∀a, s. σ1(0) ≺ do(a, s) � Ŝ1 ⊃ Fσ1(s) = a. (3.205)

From (3.202), (3.204), and the definition of Fσ1 , we have:

Fσ1(Ŝ1) = Â1. (3.206)

Now, suppose ¬OnPath(P1, do(Â1, Ŝ1)). Then by (3.201), we have:

¬OnPathASF(Fσ1 , σ1(0), do(Â1, Ŝ1)). (3.207)

225

From Lemma 3.5.51, (3.191), and the fact that 0 < N̂1 + 1, we have σ1(0) ≺ σ1(N̂1 +

1). From this and (3.204), we have:

σ1(0) ≺ do(Â1, Ŝ1).

From this, (3.207), and Definition 3.5.3, we have:

∃a, s. σ1(0) ≺ do(a, s) � do(Â1, Ŝ1) ∧ ¬Fσ1(s) = a.

From this and (3.205), it follows that ¬(Fσ1(Ŝ1) = Â1); but this is contradictory to

(3.206).

For the (⊂) direction, fix Â2 and assume that:

OnPath(P1, do(Â2, Ŝ1)). (3.208)

From (3.191) and Definition 3.5.50, it follows that there is an action, say Â3, s.t.:

σ1(N̂1 + 1) = do(Â3, σ1(N̂1)). (3.209)

I will show that Â2 = Â3. From (3.209) and (3.202), it follows that:

σ1(N̂1 + 1) = do(Â3, Ŝ1). (3.210)

From (3.208) and (3.201), we have:

OnPathASF(Fσ1 , σ1(0), do(Â2, Ŝ1)).

226

From this and Definition 3.5.3, we have Fσ1(Ŝ1) = Â2. Finally from this, (3.202),

(3.210), and the definition of Fσ1 , we have Â2 = Â3. Thus from this and (3.210), it

follows that σ1(N̂1 + 1) = do(Â2, Ŝ1).

Note that my soundness result implies that for any path p, there is a countably

infinite number of distinct situations on p: as shown above, p corresponds to a path

sequence, and situations along a path sequence are strict successors to each other; this

along with Lemmata 3.5.19, 3.5.20, and 3.5.23 imply that these situations are distinct.

An alternative way to show that there is a countably infinite number of situations on a

path p is to show that (a) there is a situation on p, that (b) for every situation s on p,

there is a successor situation do(a, s) that is also on p, and that (c) these situations are

distinct. (a) follows from Definition 3.5.1 and Proposition 3.5.37(a), while (b) follows

from Proposition 3.5.38. Finally, (c) follows from Lemmata 3.5.19, 3.5.20, and 3.5.23.

3.5.5 Related Work

I have already discussed the work most closely related to my paths at the beginning

of this section. Beyond this, there is some work that deals with the temporal aspects

of situations, i.e. the starting time of situations and action durations [165, 177], but

not temporally extended paths. Another set of approaches introduces some notion of

paths while addressing some application of paths and shows how various temporal

227

logic formulae can be interpreted over such paths. Gabaldon [85] was the first to

introduce statements of temporal logic (LTL) into the situation calculus. He used these

to express search control knowledge for forward-chaining planning. However, he only

considers finite paths defined by pairs of situations. Fritz and McIlraith [84] show

how an extended version of LTL interpreted over a finite horizon can be compiled into

ConGolog [51].

Claßsen and Lakemeyer [32] developed a second-order modal logic inspired by

CTL∗ and dynamic logic to express properties about (possibly) non-terminating Con-

Golog programs. The authors define infinite “traces” using program configurations.

A configuration is a pair (δ, z), where δ is a ConGolog program that remains to be

executed and z is a sequence of actions that have been already performed. Given z and

world w, they define infinite execution traces of δ as infinite sequences of configura-

tions, s.t. the ending configuration of any finite prefix of the sequence can be reached

from the initial configuration (δ, z) and w. Note that, a key difference between this

work and my formalization is that while I define paths axiomatically in the situation

calculus, they define a modal logic on top of the situation calculus that allows temporal

properties over execution of programs to be expressed and the semantics of programs

is part of the model theoretic semantics of the logic. For the CTL-like fragment of the

language, the authors also propose a verification method based on fixpoint approxima-

228

tion and “characteristic graphs”, which can finitely represent a ConGolog program’s

configuration graph; the method is sound but incomplete.

[56] uses a first-order version of the µ-calculus [65] to specify properties of non-

terminating Golog [140] programs. The µ-calculus is a very expressive temporal logic

that provides least and greatest fixpoints. Interestingly, the semantics of the µ-calculus

operators can be defined without referring explicitly to infinite paths. In the proposi-

tional case, it is well known that the µ-calculus subsumes LTL as well as CTL∗[111, 5],

although translating a CTL∗ formula often results in a much less readable µ-calculus

formula. However, in the first-order case (when quantification over objects across

situations is allowed), the µ-calculus does not subsume LTL (and thus CTL∗), a conse-

quence of results shown in [28]. Thus, my situation calculus with infinite paths, which

can be used to define first-order LTL and CTL∗ over situation calculus theories, can

express properties that cannot be expressed in first-order µ-calculus over such theories.

3.6 The ConGolog Agent Programming Language

I now outline the logic programming language ConGolog [51], the concurrent version

of Golog [140], which will be used to define the semantics of the Simple Rational

Agent Programming Language (SR-APL) in Chapter 7. Within SR-APL, I also specify

the agents’ plans using the notation of ConGolog.

229

The ConGolog programming language provides an alternative to AI planning by

looking instead at the problem of high-level program execution. Instead of looking for

a legal sequence of actions to achieve some goal, the ConGolog interpreter searches

for a legal sequence of actions that amount to a legal execution of some high-level

non-deterministic program, one that specifies the agent’s behavior. The more abstract

the program is, the more it resembles traditional planning. But a ConGolog program

can encode search control knowledge. The formalism differs from other concurrent

procedural languages in that the initial state can be incompletely specified. As well,

primitive actions can be user defined, to be specific, by axioms in the situation calculus,

thus allowing these actions to affect the environment in complex ways. Finally, it

also incorporates a rich notion of concurrency, contributing to a level of procedural

complexity that hasn’t been addressed before (e.g. those arising from the interaction

between prioritized concurrency and recursive procedures).

A typical ConGolog program is composed of a sequence of procedure declarations,

followed by a complex action. Complex actions can be composed using constructs

given in Table 3.1. Here a denotes a situation calculus primitive action, φ denotes a

situation calculus formula with the situation argument of its fluents suppressed, δ, δ1,

and δ2 stand for complex actions, ~x is a set of variables, β is a procedure name, and

~p denotes the actual parameters to the procedure. Most of these constructs are self-

230

a, primitive action

φ?, wait for a condition

(δ1; δ2), sequence

(δ1 | δ2), nondeterministic choice between actions

πx. δ, nondeterministic choice of arguments

δ∗, nondeterministic iteration

if φ then δ1 else δ2, conditional

while φ do δ, while loop

(δ1‖δ2), concurrency with equal priority

(δ1〉〉δ2), concurrency with different priorities

〈~x : φ→ δ〉, interrupt

δ‖, concurrent iteration

β(~p), procedure call

Table 3.1: Some ConGolog Constructs

explanatory. Intuitively, πx.δ nondeterministically picks a binding for the variable

x and performs the program δ for this binding of x. The interrupt construct works

as follows: whenever φ becomes true for some binding of ~x, δ is executed with this

binding; after this, the interrupt can fire again. The syntax of procedures is as follows:

231

proc β(~y)δ, where β is the procedure name, ~y denotes the formal parameters to the

procedure, and δ is a complex action.

For example, consider the simple program to clear a table in a blocks world:

{proc removeABlock

πb. [OnTable(b, now)?; pickUp(b); putAway(b)]

end;

removeABlock∗;¬∃b. OnTable(b, now)?}

Here, first a procedure is defined to remove a block from the table using the non-

deterministic choice of argument operator π. The wait action OnTable(b, now)? suc-

ceeds only if the chosen argument b is a block that is on the table in the current situa-

tion. The main part of the program uses the non-deterministic iteration operator, and

says to execute the removeABlock program zero or more times until the table is clear.

The semantics of ConGolog programs are defined using structural operational se-

mantics [168], which is based on transitions. A transition is a “single step” of com-

putation, i.e. a primitive action. To this end, two special predicates are introduced,

Final and Trans, where Final(δ, s) means that program δ may legally terminate in sit-

uation s, and where Trans(δ, s, δ′, s′) means that program δ in situation s may legally

execute one step, ending in situation s′ with program δ′ remaining. Trans and Final

232

are characterized by giving equivalence axioms for each of the above constructs of

ConGolog.20

In the following, I give axioms only for the program constructs that I will be using

in SR-APL; see [51] for the complete axiomatization of Trans and Final. Also, for test

actions φ?, I use the alternate semantics provided in [54] as it simplifies the operational

semantics of SR-APL. The axioms ΓF for Final are as follows (here, the construct nil

denotes the ‘empty’ program that terminates immediately):

Axiom 3.6.1.

ΓF1 . Final(nil, s) ≡ True,

ΓF2 . Final(a, s) ≡ False,

ΓF3 . Final(φ?, s) ≡ φ(s),

ΓF4 . Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s),

ΓF5 . Final(πx. δ, s) ≡ ∃x. Final(δ, s),

ΓF6 . Final(δ∗, s) ≡ True,

ΓF7 . Final([δ1 ‖ δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s).

Thus, these axioms define whether the program can be considered to be already in a

legally terminated state in the given situation. For example, axiom ΓF4 says that the

20However, note that De Giacomo et al. defined interrupts in terms of other constructs; see [51] for
details.

233

program that involves a sequential composition [δ1; δ2] can be considered completed

in situation s if both δ1 and δ2 are final/completed in s.

The axioms ΓT characterizing Trans are as follows:

Axiom 3.6.2.

ΓT1 . Trans(nil, s, δ′, s′) ≡ False,

ΓT2 . Trans(a, s, δ′, s′) ≡ Poss(a, s) ∧ δ′ = nil ∧ s′ = do(a, s),

ΓT3 . Trans(φ?, s, δ′, s′) ≡ False,

ΓT4 . Trans([δ1; δ2], s, δ′, s′) ≡ ∃δ′1. (δ′ = [δ′1; δ2] ∧ Trans(δ1, s, δ
′
1, s
′))

∨ Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′),

ΓT5 . Trans(πx.δ, s, δ′, s′) ≡ ∃x. Trans(δ, s, δ′, s′),

ΓT6 . Trans(δ∗, s, δ′, s′) ≡ ∃δ′1. δ′ = (δ′1; δ∗) ∧ Trans(δ, s, δ′1, s
′),

ΓT7 . Trans([δ1 ‖ δ2], s, δ′, s′) ≡ ∃δ′1. (δ′ = [δ′1 ‖ δ2] ∧ Trans(δ1, s, δ
′
1, s
′)),

∨ ∃δ′2. (δ′ = [δ1 ‖ δ′2] ∧ Trans(δ2, s, δ
′
2, s
′)).

These axioms thus specify when a configuration (δ, s) with a program δ remaining in

situation s can evolve in a single step to a configuration (δ′, s′). For example, axiom

ΓT2 says that a program involving a primitive action a in a situation s can make a

transition to (nil, do(a, s)), provided that a is possible in s. After having performed

a, nothing remains to be performed. ΓT4 states that a program that is composed of

234

a sequence [δ1; δ2] in s can evolve to the configuration ([δ′1; δ2], s′), provided that the

program δ1 in s can evolve to the program δ′1 in s′. Moreover, this sequential com-

position can also evolve to the configuration (δ′, s′), provided that (δ1, s) is a final

configuration, and the program δ2 in s can evolve to the program δ′ in s′.

The overall semantics of a ConGolog program is specified by the Do predicate,

which is defined as follows:

Definition 3.6.3.

Do(δ, s, s′)
def
= ∃δ′. (Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)),

where Trans∗ is the reflexive transitive closure of the transition relation Trans, which

can be defined using the following second-order situation calculus formula:

Definition 3.6.4.

Trans∗(δ, s, δ′, s′) def
=

∀T. [∀δ1, s1. T (δ1, s1, δ1, s1) ∧

∀δ1, s1, δ2, s2, δ3, s3. (Trans(δ1, s1, δ2, s2) ∧ T (δ2, s2, δ3, s3) ⊃ T (δ1, s1, δ3, s3))]

⊃ T (δ, s, δ′, s′).

Thus Do(δ, s, s′) holds if and only if s′ can be reached by performing a sequence of

transitions starting with the program δ in s, and the remaining program δ′ may legally

terminate in s′.

235

In [51], De Giacomo et al. showed that the axioms for Trans and Final are defi-

nitional in the sense that the whole of ConGolog completely characterize Trans and

Final for programs without procedures. Thus, these predicates can be eliminated. To

give the semantics of ConGolog programs with procedures, De Giacomo et al. relied

on second-order definitions of Trans and Final. The reason for this is that since a

recursive procedure may do an arbitrary number of procedure calls before it actually

performs a primitive action, and since calling procedures does not involve transitions,

it is impossible to give first-order equivalence axioms for them. However, they showed

that under certain conditions, namely for guarded configurations,21 the second-order

definitions for Trans and Final that is required to handle recursive procedure calls, can

be replaced by first-order axioms. See [51] for the details of these.

3.7 Conclusion

In this chapter, I introduced the situation calculus and action theories. I discussed pre-

vious work on the formalization of knowledge and its dynamics. I then laid the founda-

tions for the semantics of prioritized goals by introducing infinite paths in the situation

calculus, giving an axiomatization of infinite paths, and proving some properties of

21A configuration (δ, s) is guarded if and only if for some n, δ makes at most n recursive procedure
calls before trying to make an actual program step, i.e. an atomic action. See [51] for a formal definition.

236

this axiomatization. I will use some of these properties in the proofs of theorems in

future chapters. My formalization of infinite paths is relevant for any account of tem-

poral properties or motivational attitudes (which require the former) in the situation

calculus. My account of infinite paths is more general than Shapiro’s account of finite

paths [194]. Moreover, it allows quantification over paths and thus is simpler to use

than the one proposed by Lespérance et al. [134]. I also discussed the ConGolog agent

programming language. The semantics of my agent programming language SR-APL

is based on that of ConGolog.

237

Chapter 4

A Formalization of Prioritized Goals for Optimizing

Agents

4.1 Introduction

Not all of the agent’s goals are equally important to her. For example, ensuring that

the spacecraft does not explode should in principle be much more important than any

other goal that a space agent may have – she must not sacrifice this goal to achieve any

number of lower priority goals.22 Thus, it is useful to support a priority ordering over

goals. This information can be used to decide which of the agent’s intentions should

no longer be actively pursued in case they become mutually inconsistent.

An agent’s goals must properly evolve when an action/event occurs, when the

22This example is borrowed from [187].

238

agent’s beliefs/knowledge changes, or when a goal is adopted or dropped. Such changes

in the agent’s goals must be consistent with her knowledge about the world she lives

in. For example, the agent should drop an existing goal if she learns that it has been

brought about or that it has become impossible to achieve. As discussed in Chapter 2,

most work on formalizing goals (e.g., [35, 181, 124, 213, 198, 247, 187, 235]) only

deals with static goal semantics and not their dynamics. Those that handle goal dynam-

ics mostly provide a syntactic formalization of goal change, which usually amounts to

adding or deleting primitive facts from a goal-base (e.g., [234, 44, 43]). Such for-

malizations can only capture limited types of temporally extended goals (in particular,

most deal with achievement goals exclusively).23 Moreover, their properties are often

not well understood. Finally, these frameworks do not maintain the consistency of

intended goals.

In this chapter, I formalize goals with different priorities using a new indexed set

of accessibility relations G. I call these goals prioritized goals or p-goals. Prioritized

goals in my framework are analogous to desires and need not be actively pursued by

the agent. As such, they are not required to be consistent with the agent’s knowledge

or with each-other. In terms of these, I define the consistent set of chosen goals or

intentions (c-goals, henceforth) that the agent is committed to realize. I then formalize

23See Section 4.6 for a discussion on recent work that attempts to handle one or more of these limi-
tations.

239

p-goal dynamics by giving a successor-state axiom for G that is affected by, among

other things, two special actions, adopt and drop. A regular (non-adopt/drop) action

causes an agent to temporally progress all her goals to reflect the fact that this action

has happened. As we will see later, this may render some of her goals impossible to

bring about and may make other goals inconsistent with others. On the other hand, an

adopt action causes an agent to adopt a new prioritized goal at some specified priority

level, while a drop action causes an agent to drop an existing goal from all levels of

her goal hierarchy. Since an agent’s c-goals are specified in terms of her p-goals, they

are automatically updated when her p-goals are revised. I show that agents specified in

this framework always try to optimize their chosen goals – they will drop an intended

c-goal φ whenever an opportunity to commit to a higher priority (but inconsistent with

φ) goal arise. I then consider some basic properties of my axiomatization: consistency

and realism [35]. I also discuss some properties w.r.t. goal change. In particular, I show

that adopting a new goal and dropping an existing goal has the desired effects. Also, I

identify the restrictions on G that give us positive and negative introspection of goals,

and show that if these restrictions are asserted of the initial situations, they persist

after any sequence of actions is performed, as they are preserved by the successor-

state axiom for G. I then identify the conditions under which an agent’s achievement

p-goals and achievement c-goals persist. Finally, I discuss an example to illustrate the

240

proposed formalization.

4.2 Prioritized Goals

I specify each p-goal of an agent by its own accessibility relation/fluent G. For a

given priority level n, the G relation is specified as a relation on an infinite path p

representing a possible evolution of the world and a situation s which stands for the

current world. Intuitively, a path p is G-accessible at priority level n in situation s,

denoted byG(p, n, s), if the goal of the agent at priority level n in situation s is satisfied

over path p and if p starts with a situation that has the same action history as s. The

latter requirement ensures that the agent’s p-goal accessible paths reflect the actions

that have been performed so far.24 I use a reverse priority ordering on goals – a smaller

n represents higher priority, and the highest priority level is 0. Also, I assume that the

set of p-goals are totally ordered according to priority. Thus given a priority level, the

agent can have only one goal at that level, possibly a complex one, e.g., a conjunctive

goal. While some authors contend that this is too strong an assumption for a realistic

agent, it could be argued that a strict order is necessary for any resource-bounded

agent. I will come back to this issue in Section 4.6.

24Since the agent’s goals are future oriented, they should be evaluated w.r.t. paths that are consistent
with the actions that have been performed in the actual world. The requirement that a G-accessible path
starts with a situation that has the same history as the actual current situation enforces this.

241

I say that an agent has the p-goal that φ at level n in situation s if φ holds over all

paths that are G-accessible at n in s.

Definition 4.2.1.

PGoal(φ, n, s) def
= ∀p. G(p, n, s) ⊃ φ(p).

Note that for a given priority level, the PGoal construct can be used to talk about parts

(or logical consequences) of the goal at that level, and thus an agent might have many

PGoals at some level.

I also define the OPGoal(φ, n, s) predicate which holds when φ corresponds ex-

actly to the agent’s goal at priority level n in situation s, i.e. her only p-goal at level n

in s.

Definition 4.2.2.

OPGoal(φ, n, s) def
= PGoal(φ, n, s) ∧ (∀p. φ(p) ⊃ G(p, n, s)).

An agent has the only p-goal that φ at level n in situation s if φ is a p-goal at n in s,

and any path over which φ holds is G-accessible at n in s.

I allow the agent to have infinitely many goals. I expect the modeler to include

some specification of what paths are G accessible at the various levels initially. I call

these axioms initial goal axioms. In many cases, the user will want to specify a finite

set of initial p-goals. This can be done by providing a set of axioms as in the example

242

below. But in general, an agent can have a countably infinite set of p-goals, e.g., an

agent that has the p-goal at level n to know what the n-th prime number is for all n.

The agent’s set of p-goals can even be incompletely specified, e.g., the theory might

not specify what the p-goals at some level are initially.

The following example illustrates how we can specify the initial p-goals of an

agent. We have an agent who initially has the following three p-goals: φ0 = 2BeRich,

φ1 = 3GetPhD, and φ2 = 2BeHappy at level 0, 1, and 2, respectively. This domain

can be specified using the following two initial goal axioms:

(a) Init(s) ⊃ ((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ φ0(p))

∧ (G(p, 1, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ φ1(p))

∧ (G(p, 2, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ φ2(p))),

(b) Init(s) ∧ n ≥ 3 ⊃ (G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′)).

(a) specifies the p-goals φ0, φ1, φ2 (from highest to lowest priority) of the agent in the

initial situations, and makes G(p, n, s) true for every path p that starts with an initial

situation and over which φn holds, for n = 0, 1, 2; each of them defines a set of initial

goal paths for a given priority level, and must be consistent. (b) makes G(p, n, s) true

for every path p that starts with an initial situation for n ≥ 3. Thus at these levels, the

agent has the trivial p-goal that she be in an initial situation. Given this axiomatization,

243

it can be shown that in my example, I have the following:25

Proposition 4.2.3.

(i). For n = 0, 1, 2, ΣP ∪ {(a)} |= OPGoal(φn ∧ ∃s. Starts(s) ∧ Init(s), n, S0),

(ii). For n ≥ 3, ΣP ∪ {(b)} |= OPGoal(∃s. Starts(s) ∧ Init(s), n, S0).

Recall that the paths in a G accessibility relation are the ones that the agent wants

to actualize independently of what she knows. While p-goals or desires are allowed

to be known to be impossible to bring about, an agent’s c-goals or intentions must be

compatible with what she knows [35]. Not all of the G-accessible paths are realistic

in the sense that they start with a K-accessible situation. To filter these out, I define

realistic p-goal accessible paths GR:

Definition 4.2.4.

GR(p, n, s)
def
= G(p, n, s) ∧ ∃s′. Starts(p, s′) ∧K(s′, s).

Thus a path p is GR-accessible at level n in situation s if it is G-accessible at n in s,

and if p starts with a situation that is K-related to s. The GR relation prunes out the

paths from the G relation that are known to be impossible, and since I define c-goals

in terms of GR, this ensures that agents’ c-goals are realistic. I say that an agent has

25Here, ΣP is an abbreviation for Σ ∪ Dpath.

244

the realistic p-goal that φ at level n in situation s if φ holds over all paths that are

GR-accessible at n in s.

Definition 4.2.5.

RPGoal(φ, n, s) def
= ∀p. GR(p, n, s) ⊃ φ(p).

In our example, assume that initially the agent knows that all of her p-goals are

individually possible:

(c). ∀n. ∃p. GR(p, n, S0).

Given this, it can be shown that the agent’s realistic p-goals in the initial situation S0

are 2BeRich, 3GetPhD, and 2BeHappy in order of priority:26

Proposition 4.2.6.

ΣP
K ∪ {(a)} |= RPGoal(2BeRich, 0, S0) ∧ RPGoal(3GetPhD, 1, S0)

∧ RPGoal(2BeHappy, 2, S0).

Using realistic p-goals, I next define c-goals. The idea of how I specify c-goal

accessible paths is as follows. The set of GR-accessibility relations represents a set of

prioritized temporal formulae that are candidates for the agent’s c-goals. Given GR,

26Here ΣP
K is an abbreviation for Σ ∪ Dknow ∪ Dpath. Also, note that we don’t need to use Axiom

(c) to prove this proposition – if e.g., 2BeRich is initially known to be impossible, then by Definitions
4.2.4 and 4.2.5, the agent trivially has the realistic p-goal that 2BeRich at level 0, as in that case her set
of GR-accessible paths at level 0 is empty (and similarly for 3GetPhD and 2BeHappy).

245

in each situation I want the agent’s c-goals to be the maximal consistent set of her

higher priority realistic p-goals in that situation. I formalize this iteratively starting

with the set of all realistic paths, i.e. paths that start with K-accessible situations. At

each iteration i, I take the intersection of this set with the next highest priority set of

GR-accessible paths. If the intersection is not empty, I thus obtain a new chosen set

of paths at level i. I call p-goals chosen by this process active p-goals. If on the other

hand the intersection is empty, then it must be the case that a p-goal at this level is

either in conflict with another active higher priority p-goal/a combination of two or

more active higher priority p-goals, or is known to be impossible. In that case, all the

p-goals at that level are ignored (i.e. marked as inactive), and the chosen set of paths

at level i is the same as at level i − 1. To get the intersection of the first n priority

levels, I repeat this until I reach i = n. Axiom 4.2.7 specifies this intersection (here

if φ then φa else φb is an abbreviation for (φ ⊃ φa) ∧ (¬φ ⊃ φb)):

246

Axiom 4.2.7.

G∩(p, n, s) ≡ if (n = 0) then

if ∃p′. GR(p′, n, s) then GR(p, n, s)

else ∃s′. Starts(p, s′) ∧K(s′, s)

else

if ∃p′.(GR(p′, n, s) ∧G∩(p′, n− 1, s))

then (GR(p, n, s) ∧G∩(p, n− 1, s))

else G∩(p, n− 1, s).

In the above axiom, G∩(p, n, s) denotes that path p is in the intersection of the set of

realistic paths in situation s up to level n. It has two cases, each with two sub-cases.

The base iteration, when n = 0, specifies G∩ in terms of the highest priority GR-

accessible paths. If the highest priority goal is realistic, i.e. there is a GR-accessible

path at level 0 in situation s, then the G∩ relation at level 0 in s consist of the paths that

are GR-accessible at level 0 in s, i.e. G∩(p, 0, s) ≡ GR(p, 0, s). Otherwise, G∩ at 0 in

s is specified to include all realistic paths in s, i.e. those that start with a K-accessible

situation in s, and thusG∩(p, 0, s) ≡ ∃s′. Starts(p, s′)∧K(s′, s). For each n s.t. n > 0,

the G∩ relation at level n in situation s is specified to be the prioritized intersection of

the GR relation at the first n priority levels (giving priority to the most important goals

247

– the ones with lower n’s – while maintaining consistency). If there is a path that is

GR-accessible at level n in s and that is in the intersection of the first n − 1 priority

levels (i.e. G∩ at level n − 1 in s), then this intersection includes all such paths, i.e.

G∩(p, n, s) ≡ GR(p, n, s) ∧ G∩(p, n − 1, s). Otherwise it is the same as that of the

intersection of the first n− 1 priority levels, i.e. G∩(p, n, s) ≡ G∩(p, n− 1, s).

Using this, I define what it means for an agent to have a c-goal at some level n as

follows:

Definition 4.2.8.

CGoal(φ, n, s) def
= ∀p. G∩(p, n, s) ⊃ φ(p).

Thus an agent has the c-goal at level n in situation s that φ if φ holds over all paths

that are in the prioritized intersection of the set of GR-accessible paths up to level n in

situation s.

I define c-goal accessible paths in terms of c-goal accessible paths at level n:

Definition 4.2.9.

G∩(p, s)
def
= ∀n. G∩(p, n, s).

Thus a path is c-goal accessible in situation s if for all levels n, it is c-goal accessible

at n in s. Using this, I define c-goals as follows:

248

Definition 4.2.10.

CGoal(φ, s) def
= ∀p. G∩(p, s) ⊃ φ(p).

That is, the agent has the c-goal that φ in situation s if φ holds over all of her G∩-

accessible paths in s. Note that, by Axiom 4.2.7 and Definitions 4.2.9 and 4.2.10, a

lower priority realistic goal is added as a c-goal only if it is consistent with the higher

priority goals that are already chosen as c-goals. In Proposition 4.4.5 below, I formally

show that an agent’s chosen lower priority goals must be consistent with higher priority

ones. Thus, an agent’s set of c-goals in some situation is the maximal consistent set of

her higher priority realistic p-goals in that situation.

Returning to our example, assume that the agent knows that her p-goal to eventu-

ally get a Ph.D. is inconsistent with her highest priority p-goal of always being rich as

well as with her p-goal of always being happy, while the latter are consistent with each

other:

(d). ¬(∃p. GR(p, 0, S0) ∧GR(p, 1, S0)) ∧ ¬(∃p. GR(p, 1, S0) ∧GR(p, 2, S0))

∧ (∃p. GR(p, 0, S0) ∧GR(p, 2, S0)).

Then it can be shown that initially our example agent has the c-goals that 2BeRich

and 2BeHappy, but not 3GetPhD:

249

Proposition 4.2.11.

ΣP
K ∪ {Axiom 4.2.7, (a)–(d)} |= CGoal(2BeRich ∧2BeHappy, S0)

∧ ¬CGoal(3GetPhD, S0).

Proof Sketch. According to Axiom 4.2.7, the G∩-accessible paths at level 0 in S0 are

the ones that start with a K-accessible situation in S0 and where 2BeRich holds, since

by Axiom (a) the agent initially has the p-goal that she be in an initial situation and

that 2BeRich at level 0, and by Axiom (c) 2BeRich is initially possible, i.e., there is

a GR-accessible path over which 2BeRich holds. Moreover, the G∩-accessible paths

at level 1 in S0 are the same as at level 0, since by Axiom (d) there is no realistic path

over which both3GetPhD and 2BeRich hold. Again, the G∩-accessible paths at level

2 in S0 are those that start with a K-accessible situation and over which 2BeRich ∧

2BeHappy holds, as by Axiom (a) the agent initially has the p-goal that she be in an

initial situation and that 2BeHappy at level 2, by Axiom (c) 2BeHappy is initially

known to be possible, and by Axiom (d) 2BeRich and 2BeHappy are initially known

to be mutually consistent. Finally, the G∩-accessible paths at any level greater than

2 in S0 are the same as level 2 since by Axiom (b), any G∩-accessible path at level

2 is also GR-accessible at these levels. The proposition thus follows from this and

Definitions 4.2.9 and 4.2.10.

250

Note that according to this definition of c-goals, the agent can have a c-goal that

φ in situation s for various reasons. First of all, φ might be known to be inevitable

in s, i.e. φ might hold over all paths that start with a knowledge-accessible situation

(and thus over all GR-accessible paths) in s. Secondly, φ might be an active p-goal

at some level n in s. Finally, φ might be a consequence of two or more active p-

goals at different levels in s.27 To be able to refer to c-goals for which the agent has

a primitive motivation, i.e. c-goals that result from a single only p-goal at some active

priority level n, in contrast to those that are known to be inevitable or those that hold

as a consequence of two or more active p-goals at different priority levels, I define the

notion of primary c-goals:

Definition 4.2.12.

PrimCGoal(φ, s) def
= ∃n. PGoal(φ, n, s) ∧ ∃p. G(p, n, s) ∧G∩(p, n, s).

An agent has the primary c-goal that φ in situation s, if φ is a p-goal at some level n in

s, and there is a G-accessible path p at n in s that is also in the prioritized intersection

of GR-accessible paths up to n in s. The conjunct ∃p. G(p, n, s) ∧ G∩(p, n, s) is

required to ensure that n is indeed an active level, since having a p-goal that φ does not

necessarily imply that the agent has the c-goal that φ. Also, while one might be tempted

27By Axiom 4.2.7 and Definitions 4.2.9 and 4.2.10, agents’ c-goals are closed under logical conse-
quence.

251

to define primary c-goals as ∃n. PGoal(φ, n, s)∧CGoal(φ, s), this is inadequate since

it does not guarantee that the agent choose φ due to the presence of her p-goal that φ at

level n. For example, it might be the case that there is noGR-accessible path p at n that

is in G∩(p, n, s) – this might happen if another p-goal at level n becomes impossible

or becomes inconsistent with higher priority active goals – and that the agent choose

φ as a consequence of other chosen G-accessibility levels. As well, defining primary

c-goals as ∃n. OPGoal(φ, n, s) ∧ CGoal(φ, s) is also problematic, since it only allows

some of the p-goals of the agent, namely the only p-goals, to be her primary c-goals.

Thus if an agent has a primary c-goal that φ, then she also has the c-goal that φ,

but not necessarily vice-versa. It can be shown that initially our example agent has the

primary c-goals that 2BeRich and 2BeHappy, but not their conjunction:

Proposition 4.2.13.

ΣP
K ∪ {Axiom 4.2.7, (a)–(d)} |= PrimCGoal(2BeRich, S0)

∧ PrimCGoal(2BeHappy, S0) ∧ ¬PrimCGoal(2BeRich ∧2BeHappy, S0).

To some extent, this shows that primary c-goals are not closed under logical conse-

quence. In this sense, my formalization of primary c-goals is related to the non-normal

modal formalizations of intentions found in the literature [124], and as such it does not

suffer from the “side-effect problem” discussed in Chapter 2. To borrow an example

252

from [35], in this framework an agent can have the primary c-goal to get her teeth fixed

and know that this always involves pain, but not have the primary c-goal to have pain.

I also define a useful version of PrimCGoal, PrimCGoal(φ, n, s), that makes ex-

plicit the level n where φ is a primitive chosen goal:

Definition 4.2.14.

PrimCGoal(φ, n, s) def
= PGoal(φ, n, s) ∧ ∃p. G(p, n, s) ∧G∩(p, n, s).

4.3 Goal Dynamics

An agent’s goals change when her knowledge changes as a result of the occurrence of

an action (including exogenous actions/events), or when she adopts or drops a goal.

I formalize this by specifying how an agent’s p-goals change. Her c-goals are then

obtained using (realistic) p-goals in every new situation as above.

I introduce two actions for adopting and dropping a p-goal, adopt(φ, n) and drop(φ).

The action precondition axioms for these are as follows. An agent can adopt the p-goal

that φ at level n in situation s if she does not already have φ as her p-goal at some level

n′ in s:

Axiom 4.3.1.

Poss(adopt(φ, n), s) ≡ ¬∃n′. PGoal(φ, n′, s).

253

An agent can drop the p-goal that φ in situation s if she has the p-goal that φ at some

level n in s:

Axiom 4.3.2.

Poss(drop(φ), s) ≡ ∃n. PGoal(φ, n, s).

I also assume the availability of unique names axioms for adopt and drop as in axiom

schemata 3.3.2 and 3.3.3.

In the following, I specify the dynamics of p-goals by giving a successor-state

axiom for the G relation, and then discuss each case, one at a time:

Axiom 4.3.3 (SSA for G).

G(p, n, do(a, s)) ≡

∀φ,m. (a 6= adopt(φ,m) ∧ a 6= drop(φ) ∧ Progressed(p, n, a, s)) ∨

∃φ,m. (a = adopt(φ,m) ∧ Adopted(p, n,m, a, s, φ)) ∨

∃φ. (a = drop(φ) ∧ Dropped(p, n, a, s, φ)).

The overall idea of the successor-state axiom for G is as follows. First of all, to handle

the occurrence of a non-adopt/drop (i.e. a regular) action a, I progress all G-accessible

paths at all levels to reflect the fact that this action has just happened; this is done

using the Progressed(p, n, a, s) construct, which replaces each G-accessible path p′

254

with starting situation s′ at level n in situation s, by its suffix p provided that it starts

with do(a, s′):

Definition 4.3.4.

Progressed(p, n, a, s)
def
= ∃p′, s′. G(p′, n, s) ∧ Starts(p′, s′) ∧ Suffix(p, p′, do(a, s′)).

Any path over which the next action performed is not a is eliminated from the G-

accessibility level being considered.

Secondly, to handle the adoption of a p-goal φ at level m, I insert a new temporal

goal that φ to the agent’s goal hierarchy at m by modifying the G-relation in the fol-

lowing manner. The G-accessible paths at all levels above m are progressed as above.

The G-accessible paths at level m are the ones that starts with a situation that share

the same history with do(a, s) and over which φ holds. The G-accessible paths at all

levels below m are the ones that can be obtained by progressing the level immediately

above it. Thus the agent acquires the p-goal that φ at level m, and all the p-goals with

priority m or less in s are pushed down one level in the hierarchy.

255

Definition 4.3.5.

Adopted(p, n,m, a, s, φ)
def
=

if (n < m) then Progressed(p, n, a, s)

else if (n = m) then ∃s′. Starts(p, s′) ∧ SameHist(s′, do(a, s)) ∧ φ(p)

else Progressed(p, n− 1, a, s).

Finally, to handle the dropping of a p-goal φ, I replace the temporal formulae that

imply the dropped goal in the agent’s goal hierarchy by the trivial proposition that the

history of actions in the current situation has occurred. Thus, in addition to progressing

all G-accessible paths as above, I add back all paths that share the same history with

do(a, s) to the existing G-accessibility levels where the agent has the p-goal that φ.

Definition 4.3.6.

Dropped(p, n, a, s, φ)
def
=

if PGoal(φ, n, s) then ∃s′. Starts(p, s′) ∧ SameHist(s′, do(a, s))

else Progressed(p, n, a, s).

In our example, recall that our agent has the c-goals/active p-goals in S0 that

2BeRich and 2BeHappy, but not 3GetPhD, since the latter is inconsistent with her

higher priority p-goal2BeRich. Assume that, after the exogenous event/action goBan-

krupt happens in S0, i.e. in S1 = do(goBankrupt, S0), the p-goal 2BeRich becomes

256

impossible while the other p-goals remain possible (assume that a BAT for this domain

implying this has been specified):

(e). ¬∃p. GR(p, 0, S1) ∧ ∃p′. GR(p′, 1, S1) ∧ ∃p′′. GR(p′′, 2, S1).

Then in S1, the agent has the c-goal that3GetPhD, but not2BeRich nor2BeHappy:28

Proposition 4.3.7.

ΣP
K ∪ {Axiom 4.2.7, Axioms 4.3.1–4.3.3, (a)–(e)} |= CGoal(3GetPhD, S1)

∧ ¬CGoal(2BeRich, S1) ∧ ¬CGoal(2BeHappy, S1).

2BeRich is excluded from the set of c-goals since by Axiom (e), it has become im-

possible to bring about (i.e. unrealistic). Also, since her higher priority active p-goal

of eventually getting a Ph.D. is inconsistent with her p-goal of always being happy in

S1,29 the agent will make 2BeHappy inactive.

Note that, while it might be reasonable to drop a p-goal (e.g., 3GetPhD) that is

in conflict with another higher priority active p-goal (e.g., 2BeRich in the initial sit-

uation), in my framework I keep such p-goals around. The reason for this is that

although 2BeRich is initially inconsistent with 3GetPhD, the agent might later learn

28In the following, I assume that unique names axioms for goBankrupt are given.
29Since by the unique name axioms, goBankrupt, adopt, and drop all refer to different actions,

from Axiom 4.3.3, it follows that after the goBankrupt action happens, all G-accessible paths at all
priority levels are simply progressed. This and Axiom (d) imply that the p-goals that 3GetPhD and
2BeHappy remain inconsistent in S1.

257

that 2BeRich has become impossible to bring about (e.g., after goBankrupt occurs),

and then might want to pursue 3GetPhD. Thus, it is useful to keep these inactive p-

goals since this allows the agent to optimize her chosen goals by taking advantage of

such opportunities. As mentioned earlier, c-goals are my analogue to intentions. Re-

call from Chapter 2 that Bratman’s [20] model of intentions limits the agent’s practical

reasoning – agents do not always optimize their utility and don’t always reconsider

all available options in order to allocate their reasoning effort wisely. In contrast to

this, my c-goals are defined in terms of the p-goals, and at every step, I ensure that the

agent optimizes her c-goals so that these are the set of highest priority goals that are

consistent given the agent’s knowledge. Thus, my notion of c-goal is not as persistent

as Bratman’s notion of intention. For instance as mentioned above, after the action

goBankrupt happens in S0, the agent will lose the c-goal that 2BeHappy, although

she did not drop it and it did not become impossible or achieved. In this sense, my

model is that of an idealized optimizing agent. There is a tradeoff between optimizing

the agent’s chosen set of prioritized goals and being committed to chosen goals. In

my framework, chosen goals behave like intentions with an automatic filter-override

mechanism [20] that forces the agent to drop her chosen goals when opportunities to

commit to other higher priority goals arise. In the future, it would be interesting to

develop a logical model that captures the pragmatics of intention reconsideration by

258

supporting control over it.

4.4 Properties

I now show that my formalization of prioritized goals for optimizing agents has some

desirable properties. Let DOAgt consist of Σ,Dknow,Dpath, and Axioms 4.2.7 and

4.3.1–4.3.3 and the associated definitions as in the two previous sections. Also, given

some situation s, let’s call a priority level n an active level if there is a G-accessible

path at level n in s that is also G∩-accessible up to n in s:

Definition 4.4.1.

ActiveLevel(n, s) def
= ∃p. G(p, n, s) ∧G∩(p, n, s).

4.4.1 Basic Properties

An agent’s chosen goals are consistent:

Proposition 4.4.2 (Consistency).

DOAgt |= ∀s. ¬CGoal(False, s).

Proof. (By contradiction) Fix situation S1 and assume that CGoal(False, S1). From

this and Definitions 4.2.9 and 4.2.10, we have ∀p, n. G∩(p, n, S1) ⊃ False(p). Fix

259

such an n, say n = 0. Thus we have: ∀p. G∩(p, 0, S1) ⊃ False(p). Since we are

dealing with possible worlds, this is only possible when ¬∃p. G∩(p, 0, S1). By Axiom

4.2.7, this follows only if there is no K-related situation in S1, or there is no path p s.t.

p starts with a K-related situation in S1, i.e.:

¬∃p, s. Starts(p, s) ∧K(s, S1). (4.1)

But the former is impossible since (as discussed in Chapter 3) by Axiom 3.4.2 and

3.4.10, the K relation is reflexive, and thus K(S1, S1). Also, by Lemmata 3.5.35 and

3.5.36, there is indeed a path that starts with S1. But this is contradictory to (4.1).

Thus, the agent cannot have both φ and ¬φ as c-goals in a situation s. Even if all of

the agent’s p-goals become known to be impossible, the set of c-goal accessible paths

will be precisely those that start with a K-accessible situation, and thus the agent will

only choose the formulae that are known to be inevitable.

I also have the property of realism [35], i.e. if an agent knows that something has

become inevitable, then she has this as a c-goal:

Proposition 4.4.3 (Realism).

DOAgt |= ∀s. KInevitable(φ, s) ⊃ CGoal(φ, s).

Proof. Fix S1 and φ1. It follows from the antecedent (i.e., that KInevitable(φ1, S1))

and Definitions 3.5.14, 3.5.12, and 3.4.5 that φ1 holds over all paths that starts with a

260

situation that is K-accessible in S1:

∀p, s. Starts(p, s) ∧K(s, S1) ⊃ φ1(p). (4.2)

Also, from Axiom 4.2.7 and by induction on n, it follows that:

∀p, n. G∩(p, n, S1) ⊃ ∃s. Starts(p, s) ∧K(s, S1). (4.3)

The proposition follows from (4.2), (4.3), and Definitions 4.2.9 and 4.2.10.

Note that this is not necessarily true for p-goals and primary c-goals – an agent may

know that something has become inevitable and not have it as her p-goal/primary c-

goal, which is intuitive. While the property of realism is often criticized [173, 174],

one should view these inevitable goals as something that holds in the worlds that the

agent intends to bring about, rather than something that the agent is actively pursuing.

A consequence of Proposition 4.4.2 and 4.4.3 is that an agent does not have a c-goal

that is known to be impossible:

Corollary 4.4.4.

DOAgt |= ∀s. CGoal(φ, s) ⊃ ¬KImpossible(φ, s).

Proof. Fix φ1 and S1. From the antecedent (i.e., that CGoal(φ1, S1)) and Propo-

sition 4.4.2, we have ¬CGoal(¬φ1, S1). From this and Proposition 4.4.3, we have

¬KInevitable(¬φ1, S1). The consequent follows from this and Definition 3.5.15.

261

An agent prefers higher priority goals to lower priority goals, and thus her chosen

lower priority goals must be consistent with higher priority ones:

Proposition 4.4.5.

∀n,m, s. CGoal(φ,m, s) ∧ n > m ⊃ CGoal(φ, n, s).

Proof. Fix φ1, N1,M1, and S1. From the antecedent (i.e. that CGoal(φ1,M1, S1)) and

Definition 4.2.8, we have:

∀p. G∩(p,M1, S1) ⊃ φ1(p). (4.4)

From Axiom 4.2.7 and by induction on n, we have: ∀p,m, n, s. n > m ⊃ G∩(p, n, s) ⊃

G∩(p,m, s). From this and the antecedent (i.e. that N1 > M1), we have:

∀p. G∩(p,N1, S1) ⊃ G∩(p,M1, S1). (4.5)

The consequent follows from (4.4), (4.5), and Definition 4.2.8.

4.4.2 Dynamic Properties

I next discuss some properties of the framework w.r.t. goal change. First I show that

an agent always wants to be in a world that has the same action history as the current

situation, provided that initially she wants to be in an initial world.

262

Proposition 4.4.6 (Correct Action History).

DOAgt |= (∀p, n, s. Init(s) ∧G(p, n, s) ⊃ ∃s′. Starts(p, s′) ∧ Init(s′))

⊃ (∀p, n, s. G(p, n, s) ⊃ ∃s′. Starts(p, s′) ∧ SameHist(s, s′)).

Proof. (By induction on s) Follows from Axiom 4.3.3 and Definitions 4.3.4, 4.3.5,

4.3.6, 3.5.16, and 3.2.7.

Adopting and dropping logically equivalent goals has the same result:

Proposition 4.4.7 (Extensionality w.r.t. Adoption and Drop).

(a). DOAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀n, n′, s. PGoal(ψ, n′, do(adopt(φ1, n), s)) ≡ PGoal(ψ, n′, do(adopt(φ2, n), s))),

(b). DOAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀n, s. PGoal(ψ, n, do(drop(φ1), s)) ≡ PGoal(ψ, n, do(drop(φ2), s))),

(c). DOAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀n, s. CGoal(ψ, do(adopt(φ1, n), s)) ≡ CGoal(ψ, do(adopt(φ2, n), s))),

(d). DOAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀s. CGoal(ψ, do(drop(φ1), s)) ≡ CGoal(ψ, do(drop(φ2), s))).

Proof. (a). Follows from the fact that we use a possible worlds/paths semantics for

p-goals.

263

(b). Similar to that of Proposition 4.4.7(a).

(c). Follows from Definition 4.2.10 and the fact that the G∩-accessible paths are the

same in both situations given the antecedent.

(d). Similar to that of Proposition 4.4.7(c).

As a consequence, this property also holds for primary c-goals:

Corollary 4.4.8.

(a). DOAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀n, s. PrimCGoal(ψ, do(adopt(φ1, n), s)) ≡ PrimCGoal(ψ, do(adopt(φ2, n), s))),

(b). DOAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀s. PrimCGoal(ψ, do(drop(φ1), s)) ≡ PrimCGoal(ψ, do(drop(φ2), s))).

Proof. (a). Follows from Definition 4.2.12 and Proposition 4.4.7(a).

(b). Similar to that of Corollary 4.4.8(a).

An agent acquires the p-goal that φ at level n after she adopts it at n in some

situation s:

Proposition 4.4.9 (Adoption-1).

DOAgt |= PGoal(φ, n, do(adopt(φ, n), s)).

264

Proof. Fix φ1, N1, and S1. From Axiom 4.3.3 and Definition 4.3.5, we have that the

agent’s G-accessible paths at N1 in do(adopt(φ1, N1), S1) are the ones that start with

situations that have the same history as do(adopt(φ1, N1), S1) and over which φ1 holds:

∀p. G(p,N1, do(adopt(φ1, N1), S1)) ≡

∃s. Starts(p, s) ∧ SameHist(s, do(adopt(φ1, N1), S1)) ∧ φ1(p).

(4.6)

If such a path p exists, then the consequent follows from (4.6) and Definition 4.2.1.

Otherwise, the consequent holds trivially from Definition 4.2.1.

For the next property, I’ll need to use the following two lemmata. The first says that

if p is in the G∩-relation up to some level n in situation s, then the starting situation of

p must be K-accessible from s:

Lemma 4.4.10.

DOAgt |= ∀p, n, s, s′. G∩(p, n, s) ∧ Starts(p, s′) ⊃ K(s′, s).

Proof. By induction on n and using Axiom 4.2.7 and Definition 4.2.4.

The second lemma says that an agent’s active (and inactive) p-goals below some

level n remain active (inactive, resp.) after she adopts a goal φ at level n in s, provided

that φ is consistent with her c-goals up to level n− 1:

265

Lemma 4.4.11.

DOAgt |=

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), n− 1, s)

⊃ ∀m. m < n ⊃ (ActiveLevel(m, s) ≡ ActiveLevel(m, do(adopt(φ, n), s)).

Proof. By induction on n.

An agent acquires the primary c-goal (and thus the p-goal and c-goal) that φ after

she adopts it at some level n in s provided that φ is consistent with her c-goals up to

level n − 1; this holds even if she has the inconsistent c-goal at some level that ¬φ

next, provided that she adopts φ at a higher priority than all such inconsistent goals:

Proposition 4.4.12 (Adoption-2).

DOAgt |=

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), n− 1, s)

⊃ PrimCGoal(φ, do(adopt(φ, n), s)).

Proof. Fix φ1, N1, and S1. From the antecedent, we have:

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ1, N1), s′))

∧ φ1(p′), N1 − 1, S1).

(4.7)

266

From Proposition 4.4.9, we have:

PGoal(φ1, N1, do(adopt(φ1, N1), S1)). (4.8)

Hence by Definition 4.2.12, to show that PrimCGoal(φ1, do(adopt(φ1, N1), S1)), we

will need to show that:

∃p. G(p,N1, do(adopt(φ1, N1), S1)) ∧G∩(p,N1, do(adopt(φ1, N1), S1)).

Let me first prove that ∃p. G(p,N1, do(adopt(φ1, N1), S1)). From Axiom 4.3.3 and

Definition 4.3.5, we have:

∀p. G(p,N1, do(adopt(φ1, N1), S1)) ≡

∃s. Starts(p, s) ∧ SameHist(s, do(adopt(φ1, N1), S1)) ∧ φ1(p).

(4.9)

From (4.7) and Definition 4.2.8, it follows that there is a path, say P1, such that P1 is

in the prioritized intersection of GR-accessible paths up to level N1 − 1 in S1, that the

adopt(φ1, N1) action happens next along P1, and that φ1 holds afterwards:

G∩(P1, N1 − 1, S1) ∧

∃s′, p′. Starts(P1, s
′) ∧ Suffix(p′, P1, do(adopt(φ1, N1), s′)) ∧ φ1(p′).

(4.10)

Consider the suffix of P1 after adopt(φ1, N1) has happened; let’s call this path P2.

Note that by (4.10) and Lemma 4.4.10, the starting situation of P1 is K-accessible in

S1:

Starts(P1, s) ⊃ K(s, S1). (4.11)

267

By this and Lemma 3.5.34, the starting situation of P1 has the same action history

as S1. Thus it follows that the starting situation of P2 must have the same history as

do(adopt(φ1, N1), S1):

Starts(P2, s) ⊃ SameHist(s, do(adopt(φ1, N1), S1)). (4.12)

Also, by (4.10), φ1 holds over P2:

φ1(P2). (4.13)

From (4.12), (4.13), and (4.9), it follows that P2 is G-accessible at N1 after the adopt

action has happened in S1:

G(P2, N1, do(adopt(φ1, N1), S1)). (4.14)

Next, I will prove that G∩(P2, N1, do(adopt(φ1, N1), S1)). By Axiom 4.2.7, to

prove this, it is sufficient to show that:

If N1 = 0 : GR(P2, N1, do(adopt(φ1, N1), S1));

If N1 > 0 : GR(P2, N1, do(adopt(φ1, N1), S1))

∧G∩(P2, N1 − 1, do(adopt(φ1, N1), S1)).

I will first show that GR(P2, N1, do(adopt(φ1, N1), S1)). Note that by (4.10) and Defi-

nition 3.5.16, P1 is a path and the first action that happens along P1, i.e. in the starting

268

situation of P1, is adopt(φ1, N1). From this, Corollary 3.5.41, and Definition 3.3.1 it

follows that:

Starts(P1, s) ⊃ Poss(adopt(φ1, N1), s). (4.15)

Since adopt(φ1, N1) is not a knowledge-producing action, the K-accessible situations

in do(adopt(φ1, N1), S1) are those that can be obtained by performing this action over

some K-accessible situation in S1, provided that the adopt action is executable in

that situation; thus it follows from (4.11), (4.15), and Axiom 3.4.10 that the starting

situation of P2 is K-accessible in do(adopt(φ1, N1), S1):

Starts(P2, s) ⊃ K(s, do(adopt(φ1, N1), S1)). (4.16)

From this, (4.14), and Definition 4.2.4, it follows that:

GR(P2, N1, do(adopt(φ1, N1), S1)). (4.17)

Next, I will show that G∩(P2, N1 − 1, do(adopt(φ1, N1), S1)), where N1 > 0. By

(4.7) and Lemma 4.4.11, it follows that:

∀n. n < N1 ⊃ (ActiveLevel(n, S1) ≡ ActiveLevel(n, do(adopt(φ1, n), S1)).

Thus, a priority level that has higher priority than N1 is active/chosen in do(adopt(φ1,

N1), S1) if and only if it is active/chosen in S1. Now, consider one such active level

M . By Axiom 4.2.7 and (4.10), it follows that GR(P1,M, S1). According to Ax-

iom 4.3.3 and Definitions 4.3.4 and 4.3.5, after the adopt(φ1, N1) action happens in

269

S1, the G-accessible paths at all levels that have higher priority than N1 are sim-

ply progressed to reflect that this action has happened. From this, it follows that

G(P2,M, do(adopt(φ1, N1), S1)). Moreover, from this, (4.16), and Definition 4.2.4,

we have GR(P2,M, do(adopt(φ1, N1), S1)). As this holds for all such active lev-

els M where M < N1, it follows from (4.16) and Axiom 4.2.7 that G∩(P2, N1 −

1, do(adopt(φ1, N1), S1)). Thus by (4.16), (4.17), and Axiom 4.2.7, we have:

G∩(P2, N1, do(adopt(φ1, N1), S1)). (4.18)

The consequent follows from (4.8), (4.14), (4.18), and Definition 4.2.12.

Recall that the agent’s (primary) chosen goals, are like intentions, and as such they act

as a filter for adopting newer goals. Proposition 4.4.12 ensures that the agent takes into

consideration the priorities of goals when adopting a new goal that is inconsistent with

her current chosen goals.

A consequence of this is that an agent acquires the primary c-goal that φ after she

adopts it at some level n in some situation s, provided that she does not have the c-goal

in s that ¬φ next:

Corollary 4.4.13 (Adoption-3).

DOAgt |= ¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), s)

⊃ PrimCGoal(φ, do(adopt(φ, n), s)).

270

Proof. Note that by Definitions 4.2.8, 4.2.9, and 4.2.10, we have that:

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), s) ⊃

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), n− 1, s).

Thus the corollary follows from Proposition 4.4.12 as a case of strengthening its an-

tecedent.

Let ProgOf(φ, a) denote the progression of a path formula φ after some action a

has been performed, which is defined as:

Definition 4.4.14.

ProgOf(φ, a)(p)
def
= ∃p′, s′. Starts(p′, s′) ∧ Suffix(p, p′, do(a, s′)) ∧ φ(p′).

Then I can show that after dropping the p-goal that φ at n in s, an agent does not

have the p-goal (and thus the primary c-goal) that the progression of φ at n, i.e.

ProgOf(φ, drop(φ)), provided that ProgOf(φ, drop(φ)) is not strongly inevitable in

do(drop(φ), s):

Proposition 4.4.15 (Drop).

DOAgt |= PGoal(φ, n, s) ∧ ¬StronglyInevitable(ProgOf(φ, drop(φ)), do(drop(φ), s))

⊃ ¬PGoal(ProgOf(φ, drop(φ)), n, do(drop(φ), s)),

271

Proof. Fix φ1, N1, and S1. From the antecedent, we have:

PGoal(φ1, N1, S1), (4.19)

¬StronglyInevitable(ProgOf(φ1, drop(φ1)), do(drop(φ1), S1)). (4.20)

We can see from Axiom 4.3.3 and Definition 4.3.6 that after the drop(φ1) action has

been performed in S1, each G-accessibility level in S1 where φ1 is a p-goal is re-

placed by the set of paths that starts with a situation that has the same history as

do(drop(φ1), S1). Thus, by (4.19) and Axiom 4.3.3, we have:

G(p,N1, do(drop(φ1), S1)) ≡ ∃s′. Starts(p, s′) ∧ SameHist(s′, do(drop(φ1), S1)).

(4.21)

Now, by Definition 3.5.13 and (4.20), there exists a path P1 that starts with a situation

that has the same history as do(drop(φ1), S1) and over which ¬ProgOf(φ1, drop(φ1))

holds:

∃s′. Starts(P1, s
′) ∧ SameHist(s′, do(drop(φ1), S1)) ∧ ¬ProgOf(φ1, drop(φ1))(P1).

(4.22)

The consequent follows from (4.21), (4.22), and Definition 4.2.1.

Note that, Proposition 4.4.15 does not necessarily hold for CGoal, as φ could still be

a consequence of the agent’s remaining primary c-goals. Also, it does not hold in

general for RPGoal, since it might be the case that the progression of φ is inevitable

272

over all GR-accessible paths; however, we could obtain an analogous result by adding

the negation of this as a condition.

4.4.3 Goal Introspection

I want my agents to be able to introspect their goals – if an agent has a realistic p-goal

that φ, she should know that she has this as her goal; moreover if she does not have the

realistic p-goal that φ, she should know this. In the following, I identify constraints on

K and G that yield these properties.30

To get positive introspection of realistic p-goals, we need a constraint similar to

transitivity, which I call KGTrans:

Definition 4.4.16.

KGTrans(n, s)
def
= ∀s1, s2, p. K(s1, s) ∧K(s2, s1) ∧G(p, n, s1) ∧ Starts(p, s2)

⊃ G(p, n, s).

If this constraint is satisfied for some priority level n, then the agents will have positive

introspection of realistic p-goals at n:31

30These constraints and associated propositions are closely related to those given by Shapiro [194];
however they are adapted to work for infinite paths.

31Note that for this to hold, we also need K to be transitive, but this follows from DOAgt.

273

Proposition 4.4.17.

DOAgt |= ∀s, n. KGTrans(n, s) ⊃ (RPGoal(φ, n, s) ⊃ Know(RPGoal(φ, n), s)).

Proof. (By contradiction) Fix φ1, N1, and S1, and assume that:

KGTrans(N1, S1), (4.23)

RPGoal(φ1, N1, S1). (4.24)

Also assume that:

¬Know(RPGoal(φ1, N1), S1). (4.25)

From (4.25) and Definitions 4.2.5, 4.2.4, and 3.4.5, it follows that there is a path P1

and situations S1
1 and S2

1 such that:

K(S1
1 , S1) ∧K(S2

1 , S
1
1) ∧ Starts(P1, S

2
1) ∧G(P1, N1, S

1
1) ∧ ¬φ1(P1). (4.26)

From this and the transitivity of K (i.e. Axiom 3.4.3), it follows that:

K(S2
1 , S1). (4.27)

From this, (4.24), (4.26), and Definitions 4.2.5 and 4.2.4, it follows that:

¬G(P1, N1, S1). (4.28)

But it follows from (4.23), (4.26), and Definition 4.4.16 that G(P1, N1, S1), which is

contradictory to (4.28).

274

To get negative introspection of realistic p-goals, we need a constraint similar to

Euclideanism. I call this constraint KGEuc:

Definition 4.4.18.

KGEuc(n, s)
def
= ∀s1, s2, p. K(s1, s) ∧K(s2, s) ∧G(p, n, s) ∧ Starts(p, s2)

⊃ G(p, n, s1).

If this constraint is satisfied for some priority level n, then the agents will have negative

introspection of realistic p-goals at n:32

Proposition 4.4.19.

DOAgt |= ∀s, n. KGEuc(n, s) ⊃ (¬RPGoal(φ, n, s) ⊃ Know(¬RPGoal(φ, n), s)).

Proof. (By contradiction) Fix φ1, N1, and S1, and assume that:

KGEuc(N1, S1), (4.29)

¬RPGoal(φ1, N1, S1). (4.30)

Also assume that:

¬Know(¬RPGoal(φ1, N1), S1). (4.31)

32Again, we need K to be Euclidean, which follows from DOAgt.

275

From (4.30) and Definitions 4.2.5 and 4.2.4, it follows that there is a path P1 and

situations S1
1 such that:

K(S1
1 , S1) ∧ Starts(P1, S

1
1) ∧G(P1, N1, S1) ∧ ¬φ1(P1). (4.32)

From (4.31) and Definitions 4.2.5, 4.2.4, and 3.4.5, it follows that there is a K-

accessible situation in S1 where the agent indeed has the RPGoal that φ1 at N1. Pick

such a K-accessible situation in S1; let’s call it S2
1 . Thus, we have:

K(S2
1 , S1) ∧ ∀p, s. (Starts(p, s) ∧K(s, S2

1) ∧G(p,N1, S
2
1) ⊃ φ1(p)). (4.33)

From (4.32), (4.33), and the Euclideanism of K (i.e. Axiom 3.4.4), it follows that:

K(S1
1 , S

2
1). (4.34)

Moreover, from (4.29), (4.32), (4.33), and Definition 4.4.18, it follows that:

G(P1, N1, S
2
1). (4.35)

Finally, from (4.33), (4.32), (4.34), and (4.35), it follows that φ1(P1), which is contra-

dictory to (4.32).

In the following, I show that for any executable situation, KGTrans and KGEuc

persist if they hold in all initial situations as they are preserved by the successor-state

axiom for G. First I show the persistence of KGTrans :

276

Theorem 4.4.20.

DOAgt |= (∀n, s. Init(s) ⊃ KGTrans(n, s)) ⊃

(∀n, s. Executable(s) ⊃ KGTrans(n, s)).

Proof. (By induction on s) Assume that:

∀n, s. Init(s) ⊃ KGTrans(n, s). (4.36)

The base case, where s is an initial situation, is trivial. For the inductive case, we fix

S1 and A1 and assume that:

Executable(do(A1, S1)). (4.37)

Fix N1. We need to show that KGTrans(N1, do(A1, S1)). From (4.37) and Lemma

3.5.29, we have:

Executable(S1). (4.38)

This, (4.36), and the inductive hypothesis imply:

∀n. KGTrans(n, S1). (4.39)

Assume that S2 = do(A1, S1). Let us expand KGTrans(N1, S2); fix S1
2 , S

2
2 , and P2,

277

and assume:

K(S1
2 , S2), (4.40)

K(S2
2 , S

1
2), (4.41)

G(P2, N1, S
1
2), (4.42)

Starts(P2, S
2
2). (4.43)

We need to show that G(P2, N1, S2). (4.40), (4.41), and Axiom 3.4.10 imply that there

exist S1
1 and S2

1 such that:

K(S1
1 , S1) ∧ S1

2 = do(A1, S
1
1), and (4.44)

K(S2
1 , S

1
1) ∧ S2

2 = do(A1, S
2
1). (4.45)

Now, note that by (4.40), (4.41), and the transitivity of K, we have:

K(S2
2 , S2).

From this and Lemma 3.5.34, we have:

SameHist(S2
2 , S2). (4.46)

Now, to show that P2 isG-accessible at levelN1 in situation S2, we will need to analyze

the SSA for G. A close look at it gives us four cases with four different mutually

exclusive conditions: Case 1, where one simply progresses the old set of G-accessible

278

paths before the action A1 has happened to obtain the new set of G-accessible paths

after the occurrence of A1, Case 2, which involves progression with shifting levels,

Case 3, which involves processing/filtering the old set of G-accessible paths to handle

the adoption of a goal at level N1, and Case 4 that involves processing them to handle

the dropping of a goal at level N1. Let us discuss each case, one at a time. Thus the

successor-state axiom for G (i.e. Axiom 4.3.3) and (4.42) give us four cases:

• Case 1. The action A1 is a regular (non-adopt/drop action), or A1 does not refer

to the adoption of a goal φ at level N1 or at some higher priority level than N1,

or it does not refer to the dropping of a goal φ at N1, i.e.:

¬(A1 = adopt(φ,M) ∧M ≤ N1) ∧ ¬(A1 = drop(φ) ∧ PGoal(φ,N1, S1)).

By the SSA for G and (4.42), in all these cases P2 is the simple progression of

some path P1 that was G-accessible at N1 in S1
1 :

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1, S

1
1). (4.47)

Definition 4.4.16, (4.39), (4.44), (4.45), and (4.47) imply that:

G(P1, N1, S1). (4.48)

By Axiom 4.3.3, Definitions 4.3.4, 4.3.5, and 4.3.6, the assumption for this case

(i.e. that A1 is a regular action, or that A1 refers to the adoption of a goal at a

279

lower priority level than N1 or to the dropping of a goal at some other level than

N1), (4.47), and (4.48), the progression of P1 (i.e. P2) will be retained in the

G-relation at N1 in S2 = do(A1, S1); this is because Progressed(P2, N1, A1, S1)

holds. Thus we have G(P2, N1, S2) and we are done.

• Case 2. A1 refers to the adoption of a goal φ at a higher priority level than

N1, i.e. A1 = adopt(φ,M) ∧M < N1. In this case, P2 is the progression of

some path P1 that was G-accessible at N1 − 1 in S1
1 (since adopting the goal φ

at higher priority than N1 has pushed all the goals that has priority lower than

M − 1 down by one level):

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1 − 1, S1

1).

The rest of the proof for this case is similar to that of Case 1.

• Case 3. A1 refers to the adoption of a goal φ at N1, i.e. A1 = adopt(φ,N1).

Then P2 is included in the G-relation at N1 in S2 if it starts with a situation that

has the same history as in S2, and if φ(P2) holds. (4.43) and (4.46) imply this

former. The latter also holds, otherwise by the SSA for G, P2 would have not

been included in the G-relation at N1 in S1
2 (but it is included by (4.42)).

• Case 4. A1 refers to the dropping of a goal φ at N1, i.e. A1 = drop(φ), where

PGoal(φ,N1, S1). In this case, P2 is included in the G-relation at N1 in S2 if it

280

starts with a situation that has the same history as in S2. Again, (4.43) and (4.46)

imply this condition.

The theorem thus follows.

I next show the persistence of KGEuc :

Theorem 4.4.21.

DOAgt |= (∀n, s. Init(s) ⊃ KGEuc(n, s)) ⊃

(∀n, s. Executable(s) ⊃ KGEuc(n, s)).

Proof. (By induction on s) Assume that:

∀n, s. Init(s) ⊃ KGEuc(n, s). (4.49)

The base case, where s is initial, is trivial. For the inductive case, we fix S1 and A1

and assume that:

Executable(do(A1, S1)). (4.50)

Fix N1. We need to show that KGEuc(N1, do(A1, S1)). From (4.50) and Lemma

3.5.29, we have:

Executable(S1). (4.51)

281

This, (4.49), and the inductive hypothesis imply:

∀n. KGEuc(n, S1). (4.52)

Assume that S2 = do(A1, S1). Let us expandKGEuc(N1, S2); fix S1
2 , S

2
2 , and P2, and

assume:

K(S1
2 , S2), (4.53)

K(S2
2 , S2), (4.54)

G(P2, N1, S2), (4.55)

Starts(P2, S
2
2). (4.56)

We need to show thatG(P2, N1, S
1
2). (4.53), (4.54), and Axiom 3.4.10 imply that there

exist S1
1 and S2

1 such that:

K(S1
1 , S1) ∧ S1

2 = do(A1, S
1
1), and (4.57)

K(S2
1 , S1) ∧ S2

2 = do(A1, S
2
1). (4.58)

Now, note that by (4.53), (4.54), and the Euclideanism of K, we have:

K(S2
2 , S

1
2).

By this and Lemma 3.5.34, we have:

SameHist(S2
2 , S

1
2). (4.59)

282

Now, to show that P2 is G-accessible at level N1 in situation S1
2 , we will need to

analyze the SSA for G. A close look at it gives us four cases with four different

mutually exclusive conditions: Case 1, where one simply progresses the old set of

G-accessible paths before the action A1 has happened to obtain the new set of G-

accessible paths after the occurrence of A1, Case 2, which involves progression with

shifting levels, Case 3, which involves processing/filtering the old set of G-accessible

paths to handle the adoption of a goal at level N1, and Case 4 that involves processing

them to handle the dropping of a goal at level N1. Let us discuss each case, one at a

time. Thus the successor-state axiom for G (i.e. Axiom 4.3.3) and (4.55) give us four

cases:

• Case 1. The action A1 is a regular (non-adopt/drop action), or A1 does not refer

to the adoption of a goal φ at level N1 or at some higher priority level than N1,

or it does not refer to the dropping of a goal φ at N1, i.e.:

¬(A1 = adopt(φ,M) ∧M ≤ N1) ∧ ¬(A1 = drop(φ) ∧ PGoal(φ,N1, S1)).

By the SSA for G and (4.55), in all these cases P2 is the simple progression of

some path P1 that was G-accessible at N1 in S1:

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1, S1). (4.60)

283

Definition 4.4.18, (4.52), (4.57), (4.58), and (4.60) imply that:

G(P1, N1, S
1
1). (4.61)

By Axiom 4.3.3, Definitions 4.3.4, 4.3.5, and 4.3.6, the assumption for this case

(i.e. that A1 is a regular action, or that A1 refers to the adoption of a goal at a

lower priority level than N1 or to the dropping of a goal at some other level than

N1), (4.60), and (4.61), the progression of P1 (i.e. P2) will be retained in the

G-relation at N1 in S1
2 = do(A1, S

1
1), since Progressed(P2, N1, A1, S

1
1) holds.

Thus we have G(P2, N1, S
1
2).

• Case 2. A1 refers to the adoption of a goal φ at a higher priority level than

N1, i.e. A1 = adopt(φ,M) ∧M < N1. In this case, P2 is the progression of

some path P1 that was G-accessible at N1 − 1 in S1 (since adopting the goal φ

at higher priority than N1 has pushed all the goals that has priority lower than

M − 1 down by one level):

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1 − 1, S1).

The rest of the proof for this case is similar to that of Case 1.

• Case 3. A1 refers to the adoption of a goal φ at N1, i.e. A1 = adopt(φ,N1).

Then P2 is included in the G-relation at N1 in S1
2 if it starts with a situation that

284

has the same history as in S1
2 , and if φ(P2) holds. (4.56) and (4.59) imply this

former. The latter also holds, otherwise P2 would not have been included in the

G-relation at N1 in S2 as in (4.55).

• Case 4. A1 refers to the dropping of a goal φ at N1, i.e. A1 = drop(φ), where

PGoal(φ,N1, S1). In this case, P2 is included in the G-relation at N1 in S1
2 if it

starts with a situation that has the same history as in S1
2 . Again, (4.56) and (4.59)

imply this condition.

The theorem thus follows.

4.4.4 Persistence Properties

The next two properties concern the persistence of these motivational attitudes. First I

have a persistence property for achievement realistic p-goals: if an agent has a realistic

p-goal that 3Φ in some situation s, then she will retain this realistic p-goal after some

action a has been performed in s, provided that she knows in s that Φ has not yet been

achieved, and a is not the action of dropping a p-goal.

Proposition 4.4.22 (Persistence of Achievement Realistic Prioritized Goals).

DOAgt |= RPGoal(3Φ, n, s) ∧ Know(¬Φ, s) ∧ ∀ψ. a 6= drop(ψ)

⊃ ∃n′. RPGoal(3Φ, n′, do(a, s)).

285

Proof. Fix Φ1, N1, S1, and A1. By the antecedent, we have:

RPGoal(3Φ1, N1, S1), (4.62)

Know(¬Φ1, S1), (4.63)

∀ψ. A1 6= drop(ψ). (4.64)

Now, by Definitions 4.2.4, 4.2.5, 3.5.8, and 3.5.7, the agent has the realistic p-goal that

3Φ1 at N1 in S1 if the following holds:

∀p. G(p,N1, S1)∧∃s. Starts(p, s)∧K(s, S1) ⊃ ∃s∗. OnPath(p, s∗)∧Φ1(s∗). (4.65)

Thus 3Φ1 will persist after A1 has been performed in S1 if there is a level n such that

3Φ1 holds over all G-accessible paths that start with a K-accessible situation (i.e. all

GR-accessible paths) at n in do(A1, S1). After the A1 action has been performed in

S1, every G relation at any level will be updated in accordance with Axiom 4.3.3. By

Axiom 4.3.3, there are three cases to consider: (1) A1 can be a regular action or the

adoption of some goal at a lower priority level than N1, (2) the adoption of some goal

at N1 or at a higher priority level than N1, or (3) the dropping of some goal. The last

case, i.e. an explicit dropping of a goal is ruled out by (4.64). So let us consider the

other two cases, one at a time:

1. A1 is a regular action or the adoption of some goal at lower priority than N1:

First, assume that A1 is a regular action. Then, by Axiom 4.3.3 and Definition

286

4.3.4, all G-accessible paths at N1 will be progressed to reflect the fact that A1

has just happened. Next, fix Ψ1 and N2 and assume that A1 = adopt(Ψ1, N2),

where N2 > N1. Then by Axiom 4.3.3 and Definitions 4.3.5 and 4.3.4, the

G-accessible paths at N1 in S1 will be progressed to reflect the fact that A1 has

just happened. Thus, for both these cases the G-accessible paths at N1 in S1 are

simply progressed.

Again, there are two possibilities to consider:

(a) A1 makes 3Φ1 impossible to achieve, and thus there are no paths that are

GR-accessible at N1 in do(A1, S1). However this does not cause a problem

for persistence of 3Φ1, since in that case, the agent’s set of GR-accessible

paths at N1 will be empty, and by Definition 4.2.5 the agent trivially has

the realistic p-goal that 3Φ1 at N1 in do(A1, S1).

(b) There is a GR-accessible path at N1 in do(A1, S1), but 3Φ1 does not hold

over this path. Given the fact that the G-accessible paths at level N1 in

situation do(A1, S1) can only be obtained by progressing those at N1 in S1,

this is only possible if there is aK-accessible situation in S1, say S ′1, where

there is a path P1 that starts with S ′1, P1 is G-accessible at N1 in S1, the

suffix of P1 that starts with do(A1, S
′
1), let’s call it P2, is GR-accessible at

287

N1 in do(A1, S1), and 3Φ1 does not hold over P2:

K(S ′1, S1) ∧ Starts(P1, S
′
1) ∧G(P1, N1, S1) ∧ Suffix(P2, P1, do(A1, S

′
1))

∧GR(P2, N1, do(A1, S1)) ∧ ¬3Φ1(P2).

(4.66)

By (4.65) and (4.66), it follows that ∃s. OnPath(P1, s) ∧ Φ1(s). By this,

(4.66), and Definitions 3.5.8 and 3.5.7, it follows that Φ1(S ′1). But by

(4.66), (4.63), and Definition 3.4.5, we have ¬Φ1(S ′1), a contradiction!

Thus it follows that3Φ1 holds over allGR-accessible paths atN1 in do(A1,

S1).

2. A1 is the adoption of some goal at priority greater or equal to N1:

Fix Ψ1 and assume that A1 = adopt(Ψ1, N2), where N2 ≤ N1. Then by Axiom

4.3.3 and Definitions 4.3.5 and 4.3.4, the G-accessible paths at N1 in S1 are

pushed down one level in the hierarchy, and thus theG-accessible paths atN1+1

in do(A1, S1) are the progressed version of those at level N1 in S1, progressed

to simply reflect the fact that A1 has just happened. The rest of the proof is very

similar to case (1) with the necessary adjustment to reflect that level N1 in S1

indeed refers to level N1 + 1 in do(A1, S1). Thus, in this case too, the realistic

p-goal 3Φ1 persists, however at the lower priority level N1 + 1.

The proposition thus follows.

288

Note that, we do not need to ensure that 3Φ is consistent with higher priority active

p-goals, since the successor-state axiom for G does not automatically drop such in-

compatible p-goals from the goal hierarchy. Also, as argued above, the level n where

3Φ is a realistic p-goal may change, e.g. if the action performed is an adopt action

with priority higher than or equal to n. Finally, I believe that the dropping of an unre-

lated p-goal should not affect persistence, and hence it should be possible to strengthen

this proposition. However, I leave this for future work.

The above persistence result can be strengthened to show that a goal 3Φ persists

at its original priority level n (i.e. without possibly shifting its priority level) when

additionally adopting goals at priority greater or equal to n is disallowed:

Corollary 4.4.23.

DOAgt |= (RPGoal(3Φ, n, s) ∧ Know(¬Φ, s)

∧ ∀ψ. a 6= drop(ψ) ∧ ∀ψ,m. ¬(a = adopt(ψ,m) ∧m ≤ n))

⊃ RPGoal(3Φ, n, do(a, s)).

Proof Sketch. Similar to the proof for Proposition 4.4.22, but with the omission of

Case 2, which is ruled out by the antecedent that adoption at level n or at some higher

priority level is not allowed, i.e. that ∀ψ,m. ¬(a = adopt(ψ,m) ∧m ≤ n)).

For achievement chosen goals I have the following persistence result: if in some

289

situation s, an agent has the only p-goal at some level n that 3Φ and that the correct

history of actions in s has been performed, and if 3Φ is also a chosen goal in s (and

thus she has the primary c-goal in s that 3Φ), then she will retain the c-goal that 3Φ

at level n after some action a has been performed in s, provided that:

• she knows in s that Φ has not yet been achieved,

• that a is not the action of dropping a p-goal,

• that a is not the action of adopting a p-goal at some higher priority level than n

or at n,

• and that at level n−1, the agent does not have the c-goal that¬3Φ in do(a, s), i.e.

3Φ remains consistent with higher priority c-goals after a had been performed

in s.

Proposition 4.4.24 (Persistence of Achievement Chosen Goals).

DOAgt |= OPGoal(3Φ ∧ ∃s′. Starts(s′) ∧ SameHist(s′), n, s) ∧ CGoal(3Φ, s)

∧ Know(¬Φ, s) ∧ ∀ψ. a 6= drop(ψ) ∧ ∀ψ,m. ¬(a = adopt(ψ,m) ∧m ≤ n)

∧ ¬CGoal(¬3Φ, n− 1, do(a, s))

⊃ CGoal(3Φ, n, do(a, s)).

290

Proof. Fix Φ1, N1, S1, and A1. From the antecedent, we have:

OPGoal(3Φ1 ∧ ∃s′. Starts(s′) ∧ SameHist(s′), N1, S1), (4.67)

CGoal(3Φ1, S1), (4.68)

Know(¬Φ1, S1), (4.69)

∀ψ. A1 6= drop(ψ), (4.70)

∀ψ,m. ¬(A1 = adopt(ψ,m) ∧m ≤ N1), (4.71)

¬CGoal(¬3Φ1, N1 − 1, do(A1, S1)). (4.72)

From (4.72) and Definition 4.2.8, there is a path P1 such that:

G∩(P1, N1 − 1, do(A1, S1)) ∧3Φ1(P1). (4.73)

By (4.73) and Axiom 4.2.7, to prove that3Φ1 is a c-goal atN1 in do(A1, S1), it suffices

to show that the agent has the realistic p-goal at N1 in do(A1, S1) that 3Φ1, and that

P1 is indeed GR-accessible at N1 in do(A1, S1). The latter along with Axiom 4.2.7

ensures that there is at least one path, namely P1, that is in G∩ at N1 in do(A1, S1)

and over which 3Φ1 holds, while the former along with Axiom 4.2.7 and the latter

stipulates that 3Φ1 indeed holds over all such paths (i.e. all paths that are in G∩ at N1

in do(A1, S1)).33

33Note that proving the former condition (i.e. that RPGoal(3Φ1, N1, do(A1, S1))) alone is not suf-
ficient since it is possible that N1 will not be selected as an active level in do(A1, S1), e.g. due to
the existence of some goal at N1 in do(A1, S1) that is inconsistent with other higher priority goals in
do(A1, S1).

291

First I will show that the agent has the realistic p-goal atN1 in do(A1, S1) that3Φ1.

From (4.67) and Definitions 4.2.2 and 4.2.1, we have PGoal(3Φ1, N1, S1). From this

and Definitions 4.2.1, 4.2.4, and 4.2.5, we have:

RPGoal(3Φ1, N1, S1). (4.74)

From (4.74), (4.69), (4.70), (4.71), and Corollary 4.4.23, it follows that 3Φ1 persists

at level N1 after A1 has been performed in S1, i.e. RPGoal(3Φ1, N1, do(A1, S1)).

Next I will show that P1 is indeed GR-accessible at N1 in do(A1, S1). Consider

an arbitrary path P ′ such that it starts with a situation S ′ that is K-accessible from

do(A1, S1) and such that 3Φ1 holds over P ′:

3Φ1(P ′) ∧ Starts(P ′, S ′) ∧K(S ′, do(A1, S1)). (4.75)

By Axiom 3.2.7, S ′ must be of the form do(A1, S
′′) for some situation S ′′. Moreover,

by Axiom 3.4.10, S ′′ must have been K-accessible in S1:

K(S ′′, S1). (4.76)

Let us extend P ′ in the past to include S ′′, and let us call the path obtained by doing so,

P ′′. Since P ′ is a suffix of P ′′, it follows from (4.75) and Definitions 3.5.8 and 3.5.7

that:

3Φ1(P ′′). (4.77)

292

From (4.76) and Lemma 3.5.34, it follows that S ′′ has the same action history as

S1, i.e. SameHist(S ′′, S1). From this and by (4.77), (4.67), and Definition 4.2.2, P ′′

must be G-accessible at N1 in S1, i.e. G(P ′′, N1, S1). From this, (4.76), the fact that

P ′′ starts with S ′′, and Definition 4.2.4, P ′′ must be GR-accessible at N1 in S1, i.e.

GR(P ′′, N1, S1). Moreover, by (4.70), (4.71), Axiom 4.3.3, and Definitions 4.3.4 and

4.3.5, since all GR-accessible paths at N1 in S1 are simply progressed when A1 is per-

formed in S1, it follows that P ′ is GR-accessible at N1 in do(A1, S1). Thus we have:

∀p. 3Φ1(p) ∧ ∃s. Starts(p, s) ∧K(s, do(A1, S1)) ⊃ GR(p,N1, do(A1, S1)). (4.78)

By (4.73), Proposition 3.5.37(a), and Lemma 4.4.10, we have:

3Φ1(P1) ∧ ∃s. Starts(P1, s) ∧K(s, do(A1, S1)).

Finally, by this and (4.78), we have GR(P1, N1, do(A1, S1)).

Note that, this property also follows if we replace the consequent with CGoal(3Φ, do(a,

s)), or PrimCGoal(3Φ, do(a, s)), and thus it deals with the persistence of (primary)

c-goals. Note however that, it does not hold if we replace the OPGoal in the antecedent

with PGoal; the reason for this is that the agent might have a p-goal at level n in s that

3Φ and the c-goal in s that3Φ, but not have3Φ as a primary c-goal in s, e.g. nmight

be an inactive level because another p-goal at n has become impossible, and3Φ could

be a c-goal in s because it is a consequence of two other primary c-goals. Thus even

293

if ¬3φ is not a c-goal after a has been performed in s, there is no guarantee that level

n will be active in do(a, s) or that all the active p-goals that contributed to 3Φ in s are

still active. As in Proposition 4.4.22, I believe that the dropping of an unrelated p-goal

will not affect persistence, and hence it should be possible to strengthen this proposi-

tion. Finally, in the future I would like to generalize these two persistence properties

to deal with arbitrary temporally extended goals.

4.5 An Example

In this section, I demonstrate the utility of this framework using an application to

personalized travel planning over the web. Consider the following scenario: Anika,

who lives in Toronto, Canada (YYZ), would like to plan a trip for her holidays. She

would like to depart on July 29, returning on the 5th of August. As for the destination,

she’d really like to go to Kaafu in the Maldives (MLE), but only if she can redeem her

Cool-Air-Miles reward miles for this. Otherwise, she would settle for the Florida Keys

(EYW) and save up for next year’s vacation. Moreover, if for some reason Florida

does not work out, she would like to revisit Varadero, Cuba (VRA) instead. Finally, if

she ends up going to the Keys, she would like to visit her best friend who lives there.

294

The following set of axioms specifies her travel agent’s goals initially:34

Axiom 4.5.1.

Init(s) ⊃

((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,MLE), Jul29,Aug05)(p) ∧

(Redeemed(Anika,YYZ,MLE) B (date = Jul29))(p))

∧ (G(p, 1, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,EYW), Jul29,Aug05)(p))

∧ (G(p, 2, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,VRA), Jul29,Aug05)(p))

∧ (G(p, 3, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

Between(AnikaVisitedBFF, Jul29,Aug05)(p)).

34I focus on the goals of the travel planning agent, which are of course derived from those of the
agent’s client, Anika. I don’t model how Anika communicates her preferences to the agent. To simplify,
I suppress the agent arguments in the K and the G-relations.

295

Definition 4.5.2.

During(Φ, from, to)(p)
def
=

∃s1, s2. OnPath(p, s1) ∧ OnPath(p, s2) ∧ date(s1) = from ∧ date(s2) = to

∧ ∀s. OnPath(p, s) ∧ date(s) > from ∧ date(s) < to ⊃ Φ(s).

Definition 4.5.3.

Between(Φ, from, to)(p)
def
=

∃s. OnPath(p, s) ∧ date(s) > from ∧ date(s) < to ∧ Φ(s).

Thus, initially the agent’s set of G-accessible paths at the highest priority level com-

prise those that start with initial situations and over which Anika is located at Kaafu

during the week of July 29 to August 5, and she pays for her flight by redeeming her

reward miles for this before the departure date. Similarly, initially her G-accessible

paths at level 1 (the second highest priority level) are the ones that start with initial

situations and over which Anika is located at the Keys during the specified week, and

similarly for level 2, but this time at Varadero. Also, initially her G-accessible paths at

level 3 are those that start with initial situations and over which Anika visits her best

friend between the specified dates.

Finally, for any level that has lower priority than 3, the agent has the trivial goal

that she be on a path that starts with an initial situation:

296

Axiom 4.5.4.

Init(s) ∧ n ≥ 4 ⊃ (G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′)).

Note that, here I model time using a date(s) functional fluent along the lines of Reiter’s

account [178]. The only action that affects the date(s) fluent is dateT ick, which incre-

ments the date (see Axioms 4.5.6 and 4.5.15 below). For this, I use the date constants

Jan01 to Dec31 assuming that the year is 2017 (i.e. not a leap year).

Next, I list the actions that can be performed in this domain, along with their pre-

conditions. An agent agt can fly from location x to location y in some situation s, if x

and y refer to two different locations, agt has a ticket from x to y for date d in s, the

date of s is indeed d, the flights between these two locations are running in s, and if

agt is located at x in s:

Axiom 4.5.5.

Poss(fly(agt, x, y), s) ≡ x 6= y ∧ ∃d. HasTicket(agt, x, y, d, s) ∧ date(s) = d

∧ ¬∃d′. FlightsCancelled(x, y, d′, s) ∧ At(agt, x, s).

There are five exogenous actions in this domain: dateT ick increments the calendar

date, addBlacklistLoc(x, d) marks location x as blacklisted at least until date d so

that the customers of Cool-Air-Miles can no longer redeem their reward miles for an

air ticket to x at least until d, removeBlacklistLoc(x) removes x from the blacklisted

297

locations, startDisruptionBtwn(x, y, d) starts some sort of disruption between loca-

tions x and y at least until date d, cancelling all flights over this route at least until d,

and endDisruptionBtwn(x, y) ends this disruption, restoring the cancelled flights. I

assume that dateT ick is always possible:

Axiom 4.5.6.

Poss(dateT ick, s) ≡ True.

A location x can be added to the blacklist at least until date d in situation s if and

only if x is not already in the blacklist until some date d′ and if date d is in the future,

i.e. the date of s is less than d (note that x is not automatically removed from the

blacklist even when the date turns d; rather it must be removed explicitly using a

removeBlacklistLoc action):

Axiom 4.5.7.

Poss(addBlacklistLoc(x, d), s) ≡ ¬∃d′. Blacklisted(x, d′, s) ∧ date(s) < d.

A location x can be removed from the blacklist in s if and only if x is currently black-

listed in s and if the expiry date d of the last time x was blacklisted has past, i.e. the

date of s is greater than d:

Axiom 4.5.8.

Poss(removeBlacklistLoc(x), s) ≡ ∃d. Blacklisted(x, d, s) ∧ d < date(s).

298

Similarly, the flights between two locations x and y can be cancelled by causing a

disruption between these two locations at least until date d in situation s if and only if

the flights between x and y are not already cancelled until some date d′ in s and if date

d is in the future, i.e. the date of s is less than d (note again that the flights between

these two locations are not automatically restored even when the date turns d; rather

they must be restored explicitly using an endDisruptionBtwn action):

Axiom 4.5.9.

Poss(startDisruptionBtwn(x, y, d), s) ≡

¬∃d′. FlightsCancelled(x, y, d′, s) ∧ date(s) < d.

Finally, the disruption between two locations x and y can be removed in situation s if

and only if the flights between these two locations are currently cancelled in s and if

the expiry date d of the disruption between these locations has past, i.e. the date of s is

greater than d:

Axiom 4.5.10.

Poss(endDisruptionBtwn(x, y), s) ≡ ∃d. FlightsCancelled(x, y, d, s) ∧ d < date(s).

An agent agt can always purchase a ticket between two locations x and y for any

date d (for simplicity, I ignore the monetary aspect, the availability of tickets, etc.):

299

Axiom 4.5.11.

Poss(purchase(agt, x, y, d), s) ≡ True.

Moreover, an agent can also obtain a ticket by redeeming her Cool-Air-Miles re-

ward miles; in particular, she can redeem her reward miles for an air ticket from loca-

tion x to location y on date d in situation s if she did not already redeem her Cool-Air-

Miles reward miles for this route in s, y is not blacklisted in s for some date d′, and if

in s she has collected at least as many reward miles as is required to travel from x to

y:35

Axiom 4.5.12.

Poss(redeemMiles(agt, x, y, d), s) ≡ ¬Redeemed(agt, x, y, s)

∧ ¬∃d′. Blacklisted(y, d′, s) ∧milesBtwn(x, y) ≤ hasMiles(agt, s).

Finally, Anika can visit her best friend if she is at the keys:

Axiom 4.5.13.

Poss(anikaV isitsBFF, s) ≡ At(Anika,EYW, s).

35While I could have made this axiom more realistic (e.g. as I did for the preconditions of
removeBlacklistLoc and endDisruptionBtwn actions), this does not add much and would have
made the axiom/framework unnecessarily complex. For the purpose of this example, such a simplistic
model of redemption suffices since, e.g., I assume that initially Anika’s travel agent knows that Anika
did not redeem her miles for the relevant route/trip, that multiple redemption attempts for the same route
will not be considered, etc.

300

In the following, I specify the fluents in this domain and their successor-state ax-

ioms. An agent agt is located at x after a has been performed in situation s if and only

if a is the action of agt flying from some location y to x, or if agt was at x in s and a

does not refer to the action of agt flying to another location y:

Axiom 4.5.14.

At(agt, x, do(a, s)) ≡ ∃y. a = fly(agt, y, x)

∨ (At(agt, x, s) ∧ ¬∃y. a = fly(agt, x, y)).

The current date is x after a has been performed in s if and only if the date was y in s,

a is a dateT ick action, and x is the successor date to y, or the date was x in s and a

does not refer to a dateT ick action (I assume that function nextDate(a), which takes a

date a and returns the successor date to a, is available):

Axiom 4.5.15.

date(do(a, s)) = x ≡ (∃y. date(s) = y ∧ a = dateT ick ∧ nextDate(y) = x)

∨ (date(s) = x ∧ ¬a = dateT ick).

A location x is blacklisted at least until some date d in do(a, s) if and only if a is the

action of adding x to the blacklist until date d or if x was already blacklisted until d in

s and a does not refer to the action of removing x from the blacklist:

301

Axiom 4.5.16.

Blacklisted(x, d, do(a, s)) ≡ a = addBlacklistLoc(x, d)

∨ (Blacklisted(x, d, s) ∧ ¬a = removeBlacklistLoc(x)).

The flights between location x any y are cancelled at least until some date d after a has

been performed in s if and only if a is the action of starting a disruption between x and

y until date d or if the flights were already cancelled until d in s and a is not the action

of ending the disruption between x and y:

Axiom 4.5.17.

FlightsCancelled(x, y, d, do(a, s)) ≡ a = startDisruptionBtwn(x, y, d)

∨ (FlightsCancelled(x, y, d, s) ∧ ¬a = endDisruptionBtwn(x, y)).

An agent agt has redeemed her reward miles for a flight from location x to y after

action a has been performed in s if and only if a refers to the action of redeeming them

towards a ticket from x to y on some date d or if agt has already redeemed her reward

miles for this route in s:

Axiom 4.5.18.

Redeemed(agt, x, y, do(a, s)) ≡

∃d. a = redeemMiles(agt, x, y, d) ∨ Redeemed(agt, x, y, s).

302

An agent agt has a ticket for a flight from location x to y for date d after action a has

been performed in s if and only if a refers to agt’s action of purchasing a ticket from

x to y for d in s or to that of redeeming agt’s reward miles towards a ticket from x to

y for d or if she already had this ticket for this route for d in s:36

Axiom 4.5.19.

HasTicket(agt, x, y, d, do(a, s)) ≡

(a = purchase(agt, x, y, d) ∨ a = redeemMiles(agt, x, y, d))

∨ HasTicket(agt, x, y, d, s).

An agent agt has n reward miles after a has been performed in s if and only if a is the

action of redeeming agt’s reward miles for a ticket from location x to y for date d and

n is what is left of her reward miles after she redeems the required amount of miles for

the ticket, i.e. the difference between the miles she has in s and the distance between

x and y, hasMiles(agt, s) − milesBtwn(x, y), or if she has n reward miles in s and a

is not the action of redeeming them for some ticket:

36Again, this is a simplistic model –e.g. here tickets don’t get cancelled after they have been used up–
but it is adequate for the current example.

303

Axiom 4.5.20.

hasMiles(agt, do(a, s)) = n ≡

(∃x, y, d. a = redeemMiles(agt, x, y, d) ∧ n = hasMiles(agt, s)−milesBtwn(x, y))

∨ (hasMiles(agt, s) = n ∧ ¬∃x, y, d. a = redeemMiles(agt, x, y, d)).

Finally, Anika has visited her best friend after an action a has been performed in

situation s if a is the action anikaV isitsBFF or if she has already visited her in s:37

Axiom 4.5.21.

AnikaVisitedBFF(do(a, s)) ≡ a = anikaV isitsBFF ∨ AnikaVisitedBFF(s).

I also need axioms for specifying the nextDate function. For brevity, I just give one

example here:

nextDate(Jan01) = Jan02.

I will call these axioms nextDate axioms.

For these axioms to work, I need to specify unique name axioms for the fly, date-

Tick, addBlacklistLoc, removeBlacklistLoc, startDisruptionBtwn, endDisrup-

tionBtwn, purchase, redeemMiles, and anikaV isitsBFF actions. To this end, I

first need an axiom that captures that actions with different action-function names are

not the same:

37Once again, this simplified model is sufficient for my example.

304

Axiom 4.5.22. For all distinct action functions A1 and A2 :

∀~x, ~y. A1(~x) 6= A2(~y).

Thus, for instance, we have that ∀a, b, c. f ly(a, b, c) 6= dateT ick, that ∀a, b, c, d, e.

f ly(a, b, c) 6= addBlacklistLoc(d, e), etc.

Another set of unique names axioms states that two actions with the same name

are the same if their arguments are equal:

Axiom 4.5.23. For all action functions A :

A(x1, . . . , xn) = A(y1, . . . , yn) ⊃ x1 = y1 ∧ . . . ∧ xn = yn.

Thus, for example, it follows from this axiom that fly(a, b, c) = fly(x, y, z) ⊃ a =

x ∧ b = y ∧ c = z, etc.

Again, I also need unique names axioms for location names:

Axiom 4.5.24.

YYZ 6= MLE ∧ YYZ 6= EYW ∧ YYZ 6= VRA

∧MLE 6= EYW ∧MLE 6= VRA ∧ EYW 6= VRA.

Furthermore, I need unique names axioms for date constants:

Axiom 4.5.25. For all distinct date constants d1 and d2:

d1 6= d2.

305

Thus, for example, it follows from this axiom that Jul29 6= Jul30, etc.

Finally, the following initial state axioms specify what the world is like and what

the agent knows about the world initially:

Axiom 4.5.26.

(a) milesBtwn(YYZ,MLE) = 8600,

(b) Know(At(Anika,YYZ), S0),

(c) ∀loc. loc 6= YYZ ⊃ Know(¬At(Anika, loc), S0),

(d) Know(date = Jul26, S0),

(e) ∀d. Know(¬Blacklisted(MLE, d), S0),

(f) ∀loc, d. Know(¬FlightsCancelled(YYZ, loc, d), S0),

(g) Know(¬Redeemed(Anika,YYZ,MLE), S0),

(h) ∀x, y, d. Know(¬HasTicket(Anika, x, y, d), S0),

(i) Know(hasMiles(Anika) = 9000, S0),

(j) Know(¬AnikaVisitedBFF, S0).

Thus, the distance between Toronto (YYZ) and Kaafu (MLE) is 8600 miles. More-

over, initially the travel agent knows that Anika is only located at Toronto and not

elsewhere, that the current date is July 26, that Kaafu is not blacklisted, that all flights

from Toronto are operating without any issues, that Anika has not redeemed her reward

306

miles for a ticket from Toronto to Kaafu, that initially Anika does not have any tickets,

that initially Anika has 9000 reward miles, and that initially Anika has not visited her

best friend.

Henceforth, I use DTA to denote the set of axioms and definitions required for

formalizing our travel agent example, i.e. one that consists of the axioms and the def-

initions for modeling an optimizing agent DOAgt and Axioms 4.5.1 – 4.5.26 and the

associated definitions. Given this, it can be shown that Anika can only be at one loca-

tion in any given situation, i.e. that the At relation is functional:

Lemma 4.5.27.

DTA |= ∀loc1, loc2, s. At(Anika, loc1, s) ∧ At(Anika, loc2, s) ⊃ loc1 = loc2.

Proof Sketch. By induction on s using Axioms 4.5.14, 4.5.26 (b) and (c), and the

relevant unique names axioms (i.e. 4.5.22, 4.5.23, and 4.5.24).

Moreover, this result can also be extended for a given date interval:

Lemma 4.5.28.

DTA |= ∀loc1, loc2, p. During(At(Anika, loc1), Jul29,Aug05)(p)

∧ During(At(Anika, loc2), Jul29,Aug05)(p)

⊃ loc1 = loc2.

307

Proof. By contradiction. Fix path P1 and locations L1 and L2 and assume:

During(At(Anika, L1), Jul29,Aug05)(P1), (4.79)

During(At(Anika, L2), Jul29,Aug05)(P1), (4.80)

L1 6= L2. (4.81)

By (4.79) and Definition 4.5.2, it follows that there are situations S1 and S2 such that:

OnPath(P1, S1) ∧ date(S1) = Jul29, (4.82)

OnPath(P1, S2) ∧ date(S2) = Aug05, (4.83)

∀s. OnPath(P1, s) ∧ date(s) > Jul29 ∧ date(s) < Aug05 ⊃ At(Anika, L1, s). (4.84)

Again, by (4.80) and Definition 4.5.2, we have:

∀s. OnPath(P1, s) ∧ date(s) > Jul29 ∧ date(s) < Aug05 ⊃ At(Anika, L2, s). (4.85)

Fix such a situation S∗ on P1 so that the date of S∗ is later than Jul29 and earlier than

Aug05, say date(S∗) = Jul31. By (4.82), (4.83), Proposition 3.5.43, Axiom 4.5.15,

and nextDate axioms (and the associated unique names axioms), such a situation in-

deed exists. Thus from this and from (4.84) and (4.85), we have:

At(Anika, L1, S
∗) ∧ At(Anika, L2, S

∗).

Then by this and Lemma 4.5.27, we have: L1 = L2. But this is contradictory to

(4.81).

308

I can show that initially our agent has the following only p-goals at the various

levels:

Proposition 4.5.29.

DTA |= OPGoal(∃s. Starts(s) ∧ Init(s) ∧ During(At(Anika,MLE), Jul29,Aug05)

∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)), 0, S0)

∧ OPGoal(∃s. Starts(s) ∧ Init(s) ∧ During(At(Anika,EYW), Jul29,Aug05), 1, S0)

∧ OPGoal(∃s. Starts(s) ∧ Init(s) ∧ During(At(Anika,VRA), Jul29,Aug05), 2, S0)

∧ OPGoal(∃s. Starts(s) ∧ Init(s) ∧ Between(AnikaVisitedBFF, Jul29,Aug05), 3, S0).

Proof. First, note that from Definitions 4.2.1 and 4.2.2, it follows that to show that

OPGoal(φn, n, S0) for some formula φn and some level n, we need to show that

∀p. G(p, n, S0) ≡ φn(p). The proposition follows from this and Axiom 4.5.1, since by

Axiom 3.2.2, S0 is an initial situation, i.e. Init(S0).

Also, all of these goals are initially possible:

309

Proposition 4.5.30.

DTA |= RPGoal(During(At(Anika,MLE), Jul29,Aug05)

∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)), 0, S0)

∧ RPGoal(During(At(Anika,EYW), Jul29,Aug05), 1, S0)

∧ RPGoal(During(At(Anika,VRA), Jul29,Aug05), 2, S0)

∧ RPGoal(Between(AnikaVisitedBFF, Jul29,Aug05), 3, S0).

Proof. I will show this for level 1 only, as the proofs for the other levels are similar.

Since by Axiom 3.2.2, S0 is an initial situation, it follows from Axiom 4.5.1 that:

∀p. G(p, 1, S0) ⊃ During(At(Anika,EYW), Jul29,Aug05)(p). (4.86)

We now have the two following cases. First consider the case where there is a path that

isGR-accessible at 1 in S0. By Definition 4.2.4, we have that allGR-accessible paths at

level 1 in situation S0 are G-accessible at 1 in S0, i.e. ∀p. GR(p, 1, S0) ⊃ G(p, 1, S0).

From this and (4.86), it follows that:

∀p. GR(p, 1, S0) ⊃ During(At(Anika,EYW), Jul29,Aug05)(p).

For this case, the proposition thus follows from this and Definition 4.2.5.

Next consider the case where there are no GR-accessible paths at level 1 in S0.38

But then the proposition trivially follows from Definition 4.2.5.

38In the proof of Proposition 4.5.31, I show that there is in fact a path in GR at level 0 in S0.

310

However, initially the agent only has the c-goal that Anika be at Kaafu during the week

of July 29 to August 5 and that she uses her reward miles before the departure date to

buy the ticket for this trip:

Proposition 4.5.31.

DTA |= CGoal(During(At(Anika,MLE), Jul29,Aug05)

∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)), S0)

∧ ¬CGoal(During(At(Anika,EYW), Jul29,Aug05), S0)

∧ ¬CGoal(During(At(Anika,VRA), Jul29,Aug05), S0)

∧ ¬CGoal(Between(AnikaVisitedBFF, Jul29,Aug05), S0).

Proof. This can be shown by proving each conjunct, one at a time. Let’s start with

the first conjunct. In the following, I will use φ0 to denote the c-goal of this conjunct,

i.e. φ0 = During(At(Anika,MLE), Jul29,Aug05) ∧ (Redeemed(Anika,YYZ,MLE)

B (date = Jul29)). I will first show that there is aGR-accessible path at level 0 in situ-

ation S0 over which φ0 holds. To this end, let me construct such a path P0 by giving the

situations/actions on the path: S0, S1 = do(redeemMiles(Anika,YYZ,MLE, Jul29),

S0), S2 = do(dateT ick, S1), S3 = do(dateT ick, S2), S4 = do(dateT ick, S3), S5 =

do(fly(Anika,YYZ,MLE), S4), followed by infinitely many dateT ick actions. Note

that, for this sequence of situations to be a valid path P0, these situations need to be

311

executable. By Axiom 3.2.2 and Lemma 3.5.17, S0 is executable; I will show that the

rest of the situations are also executable (by showing that these actions are executable

in the corresponding situations) later.

Also, note that P0 starts with S0, and by Axioms 3.2.2 and 3.4.2, S0 is an initial

situation that is K-accessible from S0, i.e. Init(S0) ∧ K(S0, S0). From this, Axiom

4.5.1, and Definition 4.2.4, it follows that P0 is GR-accessible at level 0 in S0 (i.e.

GR(P0, 0, S0)) if φ0 holds over P0. I will now argue that this is indeed that case.

First note that by Axiom 4.5.12, the redeemMiles(Anika,YYZ, MLE, Jul29) action

is possible in S0 if and only if we have:

¬Redeemed(Anika,YYZ,MLE, S0) ∧

¬∃d. Blacklisted(MLE, d, S0) ∧milesBtwn(YYZ,MLE) ≤ hasMiles(Anika, S0).

¬Redeemed(Anika,YYZ,MLE, S0) follows from Axiom 4.5.26 (g) and the reflexivity

ofK. Moreover, ¬∃d. Blacklisted(MLE, d, S0) follows from Axiom 4.5.26 (e) and the

reflexivity of K while milesBtwn(YYZ,MLE) ≤ hasMiles(Anika, S0) from Axioms

4.5.26 (a), (i), and the reflexivity of K. Thus the redeemMiles action is possible in

S0. Note that after this redeemMiles action has been performed, i.e. in S1, it follows

from Axiom 4.5.19 that Anika has a ticket for a flight from Toronto to the Maldives

for July 29, i.e.:

HasTicket(Anika,YYZ,MLE, Jul29, S1). (4.87)

312

Also, it follows from Axiom 4.5.18 that she has redeemed her reward miles for this

ticket in S1, i.e.:

Redeemed(Anika,YYZ,MLE, S1). (4.88)

Moreover, it follows from Axiom 4.5.26 (d), the reflexivity of K, and Axiom 4.5.15

(and the unique names for actions axioms39) that the current date was not effected by

this action:

date(S1) = Jul26. (4.89)

Furthermore, it follows from Axiom 4.5.26 (b), the reflexivity of K, and Axiom 4.5.14

that Anika’s location was not effected by this action:

At(Anika,YYZ, S1). (4.90)

Finally, it follows from Axiom 4.5.26 (f), the reflexivity of K, and Axiom 4.5.17 that

the flights between Toronto and the Maldives were not effected by this action either:

∀d. ¬FlightsCancelled(YYZ,MLE, d, S1). (4.91)

Note that, from (4.88), (4.89), and Definition 3.5.11, it follows that:

(Redeemed(Anika,YYZ,MLE) B (date = Jul29))(P0). (4.92)

39For brevity, I won’t mention unique names for actions axioms henceforth.

313

Secondly, note that by Axiom 4.5.6, the dateT ick action is possible in situations

S1, S2, and S3. Now, by (4.89) and Axiom 4.5.15, the current date is incremented after

each dateT ick action happens, i.e. date(S2) = Jul27 and:

date(S3) = Jul28, (4.93)

date(S4) = Jul29. (4.94)

Also, by (4.87) and Axiom 4.5.19, (4.91) and Axiom 4.5.17, and (4.90) and Axiom

4.5.14, these dateT ick actions have no effect on Anika’s tickets, flight cancellations,

and Anika’s location:

HasTicket(Anika,YYZ,MLE, Jul29, S4), (4.95)

∀d. ¬FlightsCancelled(YYZ,MLE, d, S4), (4.96)

At(Anika,YYZ, S4). (4.97)

Thirdly, note that by Axiom 4.5.5, (4.95), (4.94), (4.96), and (4.97), the fly(Anika,

YYZ,MLE) action is possible in S4. By (4.97) and Axiom 4.5.14, Anika is located at

MLE after the fly action happens:

At(Anika,MLE, S5). (4.98)

Also, by (4.94) and Axiom 4.5.15, the current date remains the same after the fly

action happens:

date(S5) = Jul29. (4.99)

314

Fourthly (and finally), by Axiom 4.5.6, all the remaining dateT ick actions are

possible starting in S5. As discussed before, these dateT ick actions do not affect

Anika’s location, and thus by (4.98) she remains at MLE in all future situations on

path P0:

∀s. OnPath(P0, s) ∧ S5 � s ⊃ At(Anika,MLE, s). (4.100)

By Axiom 4.5.15, each of these dateT ick actions flips the date to the next one starting

from July 29. In particular, by (4.94) and Axiom 4.5.15, it follows that:

date(S12) = Aug05, (4.101)

where S12 = do(dateT ick, do(dateT ick, do(dateT ick, do(dateT ick, do(dateT ick,

do(dateT ick, do(dateT ick, S5))))))). Thus, by (4.99), (4.101), the fact that there are

no situations between S5 and S6 = do(dateT ick, S5), (4.100), and Definition 4.5.2, it

follows that:

During(At(Anika,MLE), Jul29,Aug05)(P0). (4.102)

From (4.102) and (4.92), it follows that φ0 holds over P0, and thus we have:

GR(P0, 0, S0). (4.103)

Now, note that by Definitions 4.2.10 and 4.2.9, it follows that CGoal(φ0, S0) if and

only if ∀p, n. G∩(p, n, S0) ⊃ φ0(p). I will show this by induction on n using Axiom

315

4.2.7. The base case follows from (4.103) and Axiom 4.2.7 – since there is a GR-

accessible path at level 0 in situation S0, namely P0, the G∩-accessible paths up to

level 0 in S0 are those that are GR-accessible at 0 in S0; by Axiom 4.5.1 and Definition

4.2.4, φ0 holds over all such paths, i.e. ∀p. G∩(p, 0, S0) ⊃ φ0(p). For the inductive

step, fix level N and assume that:

∀p. G∩(p,N, S0) ⊃ φ0(p). (4.104)

From Axiom 4.2.7, we can see that the set of G∩-accessible paths at level N + 1 in S0

is either the same as that of the one at level N in S0 or a proper subset of it. It thus

follows from this and (4.104) that φ0 holds over allGR-accessible paths atN+1 in S0.

Hence, it follows that ∀p, n. G∩(p, n, S0) ⊃ φ0(p) and thus we have CGoal(φ0, S0),

i.e. that the first conjunct of the proposition holds.

Next, let us consider the second conjunct; assume that φ1 = During(At(Anika,EY-

W), Jul29,Aug05). By Definitions 4.2.10 and 4.2.9, to show that ¬CGoal(φ1, S0) we

have to prove that ∃p. ∀n. G∩(p, n, S0)∧¬φ1(p). Since I have shown that CGoal(φ0, S0),

by Definitions 4.2.10 and 4.2.9, and Proposition 4.4.2 (which implies that G∩ cannot

be empty), it follows that ∃p. ∀n. G∩(p, n, S0)∧φ0(p). Thus from the definition of φ0,

we have:

∃p. ∀n. G∩(p, n, S0) ∧ During(At(Anika,MLE), Jul29,Aug05)(p).

316

From this and the fact that At is functional over the date interval (Jul29, Aug05), i.e.

Lemma 4.5.28, it follows that:

∃p. ∀n. G∩(p, n, S0) ∧ ¬During(At(Anika,EYW), Jul29,Aug05)(p).

The conjunct thus follows.

The proof for the third conjunct is similar to that of the second one.

Finally, the proof for the last conjunct is also similar to that of the second one; in

this case, we have to use the additional facts that initially the agent knows that Anika

has not visited her best friend (i.e. Axiom 4.5.26(j)), that the fluent AnikaVisitedBFF

becomes true only if she visits her best friend (i.e. Axiom 4.5.21), and that Anika can

only visit her best friend between Jul29 and Aug05 if Anika is located at EYW during

this period (i.e. Axiom 4.5.13), which is impossible as the second conjunct holds.

Now assume that Anika has just learned from a trusted source that the Keys, at this

time of the year, is very crowded, teeming with tourists from around the U.S. Since

she was looking for a quiet vacation, she gets her agent to change its preferences by

making the Keys its least preferred location. In my framework, such a reordering in

an agent’s preferences can be captured by a sequence of actions that involves dropping

one or more p-goals and then re-adopting them at different levels. Recall that dropping

an existing goal empties up all the levels where the dropped goal was a p-goal in the

317

sense that the set of paths at each of these levels are replaced with paths that start with

current K-accessible situations, essentially replacing the p-goals at these levels with

the trivial goal that the correct history of actions in the current situation has occurred.

Re-adopting the dropped goal at some new level n on the other hand adds the goal at

level n by inserting the set of paths representing the goal at level n and pushing down

one level in the goal hierarchy all the other p-goal levels that had priority n or lower

before the adopt action occurred.

Continuing with our example, for instance, here this intended reordering can be

achieved by first dropping the p-goal that Anika be at the Keys during the specified

week and then by re-adopting it at level 3 (or alternatively, by dropping the p-goal

that Anika be at Varadero during that period and then re-adopting it at level 1). It

can be shown that the agent has the following only p-goals after she drops the p-

goal that During(At(Anika,EYW), Jul29,Aug05) and adopts it again at level 3 start-

ing in situation S0, i.e. in S2, where S2 = do(adopt(During(At(Anika,EYW), Jul29,

Aug05), 3), S1) and S1 = do(drop(During(At(Anika,EYW), Jul29,Aug05)), S0):40

40Note that after the agent has dropped the p-goal at level 1 (i.e. in S1), her only p-goal at this level
becomes just the trivial goal to be on a path that includes the actions done so far, i.e. one that starts with a
situation that has the same action history as S1. I could have defined the optimizing-agent framework to
get rid of/compact such “empty” p-goal levels, but this would have complicated the framework further.

318

Proposition 4.5.32.

DTA |= OPGoal(∃s. Starts(s) ∧ SameHist(s, S2)

∧ During(At(Anika,MLE), Jul29,Aug05)

∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)), 0, S2)

∧ OPGoal(∃s. Starts(s) ∧ SameHist(s, S2), 1, S2)

∧ OPGoal(∃s. Starts(s) ∧ SameHist(s, S2)

∧ During(At(Anika,VRA), Jul29,Aug05), 2, S2)

∧ OPGoal(∃s. Starts(s) ∧ SameHist(s, S2)

∧ During(At(Anika,EYW), Jul29,Aug05), 3, S2)

∧ OPGoal(∃s. Starts(s) ∧ SameHist(s, S2)

∧ Between(AnikaVisitedBFF, Jul29,Aug05), 4, S2).

Proof Sketch. First, note that from Definitions 4.2.1 and 4.2.2, it follows that to show

that OPGoal(φn, n, s) for some formula φn, some level n, and some situation s, we

need to show that ∀p. G(p, n, s) ≡ φn(p). Now from the SSA for G, it follows that

after the drop(During(At(Anika,EYW), Jul29,Aug05) action happens in S0, i.e. in

S1, the agent’s G-accessible paths at all levels are progressed to reflect that this action

has just been performed; in addition to this, the SSA for G adds back all paths that

share the same history with S1 to the existing G-accessibility levels where the agent

319

has the p-goal that During(At(Anika,EYW), Jul29,Aug05). Thus, from the SSA for

G (i.e. Axiom 4.3.3 and Definitions 4.3.4 and 4.3.6) and Axiom 4.5.1, it follows that

the agent’s G-accessible paths in S1 at various levels are as follows:

G(p, 0, S1) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S1) ∧

During(At(Anika,MLE), Jul29,Aug05)(p) ∧

(Redeemed(Anika,YYZ,MLE) B (date = Jul29))(p),

(4.105)

G(p, 1, S1) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S1), (4.106)

G(p, 2, S1) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S1) ∧

During(At(Anika,VRA), Jul29,Aug05)(p),

(4.107)

G(p, 3, S1) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S1) ∧

Between(AnikaVisitedBFF, Jul29,Aug05)(p).

(4.108)

Moreover, by the SSA for G, it follows that after the adopt(During(At(Anika,EYW),

Jul29,Aug05), 3) action happens in S1, i.e. in S2, the G-accessible paths at all levels

above level 3 are simply progressed to reflect the fact that this action has been per-

formed. Thus from the SSA for G (i.e. Axiom 4.3.3 and Definitions 4.3.4 and 4.3.5)

and (4.105), (4.106), and (4.107), it follows that the agent’sG-accessible paths at these

320

levels are as follows:

G(p, 0, S2) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S2) ∧

During(At(Anika,MLE), Jul29,Aug05)(p) ∧

(Redeemed(Anika,YYZ,MLE) B (date = Jul29))(p),

(4.109)

G(p, 1, S2) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S2), (4.110)

G(p, 2, S2) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S2) ∧

During(At(Anika,VRA), Jul29,Aug05)(p).

(4.111)

Also, theG-accessible paths at level 3 in situation S2 are those that start with a situation

that has the same action history as S2 and over which the adopted goal holds, i.e.

G(p, 3, S2) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S2) ∧

During(At(Anika,EYW), Jul29,Aug05)(p).

(4.112)

Finally, the G-accessible paths at all levels below level 3 in S2 are the ones that can be

obtained by progressing the level immediately above it. Thus from the SSA for G and

(4.108), it follows that:

G(p, 4, S2) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S2) ∧

Between(AnikaVisitedBFF, Jul29,Aug05)(p).

(4.113)

The proposition then follows from (4.109)–(4.113) and Definitions 4.2.1 and 4.2.2.

321

Now suppose that at this point, the agent is informed that Cool-Air-Miles has an-

nounced that due to an outbreak of some unknown disease in many Indian ocean is-

lands, they are forced to blacklist the Maldives for a month. Here this can be mod-

eled by having the exogenous action addBlacklistLoc(MLE,Aug26) occur next. In

that case, it can be shown that the agent will choose Varadero over Kaafu in S3 =

do(addBlacklistLoc(MLE,Aug26), S2) since her highest priority p-goal has become

impossible to bring about:

Proposition 4.5.33.

DTA |= KImpossible(During(At(Anika,MLE), Jul29,Aug05)

∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)), S3)

∧ ¬CGoal(During(At(Anika,MLE), Jul29,Aug05)

∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)), S3)

∧ CGoal(During(At(Anika,VRA), Jul29,Aug05), S3)

∧ ¬CGoal(During(At(Anika,EYW), Jul29,Aug05), S3)

∧ ¬CGoal(Between(AnikaVisitedBFF, Jul29,Aug05), S3).

Proof. I will prove each conjunct, one at a time. Let us consider the first conjunct. I

will show this by contradiction. Assume that φ0 stands for During(At(Anika,MLE),

Jul29,Aug05) ∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)). By Definitions

322

3.5.15, 3.5.14, 3.5.12, and 3.4.5, ¬KImpossible(φ0, S3) can be expanded as follows:

¬KImpossible(φ0, S3)

≡ ¬KInevitable(¬φ0, S3)

≡ ¬Know(WeaklyInevitable(¬φ0, now), S3)

≡ ¬Know(∀p. Starts(p, now) ⊃ ¬φ0(p), S3)

≡ ¬(∀s′. K(s′, S3) ⊃ (∀p. Starts(p, s′) ⊃ ¬φ0(p)))

≡ ∃s′. K(s′, S3) ∧ ∃p. Starts(p, s′) ∧ φ0(p).

Thus, ¬KImpossible(φ0, S3) holds if there is a path P ∗ that starts with some situation

S∗ that is K-accessible from situation S3 and φ0 holds over P ∗:

Starts(P ∗, S∗) ∧K(S∗, S3) ∧ φ0(P ∗). (4.114)

From this and Definition 4.5.2, it follows that there is a situation S∗∗ such that:

OnPath(P ∗, S∗∗) ∧ date(S∗∗) = Jul29. (4.115)

Now, from (4.114), Definitions 3.5.11 and 3.5.7, and the definition of φ0, it follows

323

that:

Redeemed(Anika,YYZ,MLE) B (date = Jul29)(P ∗)

≡ ¬(¬Redeemed(Anika,YYZ,MLE) U (date = Jul29))(P ∗)

≡ ¬∃s, s′. Starts(P ∗, s) ∧ OnPath(P ∗, s′) ∧ date(s′) = Jul29

∧ ∀s∗. s ≤ s∗ < s′ ⊃ ¬Redeemed(Anika,YYZ,MLE, s∗).

It follows from this, (4.114), and (4.115), that there is a situation SR that is between

the situation interval [S∗, S∗∗) and over which Anika has redeemed her Cool Air Miles

for a ticket from YYZ to MLE:

S∗ � SR ≺ S∗∗ ∧ Redeemed(Anika,YYZ,MLE, SR). (4.116)

Now, it follows from Axiom 4.5.26(g) that initially the agent knows that Redeemed

is false, i.e. Know(¬Redeemed(Anika,YYZ,MLE), S0). Fix arbitrary K-accessible

situation Sk0 in S0. Then from Axiom 4.5.26(g) and Definition 3.4.5, we have:

¬Redeemed(Anika,YYZ,MLE, Sk0). (4.117)

By the SSA for Redeemed, i.e. Axiom 4.5.18, it follows that Redeemed will only

become true if the redeemMiles(Anika,YYZ,MLE, d) action happens for some date

d. Since by the unique names axioms the drop, adopt, and addBlacklistLoc actions

are not the same as the redeemMiles action, it follows from (4.117) and Axiom 4.5.18

324

that:

¬Redeemed(Anika,YYZ,MLE, Sk3),

where Sk3 = do(addBlacklistLoc(MLE,Aug26), do(adopt(φ2, 3), do(drop(φ2), Sk0)))

and φ2 = During(At(Anika,EYW), Jul29,Aug05).

Note that since by Axiom 3.4.10, all situations that are K-accessible in S3 must be

progressed from those that were K-accessible in S0, the above also holds for any

arbitrary K-accessible situation in S3. From this and (4.114), it thus follows that:

¬Redeemed(Anika,YYZ,MLE, S∗).

From this, (4.116), and Axiom 4.5.18, it follows that there must be a situation s be-

tween S∗ and S∗∗ where an appropriate redeemMiles action occurs:

∃s. S∗ ≺ do(redeemMiles(Anika,YYZ,MLE), s) ≺ S∗∗. (4.118)

I will show that this is impossible since the preconditions of redeemMileswill always

be false in this interval. Note that by Axiom 4.5.26(e), it follows that the agent knows

that initially MLE is not blacklisted for all dates, i.e. ∀d. Know(¬Blacklisted(MLE, d), S0).

Then from Axiom 4.5.26(e) and Definition 3.4.5, for any arbitrary K-accessible situa-

tion Sk0 we have:

¬Blacklisted(MLE, d, Sk0). (4.119)

325

By the SSA for Blacklisted, i.e. Axiom 4.5.16, it follows that MLE will be black-

listed only if the addBlacklistLoc(MLE, d) action happens for some date d. Since

by the unique names axioms the drop and the adopt actions are not the same as the

addBlacklistLoc action, it follows from Axiom 4.5.16 that:

∀d. ¬Blacklisted(MLE, d, Sk2),

where Sk2 = do(adopt(φ2, 3), do(drop(φ2), Sk0))).

Again, since by Axiom 3.4.10, all situations that are K-accessible in S2 must be pro-

gressed from those that were K-accessible in S0, the above also holds for any arbitrary

K-accessible situation in S2. From this and Definition 3.4.5, it follows that the agent

will also know in S2 that this is the case:

Know(∀d. ¬Blacklisted(MLE, d), S2). (4.120)

But after the addBlacklistLoc(MLE,Aug26) action happens, by Axiom 4.5.16 it fol-

lows that MLE will be blacklisted at least until Aug 26:

Blacklisted(MLE,Aug26, Sk3).

Moreover, since by Axiom 3.4.10, all situations that are K-accessible in S3 must be

progressed from those that were K-accessible in S2, the above also holds for any

arbitrary K-accessible situation in S3. From this and Definition 3.4.5, it follows that

326

the agent will know this is S3:

Know(Blacklisted(MLE,Aug26), S3).

It follows from this and (4.114) that:

Blacklisted(MLE,Aug26, S∗). (4.121)

Now by this and the preconditions of redeemMiles, i.e. Axiom 4.5.12, for (4.118) to

hold, MLE must be removed from the blacklist no later than the date of S∗∗, which by

the above definition of S∗∗ is Jul 29. But by (4.121) and Axiom 4.5.8, this is impossible

as the removeBlacklistLoc(MLE) action can only happen in a situation whose date

is later than Aug 26. It thus follows from this and the SSA for Blacklisted, i.e. Axiom

4.5.16 that MLE is blacklisted for all situations in the interval [S∗, S∗∗]:

∀s. S∗ � s � S∗∗ ⊃ Blacklisted(MLE,Aug26, s).

Thus by this and Axiom 4.5.12 the action redeemMiles(Anika,YYZ,MLE) cannot

occur between S∗ and S∗∗, which is contradictory to (4.118). Hence it follows that:

KImpossible(φ0, S3), (4.122)

i.e. the first conjunct of the proposition holds. Note that it also follows that such a path

P ∗ does not exist, i.e.:

¬∃p, s. Starts(p, s) ∧K(s, S3) ∧ φ0(p). (4.123)

327

I will next show that the second conjunct holds, i.e. ¬CGoal(φ0, S3). This follows

from (4.122) and Corollary 4.4.4.

Assume that φ1 stands for During(At(Anika,VRA), Jul29,Aug05). I will next

show that the third conjunct holds, i.e. that CGoal(φ1, S3). In the following I will do

this by showing that there is a path that is in the intersection of the GR-accessible

paths (i.e. in G∩) up to level 1 in S3 and over which φ1 holds, that this path is

also GR-accessible at level 2 in S3, and that φ1 holds over all paths that are in GR-

accessible at level 2 in S3; then I will use these to show that φ1 holds over all paths

that are in G∩ up to any level n. First, let me prove the first one. Let me start by

constructing such a path P ∗1 by giving the situations/actions on the path; I can then

show that G∩(P ∗1 , 1, S3). The situations/actions on P ∗1 are as follows: S3, S4 =

do(purchase(Anika,YYZ,VRA, Jul29), S3), S5 = do(dateT ick, S4), S6 = do(date

T ick, S5), S7 = do(dateT ick, S6), S8 = do(fly(Anika,YYZ,VRA), S7), followed

by infinitely many dateT ick actions.

Now, note that P ∗1 starts with S3, and by the reflexivity of K (i.e. Axioms 3.4.2 and

3.4.10), we have:

Starts(P ∗1 , S3) ∧K(S3, S3). (4.124)

I will now show that φ1 holds over P ∗1 . To this end, note that from Definition 4.5.2,

328

it follows that φ1(P ∗1) if and only if the following holds:

∃s1, s2. OnPath(P ∗1 , s1) ∧ OnPath(P ∗1 , s2) ∧ date(s1) = Jul29 ∧ date(s2) = Aug05

∧ ∀s. OnPath(P ∗1 , s) ∧ date(s) > Jul29 ∧ date(s) < Aug05 ⊃ At(Anika,VRA, s).

I will now argue that this is indeed that case. First note that by Axiom 4.5.11, the

purchase(Anika,YYZ,VRA, Jul29) action is always possible, and thus it is possible

in S3. Also by Axiom 4.5.19, Anika has the ticket from YYZ to VRA for Jul 29 in S4:

HasTicket(Anika,YYZ,VRA, Jul29, S4). (4.125)

Now by Axiom 4.5.6, the dateT ick action is always possible. By Axiom 4.5.26(d)

and Definition 3.4.5, it follows that date(S0) = Jul26. Moreover, since by the unique

names axioms the drop, adopt, addBlacklistLoc, and purchase actions do not refer

to the dateT ick action, by Axiom 4.5.15 it follows that the date of S4 is also Jul 26,

i.e.: date(S4) = Jul26. Moreover, from this and Axiom 4.5.15 it follows that:

date(S7) = Jul29. (4.126)

Now, note that by (4.125) and Axiom 4.5.19, it follows that:

HasTicket(Anika,YYZ,VRA, Jul29, S7). (4.127)

Moreover, from Axiom 4.5.26(f) and Definition 3.4.5, it follows that:

∀l, d. ¬FlightsCancelled(YYZ, l, d, S0).

329

From this, the unique names axioms (which say that none of the actions performed so

far is a startDisruptionBtwn action), and Axiom 4.5.17, it follows that:

∀l, d. ¬FlightsCancelled(YYZ, l, d, S7). (4.128)

Furthermore, from Axiom 4.5.26(b) and Definition 3.4.5, it follows that:

At(Anika,YYZ, S0).

From this, the unique names axioms (which say that none of the actions performed so

far is a fly action), and Axiom 4.5.14, it follows that:

At(Anika,YYZ, S7). (4.129)

Again, from Axiom 4.5.24, it follows that:

YYZ 6= VRA.

From this, (4.127), (4.126), (4.128), (4.129), and Axiom 4.5.5 it follows that the

fly(Anika,YYZ, VRA) action is possible in S7.

Now, by (4.129) and Axiom 4.5.14, Anika will be in VRA after the fly(Anika,YYZ,

VRA) action happens in S7, i.e.:

At(Anika,VRA, S8).

330

Also, since by our construction above none of the rest of the actions on P ∗1 is a fly

action, Anika will stay in VRA for all situations that follows S7 on P ∗1 :

∀s. OnPath(P ∗1 , s) ∧ S7 ≺ s ⊃ At(Anika,VRA, s). (4.130)

Again, from (4.126), the unique names axioms (which says that the fly action is

not a dateT ick action), and Axiom 4.5.15, it follows that:

date(S14) = Aug05, (4.131)

where, S14 = do(dateT ick, do(dateT ick, do(dateT ick, do(dateT ick, do(dateT ick,

do(dateT ick, S8)))))). Recall from above that φ1 holds over P ∗1 if there are two situ-

ations associated with dates Jul 29 and Aug 05 on P ∗1 and Anika is at VRA in all the

situations on P ∗1 that are within this situation interval (see the unnumbered equation

right after (4.124)). It thus follows from (4.126), (4.131), and (4.130) that:

φ1(P ∗1). (4.132)

Next, I will show that G∩(P ∗1 , 1, S3). Since by the unique names axioms the

addBlacklistLoc action is not an adopt or drop action, the G-accessible paths in

S2 will simply be progressed when it happens. Thus from Proposition 4.5.32, Axiom

331

4.3.3, and Definitions 4.3.4, 4.2.1 and 4.2.2, it follows that:

∀p. G(p, 0, S3) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S3) ∧ φ0(p), (4.133)

∀p. G(p, 1, S3) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S3), (4.134)

∀p. G(p, 2, S3) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S3) ∧ φ1(p). (4.135)

From (4.133), it follows that ∀p. G(p, 0, S3) ⊃ φ0(p). From this, (4.123), and Defini-

tion 4.2.4, it follows that there are no GR-accessible paths at level 0 in S3, i.e.:

¬∃p. GR(p, 0, S3). (4.136)

Then by Axiom 4.2.7, it follows that:

∀p. G∩(p, 0, S3) ≡ ∃s′. Starts(p, s′) ∧K(s′, S3).

By (4.124), P ∗1 is indeed such a path and thus we have:

G∩(P
∗
1 , 0, S3). (4.137)

Moreover, from (4.124) and Definition 3.2.7, it follows that:

Starts(P ∗1 , S3) ∧ SameHist(S3, S3). (4.138)

Thus by this and (4.134), it follows that G(P ∗1 , 1, S3). Moreover, from this, (4.124),

and Definition 4.2.4, it follows that GR(P ∗1 , 1, S3). From this, (4.137), and Axiom

4.2.7, it follows that:

G∩(P
∗
1 , 1, S3). (4.139)

332

Furthermore, from (4.124), (4.138), (4.132), (4.135), and Definition 4.2.4, it follows

that:

GR(P ∗1 , 2, S3), (4.140)

∀p. GR(p, 2, S3) ⊃ φ1(p). (4.141)

Now by (4.139), (4.140), (4.141), and Axiom 4.2.7, it follows that φ1 holds over all

paths that are in the intersection of the GR-accessible paths up to level 2 in S3, i.e.:

∀p. G∩(p, 2, S3) ⊃ φ1(p). (4.142)

From this and Axiom 4.2.7, it follows that:

∀p. (∀n. G∩(p, n, S3)) ⊃ φ1(p).

Finally, from this and Definitions 4.2.10 and 4.2.10 and 4.2.9, it follows that the third

conjunct holds, i.e. CGoal(φ1, S3).

Next, I will prove that the fourth conjunct holds. Assume that φ2 stands for

During(At(Anika,EYW), Jul29,Aug05). Then I need to show that ¬CGoal(φ2, S3).

By Definitions 4.2.10 and 4.2.9, to show that ¬CGoal(φ2, S3) we have to prove that

∃p. (∀n. G∩(p, n, S3)) ∧ ¬φ2(p). Since I have shown that CGoal(φ1, S3), by Defini-

tions 4.2.10 and 4.2.9 it follows that ∃p. (∀n. G∩(p, n, S3)) ∧ φ1(p). Thus from the

definition of φ1, we have:

∃p. ∀n. G∩(p, n, S0) ∧ During(At(Anika,VRA), Jul29,Aug05)(p).

333

From this, the fact that At is functional over the date interval (Jul29, Aug05), i.e.

Lemma 4.5.28, and that EYW 6= VRA, i.e. Axiom 4.5.24, it follows that:

∃p. ∀n. G∩(p, n, S0) ∧ ¬During(At(Anika,EYW), Jul29,Aug05)(p). (4.143)

The conjunct thus follows.

Finally, I will prove that the last conjunct holds; this is related to the proof of the

previous conjunct. In this case, note that initially the agent knows that Anika has not

visited her best friend (i.e. Axiom 4.5.26(j)), that the fluent AnikaVisitedBFF becomes

true only if she visits her best friend (i.e. Axiom 4.5.21), that by the unique names ax-

ioms for actions none of the actions performed so far is the anikaV isitsBFF action,

and that Anika can only visit her best friend between Jul29 and Aug05 if she is located

at EYW during this period (i.e. Axiom 4.5.13). Given that she is not, i.e. (4.143), it

follows that:

∃p. ∀n. G∩(p, n, S0) ∧ ¬Between(AnikaVisitedBFF, Jul29,Aug05)(p).

From this and Definitions 4.2.10 and 4.2.9 it then follows that the last conjunct holds,

i.e.:

¬CGoal(Between(AnikaVisitedBFF, Jul29,Aug05), S3).

The proposition thus follows.

334

Finally, assume that the agent later learns that as a result of an upcoming hurri-

cane, all flights going from Toronto to Varadero are cancelled for a week. Again, we

can model this by having the exogenous action startDisruptionBtwn(YYZ,VRA,

Aug02) occur next. In that case, it can be shown that the agent will choose the Keys

as Anika’s destination in S4 = do(startDisruptionBtwn(YYZ,VRA,Aug02), S3),

since it has become impossible to fly to Varadero before Aug03:

Proposition 4.5.34.

DTA |=

Know(∀s. now ≺ s ∧ date(s) < Aug03 ⊃ ¬Poss(fly(Anika,YYZ,VRA), s), S4)

∧ ¬CGoal(During(At(Anika,MLE), Jul29,Aug05)

∧ (Redeemed(Anika,YYZ,MLE) B (date = Jul29)), S4)

∧ ¬CGoal(During(At(Anika,VRA), Jul29,Aug05), S4)

∧ CGoal(During(At(Anika,EYW), Jul29,Aug05), S4)

∧ CGoal(Between(AnikaVisitedBFF, Jul29,Aug05), S4).

Proof Sketch. The proof for this can be approached similarly to that of the previous

proposition; in fact, much of this proof sketch is a continuation of the previous one.

For the first conjunct, it can be shown that:

• by Axiom 4.5.26(f), the agent initially knows that all flights from YYZ are run-

335

ning;

• by the unique names axioms, none of the actions performed so far is a startDisr-

uptionBtwn action, and thus by the SSA for FlightsCancelled (Axiom 4.5.17)

and the SSA for K (Axiom 3.4.10), the agent still knows in S3 that all flights

from YYZ are operating; thus by Axiom 4.5.9, the agent knows that the startDis-

ruptionBtwn(YYZ,MLE,Aug02) action is possible in S3; and

• by the SSA for FlightsCancelled (Axiom 4.5.17), the flights from YYZ to VRA

are cancelled at least until Aug03 in S4 and by Axiom 3.4.10, the agent also

knows this; moreover, by Axiom 4.5.17 and the preconditions of endDisruption-

Btwn (Axiom 4.5.10), the agent also knows that this route cannot be restored

anytime before Aug03.

Thus by the preconditions of fly, i.e. Axiom 4.5.5, the agent knows that it is not

possible to execute the fly(Anika,YYZ,VRA) action in a situation that is preceded

by a K-accessible situation in S4 and whose date is earlier than Aug03.

Next consider the last two conjuncts; let’s call the content of these c-goals φ2 and

φ3, respectively. Note that the last two conjuncts can be proven as before by (i) con-

structing a path over which φ2 and φ3 hold, (ii) proving that this path is in G∩ up to

level 2 in S4, (iii) showing that the path is in the GR relation at level 3 in S4, (iv)

336

showing that φ2 ∧ φ3 holds over all paths that are in the GR relation at level 3 in S4,

and then using these to (v) prove that φ2 ∧ φ3 holds over all paths that are in the G∩

intersection for all levels n in S4. Here, I will handle the proof for these two conjuncts

simultaneously by constructing a single such path P ∗ over which φ2 and φ3 hold, prov-

ing that G∩(P ∗, 2, S4), i.e. step (i) and (ii) above. The proof for (iii), (iv), and (v)

are similar to that of the previous proposition, so I will skip them.

I’ll start by giving the situations/actions for P ∗: S4, S5 = do(purchase(Anika,YYZ,

EYW, Jul29), S4), S6 = do(dateT ick, S5), S7 = do(dateT ick, S6), S8 = do(dateT ick,

S7), S9 = do(fly(Anika,YYZ,EYW), S8), S10 = do(dateT ick, S9), S11 = do(anika-

V isitsBFF, S10), followed by infinitely many dateT ick actions. It is straightforward

to show that φ2 ∧ φ3 holds over P ∗.

Next, I’ll show (ii). Note that I have shown earlier that there are no GR-accessible

paths at level 0 in S3, i.e. ¬∃p. GR(p, 0, S3) (see (4.136) in the proof of Proposition

4.5.33). From this and the SSA for G (Axiom 4.3.3), it follows that this also holds for

S4 since by the unique names axioms the startDisruptionBtwn action does not refer

to an adopt or a drop action (and thus no paths were added back to the G-relation at

level 0 in S4). Thus by Axiom 4.2.7, it follows that:

∀p. G∩(p, 0, S4) ≡ ∃s′. Starts(p, s′) ∧K(s′, S4).

Now consider path P ∗ that starts with S4; note that it follows from the above and the

337

reflexivity of K that P ∗ is in G∩ up to level 0 in S4 (as it starts with a K-accessible

situation in S4, namely S4):

G∩(P
∗, 0, S4). (4.144)

Moreover, I have shown earlier (see (4.134) in the proof for Proposition 4.5.33) that:

∀p. G(p, 1, S3) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S3).

From this, the unique names axioms for actions, and the SSA for G (Axiom 4.3.3), it

follows that theseG-accessible paths will simply be progressed when the startDisrup-

tionBtwn action happens in S3 since this action is not an adopt or a drop action, and

thus we have:

∀p. G(p, 1, S4) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S4).

Since by Definition 3.2.7, SameHist(S4, S4), it follows that G(P ∗, 1, S4), and from

Definition 4.2.4 and the reflexivity of K that GR(P ∗, 1, S4), and finally from (4.144)

and Axiom 4.2.7 that:

G∩(P
∗, 1, S4). (4.145)

Furthermore, previously I have shown that (see (4.137) in the proof of Proposition

4.5.33):

∀p. G(p, 2, S3) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S3) ∧ φ1(p),

338

where φ1 stands for During(At(Anika,VRA), Jul29,Aug05). From this and the SSA

forG (Axiom 4.3.3), it follows that theseG-accessible paths will simply be progressed

when the startDisruptionBtwn action happens in S3 since the action performed in

S3 is not an adopt or a drop action. Thus from this and the fact that the date in S4 is

the same as in S3 (by SSA 4.5.15 and the fact that the startDisruptionBtwn action

is not a dateT ick action, i.e. Axiom 4.5.22), we have:

∀p. G(p, 2, S4) ≡ ∃s. Starts(p, s) ∧ SameHist(s, S4) ∧ φ1(p).

But since the agent knows that the fly(Anika,YYZ,EYW) action is not executable in

any situation before Aug03 (see the third bullet above), it follows from the definition of

During (i.e. Definition 4.5.2) that there are no paths that start with S4 or some situation

that has the same action history as S4 and over which φ1 holds, and thus there are no

GR-accessible paths at level 2 in S4, i.e. ¬∃p. GR(p, 2, S4). Thus from this, (4.144),

(4.145), and Axiom 4.2.7, it follows that:

G∩(P
∗, 2, S4). (4.146)

Again, the proof for (iii), (iv), and (v) is similar to that of the previous property.

Thus the last two conjuncts hold.

Finally, consider the second and the third conjuncts. Let’s call the content of these

c-goals φ0 and φ1, respectively. Now by Definitions 4.2.10 and 4.2.9, to show that

339

¬CGoal(φ, S4) for some φ, we have to prove that ∃p. (∀n. G∩(p, n, S4)) ∧ ¬φ(p).

This is how both the second and the third conjuncts can be proven. Now, note that in

the above, I argued that φ2 ∧ φ3 holds over all paths p that are in the G∩ intersection

for all levels n in S4 (see (v) above); as argued in the previous proof, neither φ0 nor φ1

can hold over such a path p as by Lemma 4.5.28, At is functional over date intervals.

This thus proves that the second and the third conjuncts hold.41 The proposition thus

follows.

In this section, I used a simple example to illustrate how an agent’s prioritized

goals can be specified in my framework, how they can be used to derive her chosen

goals, and how these chosen goals evolve when the world changes. My formaliza-

tion of prioritized goals is related to the notion of preferences found in the literature

[215, 216], and in fact, my framework can be used to specify an agent’s preferences.

In the above example, I considered the agent’s priorities over a couple of preference

criteria only, namely the choice of Anika’s destination location and the possibility of

redeeming Cool Air Miles. In this example, the agent has preferences over mutually

exclusive choices. I could have easily extended it to deal with multiple preference cri-

teria over which the agent has independent choices. For instance, assume that Anika

41Note that I didn’t however prove that ∃p. ∀n. G∩(p, n, S4). Nevertheless, this follows from Propo-
sition 4.4.2 and Definitions 4.2.10 and 4.2.9.

340

absolutely requires that she stays in a four-star or better hotel room as she had a very

bad experience with lower quality rooms last year. Moreover, she prefers not to spend

for a five-star hotel room. Nevertheless, she is willing to upgrade to a five-star room to

be in a preferred destination. In this framework, Anika’s preferences can be specified

341

using a goal hierarchy whose first few levels are as follows:

Init(s) ⊃

((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,MLE), Jul29,Aug05)(p) ∧

(Redeemed(Anika,YYZ,MLE) B (date = Jul29))(p) ∧

During(BookedRoom(4∗), Jul29,Aug05)(p))

∧ (G(p, 1, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,MLE), Jul29,Aug05)(p) ∧

(Redeemed(Anika,YYZ,MLE) B (date = Jul29))(p) ∧

During(BookedRoom(5∗), Jul29,Aug05)(p))

∧ (G(p, 2, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,EYW), Jul29,Aug05)(p) ∧

During(BookedRoom(4∗), Jul29,Aug05)(p))

∧ (G(p, 3, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,EYW), Jul29,Aug05)(p) ∧

During(BookedRoom(5∗), Jul29,Aug05)(p)).

342

Note that, the above specification assumes that the individual utility of the two prefer-

ence criteria under question is zero – it is unnecessary to book a hotel room if Anika

is not going anywhere; also, it does not make sense for her to go somewhere without

having a hotel room booked. In this framework, such dependent preferences can be

captured by specifying them as conjunctive goals at the same level (as above). I can

also simulate cases where preference independence is assumed, as commonly found

in the planning with preferences literature [215]. When preferences are independent

and additive, rather than modeling them as conjunctions at the same level, we need to

specify these preferences at different levels. For example, assume that independently

of her travel, Anika prefers to submit a research paper before July 25th rather than not

doing so. This can be modeled by adding two prioritized goals to her goal hierarchy;

at some higher priority level, she has the p-goal to submit the paper before July 25,

while at some lower priority level, she has the p-goal to submit it after July 25. The

goal hierarchy looks as follows (here the “· · · ” stands for the goals for levels 1 and 2

343

as in Axiom 4.5.1):

Init(s) ⊃

((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

During(At(Anika,MLE), Jul29,Aug05)(p) ∧

(Redeemed(Anika,YYZ,MLE) B (date = Jul29))(p))

∧ · · ·

∧ (G(p, 3, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

Between(AnikaVisitedBFF, Jul29,Aug05)(p))

∧ (G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

(PaperSubmitted(Anika) B (date = Jul25))(p))

∧ (G(p, n+ 1, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧

(¬PaperSubmitted(Anika) B (date = Jul25))(p)),

where n ≥ 4. Note that the actual position of these p-goals relative to other p-goals in

the hierarchy does not affect the chosen goals involving travel as long as there is no in-

teraction w.r.t achievability, i.e. as this preference criterion is independent of her other

preference attributes (independence of achievability implies independence of prefer-

ences).

To summarize, in this section I showed how a realistic travel planning agent can

344

be specified, illustrating the usefulness of my proposed framework. I discussed how

the agent’s prioritized goals and chosen goals change as a result of actions, including

exogenous ones. In addition, I discussed how different types of preferences of the

example agent can be modeled within this account.

4.6 Conclusion, Discussion and Future Work

In this chapter, I proposed a possible worlds semantics for specifying the prioritized

goals of an agent. I showed how this hierarchy of goals can be used to specify her

chosen goals assuming that agents chose as many of their highest priority goals as

possible while ensuring their chosen goals are consistent with each other and with the

agent’s knowledge. Then using a successor-state axiom, I specified how these goals

evolve when the world changes. My formalization ensures that an agent’s chosen goals

are always consistent, that her goals properly evolve as a result of regular actions as

well as of adopting and dropping goals, and that agents can introspect their goals. I

also showed that in my account, while chosen goals are closed under logical conse-

quence, primary c-goals are not, and thus they are side-effect free. In other words, an

agent need not (primarily) intend all known consequences of her (primary) intentions;

e.g. she can have the primary c-goal that φ and know that φ always implies ψ, and

still not have the primary c-goal that ψ. In my framework, an agent always tries to

345

optimize her chosen goals, and so agents specified using this framework behave some-

what ideally. Given this simplifying assumption, here I have focused on developing

an expressive framework that captures an idealized form of rationality without worry-

ing about tractability. It would be desirable to study restricted fragments of the logic

where reasoning is tractable. Also, before defining more limited forms of rational-

ity, one should have a clear specification of what ideal rationality really is so that one

understands what compromises are being made.

Note that I could have modeled prioritized goals syntactically by treating the agent’s

set of p-goals as just an arbitrary set of temporal formulae, and then defining the set

of c-goals as a maximal consistent subset of p-goals. However, my possible world

semantics has some advantages over this: it clearly defines when goals are consistent

with each other and with what is known. One can easily specify how goals change

when an action a occurs, e.g. the goal to do a next and then do b becomes the goal to

do b next, the goal that 3Φ ∨ 3Ψ becomes the goal that 3Ψ if a makes achieving Φ

impossible, etc. Also, it is possible to model introspection of goals with constraints on

the accessibility relations G and K.

Unlike Cohen and Levesque, I handle both intended actions and (declarative) goals

uniformly (an intended complex action σ can be represented using the goal that ∃s.

OnPath(path, s)∧Do(σ, now, s), i.e. that the goal accessible paths are such that there is

346

a situation s on each of these paths that can be reached from the starting situation of this

path by performing σ; see Chapter 7 for more on this). As in their account, intentions of

agents in my framework also persist (e.g. see Proposition 4.4.24). Like their intentions,

my chosen goals are also relativized, in particular w.r.t a matching drop action. Put

otherwise, under certain assumptions, an agent can drop an intention/primary chosen

goal by performing the associated drop action (see Proposition 4.4.15). Like Rao and

Georgeff, I also use a branching time temporal logic. Also, my agents are both single-

mindedly and open-mindedly committed to their intentions. Finally, unlike both Cohen

and Levesque and Rao and Georgeff, I show how agents’ intentions can evolve.

As discussed in Chapter 2, recently there have been a few proposals that deal with

goal change. Shapiro et al. [200] present a situation calculus based framework where

an agent adopts a goal when she is requested to do so by another agent, and remains

committed to this goal unless the requester cancels this request; a goal is retained even

if the agent learns that it has become impossible, and in this case the agent’s goals

become inconsistent. Shapiro and Brewka [196] modify this framework to ensure that

goals are dropped when they are believed to be impossible or when they are achieved.

Although developed independently, these accounts have commonalities to mine in the

sense that they also assume a priority ordering over the set of (in their case, requested)

goals, and in every situation they compute intentions by computing a maximal consis-

347

tent goal set that is also compatible with the agent’s beliefs. In their framework, goals

are only partially ordered and inconsistencies between goals at the same level (given

goals at higher levels and knowledge) can be resolved differently in different models.

In fact, the agent’s intentions in do(a, s) in a model may be quite different from her

intentions in s, although a did not make any of her goals in s impossible or inconsis-

tent with higher priority goals, simply because the inconsistencies between goals at the

same priority level are resolved differently in s and do(a, s). This is rather unintuitive,

in particular in the context of intentions. Recall that one of the defining properties of

intentions is that an agent’s intentions persist, unless they become impossible to bring

about or have already been fulfilled. Note that, while one might argue that a partial

order over goals might be more general, allowing this means that additional control

information is required to obtain a single goal/intention state after the agent’s goals

change. In other words, the problem with a partial ordering is that it does not specify

what a rational agent should do when two of her goals that have equal priority become

inconsistent with each other. My account, on the other hand, imposes a total order-

ing on goals and thus I was able to ensure that under suitable conditions, an agent’s

intentions (i.e. chosen goals) persist. Also, I provide a more expressive formalization

of prioritized goals: I model goals using infinite paths while they use finite paths, and

thus can model many types of goals that Shapiro and Brewka cannot, as discussed in

348

Chapter 2. Finally, another difference between their framework and mine is that they

specify the order on goals syntactically rather than semantically.

My goal dynamics is in line with da Costa Pereira et al.’s goal revision postulates

for rational agents [43, 44, 42]. As mentioned in Chapter 2, these postulates are based

on notions of consistency of sets of desires and executability of desires that seems

problematic. In my framework, I specify executability using a formal action theory

(including action precondition axioms), and I interpret consistency among a set of

(achievement) goals as the existence of a path starting with the current situation over

which all of these goals hold. With this interpretation, I think these postulates are in

fact sound. A formal version of their I1 postulate is shown to hold in my framework

by Proposition 4.4.2 and Corollary 4.4.4. Note that I2 seems problematic unless the

ordering� over desires is total, which is the case for my framework. If a partial order is

assumed, an agent might have several alternative sets of chosen goals, none of which is

better than the others. I formalize and prove I3 in Corollary 4.4.13. Proposition 4.4.12

shows that I5 is partially satisfied in my framework (I didn’t prove that i /∈ I(Sd)).

Finally, I believe that I4 and I5 are both satisfied in my framework; proving this is left

for future work.

While independently motivated, the notion of belief-goal consistency in my frame-

work is similar to the one presented by Icard et al. [107]. Recall from Chapter 2 that

349

intentions in their framework are simply (primitive) action and time index pairs. As

mentioned earlier, their account seems problematic since while it ensures that there is a

path over which all the intended actions are executed at the appropriate time index and

the preconditions of these are satisfied before their execution, there is no guarantee that

the path is in fact a realistic one. In other words, this path is allowed to include non-

executable actions as long as they are not intended. However as discussed in Chapter

2, given a proper interpretation, many of the postulates they propose seem to be sound.

A formal version of their BI1 postulate is shown to hold in my framework by Propo-

sition 4.4.2. I reject BI2, as agents are supposed to be committed to their intentions;

they may be allowed to give up their existing intentions for a new (and conflicting) one

under certain circumstances, but not always. For instance, in my framework an agent

can give up a primary c-goal ψ at some level m if she adopts another conflicting goal

φ at a higher priority level n than m (Proposition 4.4.12 shows that the new goal φ is

successfully adopted as long as it is consistent with all higher priority goals than n, and

even if it is possibly inconsistent with some goal that has lower priority than n). How-

ever, it will not be rational to force the agent to abandon ψ simply because she adopted

a new goal, e.g. when she adopts the conflicting goal φ at a lower priority level than

m. Corollary 4.4.13 shows that BI3 is partially satisfied in my framework. I believe

the persistence property in Proposition 4.4.24 can be generalized to show that BI3 is

350

indeed satisfied for my framework. Again, I believe thatBI4 also can be shown to hold

for primary c-goals (but not for chosen goals, as these are closed under consequence).

I leave these for future work. The SSA for G in Axiom 4.3.3 already takes care of

postulate BI6, as an agent’s goals here are updated (by progressing the G-accessible

paths) even when the action performed is not an adopt or drop action. As we have

seen, such updates to G may drop some chosen goals and add some other chosen goals

(i.e. deactivate some levels and make others active, as prescribed by Axiom 4.2.7). Fi-

nally, as argued before, postulatesBI5 andBI7 do not hold for my introspective agents

since changes in their intentions also change their knowledge about their intentions.

To specify agents’ goals, Baral and Zhao introduced their non-monotonic LTL

logic called N-LTL [7] and its improved version ER-LTL [8]. Their objective in these

papers is to enable the agent specifier to gradually specify the agent’s goals in a man-

ner that allows for partial goal retraction/update/revision, strengthening/weakening the

conditions (in case of a conditional goal), and even complete change in the goal, i.e.

specify goals in an elaboration tolerant manner [147]. Specifying goals in such a way

is useful in many time critical domains where complete retraction of a previously spec-

ified goal followed by reformulation and re-delegation of an updated version can be

costly. They showed how a non-monotonic ER-LTL program can be translated into

a monotonic LTL specification. However, the authors do not handle goal dynamics,

351

i.e. discuss how goals evolve when actions/events occur in these frameworks. In my

framework, new goals can be adopted and existing goals can be dropped, and p-goals

need not be consistent, while the agent constantly re-optimizes her c-goals; more anal-

ysis of the elaboration tolerance of my model is left for future work.

In van Benthem et al.’s [225, 226] dynamic epistemic preference logic, agents’

preferences are “upgraded” in response to public announcement-like suggestions and

commands. In their framework, a suggestion to prefer ϕ leads to a model change that

removes preferences for ¬ϕ over ϕ. Their notion of preference is quite abstract and

covers vast areas including decision theory, optimality theory, game theory, conditional

logic, non-monotonic logic, belief revision theory (whose semantics may involve pref-

erences over possible worlds), etc. As argued, my prioritized goals can be used to

model preferences. Moreover, I model goals and goal dynamics, i.e. how exactly these

goals evolve as a result of regular actions as well as special actions (like adopt); they

however do not address any of these issues (preferences in their framework can be

results of agents’ goals, which they don’t define).

Arguably, one limitation of my account is that my agents waste resources trying to

optimize their c-goals at every step. In Chapter 6, I propose an alternative semantics

for specifying the prioritized goals of agents that eliminates the filter override mecha-

nism altogether. That framework can be used to design agents that are very committed

352

to their chosen goals. In the future, I would like to develop a hybrid account where the

agent is strongly committed to her chosen goals, and where the filter override mech-

anism is only triggered under appropriate conditions. Also, it would be interesting to

identify a set of postulates for goal change that most people can agree on and examine

how they differ from belief change postulates.

353

Chapter 5

Handling Subgoals

5.1 Introduction

Any proper formalization of goals and their dynamics must also capture the depen-

dencies between goals and subgoals and plans adopted as a means to achieve these

goals. In particular, the dynamics of (sub)goals should conform to the following set of

intuitive rules:

• The subgoals and plans adopted as means to bring about a goal should be dropped

if the parent goal becomes impossible.

• They should also be dropped when the parent goal is brought about fortuitously/in

an unexpected way before the subgoals are achieved.

• Again, the abandonment/dropping of a parent goal should remove all of its sub-

354

goals from the goal hierarchy.

• In contrast to this, the dropping of a subgoal should be independent of that of its

parent goal – the agent might realize that one of the subgoals ψ of a goal φ has

become impossible, and thus might want to drop ψ; however, she may still want

to keep φ as her goal as there might be other means to fulfill φ known to her.

• Finally, these constraints on subgoal dynamics should carry over to subgoals of

subgoals of a goal, and thus e.g., if ψ3 is a subgoal of ψ2, and ψ2 is a subgoal of

ψ1, then the dropping of ψ1 should trigger the dropping of both ψ2 and ψ3 from

the agent’s goal hierarchy.

In this chapter, I introduce a new action for adopting a subgoal with respect to a

parent goal. I then extend the successor-state axiom proposed in Chapter 4 to deal

with subgoal adoption, and discuss how subgoals change when an agent’s knowledge

changes as a result of the execution of some (possibly exogenous) action or when

she adopts or drops a (sub)goal. I also give a definition of subgoals. After that, I

prove some properties; in particular, I show that the proposed formalization of subgoal

dynamics ensures that adopting a subgoal with respect to a supergoal has the desired

effects, that dropping a supergoal always drops all its subgoals but not necessarily vice

versa, and that the subgoal relation is transitive. Finally, returning to our discussion

355

from Chapter 4, I explain why existing belief revision type approaches are not suitable

for modeling this relationship between goals and their subgoals.

5.2 Subgoal Dynamics

In this section, I discuss how the framework presented in Chapter 4 can be extended to

handle subgoals. To this end, I first introduce an action adoptRelTo(ψ, φ) for adopting

a subgoal ψ relative to a supergoal φ. The action precondition axiom for this is as

follows:

Axiom 5.2.1.

Poss(adoptRelTo(ψ, φ), s) ≡ ∃m. PGoal(φ,m, s) ∧ ¬∃n. PGoal(ψ, n, s).

That is, an agent can adopt a subgoal ψ with respect to a parent goal φ in situation s if

at some level in s, she has the p-goal that φ, and if she does not already have the p-goal

that ψ at some level in s. I assume that unique names axioms as in axiom schema 3.3.2

and 3.3.3 are available for adoptRelTo.

An agent’s subgoals must be dropped when the corresponding parent goal is dropped

or becomes impossible. When adopting a subgoal ψ with respect to a supergoal φ, in

addition to recording the newly adopted goal ψ, we need to model the fact that ψ is a

subgoal of φ. This information can later be used to drop the subgoal when the parent

356

goal is dropped. One way of modeling this is to ensure that the adoption of a subgoal

ψ with respect to a parent goal φ adds a new p-goal that contains both this subgoal

and this parent goal, i.e. ψ ∧ φ. Recall from Chapter 4 that to handle the dropping of

a goal φ, I require the agent to drop the p-goals at all G-accessibility levels that imply

φ. Thus, if the agent drops the parent goal φ, she will also drop all of its subgoals

including ψ, since the G-accessibility levels where the parent goal φ holds include the

G-accessibility levels where the subgoal ψ holds.

Note that the parent goal φ could be a p-goal at multiple levels. I assume that the

subgoal ψ is always adopted with respect to the highest priority supergoal level, i.e. the

highest priority level where φ holds. I think that this is reasonable and works in most

cases. However, it may be argued that the subgoal ψ should be adopted with respect

to all the levels where the supergoal φ hold. But this makes subgoal dynamics quite

complex to follow. Moreover, if the agent wants to adopt a subgoal ψ with respect

to a supergoal φ at a different level (say m) than the highest priority level where φ

holds (say n, where n < m), she could do this by adopting ψ with respect to the more

specific supergoal (than φ) at level m. Nevertheless, when the only p-goal at level n

implies the one at level m, we have a problem. But this can also be avoided by using

the adopt action instead, and adopting the goal that φ ∧ ψ at level m + 1.42 Another

42This brings up the question of whether one should define adoptRelTo in terms of adopt; while I
think that this could be done, this would make it harder to determine, given the action history, whether

357

possible solution is to redefine adoptRelTo to take an argument for the level of the

intended supergoal, which I leave for future work. I also assume that the subgoal ψ

is always adopted at the level immediately below the supergoal φ’s level, i.e. at level

n + 1, where n is the highest level where the supergoal φ holds. The reason for doing

this is that since ψ is a means to the end φ, they should have similar priorities. While I

think this is reasonable, this could also be generalized if necessary.

To handle subgoals, I add an additional case to the successor-state axiom for G

(thus I replace Axiom 4.3.3 in Chapter 4 with the following axiom):

Axiom 5.2.2 (SSA for G).

G(p, n, do(a, s)) ≡

∀φ, ψ. (a 6= adopt(φ) ∧ a 6= adoptRelTo(ψ, φ) ∧ a 6= drop(φ) ∧

Progressed(p, n, a, s))

∨ ∃φ,m. (a = adopt(φ,m) ∧ Adopted(p, n,m, a, s, φ))

∨ ∃φ, ψ. (a = adoptRelTo(ψ, φ) ∧ SubGoalAdopted(p, n, a, s, ψ, φ))

∨ ∃φ. (a = drop(φ) ∧ Dropped(p, n, a, s, φ)).

The part of the SSA for G that handles subgoal adoption is defined as follows:

a goal is adopted relative to some parent goal or unconditionally adopted. Thus for simplicity, here I
introduce adoptRelTo as a primitive action.

358

Definition 5.2.3.

SubGoalAdopted(p, n, a, s, ψ, φ)
def
=

if (AdoptedLevel(φ,m, s) ∧ n < m) then Progressed(p, n, a, s)

else if (AdoptedLevel(φ, n, s)) then (Progressed(p, n− 1, a, s) ∧ ψ(p))

else Progressed(p, n− 1, a, s),

where,

Definition 5.2.4.

AdoptedLevel(φ, n, s) def
= PGoal(φ, n− 1, s) ∧ ∀m. m < n− 1 ⊃ ¬PGoal(φ,m, s).

Thus, to handle the adoption of a subgoal ψ with respect to a supergoal φ, I add a

new p-goal φ ∧ ψ to the agent’s goal hierarchy. My formalization of this uses the

abbreviation AdoptedLevel(φ, n, s), which says that n is the level where the subgoal

should be adopted, that is, the level which is immediately below the highest priority

level such that the parent goal φ is implied by the only p-goal at this level. The G-

accessible paths at all levels above the slot where the subgoal is to be inserted, i.e.

m, such that AdoptedLevel(φ,m, s) holds, are simply progressed. The G-accessible

paths at level m are the ones that can be obtained by progressing the paths from the

level immediately above it (i.e. from the highest priority level where φ holds) over

359

which ψ holds and eliminating those where ψ does not hold. This guarantees that

φ ∧ ψ holds in this level, and thus as discussed above, the subgoal ψ will be dropped

when the supergoal φ is dropped. The G-accessible paths at all levels below m are the

ones that can be obtained by progressing paths from the level immediately above it.

Thus the agent acquires the subgoal that ψ at level m, and all the p-goals with priority

m or less in s are pushed down one level in the hierarchy.

Let me give an example of subgoal dynamics; for this I extend the running exam-

ple of Chapter 4. Assume that we have an agent who initially has the following three

p-goals: 2BeRich, 3GetPhD, and 2BeHappy at level 0, 1, and 2, respectively (see

second column of Table 5.1). Suppose that the agent knows that one way of always

being rich is to always work hard, which in turns can be fulfilled by always being en-

ergetic. Assume that with this in mind, our agent adopts the subgoal that 2WorkHard

with respect to the p-goal that2BeRich, and then adopts the sub-subgoal that2BeEnrg

with respect to the subgoal that2WorkHard, starting in S0. Then the agent’s goal hier-

archy in S1 = do(adoptRelTo(2WorkHard,2BeRich), S0) should include the p-goal

that 2WorkHard, and in S2 = do(adoptRelTo(2BeEnrg,2WorkHard), S1) should

also include the p-goal that 2BeEnrg. According to the successor-state axiom for G,

our agent’s goal hierarchy in S1 and in S2 will be as in Table 5.1.43 In S0, the supergoal

43For simplicity in Table 5.1, I only show the agent’s relevant p-goals rather than her only p-goals
(which in addition reflect the actions that have been performed so far).

360

G-Level S0 S1 S2 S3

0 2BeRich 2BeRich 2BeRich 2BeRich

1 3GetPhD 2BeRich ∧ 2WorkHard 2BeRich ∧ 2WorkHard TRUE

2 2BeHappy 3GetPhD 2BeRich ∧ 2WorkHard ∧ 2BeEnrg TRUE

3 TRUE 2BeHappy 3GetPhD 3GetPhD

4 TRUE TRUE 2BeHappy 2BeHappy

Table 5.1: Example of an Agent’s Subgoal Dynamics

2BeRich holds at level 0, and thus AdoptedLevel(2BeRich, 1, S0) holds, i.e. the agent

adopts2WorkHard at priority level 1. Similarly in S1, the supergoal2WorkHard holds

at level 1, and thus AdoptedLevel(2WorkHard, 2, S1) holds.

Now, suppose that in S2, the agent wants to drop the p-goal that 2WorkHard.

Then in S3 = do(drop(2WorkHard), S2), she should no longer have 2BeEnrg as

a p-goal, but should retain the supergoal that 2BeRich. After the agent drops the

p-goal that 2WorkHard, by the successor-state axiom for G we can see that all the G-

accessible levels where 2WorkHard holds will be replaced by the trivial only p-goal

that the correct history of actions in S3 has happened (see S3 in Table 5.1). This shows

that dropping 2WorkHard results in the dropping of all of its subgoals (in this case

2BeEnrg), but that its parent goal 2BeRich is retained.

I define the SubGoal relation as follows:

361

Definition 5.2.5.

SubGoal(ψ, φ, s) def
= ∃n. PGoal(φ, n, s) ∧ ¬PGoal(ψ, n, s)

∧ ∀m. PGoal(ψ,m, s) ⊃ PGoal(φ,m, s) ∧ n < m.

This says that ψ is a subgoal of φ in situation s iff there exists a G-accessibility level

n in s such that φ is a p-goal at n while ψ is not, and for all G-accessibility levels m in

s where ψ is a p-goal, φ is also a p-goal and n has higher priority than m, i.e. ψ is not

a p-goal at any level higher than n. The intuition behind my notion of subgoals is that

it corresponds to the cases where there is some level in the goal hierarchy where the

supergoal holds, and the conjunction of the supergoal and the subgoal holds at another

lower priority level. Thus the relationship between goals and subgoals is viewed as a

special case of prioritized goals. As discussed above, I use the conjunction φ ∧ ψ to

facilitate the dropping of the subgoal ψ when the supergoal φ is dropped. Also, since

ψ is a means to the end φ, the supergoal φ should have higher priority than the subgoal

ψ. The above definition captures part of this intuition.

Note that a consequence of this definition is that the same subgoal cannot have

two different supergoals (unless one subsumes the other or by transitivity, which I

discuss later). This does not pose a problem however, since the preconditions of the

adoptRelTo(ψ, φ) action requires that the agent does not already have the subgoal ψ

as a p-goal at some level (and thus, as a subgoal of another parent goal). Thus an agent

362

cannot attempt to adopt a subgoal relative to two different parent goals.

5.3 Properties

I now show that my formalization of subgoals has some desirable properties. Let’s

define DSGOAgt as DOAgt\{Axiom 4.3.3} ∪ {Axiom 5.2.1, Axiom 5.2.2} (as well as the

associated definitions). First, I can prove that an agent acquires the p-goal that ψ after

she adopts it as a subgoal of another goal φ in s, provided that she has the p-goal at

some level in s that φ (which is required for adoptRelTo(ψ, φ) to be executable in s):

Proposition 5.3.1 (Subgoal Adoption-1).

DSGOAgt |= ∃m. PGoal(φ,m, s) ⊃ ∃n. PGoal(ψ, n, do(adoptRelTo(ψ, φ), s)).

Proof. Fix φ1, ψ1,M1, and S1. From the antecedent, we have:

PGoal(φ1,M1, S1). (5.1)

Fix N1 such that AdoptedLevel(φ1, N1, S1) holds. By (5.1) and Definition 5.2.4, such

a level N1 indeed exists. By Axiom 5.2.2 and Definitions 5.2.3, 4.3.4, and 5.2.4, the

agent’s G-accessible paths in do(adoptRelTo(ψ1, φ1), S1) at levelN1 are the ones that

can be obtained by progressing her G-accessible paths at N1−1 in S1, and over which

ψ1 holds; thus we have:

∀p. G(p,N1, do(adoptRelTo(ψ1, φ1), S1)) ⊃ ψ1(p). (5.2)

363

If such a path exists, then the consequent follows from (5.2) and Definition 4.2.1.

Otherwise, the consequent follows trivially by Definition 4.2.1.

Secondly, I can show that if an agent has the primary c-goal that φ at level n− 1 in

situation s, then she acquires the primary c-goal that ψ at level n after she adopts it as

a subgoal of φ at n in s, provided that she does not have the c-goal at n − 1 in s that

¬ψ next:

Proposition 5.3.2 (Subgoal Adoption-2).

DSGOAgt |= PrimCGoal(φ, n− 1, s) ∧ AdoptedLevel(φ, n, s)

∧ ¬CGoal(¬∃s′, p′. Starts(s′) ∧

Suffix(p′, do(adoptRelTo(ψ, φ), s′)) ∧ ψ(p′), n− 1, s)

⊃ PrimCGoal(ψ, n, do(adoptRelTo(ψ, φ), s)).

Proof. Fix φ1, ψ1, N1, and S1. From the antecedent, we have:

PrimCGoal(φ1, N1 − 1, S1), (5.3)

AdoptedLevel(φ1, N1, S1), (5.4)

¬CGoal(¬∃s′, p′. Starts(s′) ∧

Suffix(p′, do(adoptRelTo(ψ1, φ1), s′)) ∧ ψ1(p′), N1 − 1, S1).

(5.5)

By (5.4), Axiom 5.2.2, and Definitions 5.2.3, 4.3.4, and 5.2.4, the agent’sG-accessible

364

paths in do(adoptRelTo(ψ1, φ1), S1) at N1 are the ones that can be obtained by pro-

gressing her G-accessible paths at N1 − 1 in S1, and over which ψ1 holds:

∀p. G(p,N1, do(adoptRelTo(ψ1, φ1), S1)) ≡

Progressed(p,N1 − 1, adoptRelTo(ψ1, φ1), S1) ∧ ψ1(p).

(5.6)

Regardless of whether such a path exists, it follows from (5.6) and Definition 4.2.1

that:

PGoal(ψ1, N1, do(adoptRelTo(ψ1, φ1), S1)). (5.7)

From (5.5) and Definition 4.2.8, it follows that there is a path, say P1, such that P1

is in the prioritized intersection of GR-accessible paths up to level N1 − 1 in S1, that

the adoptRelTo(ψ1, φ1) action happens next along P1, and that ψ1 holds over P1 af-

terwards:

G∩(P1, N1 − 1, S1) ∧

∃s′, p′. Starts(P1, s
′) ∧ Suffix(p′, P1, do(adoptRelTo(ψ1, φ1), s′)) ∧ ψ1(p′).

(5.8)

Now, since G∩(P1, N1 − 1, S1), by Lemma 4.4.10 P1 must start with a K-accessible

situation in S1, i.e.:

∀s. Starts(P1, s) ⊃ K(s, S1). (5.9)

Also, note that by (5.8), P1 is a path and the first action that happens along P1, i.e. in

the starting situation of P1, is adoptRelTo(ψ1, φ1). From this, Corollary 3.5.41, and

365

Definition 3.3.1 it follows that:

∀s. Starts(P1, s) ⊃ Poss(adoptRelTo(ψ1, φ1), s). (5.10)

Consider the suffix of P1 after the adoptRelTo(ψ1, φ1) action has been performed; let

us call this path P2. Since the adoptRelTo action is not a knowledge-producing action,

by (5.9), (5.10), and Axiom 3.4.10 it follows that:

∀s. Starts(P2, s) ⊃ K(s, do(adoptRelTo(ψ1, φ1), S1)). (5.11)

By (5.3), Definition 4.2.12, Axiom 4.2.7, and (5.8), it follows that:

GR(P1, N1 − 1, S1). (5.12)

By (5.6), (5.12), (5.8), and Definition 4.2.4, it follows that:

G(P2, N1, do(adoptRelTo(ψ1, φ1), S1)). (5.13)

Again, by (5.13), (5.11), and Definition 4.2.4, it follows that P2 must beGR-accessible

at N1 in do(adoptRelTo(ψ1, φ1), S1):

GR(P2, N1, do(adoptRelTo(ψ1, φ1), S1)). (5.14)

Now, I claim that all levels with priority higher than N1 that are active before

the occurrence of the adoptRelTo(ψ1, φ1) action will remain active.44 To see this,

44Recall from Definition 4.4.1 that ActiveLevel(n, s) is defined as ∃p. G(p, n, s) ∧G∩(p, n, s).

366

note that the only goal that can become impossible merely by the occurrence of this

adoptRelTo action is the goal that states that this action does not happen next, as well

as any consequences of this. However, by (5.5) no levels in the goal hierarchy that

have such a goal and that have priority higher than N1 are active in S1. Put otherwise,

by (5.8) and Axiom 4.2.7, there is a path, namely P1, that is GR-accessible at all active

levels n with priority higher than N1 in S1; thus:

∀n. n < N1 ∧ ActiveLevel(n, S1) ⊃ GR(P1, n, S1). (5.15)

Note that, the next action that happens along P1 is the adoptRelTo(ψ1, φ1) action.

Moreover, according to Axiom 5.2.2 and Definitions 5.2.3 and 4.3.4, after the adoptRel-

To(ψ1, φ1) action happens, the GR-accessible paths at all levels that have higher pri-

ority than N1 are simply progressed to reflect the fact that this action has happened:

∀n. n < N1 ⊃ (∀p. G(p, n, do(adoptRelTo(ψ1, φ1), S1)) ≡

Progressed(p, n, adoptRelTo(ψ1, φ1), S1)).

(5.16)

Then by this, (5.8), and (5.15), all active levels in S1 that have priority higher than N1

must have at least one path that can be progressed, namely P1, and thus any such level

that was active in S1 must also be active in do(adoptRelTo(ψ1, φ1), S1).

Moreover, I claim that since no active level n with higher priority than N1 in S1

became inactive due to the occurrence of adoptRelTo(ψ1, φ1), no inactive level with

higher priority than N1 in S1 can become active in do(adoptRelTo(ψ1, φ1), S1). I will

367

prove this by contradiction. Assume that there is a level M < N1 s.t. M is inactive

in S1 and active in do(adopt(ψ1, φ1), S1). Then, from Definition 4.4.1, it follows that

there is a path Pb s.t.:

G(Pb,M, do(adoptRelTo(ψ1, φ1), S1)), and (5.17)

G∩(Pb,M, do(adoptRelTo(ψ1, φ1), S1)). (5.18)

From (5.18), Definition 4.4.1, and Axiom 4.2.7, Pb must be GR-accessible at all levels

n in do(adoptRelTo(ψ1, φ1), S1), where n < M and n is active in S1 (since, recall that

all these levels remain active after the adoptRelTo(ψ1, φ1) action happens). By this,

(5.17), Definition 4.2.4, (5.16), and Definition 4.3.4, there is a path Pa that starts with

some situation SPa s.t. Pb is the suffix of Pa starting in do(adoptRelTo(ψ1, φ1), SPa)

and Pa is G-accessible at all active levels with higher priority than M in S1 and at M

in S1. Moreover, by this, (5.18), Lemma 4.4.10 and the SSA forK (i.e. Axiom 3.4.10),

it follows that Pa is GR-accessible at all active levels with higher priority than M in S1

and at M in S1. But then, by Axiom 4.2.7 and Definition 4.4.1, M is an active level in

S1, a contradiction. Thus, it follows that:

∀n. n < N1 ⊃ (ActiveLevel(n, S1) ≡ ActiveLevel(n, do(adoptRelTo(ψ1, φ1), S1))).

Furthermore, by this, (5.8), (5.15), and (5.16), P2 must be G-accessible from all

368

these active levels in do(adoptRelTo(ψ1, φ1), S1):

∀n. n < N1 ∧ ActiveLevel(n, do(adoptRelTo(ψ1, φ1), S1) ⊃

G(P2, n, do(adoptRelTo(ψ1, φ1), S1)).

From this, (5.11), and Definition 4.2.4, P2 must be GR-accessible from all these active

levels in do(adoptRelTo(ψ1, φ1), S1):

∀n. n < N1 ∧ ActiveLevel(n, do(adoptRelTo(ψ1, φ1), S1) ⊃

GR(P2, n, do(adoptRelTo(ψ1, φ1), S1)).

Finally, by this, (5.14), Definition 4.4.1, and Axiom 4.2.7, it follows that:

G∩(P2, N1, do(adoptRelTo(ψ1, φ1), S1)). (5.19)

The consequent follows from (5.7), (5.14), (5.19), and Definition 4.2.12.

I can also show that subgoals are dropped when their parent goal is dropped. More

precisely, I show that after dropping the p-goal that φ in s, an agent does not have the

p-goal (and thus the primary c-goal) that the progression of ψ at level n, provided that

ψ is a subgoal of φ in s, that ψ is a p-goal at n in s, and that the progression of ψ is not

strongly inevitable in do(drop(φ), s):

369

Proposition 5.3.3 (Supergoal Drop).

DSGOAgt |= SubGoal(ψ, φ, s) ∧ PGoal(ψ, n, s)

∧ ¬StronglyInevitable(ProgOf(ψ, drop(φ)), do(drop(φ), s))

⊃ ¬PGoal(ProgOf(ψ, drop(φ)), n, do(drop(φ), s)).

Proof. Fix φ1, ψ1, N1 and S1. From the antecedent, we have:

SubGoal(ψ1, φ1, S1), (5.20)

PGoal(ψ1, N1, S1), (5.21)

¬StronglyInevitable(ProgOf(ψ1, drop(φ1)), do(drop(φ1), S1)). (5.22)

From (5.20) and Definition 5.2.5, it follows that for any level n in S1 where ψ1 is a

p-goal, φ1 is also a p-goal:

∀n. PGoal(ψ1, n, S1) ⊃ PGoal(φ1, n, S1). (5.23)

From (5.22) and Definitions 3.5.13 and 3.5.12, it follows that there is a path P1 such

that:

∃s. SameHist(s, do(drop(φ1), S1)) ∧ Starts(P1, s) ∧ ¬ProgOf(ψ1, drop(φ1))(P1).

(5.24)

Now, consider level N1 in S1; by (5.21), ψ1 is a p-goal at N1 in S1. By this and (5.23),

PGoal(φ1, N1, S1), and thus by Axiom 5.2.2, and Definition 4.3.6, we can see that the

370

G-accessible paths at N1 in do(drop(φ1), S1) are the ones that start with situations that

share the same action history as do(drop(φ1), S1). Since by (5.24), P1 is such a path,

it will be included in the G-relation at N1 in do(drop(φ1), S1) :

G(P1, N1, do(drop(φ1), S1)). (5.25)

The consequent follows from (5.24), (5.25), and Definition 4.2.1.

Note that, this does not hold if we replace PGoal in the consequent with CGoal since

ψ could be a consequence of a combination of other active p-goals, i.e. a non-primary

c-goal. Also, this property can be generalized to show that in addition to the above, ψ

is indeed not a p-goal at some level n where ¬PGoal(ψ, n, s) after the drop(φ) action

happens in s, provided that she don’t have the p-goal at n in s that the drop(φ) action

does not happen next or ψ holds after it happens, i.e. that ¬PGoal(¬∃s′. Do(drop(φ),

now, s′) ∨ ψ, n, s).

The next property says that dropping a subgoal does not affect the parent goal.

In particular, an agent retains the p-goal that the progression of φ after she drops a

subgoal ψ of some goal φ in some situation s:

Proposition 5.3.4 (Subgoal Drop).

DSGOAgt |= SubGoal(ψ, φ, s)

⊃ ∃n. PGoal(ProgOf(φ, drop(ψ)), n, do(drop(ψ), s)).

371

Proof. Fix φ1, ψ1, and S1. From the antecedent, we have:

SubGoal(ψ1, φ1, S1). (5.26)

From (5.26) and Definition 5.2.5, it follows that there is a level N1 in S1 where φ1 is a

p-goal but ψ1 is not:

PGoal(φ1, N1, S1) ∧ ¬PGoal(ψ1, N1, S1). (5.27)

Now, by (5.27), Axiom 5.2.2, and Definitions 4.3.6 and 4.3.4, we can see that after the

drop(ψ1) action has been performed in S1, the agent’s G-accessible paths at level N1

will be the ones that can be obtained by progressing her G-accessible paths at N1 in

S1; thus from this, (5.27), and Definitions 4.2.1 and 4.4.14, we have:

∀p. G(p,N1, do(drop(ψ1), S1)) ⊃ ProgOf(φ1, drop(ψ1))(p). (5.28)

The consequent follows from (5.28) and Definition 4.2.1.

I next show that adopting logically equivalent subgoals with respect to logically

equivalent supergoals has the same result:

372

Proposition 5.3.5 (Extensionality w.r.t. Subgoal Adoption).

(a). DSGOAgt |= ∀p.(φ1(p) ≡ φ2(p)) ∧ ∀p.(ψ1(p) ≡ ψ2(p)) ⊃

PGoal(φ∗, do(adoptRelTo(ψ1, φ1), s)) ≡ PGoal(φ∗, do(adoptRelTo(ψ2, φ2), s)),

(b). DSGOAgt |= ∀p.(φ1(p) ≡ φ2(p)) ∧ ∀p.(ψ1(p) ≡ ψ2(p)) ⊃

CGoal(φ∗, do(adoptRelTo(ψ1, φ1), s)) ≡ CGoal(φ∗, do(adoptRelTo(ψ2, φ2), s)).

Proof. Similar to that of Proposition 4.4.7.

As a consequence, this property also holds for primary c-goals:

Corollary 5.3.6.

DSGOAgt |= ∀p.(φ1(p) ≡ φ2(p)) ∧ ∀p.(ψ1(p) ≡ ψ2(p)) ⊃

(PrimCGoal(φ∗, do(adoptRelTo(ψ1, φ1), s))

≡ PrimCGoal(φ∗, do(adoptRelTo(ψ2, φ2), s))).

Proof. Follows from Definition 4.2.12, Proposition 5.3.5(a), the SSA for G (i.e. Ax-

iom 5.2.2 and Definitions 5.2.3, 5.2.4, and 4.3.4), and Axiom 4.2.7.

Finally, I examine the properties of the SubGoal relation. To this end, I first show

that the SubGoal relation is irreflexive/strict:

Proposition 5.3.7 (Irreflexivity of Subgoals).

DSGOAgt |= ∀s. ¬SubGoal(ψ, ψ, s).

373

Proof. Trivially follows from Definition 5.2.5.

Secondly, I show that the SubGoal relation is antisymmetric, i.e. if a goal ψ is a

subgoal of another goal φ in situation s, then φ cannot also be a subgoal of ψ in s:

Proposition 5.3.8 (Antisymmetry of Subgoals).

DSGOAgt |= ∀s. SubGoal(ψ, φ, s) ⊃ ¬SubGoal(φ, ψ, s).

Proof. Trivially follows from Definition 5.2.5.

Thirdly, it can be shown that the SubGoal relation is transitive, i.e. if ψ1 is a subgoal

of ψ2 in s, and if ψ2 is a subgoal of ψ3 in s, then ψ1 must also be a subgoal of ψ3 in s:

Proposition 5.3.9 (Transitivity of Subgoals).

DSGOAgt |= ∀s. SubGoal(ψ1, ψ2, s) ∧ SubGoal(ψ2, ψ3, s) ⊃ SubGoal(ψ1, ψ3, s).

Proof. Follows from Definition 5.2.5.

Finally, as a consequence of Propositions 5.3.9 and 5.3.8, it can be shown that the

SubGoal relation is acyclic, since any transitive asymmetric binary relation is acyclic.

In other words, it can be shown that for any situation s, if there exists a finite set

of distinct formulae ψ1, ψ2, · · · , ψk such that k > 1 and SubGoal(ψi, ψi+1, s) for all

374

i ∈ {1, 2, · · · , k − 1}, then it must be the case that ¬SubGoal(ψk, ψ1, s). Thus the

following axiom schema can be shown to be entailed by theory DSGOAgt:

(k > 1 ∧ SubGoal(ψ1, ψ2, s) ∧ · · · ∧ SubGoal(ψk−1, ψk, s)) ⊃ ¬SubGoal(ψk, ψ1, s).

While I did not prove persistence properties for supergoals, for achievement su-

pergoals much follows from the ones in the previous chapter (see Section 4.4.4), since

achievement supergoals are simply ordinary prioritized achievement goals in the goal

hierarchy. Also, persistence of realistic prioritized achievement subgoals seem to hold

just as in Proposition 4.4.22. On the other hand, to show persistence of chosen achieve-

ment subgoals, we need stronger conditions in the antecedent of Proposition 4.4.24

since subgoals are affected by their supergoals in the sense that levels with subgoals

will become inactive if the supergoal becomes impossible (recall from Definition 5.2.5

that the supergoal follows from all levels where the subgoal is a p-goal). Finally, it

would be interesting to identify the conditions under which the SubGoal relation per-

sists. I leave these for future work.

5.4 Conclusion

I introduced the adoptRelTo action that can be used to adopt a subgoal relative to

a supergoal. I then discussed how we can modify the successor-state axiom for G

375

in Chapter 4 to handle subgoal adoption. I also proposed a definition of the subgoal

relation. Finally, I proved some intuitive properties of subgoal dynamics that are in

line with the requirements specified in Section 5.1. The proposed subgoal dynamics

ensures that subgoals are automatically dropped when their parent goals become im-

possible or are dropped, but not vice versa. Again, this notion carries over hierarchies

of subgoals in the sense that, for example, a subgoal is also dropped when one of its

ancestor goals (w.r.t. the SubGoal relation) becomes impossible or is dropped, but not

vice versa.

Note that, while my formalization of subgoal dynamics satisfies most of the re-

quirements discussed in Section 5.1, here I do not handle fortuitous achievement of

parent goals. It would be nice to modify the proposed account to handle early achieve-

ment of goals by automatically dropping subgoals whose parent goal has been fulfilled.

However, this seems quite challenging to do for arbitrary temporally extended goals.

The special case of achievement goals should be solvable with some ingenuity. One

idea to this end is as follows: instead of adopting the goal that (3Φ∧3Ψ) in response

to the adoptRelTo(3Ψ,3Φ) action, the agent could adopt the goal that:

(3Φ ∧3Ψ ∧ ¬(Φ B Ψ)),

which states that the supergoal Φ must be eventually achieved, and so must be the sub-

376

goal Ψ, but the supergoal Φ must not be achieved before the subgoal Ψ.45 Note that

this also allows the case where the supergoal and the subgoal are achieved simultane-

ously. Thus, if the parent goal Φ is achieved before the subgoal Ψ has been achieved,

it will violate the ¬(Φ B Ψ) condition and thus the agent will make this goal inactive.

As for the general case when arbitrary temporally extended (sub)goals are involved,

it seems that one first needs to identify the satisfaction conditions of such goals, and

then do a case-by-case analysis and handle each type of goal separately. Making these

ideas precise is left for future work.

Note that while one might be tempted to try to employ existing belief revision

type approaches to model prioritized goals, subgoals, and their dynamics, this does

not work. Modeling prioritized goals using an ordinal conditional function κ (i.e. κ-

ranking) and specifying goal dynamics as revising this function appropriately (e.g., as

formalized for belief revision originally by Spohn [217] and then by Darwiche and

Pearl [46]) seems to work, but only when subgoals are not considered. When one

adds the non-trivial relationship between goals and subgoals to the equation, such a

formalization produces unintuitive results. For instance, one way of specifying that ψ

is a subgoal of φ is to ensure that the worlds where φ ∧ ψ hold are most preferred and

thus are assigned a small ordinal (e.g. 0), that the worlds where the supergoal φ hold

45Let’s call this formula the satisfaction condition of the subgoal 3Ψ relative to the parent goal 3Φ.

377

but the subgoal ψ is false (i.e. where φ ∧ ¬ψ hold) are somewhat less desired and are

assigned a higher ranking, and that the rest of the worlds (i.e. where the supergoal φ is

false) are assigned a still higher ordinal and thus are the least preferred by the agent,

i.e.:

κ(ω : φ ∧ ψ) < κ(ω : φ ∧ ¬ψ) < κ(ω : ¬φ).

Given this κ ranking, contraction by the subgoal ψ (according to the standard approach

in [46]) produces the following:

κ(w : φ) < κ(w : ¬φ ∧ ¬ψ) < κ(w : ¬φ ∧ ψ).

This is a bit strange as all non-φ worlds should arguably be equally preferable to the

agent after dropping ψ. Moreover, contraction by the supergoal φ produces:

κ(w : φ ∧ ψ ∨ ¬φ) < κ(w : φ ∧ ¬ψ).

Again, intuitively the agent should have no preferences over ψ and ¬ψ worlds. One

might wonder why one cannot adjust the standard contraction function to make it work.

However, it can be argued that there does not exist an appropriate revision function for

κ –modeling the contraction of some goal– that ensures that, e.g., all worlds become

equally desirable after the agent drops the supergoal that φ (i.e. after contracting κ by

φ), that also properly handles the contraction by ψ (i.e. the dropping of subgoals) and

by ordinary prioritized goals (i.e. the dropping of these goals). That is, while there

378

might be several revision functions for κ, each of which works properly for the drop-

ping of ordinary prioritized goals, subgoals, or supergoals, it is impossible to tailor a

single function that works for all of these operations. In other words, since contracting

the subgoal ψ should only cause ψ to be dropped while contracting the parent goal φ

should cause both φ and its subgoal ψ (as well as all of its sub-subgoals etc.) to be

dropped, we need to have some additional representation to capture this subgoal rela-

tion and use this information if we want to handle both types of contractions uniformly.

Thus to deal with this, I avoid using such techniques while modeling prioritized goals,

subgoals, and their dynamics.

While I made some simplifying assumptions regarding the level of the parent goal

relative to which the subgoal is adopted (see Section 5.2), to the best of my knowledge,

my account is indeed the first attempt to formalize the dependencies between subgoals

and their parent goals using a semantic approach. As discussed in Chapter 2, the exist-

ing syntactic approaches to deal with this neither properly handle (sub)goal dynamics

nor deal with prioritized goals. While such syntactic accounts of subgoals might enjoy

certain advantages, in particular from a computational efficiency standpoint, they suf-

fer from many other serious problems. For instance, consistency between (sub)goals is

not automatically maintained. Moreover, in most of these frameworks, subgoals do not

properly evolve in response to actions/events, as do ordinary goals. Finally, the many

379

desirable properties of the SubGoal relation discussed in Section 5.3 must also be ex-

plicitly enforced, e.g. the acyclicity of the SubGoal relation. My account of subgoals

in this chapter avoids these problems.

380

Chapter 6

A Revised Logical Framework of Prioritized Goals for

Committed Agents

6.1 Introduction

In the previous two chapters, I presented a formalization of prioritized goals, subgoals,

and their dynamics for agents that always try to optimize their chosen goals. In that

“optimizing agent” framework, an agent’s chosen goals are very dynamic. For in-

stance, as mentioned earlier, a currently inactive p-goal φ may become active at some

later time, for example, if a higher priority active/chosen goal that is currently block-

ing φ — as it is inconsistent with φ — becomes impossible. This also means that

another currently active/chosen goal ψ may as a result become inactive, not because

ψ has become impossible or was dropped, but due to the fact that ψ has lower pri-

381

ority than and is inconsistent with the newly activated goal φ. For instance, in my

running example in Chapter 4, after the goBankrupt action happens, the agent drops

her c-goal that 2BeHappy as the higher priority and conflicting goal that 3GetPhD

has become active. As discussed in Chapter 4, in that framework chosen goals can

be viewed as Bratman et al.’s intentions with an automatic ‘opportunity analyzer’ and

‘filter override mechanism’ [21] that forces the optimizing agent to drop her intentions

when opportunities to commit to other higher priority goals arise.

Such very dynamic chosen goals/intentions are problematic as a foundation for an

agent programming language, as the agents spend a lot of effort in “recomputing” their

intentions and plans to achieve them, and their behavior becomes hard to predict for

the programmer. To avoid this, here I develop a modified version of the optimizing

agent framework that eliminates agents’ (inactive) desires (and as a consequence, the

opportunity analyzer and the filter override mechanism) altogether. Alternatively put,

I warrant that in this framework agents’ “desires” remain realistic and consistent with

their knowledge and intentions.46 As we will see later, such desires are in fact a subset

of the agents’ intentions. I achieve this by ensuring that in this framework, agents’ sets

of G-accessible paths are the same as that of their GR-accessible paths, and that their

p-goals are dropped as soon as they become inactive, i.e. become inconsistent with

46Recall from Chapter 2 that traditionally agents’ wishes or desires include goals that are impossible
to bring about and that are mutually inconsistent.

382

their knowledge and/or their intentions. In the resulting “committed agent” frame-

work, agents’ p-goals are much more dynamic than in the original framework. On the

other hand, their c-goals are now much more persistent than before, and are simply the

consequential closure of their p-goals, as these must now all be consistent with each

other and with the agents’ knowledge.

In this chapter, I present the modifications to the optimizing agent framework that

are necessary to specify this “committed agent” framework. I then prove some desir-

able properties about a committed agent’s (chosen) goals, goal dynamics, goal intro-

spection, and goal persistence. These show the similarities and differences with the

optimizing agent framework. Finally, in light of these properties, I discuss how the

committed agent framework compares to the optimizing agent framework, followed

by some concluding remarks.

6.2 Specifying Prioritized Goals and Goal Dynamics for Commit-

ted Agents

I want to restrict the goals in the agent’s goal hierarchy to be realistic and mutually

consistent at all times, i.e. consistent with her knowledge and her other goals in all sit-

uations. I can obtain a committed agent framework with the following simple changes

to my optimizing agent axiomatization: (1) I constrain the agent’s initial G-accessible

383

paths at all levels to be realistic, i.e. consistent with her knowledge; (2) I require that

initially the agent knows that her p-goals are consistent with each other; (3) I don’t

allow the agent to adopt a p-goal or subgoal that is inconsistent with her current c-

goals, or to drop a p-goal that has become known to be inevitable; and (4) I modify the

successor-state axiom for G so that the constraints in (1) and (2) above are preserved.

In the following I formalize and discuss each of these changes, one at a time.

First of all, I require that all initial G-accessible paths at all levels in the agent’s

goal hierarchy must be realistic, and thus they must start with aK-accessible situation.

I specify this by imposing the following constraint on the domain theory:

Assumption 6.2.1 (PGoal Strong Realism).

∀p, n, s. Init(s) ∧G(p, n, s) ⊃ ∃s′. Starts(p, s′) ∧K(s′, s).

This, along with Definitions 4.2.1, 4.2.4, and 4.2.5, ensures that given an initial situ-

ation s and a priority level n, the agent’s set of p-goals at n in s and that of realistic

p-goals at n in s are the same, i.e.:

∀s. Init(s) ⊃ ∀n, φ. PGoal(φ, n, s) ≡ RPGoal(φ, n, s).

Secondly, I require that the agent initially know that all of her p-goals are consistent

with each other and with her knowledge. This can be specified by ensuring that initially

384

there exists a realistic path over which all of her p-goals hold. Thus I require the

domain theory to satisfy the following constraint:

Assumption 6.2.2 (PGoal Consistency).

∀s. Init(s) ⊃ ∃p. ∀n. G(p, n, s).

This thus ensures that the agent’s initial (realistic) p-goal hierarchy is consistent. Note

that, the additional condition that the starting situation of p be K-accessible in s is

unnecessary, since this follows from Assumption 6.2.1.

It is the responsibility of the agent designer to ensure that these two constraints are

entailed by the committed agent theory. A pragmatic consequence of these assump-

tions is that agents’ initial p-goals no longer represent true desires, which are usually

allowed to be impossible to bring about and/or conflicting with each other, but rather

their “goals”. In fact, the elimination of desires in this framework considerably simpli-

fies c-goal dynamics and contributes to the persistence of c-goals. I will come back to

this issue later. Also, I will show that if these constraints are asserted for the initial sit-

uations, they continue to hold for all situations as they are preserved by the (modified)

successor-state axiom for G.

Thirdly, recall that in the optimizing agent framework, I allow the agents to adopt

desires that are currently inconsistent with their chosen goals. As discussed earlier,

385

while in that framework such adopted desires are initially inactive, they might later be-

come active and trigger the dropping of other (lower priority) chosen goals/intentions.

This is consistent with my model of the opportunity analyzer and the filter override

mechanism for intentions. Thus in the optimizing agent framework, the adoption of a

goal φ results in the adoption of the p-goal that φ, but not necessarily in the adoption of

the c-goal that φ. Similarly, the dropping of a goal that φ results in the dropping of the

p-goal that φ, but not necessarily in the dropping of the realistic p-goal or the c-goal

that φ — φ could be inevitable or could be a consequence of other c-goals; moreover,

the agent could have φ as a realistic p-goal without also having it as a p-goal (recall

that when the drop(φ) action happens, the agent drops φ only from the levels where φ

is a p-goal). Thus the adopt and drop actions in the optimizing agent framework are

meant to be viewed as operations over the agents’ desires. In contrast, in the commit-

ted agent framework, we want our agents to be more committed to their chosen goals;

thus they should be allowed to adopt a new goal only if it is consistent with all their

current c-goals. Similarly, they should be permitted to drop a goal only if the goal —

relative to their sets of primary chosen goals— is indeed dropable. These changes in

the prerequisites for the adopt and drop actions mean that these actions no longer refer

to the adoption and dropping of desires of the agent. Rather, they should be viewed as

that of (primary) chosen goals or intentions of the agent.

386

Thus, I update the action precondition axioms for adopt(φ, n), adoptRelTo(ψ, φ),

and drop(φ) as follows. An agent can adopt the c-goal that φ at level n in situation s

if she does not already have φ as her p-goal at some level m in s (as before), and she

does not intend in s that ¬φ next:47

Axiom 6.2.3.

Poss(adopt(φ, n), s) ≡ ¬∃m. PGoal(φ,m, s) ∧

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ, n), s′)) ∧ φ(p′), s).

Moreover, an agent can adopt a subgoal ψ w.r.t. the parent goal φ if she has the parent

goal that φ as a p-goal at some level m in s and she does not already have the p-goal

that ψ at some level n in s (as before), and she does not intend in s that ¬ψ next:

Axiom 6.2.4.

Poss(adoptRelTo(ψ, φ), s) ≡ ∃m. PGoal(φ,m, s) ∧ ¬∃n. PGoal(ψ, n, s) ∧

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adoptRelTo(ψ, φ), s′) ∧ ψ(p′), s).

Finally, an agent can drop the c-goal that φ in situation s if she has φ as her p-goal at

some level n in s (as before), and if φ is not known to be inevitable in s:

47This may seem very restrictive as φ is required to be consistent with the agent’s p-goals even at
priority lower than n. But note that if the agent drops the inconsistent lower priority p-goals, she will
then be able to adopt φ.

387

Axiom 6.2.5.

Poss(drop(φ), s) ≡ ∃n. PGoal(φ, n, s) ∧ ¬KInevitable(φ, s).

Thus unlike in the optimizing agent framework, in this framework I do not allow an

agent to adopt a goal or a subgoal that is inconsistent with her current chosen goals.

Also, an agent is not allowed to drop a goal if it is known to be inevitable. Note that,

in these axioms, I didn’t replace the PGoal operators with CGoals; as I will show later,

for any given situation, all p-goal levels are always active, so in this framework having

a p-goal that φ amounts to having the (primary) c-goal that φ.

Finally, I modify the successor-state axiom for G to preserve Assumptions 6.2.1

and 6.2.2 for all situations and thus eliminate the opportunity analyzer and the filter

override mechanism. I achieve this by replacing the Progressed construct in Axiom

5.2.2 and Definition 4.3.6 with the ProgressedAndFiltered construct, the Progressed

construct in Definitions 4.3.5 and 5.2.3 with the ProgressedCA construct, and the Same-

Hist construct in Definitions 4.3.5 and 4.3.6 with the K-relation. In the following,

I specify the dynamics of p-goals in the committed agent framework by giving the

successor-state axiom for the G relation, and then discuss the changes required for

each case, one at a time:

388

Axiom 6.2.6 (SSA for G).

G(p, n, do(a, s)) ≡

∀φ, ψ,m. (a 6= adopt(φ,m) ∧ a 6= adoptRelTo(ψ, φ) ∧ a 6= drop(φ) ∧

ProgressedAndFiltered(p, n, a, s))

∨ ∃φ,m. (a = adopt(φ,m) ∧ AdoptedCA(p, n,m, a, s, φ))

∨ ∃φ, ψ. (a = adoptRelTo(ψ, φ) ∧ SubGoalAdoptedCA(p, n, a, s, ψ, φ))

∨ ∃φ. (a = drop(φ) ∧ DroppedCA(p, n, a, s, φ)).

The above axiom and the following definitions are exactly as in the optimizing agent

framework, with the exception of the aforementioned changes, so I will only discuss

these changes. Again, given some situation, the purpose of these changes is to pre-

serve Assumptions 6.2.1 and 6.2.2 for all possible successor situations (I will show this

preservation formally in Section 6.3.2). First, let us consider the case when the action

performed is a regular, i.e. non-adopt/drop action; for this, I replaced Progressed(p, n, a, s)

with ProgressedAndFiltered(p, n, a, s) (cf. Axiom 6.2.6), which is defined as follows:

389

Definition 6.2.7.

ProgressedAndFiltered(p, n, a, s)
def
=

if (n = 0 ∧ ∃p′. ProgressedCA(p′, n, a, s))

then ProgressedCA(p, n, a, s)

else if (n 6= 0 ∧ ∃p′. G∩(p′, n− 1, do(a, s)) ∧ Progressed(p′, n, a, s))

then ProgressedCA(p, n, a, s)

else ∃s′. Starts(p, s′) ∧K(s′, do(a, s)),

where the ProgressedCA construct is defined as follows:

Definition 6.2.8.

ProgressedCA(p, n, a, s)
def
= Progressed(p, n, a, s) ∧ ∃s′. Starts(p, s′) ∧K(s′, do(a, s)).

Here ProgressedAndFiltered plays a similar role to Progressed in the Chapter 4 defini-

tion, but also drops goals that have become known to be impossible or inconsistent with

higher priority goals. After some action a happens in s, ProgressedAndFiltered(p, n, a, s)

replaces aG-accessible path (say with starting situation s∗) at level n in swith its suffix

p w.r.t. s′ (where s′ = do(a, s∗)), provided that s′ is K-accessible in do(a, s). This is

modeled using the ProgressedCA construct, which only progresses realistic goal paths.

In addition, if a makes one or more p-goals at n impossible or inconsistent with higher

390

priority p-goals, then ProgressedAndFiltered(p, n, a, s) adds back to the G-relation at

level n any path p that starts with a K-accessible situation in do(a, s). It thus con-

tributes to the maintenance of Assumption 6.2.2 by replacing the only p-goal at all

such inactive levels in the agent’s goal hierarchy in do(a, s) with the trivial formula

that she be in a K-accessible situation in do(a, s), thus effectively dropping these in-

active p-goals. Note that any path p that is in the ProgressedAndFiltered(p, n, a, s)

relation must start with a situation that is K-accessible in do(a, s). ProgressedAnd-

Filtered thus also ensures that Assumption 6.2.1 is preserved for all levels when the

action performed is a regular action.

Next, consider the case where the action performed is an adopt action. Note that,

the preconditions for adopt guarantee that for any executable situation, the agent’s

c-goals are consistent after an adopt action happens; thus if s is executable and a is

possible in s, then Assumption 6.2.2 is automatically maintained in do(a, s). To pre-

serve Assumption 6.2.1, in obtaining Definition 6.2.9 from Definition 4.3.5 I replace

SameHist with the K-relation for the priority level where the goal is adopted, and

Progressed with ProgressedCA for all other levels:

391

Definition 6.2.9.

AdoptedCA(p, n,m, a, s, φ)
def
=

if (n < m) then ProgressedCA(p, n, a, s)

else if (n = m) then ∃s′. Starts(p, s′) ∧K(s′, do(a, s)) ∧ φ(p)

else ProgressedCA(p, n− 1, a, s).

The former modification ensures that all the G-accessible paths at the adopted level

in do(a, s) are realistic in that each of them starts with a K-accessible situation in

do(a, s). The latter warrants that this also holds for all other levels (again, note that

ProgressedCA(p, n, a, s) requires that p starts with aK-accessible situation in do(a, s)).

Thirdly, let us consider the case for an adoptRelTo action. As in the previous

case, the preconditions for adoptRelTo ensure that for any executable situation, As-

sumption 6.2.2 is automatically preserved. To maintain Assumption 6.2.1, in obtaining

Definition 6.2.10 from Definition 5.2.3 I use ProgressedCA instead of Progressed for

all levels, thus ensuring that theG-accessible paths at all levels in do(a, s) are realistic:

392

Definition 6.2.10.

SubGoalAdoptedCA(p, n, a, s, ψ, φ)
def
=

if (∃m. AdoptedLevel(φ,m, s) ∧ n < m) then ProgressedCA(p, n, a, s)

else if (AdoptedLevel(φ, n, s)) then (ProgressedCA(p, n− 1, a, s) ∧ ψ(p))

else ProgressedCA(p, n− 1, a, s).

Finally, to handle a drop action, in obtaining Definition 6.2.11 from Definition

4.3.6 I replace the SameHist construct with the K-relation for the levels from where

the goal is dropped, and the Progressed construct with ProgressedAndFiltered for all

other levels:

Definition 6.2.11.

DroppedCA(p, n, a, s, φ)
def
=

if PGoal(φ, n, s) then ∃s′. Starts(p, s′) ∧K(s′, do(a, s))

else ProgressedAndFiltered(p, n, a, s).

The former preserves Assumption 6.2.1 for the dropped levels, by adding back to these

levels only those paths that starts with a K-accessible situation in do(a, s), rather than

those that starts with a situation that has the same history as do(a, s) (see Definition

4.3.6). The latter is somewhat different from the above two cases (i.e. that for adopt

393

and adoptRelTo). This is because the preconditions for drop do not ensure that the

agent does not currently have the dropped goal as her c-goal or that she does not intend

not to execute this drop action next; such a requirement would be too strong as there is

no point in dropping a c-goal unless the agent has it as her c-goal. As discussed above,

ProgressedAndFiltered preserves Assumption 6.2.1 for the rest of the levels in the

goal hierarchy. Moreover, it also ensures that there is a common G-accessible path in

do(a, s) that is accessible from all of these levels, and that starts with a K-accessible

situation in do(a, s). This along with the fact that the G relations at the levels from

where the goal is dropped include all paths that starts with a K-accessible situation in

do(a, s) thus also preserves Assumption 6.2.2. I will prove these results formally in

the next section.

These modifications thus ensure that if the occurrence of an action a in some situa-

tion s makes a p-goal φ at level n impossible or inconsistent with other higher priority

p-goals, φ (as well as the only p-goal at level n) is dropped from the agent’s p-goal hi-

erarchy. Therefore, unlike in the optimizing agent framework, where the agent keeps

both active and inactive p-goals in an attempt to keep optimizing her c-goals, in this

framework the agent simply drops a p-goal as soon as it becomes inactive.

I can now define the theory DSGCAgt for modeling committed agents with subgoals

as follows:

394

Definition 6.2.12.

DSGCAgt
def
= DSGOAgt\{Axioms 4.3.1, 5.2.1, 4.3.2, 5.2.2}

∪ {Assumptions 6.2.1 – 6.2.2} ∪ {Axioms 6.2.3 – 6.2.6}.

Note that according to the above successor-state axiom, the agent’s G-accessibility

relation at some level in do(a, s) depends on some of her G-accessibility relations at

other (higher priority) levels in do(a, s). Therefore at a first glance, this axiom may not

seem well defined. To show that it is in fact well defined, in the following I prove that

this axiom is “Markovian”, i.e. that G(p, n, do(a, s)) only depends on the K and the

G relations in situation s and on the action a. First I show that for any path p, priority

level n, and situation s, G∩(p, n, s) can be completely specified in terms of a formula

that does not mention G∩:

Proposition 6.2.13. For all n:

DSGCAgt |= ∀p, s. G∩(p, n, s) ≡ ΠG∩(p, n, s),

where ΠG∩(p, n, s) is a formula that does not mention G∩ and whose free variables

are among p and s.

Proof. (By induction on n) The base case is trivial, since the right-hand side of Axiom

4.2.7 does not mention G∩ and only consists of free variables from {p, s} when n = 0.

395

For the inductive hypothesis, fix M and assume that the proposition holds for n = M,

i.e. ∀p, s. G∩(p,M, s) ≡ ΠG∩(p,M, s), where ΠG∩(p,M, s) is a formula that does

not mention G∩ and whose free variables are among p and s. I need to show that the

proposition holds for n = M + 1. This also trivially follows from Axiom 4.2.7, since

the right-hand side of this axiom only mentions occurrences of G∩ at level M with

free variables from {p, s}, and by the inductive hypothesis, all such occurrences can

be replaced by ΠG∩(p,M, s).

Next, I show that for any path p, level n, and situation s, G∩(p, n, s) can be com-

pletely specified in terms of a formula that does not mention the G-accessibility rela-

tions at levels that have lower priority than n:

Proposition 6.2.14. For all n:

DSGCAgt |= ∀p, s. G∩(p, n, s) ≡ ΠG(p, n, s),

where ΠG(p, n, s) is a formula that does not mention G∩ and G relations at m, where

m > n, and whose free variables are among p and s.

Proof Sketch. (By induction on n) Similar to the proof of Proposition 6.2.13.

Finally, I show that an agent’s G-accessible paths in situation do(a, s) can be com-

pletely specified in terms of a formula that does not mention her K and G accessibility

396

relations in do(a, s). To be more specific, I show that for any priority level n, we can

progressively substitute the right-hand side of the successor-state axiom for G with a

formula that talks about the K and the G relations only in situation s:

Proposition 6.2.15. For all n:

DSGCAgt |= ∀p, a, s. G(p, n, do(a, s)) ≡ ΠKG(p, n, a, s),

where ΠKG(p, n, a, s) is a formula that mentions the K and the G relations only in

situation s, and whose free variables are among p, a, and s.

Proof. (By strong induction on n) For the base case, fix A1 and S1 and set n =

0. By Axiom 6.2.6 and Definitions 6.2.7, 6.2.9, 6.2.10, 6.2.11, 6.2.8, and 4.3.4,

G(p, 0, do(A1, S1)) can be specified using a formula that involves the G accessibil-

ity relation in S1 and the K accessibility relation in do(A1, S1), and whose only free

variable is p. In this formula, if we replace the K relation in do(A1, S1) by the right-

hand side of Axiom 3.4.10, we obtain a formula ΠKG(p, 0, A1, S1) that mentions the

K and the G accessibility relations only in situation S1 and whose only free variable

is p. Thus, the G relation at level 0 in do(A1, S1) can be expressed with a formula that

mentions the K and the G relations only in situation S1.

For the inductive hypothesis, fix An, Sn, and M , and assume that for all n s.t. 0 <

n ≤ M , and for all p, G(p, n, do(An, Sn)) can be completely specified by a formula

397

ΠKG(p, n,An, Sn) that mentions the K and the G relations in Sn only and whose only

free variable is p. I need to show that the proposition holds forM+1. Again by Axiom

6.2.6 and Definitions 6.2.7, 6.2.9, 6.2.10, 6.2.11, 6.2.8, and 4.3.4, we can see that G

at level M + 1 in situation do(An, Sn), i.e. G(p,M + 1, do(An, Sn)), can be specified

using a formula Π′KG(p,M +1, An, Sn) whose only free variable is p and that involves

the G relation in Sn, the K relation in do(An, Sn), and the G∩ relation at level M in

do(An, Sn); note that the latter appears as G∩(p′,M, do(An, Sn)), where p′ is bound.

By Proposition 6.2.14, we can replace every occurrence of G∩(p′,M, do(An, Sn)) in

Π′KG(p,M + 1, An, Sn) with a formula ΠG(p′,M, do(An, Sn)) that, w.r.t. the G rela-

tion, only mentions G at levels m in do(An, Sn), where m ≤ M . By the inductive

hypothesis, these G relations in ΠG(p′,M, do(An, Sn)) can be expressed using a for-

mula Π′′KG(p′,M,An, Sn) that mentions the K and the G relations in Sn only. More-

over from Axiom 4.2.7, we can see that ΠG(p′,M, do(An, Sn)) also mentions the K

relation in do(An, Sn). As in the base case, we can use the right-hand side of Axiom

3.4.10 to replace the K relation in do(An, Sn) (both in Π′KG(p,M + 1, An, Sn) and

ΠG(p′,m′, do(An, Sn))) by a formula that mentions the K relation in Sn only. Thus

we can obtain a specification ofG(p,M+1, do(An, Sn)) using a formula Π′KG(p,M+

1, An, Sn) that refers to the agent’s K and G relations only in situation Sn.

Note that, the successor-state axiom for G and Axiom 6.2.5 together ensure that

398

for any executable situation s, the agent does not have the realistic p-goal that φ after

she drops it in s (see Proposition 6.3.28 below). However, this does not necessarily

hold for c-goals, as φ could be a consequence of the agent’s other c-goals. I could have

modified the successor-state axiom to identify and drop, e.g. a minimal set of c-goals

that contribute to φ; but this would have complicated the framework further, e.g. by

incorporating techniques used for belief revision to minimize the change in the agent’s

revised c-goals, etc. I leave this for future work.

6.3 Properties

In this section, I show that my formalization of committed agents has some desirable

properties. Many of these or their corresponding versions (in particular those in Sec-

tions 6.3.1, 6.3.3, 6.3.4, and 6.3.5) have been already shown to hold in the optimizing

agent framework. I also point out the differences between the two frameworks.

6.3.1 Basic Properties

I start with some basic properties. The proofs for these are exactly the same as in the

optimizing agent framework since they do not refer to any of the axioms that deal with

goal dynamics. First, I can show that an agent’s chosen goals are consistent:

399

Proposition 6.3.1 (Consistency of CGoals).

DSGCAgt |= ∀s. ¬CGoal(False, s).

Proof. Same as that of Proposition 4.4.2.

Recall that in the optimizing agent framework, an agent is allowed to have a p-goal

that is impossible (as her G-accessible paths at some given level can be empty). In

contrast, in the committed agent framework the above property can be shown to hold

for (realistic) p-goals (and as a consequence, for primary c-goals) for all executable

situations. I show this formally in Corollary 6.3.17.

The property of realism also holds for the committed agent framework, and thus

all known to be inevitable goals are also chosen/intended:

Proposition 6.3.2 (Realism).

DSGCAgt |= ∀s. KInevitable(φ, s) ⊃ CGoal(φ, s).

Proof. Same as that of Proposition 4.4.3.

Again, recall that realism does not hold for p-goals/primary c-goals in the optimiz-

ing agent framework – an agent may know that something has become inevitable and

not have it as her p-goal or primary c-goal. In contrast, this can’t be the case in the

committed agent framework. In particular, p-goal realism can be shown to hold in this

400

framework (see Corollary 6.3.7). Moreover, primary c-goal realism also holds in the

framework for executable situations (by Corollaries 6.3.7 and 6.3.20).

From these two propositions, it follows that no known to be impossible goal is ever

chosen/intended:

Corollary 6.3.3.

DSGCAgt |= ∀s. CGoal(φ, s) ⊃ ¬KImpossible(φ, s).

Proof. Same as that of Corollary 4.4.4.

Once again, unlike in the optimizing agent framework, the above property can also

be shown to hold for agents’ (realistic) p-goals and primary c-goals for all executable

situations (see Corollary 6.3.19). This is because in this framework, all p-goals of the

agent are always active, i.e. chosen.

6.3.2 Dynamic Properties I: Preservation of PGoal Strong Realism and Consis-

tency, and its Consequences

I next discuss some properties of goals that are specific to committed agents. In par-

ticular, in this section I show that if Assumptions 6.2.1 and 6.2.2 are prescribed to

hold for the initial situations, then they will remain true in all situations as they are

preserved by the SSA for G. Moreover, I show how a committed agent’s prioritized

401

goals and chosen goals are related; to be more specific, I prove that an agent’s chosen

goals are just the intersection of her p-goals.

First, I show that Assumption 6.2.1 is preserved for all non-initial situations:

Proposition 6.3.4.

DSGCAgt |= ∀p, n, a, s. G(p, n, do(a, s)) ⊃ ∃s′.Starts(p, s′) ∧K(s′, do(a, s)).

Proof. (By induction on s) The base case holds by Assumption 6.2.1. The general

case trivially follows from Axiom 6.2.6 and Definitions 6.2.7, 6.2.9, 6.2.10, 6.2.11,

and 6.2.8, as ProgressedAndFiltered(p, n, a, s), AdoptedCA(p, n,m, a, s, φ), SubGoal-

AdoptedCA(p, n, a, s, ψ, φ), DroppedCA(p, n, a, s, φ), and ProgressedCA(p, n, a, s) all

by definition ensure that p must start with a K-accessible situation in do(a, s).

Thus in this framework, an agent’s set of G and GR-accessible paths are equivalent:

Corollary 6.3.5.

DSGCAgt |= ∀p, n, s. G(p, n, s) ≡ GR(p, n, s).

Proof. Follows from Assumption 6.2.1, Proposition 6.3.4, and Definition 4.2.4.

It follows that an agent’s set of p-goals at some level n in situation s and that of realistic

p-goals are the same:

402

Corollary 6.3.6.

DSGCAgt |= ∀n, s. PGoal(φ, n, s) ≡ RPGoal(φ, n, s).

Proof. Follows from Corollary 6.3.5 and Definitions 4.2.1 and 4.2.5.

I can also show that the property of realism holds for a committed agent’s p-goals:

Corollary 6.3.7.

DSGCAgt |= ∀s. KInevitable(φ, s) ⊃ ∀n. PGoal(φ, n, s).

Proof. (By contradiction) Fix φ1 and S1 and assume that KInevitable(φ1, S1). From

this and Definition 3.5.14, we have that φ1 holds over any path that starts with a situa-

tion that is K-accessible in S1, i.e.:

∀p, s′. Starts(p, s′) ∧K(s′, S1) ⊃ φ1(p). (6.1)

Fix N1 and assume that: ¬PGoal(φ1, N1, S1). Then by Definition 4.2.1, there exists a

G-accessible path P1 at N1 in S1 over which ¬φ1 holds, i.e. ¬φ1(P1). But by Assump-

tion 6.2.1 and Proposition 6.3.4, P1 must start with a situation that is K-accessible in

S1, and thus by (6.1), φ1 holds over P1, i.e. φ1(P1) — a contradiction.

I next show that Assumption 6.2.2 is preserved by the successor-state axiom for G

and thus holds for all situations. In the following, I start by giving some lemmata that

403

I will need to get this result. The first lemma states that for any situation s and priority

level n, any path p that is in the G∩ relation at n in s must start with a K-accessible

situation in s:

Lemma 6.3.8.

DSGCAgt |= ∀p, n, s. G∩(p, n, s) ⊃ ∃s′. Starts(p, s′) ∧K(s′, s).

Proof. (By induction on n). Fix S1. The base case where n = 0 follows trivially

from Axiom 4.2.7 and Definition 4.2.4. For the inductive case, fix N1 and assume that

∀p. G∩(p,N1, S1) ⊃ ∃s. Starts(p, s) ∧K(s, S1). Fix path P1 s.t. G∩(P1, N1 + 1, S1).

I need to show that P1 starts with a K-accessible situation in S1. Note that by Axiom

4.2.7, path P1 is in G∩ at N1 + 1 in S1 iff:

if ∃p′. (GR(p′, N1 + 1, S1) ∧G∩(p′, N1, S1))

then (GR(P1, N1 + 1, S1) ∧G∩(P1, N1, S1))

else G∩(P1, N1, S1).

In both these cases G∩(P1, N1, S1) must hold, and thus ∃s′. Starts(P1, s
′) ∧K(s′, S1)

follows from the inductive hypothesis.

The next lemma states that if a path is GR-accessible for all levels up to m in

situation s, then it must be in the G∩ relation up to m in s:

404

Lemma 6.3.9.

DSGCAgt |= ∀m, p, s. (∀n. n ≤ m ⊃ GR(p, n, s)) ⊃ G∩(p,m, s).

Proof. (By induction on m) Fix situation S1 and path P1. The base case, i.e. when

m = 0, follows trivially from Axiom 4.2.7. For the inductive case, fix M1 and assume:

∀n. n ≤M1 + 1 ⊃ GR(P1, n, S1). (6.2)

We need to show that G∩(P1,M1 + 1, S1). From (6.2) and the inductive hypothesis,

we have:

G∩(P1,M1, S1). (6.3)

From Axiom 4.2.7, (6.2), and (6.3), we can see that P1 is G∩-accessible at M1 + 1 in

S1 iff both GR(P1,M + 1, S1) and G∩(P1,M1, S1) holds. The former follows from

(6.2) while the latter from (6.3).

The next lemma says that if there is a path p that is GR-accessible for all levels up

to level m in situation s, then any path p′ that is in the G∩ relation at some higher or

equal priority (w.r.t. m) level n′ in s must also be GR-accessible at n′ in s:

Lemma 6.3.10.

DSGCAgt |= ∀m, s. (∃p. (∀n. n ≤ m ⊃ GR(p, n, s))) ⊃

(∀p′, n′. n′ ≤ m ∧G∩(p′, n′, s) ⊃ GR(p′, n′, s)).

405

Proof. (By contradiction) For the antecedent, fix M1, S1, and P1 and assume:

∀n. n ≤M1 ⊃ GR(P1, n, S1). (6.4)

For the consequent, fix P ′1 and N ′1 and assume:

N ′1 ≤M1 ∧G∩(P ′1, N ′1, S1). (6.5)

By contradiction, assume:

¬GR(P ′1, N
′
1, S1). (6.6)

Axiom 4.2.7 gives us two cases. First consider the case when N ′1 = 0. In that case,

from Axiom 4.2.7 we have that a path p is G∩ accessible at 0 in S1 iff:

if ∃p′. GR(p′, 0, S1) then GR(p, 0, S1)

else ∃s′. Starts(p, s′) ∧K(s′, S1).

Since by (6.5), P ′1 is G∩-accessible at 0 in S1, and by (6.4), there is a path, namely P1,

that is GR-accessible at 0 in S1, P ′1 must be GR-accessible at 0 in S1 — a contradiction

with (6.6).

Now consider the case for N ′1 > 0. From (6.4) and (6.5), we have:

GR(P1, N
′
1, S1). (6.7)

Again, from (6.4), (6.5) and Lemma 6.3.9, it follows that:

G∩(P1, N
′
1 − 1, S1). (6.8)

406

Since N ′1 > 0, from Axiom 4.2.7 we have that a path p is G∩-accessible at N ′1 in S1

iff:

if ∃p′. (GR(p′, N ′1, S1) ∧G∩(p′, N ′1 − 1, S1))

then (GR(p,N ′1, S1) ∧G∩(p,N ′1 − 1, S1))

else G∩(p,N ′1 − 1, S1).

Since by (6.7), there is a path, namely P1, that is GR-accessible at N ′1 in S1 and by

(6.8), P1 is in the G∩ relation at N ′1 − 1 in S1, the condition in the if holds, and thus

any path p that is in the G∩ relation at N ′1 in S1 must be GR-accessible at N ′1 in S1 (i.e.

the condition in the then must hold for p). Since by (6.5) P ′1 is such a path, it must be

GR-accessible at N ′1 in S1 — a contradiction with (6.6).

Finally, the last lemma says that if there is a path p that is in theG∩ relation at level

n in situation s, then it is also in the G∩ relation at all higher priority (w.r.t. n) levels

m in s:

Lemma 6.3.11.

DSGCAgt |= ∀p, n, s. G∩(p, n, s) ⊃ (∀m. m < n ⊃ G∩(p,m, s)).

Proof. (By induction on n) In the base case, where n = 0, the consequent trivially

holds. For the inductive case, where n > 0, fix N1, and assume that:

∀p, s. G∩(p,N1, s) ⊃ (∀m. m < N1 ⊃ G∩(p,m, s)).

407

Also fix P1 and S1 and assume that G∩(P1, N1 + 1, S1). From this and Axiom 4.2.7, it

follows that:

G∩(P1, N1, S1). (6.9)

From this and the inductive hypothesis, it follows that:

∀m. m < N1 ⊃ G∩(P1,m, S1). (6.10)

The consequent follows from (6.9) and (6.10).

Using these lemmata, I now prove that Assumption 6.2.2 also hold for any exe-

cutable situation as it is preserved by the successor-state axiom for G:

Proposition 6.3.12.

DSGCAgt |= ∀s. Executable(s) ⊃ ∃p. ∀n. G(p, n, s).

Proof. (By induction on s) For the base case, fix situation Sinit s.t. Init(Sinit) and as-

sume that Executable(Sinit). The consequent trivially follows from this and Assump-

tion 6.2.2.

For the inductive case, fix situation S∗ and assume that:

∃p. ∀n. G(p, n, S∗). (6.11)

Also, fix action A∗ and assume that:

Executable(do(A∗, S∗)). (6.12)

408

I need to show that ∃p. ∀n. G(p, n, do(A∗, S∗)). From (6.12) and Definition 3.3.1, we

have:

Poss(A∗, S∗). (6.13)

Now, the successor-state axiom for G, i.e. Axiom 6.2.6, gives us four cases. For each

of these cases, I will prove that ∃p. ∀n. G(p, n, do(A∗, S∗)). Let us consider them, one

at a time.

A∗ is a regular action (i.e. not an adopt, adoptRelTo, or drop action): In this case, by

Axiom 6.2.6, I need to show that there is a path p such that ∀n. ProgressedAndFilter-

ed(p, n, A∗, S∗). I will prove this by strong induction on level n. First consider the base

case, i.e. when n = 0. From Definitions 6.2.7 and 6.2.8, ProgressedAndFiltered(p, 0,

A∗, S∗) holds for some path p at level 0 after A∗ has happened in S∗ iff:

if (∃p′, s′. Progressed(p′, 0, A∗, S∗) ∧ Starts(p′, s′) ∧K(s′, do(A∗, S∗)))

then Progressed(p, 0, A∗, S∗) ∧ ∃s′. Starts(p, s′) ∧K(s′, do(A∗, S∗))

else ∃s′. Starts(p, s′) ∧K(s′, do(A∗, S∗)).

If there exists aG-accessible path P1 at 0 in S∗ whose suffix p′ relative toA∗ starts with

a situation that is K-accessible in do(A∗, S∗), then ProgressedAndFiltered(P1, 0, A
∗,

S∗). Otherwise, let P1 be a path that starts with a situation that is K-accessible in

do(A∗, S∗). Since K is reflexive, and do(A∗, S∗) is executable (by (6.12)), by the

409

assumption that there is an executable action in all situations and Proposition 3.5.36,

such a path P1 indeed exists. Clearly, ProgressedAndFiltered(P1, 0, A
∗, S∗) holds.

For the inductive case, fix M and assume that there is a path P1 s.t. ∀n. n ≤ M ⊃

ProgressedAndFiltered(P1, n, A
∗, S∗); I need to show that:

∃p. (∀n. n ≤M + 1 ⊃ ProgressedAndFiltered(p, n,A∗, S∗)).

Note that, by Axiom 6.2.6, the fact that A∗ is a regular action, and the inductive hy-

pothesis, it follows that P1 is G-accessible at all levels up to M in do(A∗, S∗) since

ProgressedAndFiltered holds for all these levels. From this and Corollary 6.3.5, we

have:

∀n. n ≤M ⊃ GR(P1, n, do(A
∗, S∗)). (6.14)

By (6.14) and Lemma 6.3.10, any path that is in G∩ at all levels up to and including

M in do(A∗, S∗) must also be GR-accessible at all levels n in do(A∗, S∗) s.t. n ≤M :

∀p. (∀n. n ≤M ⊃ G∩(p, n, do(A
∗, S∗))) ⊃ (∀n′. n′ ≤M ⊃ GR(p, n′, do(A∗, S∗))).

(6.15)

Now, by Definitions 6.2.7 and 6.2.8, a path p is in ProgressedAndFiltered at level

410

M + 1 after A∗ has happened in S∗ iff:

if (∃p′. G∩(p′,M, do(A∗, S∗)) ∧ Progressed(p′,M + 1, A∗, S∗)

∧ ∃s′. Starts(p′, s′) ∧K(s′, do(A∗, S∗)))

then Progressed(p,M + 1, A∗, S∗) ∧ ∃s′. Starts(p, s′) ∧K(s′, do(A∗, S∗))

else ∃s. Starts(p, s) ∧K(s, do(A∗, S∗)).

Note that, if the condition in the if is false, then P1 is in ProgressedAndFiltered

at level M + 1 after A∗ has happened in S∗ if it starts with a situation that is K-

accessible in do(A∗, S∗). This follows trivially from the inductive hypothesis and Def-

initions 6.2.7 and 6.2.8, since any path that is in the ProgressedAndFiltered (and the

ProgressedCA) relation in do(A∗, S∗) must by definition start with a K-accessible situ-

ation in do(A∗, S∗).

On the other hand, if there is a path p′ s.t. p′ is in theG∩ relation atM in do(A∗, S∗)

and p′ is also the suffix of a G-accessible path at level M + 1 in S∗ relative to A∗,

then set P ′1 to be p′. Thus we have: ProgressedAndFiltered(P ′1,M + 1, A∗, S∗). Let

me show that P ′1 is also in the ProgressedAndFiltered relation at all higher priority

levels than M + 1. To this end, first note that by the assumption of this subcase that

G∩(P
′
1,M, do(A∗, S∗)) and Lemma 6.3.11, it follows that for all n s.t. 0 ≤ n ≤ M,

G∩(P
′
1, n, do(A

∗, S∗)) holds. Moreover, from this, (6.15), and Definition 4.2.4, we

411

have that ∀n. n ≤ M ⊃ G(P ′1, n, do(A
∗, S∗)). From this, Axiom 6.2.6, and the fact

that A∗ is a non-adopt/drop action, we have that ∀n. n ≤ M ⊃ ProgressedAndFilter-

ed(P ′1, n, A
∗, S∗). So there exists a path p s.t. ∀n. ProgressedAndFiltered(p, n, A∗, S∗).

A∗ is an adopt action: Fix φ1 and N1, and assume that A∗ = adopt(φ1, N1). Now,

from (6.13), Axiom 6.2.3, and Definitions 4.2.10 and 4.2.9, we have that there is a

path, say P1, such that P1 starts with some situation S1, P1 is G∩-accessible at all

levels in S∗, and the next action performed over P1 is A∗ = adopt(φ1, N1), after

which φ1 holds over the suffix, say P2, of this path that starts with do(A∗, S1):

∀n. G∩(P1, n, S
∗) ∧ Starts(P1, S1) ∧ Suffix(P2, P1, do(A

∗, S1)) ∧ φ1(P2). (6.16)

From (6.16) and Lemma 6.3.8, it follows that:

∃s. Starts(P1, s) ∧K(s, S∗). (6.17)

Again, from (6.16) and Corollary 3.5.41, it follows that:

∃s. Starts(P1, s) ∧ Poss(A∗, s). (6.18)

Moreover, since A∗, which is an adopt action, is not a knowledge-producing action, it

follows from (6.17), (6.18), and the SSA for K (i.e. Axiom 3.4.10) that:

∃s. Starts(P2, s) ∧K(s, do(A∗, S∗)). (6.19)

412

Note that to prove that ∃p. ∀n. G(p, n, do(A∗, S∗)), by Axiom 6.2.6 and the fact

thatA∗ is an adopt action it suffices to show that ∀n. AdoptedCA(P2, n,N1, A
∗, S∗, φ1).

First consider the case where n = N1. By Definition 6.2.9, AdoptedCA(P2, N1, N1, A
∗,

S∗, φ1) iff P2 starts with aK-accessible situation in do(A∗, S∗) and φ1(P2). The former

follows from (6.19). On the other hand, the latter follows from (6.16).

Next consider the case where n < N1. By Definitions 6.2.9, 6.2.8, and 4.3.4, and

(6.19), to show that ∀n. n < N1 ⊃ AdoptedCA(P2, n,N1, A
∗, S∗, φ1), it is sufficient to

prove that ∀n. n < N1 ⊃ GR(P1, n, S
∗) ∧ Suffix(P2, P1, do(A

∗, S∗)). Now consider

the case where n > N1. Again by Definitions 6.2.9, 6.2.8, and 4.3.4, and (6.19), to

show that ∀n. n > N1 ⊃ AdoptedCA(P2, n,N1, A
∗, S∗, φ1), it is sufficient to prove

that ∀n. n > N1 ⊃ GR(P1, n − 1, S∗) ∧ Suffix(P2, P1, do(A
∗, S∗)). Thus, to cover

both these cases, I need to show that:

∀n. GR(P1, n, S
∗) ∧ Suffix(P2, P1, do(A

∗, S∗)).

From this and (6.16), I only need to show that ∀n. GR(P1, n, S
∗). Now, from (6.11)

and Corollary 6.3.5, it follows that ∃p. ∀n. GR(p, n, S∗). Finally, from this, (6.16), and

Lemma 6.3.10, it follows that ∀n. GR(P1, n, S
∗). Thus, there exists a path p, namely

P2, s.t. ∀n. AdoptedCA(p, n,N1, A
∗, S∗, φ1).

A∗ is an adoptRelTo action: The proof for this case is similar to the proof for adopt

actions.

413

A∗ is an drop action: The proof for this case is similar to the one for regular actions.

It thus follows that ∃p. ∀n. G(p, n, do(A∗, S∗)).

As a consequence of Proposition 6.3.12, I can show that if a path p is in the G∩

relation at some level n for some executable situation s, then p must be G-accessible

at all higher priority levels than n in s and at n in s:

Corollary 6.3.13.

DSGCAgt |= ∀p, n, s. Executable(s) ∧G∩(p, n, s) ⊃ (∀m. m ≤ n ⊃ G(p,m, s)).

Proof. Fix P1, N1, and S1, and assume that:

Executable(S1), (6.20)

G∩(P1, N1, S1). (6.21)

From (6.20) and Proposition 6.3.12, it follows that ∃p. ∀n. G(p, n, S1). From this and

Corollary 6.3.5, it follows that ∃p. ∀n. GR(p, n, S1). Finally, from this, (6.21), and

Lemma 6.3.10, it follows that ∀n. n ≤ N1 ⊃ GR(P1, n, S1). The consequent follows

from this and Definition 4.2.4.

Moreover, I can show that in this framework all of the p-goals of an agent are active

and thus her chosen goals are just the intersection of her p-goals. More precisely, for

any executable situation s, a committed agent’s c-goal- or G∩-accessible paths in s are

414

exactly those that are GR-accessible (and G-accessible) at all levels in s, i.e. those that

satisfy all her realistic p-goals (and p-goals):

Proposition 6.3.14.

(a). DSGCAgt |= ∀s. Executable(s) ⊃ (∀p. G∩(p, s) ≡ ∀n. GR(p, n, s)),

(b). DSGCAgt |= ∀s. Executable(s) ⊃ (∀p. G∩(p, s) ≡ ∀n. G(p, n, s)).

Proof. (a). Fix situation S1 such that Executable(S1). By Definition 4.2.9, I need to

show that ∀p. (∀n. G∩(p, n, S1)) ≡ (∀n. GR(p, n, S1)). First let us consider the (⊂)

direction. Fix P1 and assume:

∀n. GR(P1, n, S1). (6.22)

I’ll prove this by induction on n. For the base case, by (6.22) and Axiom 4.2.7, we have

G∩(P1, 0, S1). For the inductive case, fix M and assume G∩(P1,M, S1). Then from

Axiom 4.2.7, it also follows thatG∩(P1,M+1, S1), as by (6.22) we haveGR(P1,M+

1, S1) and by the inductive hypothesis we have G∩(P1,M, S1).

Next, let us consider the (⊃) direction. Fix path P1 and assume:

∀n. G∩(P1, n, S1). (6.23)

Since S1 is executable, by Proposition 6.3.12 and Corollary 6.3.5 it follows that there

is a path, say P2, that is GR-accessible at all levels in S1:

∀n. GR(P2, n, S1). (6.24)

415

Then it follows from (6.24), (6.23), and Lemma 6.3.10 that ∀n. GR(P1, n, S1).

(b). Follows from Proposition 6.3.14 (a) and Corollary 6.3.5.

Using this proposition, it can be shown that for any executable situation s, if an

agent has a p-goal that φ at some level n in s, then she has it as her c-goal in s:

Proposition 6.3.15.

DSGCAgt |= ∀n, s. Executable(s) ∧ PGoal(φ, n, s) ⊃ CGoal(φ, s).

Proof. Fix φ1, N1, and S1. By Definition 4.2.1 and the antecedent, we have:

∀p. G(p,N1, S1) ⊃ φ1(p). From this and Definition 4.2.4, we have:

∀p. GR(p,N1, S1) ⊃ φ1(p). (6.25)

Since by the antecedent S1 is executable, we can apply Proposition 6.3.14 (a), and get

that:

∀p. G∩(p, S1) ⊃ GR(p,N1, S1). (6.26)

From (6.25) and (6.26), it follows that: ∀p. G∩(p, S1) ⊃ φ1(p). The consequent fol-

lows from this and Definition 4.2.10.

Moreover, for any executable situation s, the consequences of an agent’s p-goals

in s are also her c-goals in s:

416

Proposition 6.3.16.

DSGCAgt |= ∀s. Executable(s) ⊃

(∀p, n1, n2. PGoal(φ1, n1, s) ∧ PGoal(φ2, n2, s) ∧ (φ1(p) ∧ φ2(p) ⊃ ψ(p))

⊃ CGoal(ψ, s)).

Proof Sketch. Analogously to the proof of Proposition 6.3.15, it can be shown that

both φ1 and φ2 holds over all G∩-accessible paths in s, and since ∀p. φ1(p) ∧ φ2(p) ⊃

ψ(p), so does ψ. The consequent follows from this and Definition 4.2.10.

It is easy to see that this proposition can be generalized for more than two p-goals.

As a consequence of Proposition 6.3.15, I can show that for any executable situa-

tion, an agent’s p-goals at any level are individually consistent:

Corollary 6.3.17.

DSGCAgt |= ∀s. Executable(s) ⊃ ∀n. ¬PGoal(False, n, s).

Proof. (By contradiction) Fix S1 and N1 and assume: Executable(S1)∧ PGoal(False,

N1, S1). Then by Proposition 6.3.15, we have CGoal(False, S1). But by Proposition

6.3.1, we have ¬CGoal(False, S1) – a contradiction.

Moreover for any executable situation, an agent’s p-goals at all levels are collec-

tively consistent:

417

Corollary 6.3.18.

DSGCAgt |= ∀n, s. Executable(s) ∧ PGoal(φ, n, s) ⊃ ¬∃n′. PGoal(¬φ, n′, s).

Proof. (By contradiction) Fix S1, φ1, N1, and N2 and assume that:

Executable(S1), (6.27)

PGoal(φ1, N1, S1), (6.28)

PGoal(¬φ1, N2, S1). (6.29)

By (6.27), (6.28), and Proposition 6.3.15, we have CGoal(φ1, S1), while from (6.27),

(6.29), and Proposition 6.3.15, we have CGoal(¬φ1, S1). Thus we have CGoal(False,

S1). But by Proposition 6.3.1, we have ¬CGoal(False, S1) – a contradiction.

Again for any executable situation, an agent’s p-goals are not known to be impos-

sible:

Corollary 6.3.19.

DSGCAgt |= ∀n, s. Executable(s) ∧ PGoal(φ, n, s) ⊃ ¬KImpossible(φ, s).

Proof. Fix φ1, N1, and S1 and assume that Executable(S1)∧PGoal(φ1, N1, S1). From

this and Proposition 6.3.15, we have CGoal(φ1, S1). Finally, from this and Corollary

6.3.3, we have ¬KImpossible(φ1, S1).

418

Finally for any executable situation s, having the p-goal that φ at some level n in s

is equivalent to having the primary c-goal that φ at n in s:

Corollary 6.3.20.

DSGCAgt |= ∀s. Executable(s) ⊃ (∀n. PGoal(φ, n, s) ≡ PrimCGoal(φ, n, s)).

Proof Sketch. Fix φ1, N1, and S1 and assume that:

Executable(S1). (6.30)

I have to show that PGoal(φ1, N1, S1) ≡ PrimCGoal(φ1, N1, S1). The (⊂) direction

trivially follows from the definition of PrimCGoal(φ1, N1, S1) (Definition 4.2.14).

For the (⊃) direction, I need to show that ∃p. G(p,N1, S1) ∧ G∩(p,N1, S1) (by

Definition 4.2.14). From (6.30) and Proposition 6.3.12, it follows that there is a path,

say P1, s.t.:

∀n. G(P1, n, S1), and thus (6.31)

G(P1, N1, S1). (6.32)

From (6.31) and Corollary 6.3.5, we have ∀n. GR(P1, n, S1), and thus ∀n. n ≤ N1 ⊃

GR(P1, n, S1). Finally, from this and Lemma 6.3.9, it follows that G∩(P1, N1, S1).

Thus from this and (6.32), it follows that ∃p. G(p,N1, S1) ∧G∩(p,N1, S1).

419

Note that none of the main results that I presented in Section 6.3.2 hold for opti-

mizing agents (as expected, Lemmata 6.3.8, 6.3.9, and 6.3.10, which deal solely with

properties of Axiom 4.2.7, hold for the optimizing agent framework as well). In par-

ticular, recall that an optimizing agent is allowed to have true desires, which can be

individually inconsistent, known to be impossible to bring about, or inconsistent with

each other and with what she knows. As discussed in Chapter 4, in some of these cases,

the agent’s sets of G- or GR- accessible paths at some levels can be empty. Also, some

of her lower priority p-goals or desires can be inactive. In contrast, the above results

show that in the committed agent framework, all p-goal levels are always considered

to be active, and thus can’t be empty. The agent’s p-goals and realistic p-goals are the

same. Finally, her chosen goals or intentions are really the consequential closure of

her prioritized goals.

6.3.3 Dynamic Properties II: Extensionality, Adoption, and Drop

I next discuss some properties of a committed agent’s goal dynamics. First of all, I can

show that a committed agent always wants to be in a situation that has the same action

history as the current situation:

Proposition 6.3.21 (Correct Action History).

∀p, n, s. G(p, n, s) ⊃ ∃s′. Starts(p, s′) ∧ SameHist(s, s′).

420

Proof. Follows from Assumption 6.2.1, Proposition 6.3.4, and Lemma 3.5.34.

In contrast, by Proposition 4.4.6 an optimizing agent only wants to be in a world that

has the same action history as the current situation, if initially she wants to be in an

initial world. Such an additional initial condition is not required in the committed

agent framework as Assumption 6.2.1 along with Lemma 3.5.34 already ensure that

this is the case.

The next proposition says that adopting and dropping logically equivalent goals

has the same result:

Proposition 6.3.22 (Extensionality w.r.t. Adoption and Drop).

(a). DSGCAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀n, n′, s. PGoal(ψ, n′, do(adopt(φ1, n), s)) ≡ PGoal(ψ, n′, do(adopt(φ2, n), s))),

(b). DSGCAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀n, s. PGoal(ψ, n, do(drop(φ1), s)) ≡ PGoal(ψ, n, do(drop(φ2), s))),

(c). DSGCAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀n, s. CGoal(ψ, do(adopt(φ1, n), s)) ≡ CGoal(ψ, do(adopt(φ2, n), s))),

(d). DSGCAgt |= (∀p. φ1(p) ≡ φ2(p)) ⊃

(∀s. CGoal(ψ, do(drop(φ1), s)) ≡ CGoal(ψ, do(drop(φ2), s))).

421

Proof. (a). Follows from the fact that we use a possible worlds/paths semantics for

p-goals.

(b). Similar to that of Proposition 6.3.22(a).

(c). Follows from Definition 4.2.10 and the fact that the G∩-accessible paths are the

same in both situations given the antecedent.

(d). Similar to that of Proposition 6.3.22(c).

Note that although by Proposition 6.3.15, for any executable situation an agent’s p-

goals are also her c-goals in this framework, Proposition 6.3.22(a) and (b) alone are

inadequate for capturing extensionality of chosen goals w.r.t. adopt and drop; the rea-

son for this is that the agent might have a c-goal φ without necessarily having the

p-goal that φ, e.g. φ can be a consequence of two or more p-goals at different priority

levels. Thus (c) and (d) above are also required. Also, as shown in Chapter 4, these

results also hold for optimizing agents.

Moreover, adopting logically equivalent subgoals relative to logically equivalent

parent goals yields the same goal state:

422

Proposition 6.3.23 (Extensionality w.r.t. Subgoal Adoption).

(a). DSGCAgt |= ∀p.(φ1(p) ≡ φ2(p)) ∧ ∀p.(ψ1(p) ≡ ψ2(p)) ⊃

PGoal(φ∗, do(adoptRelTo(ψ1, φ1), s)) ≡ PGoal(φ∗, do(adoptRelTo(ψ2, φ2), s)),

(b). DSGCAgt |= ∀p.(φ1(p) ≡ φ2(p)) ∧ ∀p.(ψ1(p) ≡ ψ2(p)) ⊃

CGoal(φ∗, do(adoptRelTo(ψ1, φ1), s)) ≡ CGoal(φ∗, do(adoptRelTo(ψ2, φ2), s)).

Proof. (a). Similar to that of Proposition 6.3.22(a).

(b). Similar to that of Proposition 6.3.22(c).

Again, as shown in Chapter 5, these results hold for optimizing agents as well.

As a consequence of Proposition 6.3.22(a),(b), and 6.3.23(a), these properties also

hold for a committed agent’s primary c-goals:

423

Corollary 6.3.24.

(a). DSGCAgt |= ∀p. (φ1(p) ≡ φ2(p)) ⊃

(∀n, s. PrimCGoal(ψ, do(adopt(φ1, n), s))

≡ PrimCGoal(ψ, do(adopt(φ2, n), s))),

(b). DSGCAgt |= ∀p. (φ1(p) ≡ φ2(p)) ⊃

∀s. PrimCGoal(ψ, do(drop(φ1), s)) ≡ PrimCGoal(ψ, do(drop(φ2), s)).

(c). DSGCAgt |= ∀p. (φ1(p) ≡ φ2(p)) ∧ ∀p. (ψ1(p) ≡ ψ2(p)) ⊃

(∀s. PrimCGoal(φ∗, do(adoptRelTo(ψ1, φ1), s))

≡ PrimCGoal(φ∗, do(adoptRelTo(ψ2, φ2), s))).

Proof. (a). Follows from Definition 4.2.12 and Proposition 6.3.22(a).

(b). Follows from Definition 4.2.12 and Proposition 6.3.22(b).

(c). Follows from Definition 4.2.12 and Proposition 6.3.23(a).

Once again, as I showed earlier, these also hold for the optimizing agent framework.

The next few properties deal with (sub)goal adoption and drop and confirm that

adopting and dropping (sub)goals has the intended effect. I start by showing that after

adopting φ at level n in situation s, an agent acquires the p-goal that φ at n:

424

Proposition 6.3.25 (PGoal Adoption).

DSGCAgt |= ∀n, s. PGoal(φ, n, do(adopt(φ, n), s)).

Proof. Fix φ1, N1, and S1. From Axiom 6.2.6 and Definition 6.2.9, we have that the

agent’s G-accessible paths at N1 in do(adopt(φ1, N1), S1) are the ones that start with

situations that are K-accessible in do(adopt(φ1, N1), S1) and over which φ1 holds:

∀p. G(p,N1, do(adopt(φ1, N1), S1)) ≡

∃s. Starts(p, s) ∧K(s, do(adopt(φ1, N1), S1)) ∧ φ1(p).

(6.33)

If such a path p exists, then the consequent follows from (6.33) and Definition 4.2.1.

Otherwise, the consequent holds trivially from Definition 4.2.1.

Note that the above proof relies on the argument that if there does not exist a path

that starts with a situation that is K-accessible in do(adopt(φ, n), s) and over which φ

holds, then the agent trivially has the p-goal that φ at n after adopt(φ, n) has been per-

formed in s. However, Axiom 6.2.3 ensures that in this framework for any executable

situation s, such a path indeed exists. Note that the property in Proposition 6.3.25 also

holds for optimizing agents as shown in Proposition 4.4.9.

Moreover, after adopting a p-goal φ at some level n in some situation s, an agent

also acquires the c-goal that φ provided that s is an executable situation and that the

adopt(φ, n) action is executable in s:

425

Proposition 6.3.26 (CGoal Adoption).

DSGCAgt |= ∀n, s. Executable(s) ∧ Poss(adopt(φ, n), s))

⊃ CGoal(φ, do(adopt(φ, n), s)).

Proof. Follows from Definition 3.3.1, Propositions 6.3.25, and 6.3.15.

Furthermore, the above result also holds for a committed agent’s primary c-goals:

Proposition 6.3.27 (Primary CGoal Adoption).

DSGCAgt |= ∀n, s. Executable(s) ∧ Poss(adopt(φ, n), s)

⊃ PrimCGoal(φ, do(adopt(φ, n), s)).

Proof. Follows from Definition 3.3.1, Proposition 6.3.25, and Corollary 6.3.20.

In Proposition 4.4.12, a variation of this property is shown to hold for optimizing

agents as well. However, in that case, one needs to ensure that the agent does not

intend not to execute the adopt(φ, n) action next, and φ is consistent with all her higher

priority c-goals in s, i.e. her c-goals up to level n−1. Note that in the above proposition,

this is guaranteed by the preconditions of the adopt action and the antecedent which

ensures that the adopt(φ, n) action is possible in s.

I can also show that if an agent has a p-goal that φ at some level n in some situation

s, then she will not have the progression of φ as her realistic p-goal after she drops it,

426

provided that it is not the case that the progression of φ has become known to be

inevitable after the drop action happens in s:

Proposition 6.3.28 (RPGoal Drop).

DSGCAgt |= ∀n, s. (PGoal(φ, n, s)

∧ ¬KInevitable(ProgOf(φ, drop(φ)), do(drop(φ), s)))

⊃ ¬RPGoal(ProgOf(φ, drop(φ)), n, do(drop(φ), s)).

Proof. Fix φ1, N1, and S1. From the antecedent, we have:

PGoal(φ1, N1, S1), (6.34)

¬KInevitable(ProgOf(φ1, drop(φ1)), do(drop(φ1), S1)). (6.35)

We can see from Axiom 6.2.6 and Definition 6.2.11 that after the drop(φ1) action has

been performed in S1, each G-accessibility level in S1 where φ1 is a p-goal is replaced

by the set of paths that start with a situation that is K-accessible in do(drop(φ1), S1).

Thus, by (6.34), Axiom 6.2.6, and Definition 6.2.11, we have:

G(p,N1, do(drop(φ1), S1)) ≡ ∃s′. Starts(p, s′) ∧K(s′, do(drop(φ1), S1)). (6.36)

By (6.35) and Definitions 3.5.14 and 3.5.12, there exists a path P1 that starts with

a situation that is K-accessible from do(drop(φ1), S1), and over which the formula

427

¬ProgOf(φ1, drop(φ1)) holds:

∃s′. Starts(P1, s
′) ∧K(s′, do(drop(φ1), S1)) ∧ ¬ProgOf(φ1, drop(φ1))(P1). (6.37)

Thus by (6.36) and (6.37), we have G(P1, N1, do(drop(φ1), S1))). The consequent

follows from this, (6.37), and Definitions 4.2.4 and 4.2.5.

Note that, in contrast to the corresponding Proposition 4.4.15 which uses the condition

in the antecedent that the progression of φ is not strongly inevitable in do(drop(φ), s),

this proposition requires that progression of φ is not known to be inevitable in do(dro−

p(φ), s). This is due to the fact that Assumption 6.2.1 and Proposition 6.3.4 ensure that

in this framework all G-accessible paths in situation do(drop(φ), s) always start with

a K-accessible situation in do(drop(φ), s). Thus as long as there is a path that starts

with a K-accessible situation in do(drop(φ), s) and over which the progression of φ

does not hold, the proposition follows.

Next, I show that similar to an optimizing agent, a committed agent acquires the

p-goal that ψ after she adopts it as a subgoal of another goal φ in s, provided that she

has the p-goal at some level in s that φ:

Proposition 6.3.29 (Subgoal Adoption-1).

DSGCAgt |= ∃m. PGoal(φ,m, s) ⊃ ∃n. PGoal(ψ, n, do(adoptRelTo(ψ, φ), s)).

428

Proof. Fix φ1, ψ1,M1, and S1. From the antecedent, we have:

PGoal(φ1,M1, S1). (6.38)

FixN1 such that AdoptedLevel(φ1, N1, S1) holds. By (6.38) and Definition 5.2.4, such

a level N1 indeed exists. By Axiom 6.2.6 and Definitions 6.2.10, 6.2.8, and 5.2.4, the

agent’s G-accessible paths in do(adoptRelTo(ψ1, φ1), S1) at levelN1 are the ones that

can be obtained by progressing her G-accessible paths at N1−1 in S1, that start with a

K-accessible situation in do(adoptRelTo(ψ1, φ1), S1), and over which ψ1 holds; thus

we have:

∀p. G(p,N1, do(adoptRelTo(ψ1, φ1), S1)) ⊃ ψ1(p). (6.39)

If such a path exists, then the consequent follows from (6.39) and Definition 4.2.1.

Otherwise, the consequent follows trivially by Definition 4.2.1.

Also, I can show that an agent acquires the c-goal that ψ after she adopts it as

a subgoal of another goal φ in s, provided that s is an executable situation and the

adoptRelTo action is executable in s:

Proposition 6.3.30 (Subgoal Adoption-2).

DSGCAgt |= ∀s. Executable(s) ∧ Poss(adoptRelTo(ψ, φ), s) ⊃

CGoal(ψ, do(adoptRelTo(ψ, φ), s)).

429

Proof. Follows from Definition 3.3.1, Propositions 6.3.29, and 6.3.15.

Furthermore, the above result also holds for a committed agent’s primary c-goals:

Proposition 6.3.31 (Subgoal Adoption-3).

DSGCAgt |= ∀s. Executable(s) ∧ Poss(adoptRelTo(ψ, φ), s) ⊃

PrimCGoal(ψ, do(adoptRelTo(ψ, φ), s)).

Proof. Follows from Definition 3.3.1, Proposition 6.3.29, and Corollary 6.3.20.

In contrast, the corresponding proposition for optimizing agents in Chapter 5 (i.e.

Proposition 5.3.2) requires that (a) the parent goal φ is a primary c-goal at level n− 1

in s, where n is the adopted level, and that (b) the agent does not intend not to execute

the adoptRelTo(ψ, φ) action next and she does not have the c-goal up to the adopted

level that ¬ψ next. Again, note that in the above proposition, we only require the

parent goal φ to be a p-goal at some level; but this and Corollary 6.3.20 imply that

φ is a primary c-goal in s. Moreover, (b) also follows from the preconditions of the

adoptRelTo(ψ, φ) action and the antecedent that this action is executable in s.

The last two properties in this section show that dropping subgoals and their su-

pergoals works as intended. First, I prove that subgoals are dropped when their parent

goal is dropped. More precisely, I show that after dropping the p-goal that φ in s, an

agent does not have the p-goal (and thus the primary c-goal) that the progression of ψ

430

at some level n, provided that ψ is a subgoal of φ in s, that ψ is a p-goal at n in s, and

that the progression of ψ is not known to be inevitable in do(drop(φ), s):

Proposition 6.3.32 (Supergoal Drop).

DSGCAgt |= SubGoal(ψ, φ, s) ∧ PGoal(ψ, n, s)

∧ ¬KInevitable(ProgOf(ψ, drop(φ)), do(drop(φ), s))

⊃ ¬PGoal(ProgOf(ψ, drop(φ)), n, do(drop(φ), s)).

Proof. Fix φ1, ψ1, N1 and S1. From the antecedent, we have:

SubGoal(ψ1, φ1, S1), (6.40)

PGoal(ψ1, N1, S1), (6.41)

¬KInevitable(ProgOf(ψ1, drop(φ1)), do(drop(φ1), S1)). (6.42)

From (6.40) and Definition 5.2.5, it follows that for any level n in S1 where ψ1 is a

p-goal, φ1 is also a p-goal:

∀n. PGoal(ψ1, n, S1) ⊃ PGoal(φ1, n, S1). (6.43)

From (6.42) and Definitions 3.5.14, 3.5.12, and 3.4.5, it follows that there is a path P1

such that:

∃s. K(s, do(drop(φ1), S1)) ∧ Starts(P1, s) ∧ ¬ProgOf(ψ1, drop(φ1))(P1). (6.44)

431

Now, consider level N1 in S1; by (6.41), ψ1 is a p-goal at N1 in S1. By this, (6.43),

PGoal(φ1, N1, S1), and thus by Axiom 6.2.6, and Definition 6.2.11, we can see that

the G-accessible paths at N1 in do(drop(φ1), S1) are the ones that start with situations

that are K-accessible in do(drop(φ1), S1). Since by (6.44), P1 is such a path, it will be

included in the G-relation at N1 in do(drop(φ1), S1) :

G(P1, N1, do(drop(φ1), S1)). (6.45)

The consequent thus follows from (6.44), (6.45), and Definition 4.2.1.

Again, note that the corresponding optimizing agent result (i.e. Proposition 5.3.3)

uses StronglyInevitable in the antecedent rather than KInevitable, since unlike in the

committed agent framework, G-accessible paths are not required to start with a K-

accessible situation in do(drop(φ), s) in that framework. Also, as with the optimizing

agent framework, this proposition does not hold if we replace PGoal in the consequent

with CGoal since ψ could be a consequence of a combination of two or more p-goals,

i.e. a non-primary c-goal. Finally, as in the optimizing agent framework, this property

can be generalized to show that in addition to the above, ψ is indeed not a p-goal at

some level n where ¬PGoal(ψ, n, s) after the drop(φ) action happens in s, provided

that she don’t have the p-goal at n in s that the drop(φ) action does not happen next or

ψ holds after it happens, i.e. that ¬PGoal(¬∃s′. Do(drop(φ), now, s′) ∨ ψ, n, s).

432

The next property formalizes the conditions under which the dropping of a subgoal

does not affect the parent goal. It states that an agent retains the p-goal that the pro-

gression of φ after she drops a subgoal ψ of some goal φ in some executable situation

s, provided that the drop action is possible in s, and that she does not have the c-goal

in s that the drop action does not happen next:

Proposition 6.3.33 (Subgoal Drop).

DSGCAgt |= ∀s. (Executable(s) ∧ Poss(drop(ψ), s) ∧ SubGoal(ψ, φ, s)

∧ ¬CGoal(¬∃s′. Starts(s′) ∧ OnPath(do(drop(ψ), s′)), s))

⊃ ∃n. PGoal(ProgOf(φ, drop(ψ)), n, do(drop(ψ), s)).

Proof. Fix φ1, ψ1, and S1. From the antecedent, we have:

Executable(S1) ∧ Poss(drop(ψ1), S1), (6.46)

SubGoal(ψ1, φ1, S1), and (6.47)

¬CGoal(¬∃s′. Starts(s′) ∧ OnPath(do(drop(ψ1), s′)), S1). (6.48)

From (6.47) and Definition 5.2.5, it follows that there is a level N1 in S1 where φ1 is a

p-goal but ψ1 is not, and for any level n that has priority higher or equal to N1, ψ1 is

not a p-goal at n in S1:

PGoal(φ1, N1, S1), (6.49)

∀n. n ≤ N1 ⊃ ¬PGoal(ψ1, n, S1). (6.50)

433

Also, by (6.48) and Definitions 4.2.10 and 4.2.9, there is a path, say P1, that is in

the G∩ relation at all levels n, and where the next action performed on the path is

drop(ψ1):

∀n. G∩(P1, n, S1), and (6.51)

∃s′. Starts(P1, s
′) ∧ OnPath(P1, do(drop(ψ1), s′)). (6.52)

By (6.51) and Lemma 6.3.8, it follows that P1 starts with a K-accessible situation in

S1:

∃s. Starts(P1, s) ∧K(s, S1). (6.53)

From (6.46) and Definition 3.3.1, it follows that:

Executable(do(drop(ψ1), S1)).

From this, (6.51), and Proposition 6.3.14(b), it follows that:

∀n. G(P1, n, S1). (6.54)

Also, from this, it follows that:

G(P1, N1, S1). (6.55)

Again, from this and (6.49), it follows that:

φ1(P1). (6.56)

434

Now, consider the suffix of P1 that starts with do(drop(ψ1), SP1), where SP1 is the

starting situation of P1; let us call it P2. It follows from (6.56) and Definition 4.4.14

that ProgOf(φ1, drop(ψ1)) holds over P2; thus:

Suffix(P2, P1, do(drop(ψ1), SP1)) ∧ ProgOf(φ1, drop(ψ1))(P2). (6.57)

Now, note that by (6.50), (6.55), (6.57), Axiom 6.2.6, and Definitions 6.2.11 and

6.2.7, to show the consequent, it is sufficient to prove that:

(a) if N1 = 0 then ProgressedCA(P2, N1, drop(ψ1), S1), and

(b) if N1 6= 0 then

G∩(P2, N1 − 1, do(drop(ψ1), S1)) ∧ Progressed(P2, N1, drop(ψ1), S1).

If these conditions hold, then this means that the else clause in Definition 6.2.7 is never

selected and thus no new paths are added to the G relation at N1 in do(drop(ψ1), S1).

Thus, in this case, by (6.49), which implies that φ1 holds over all G-accessible paths

at N1 in S1, and Definition 4.4.14, ProgOf(φ1, drop(ψ1)) holds over all G-accessible

paths at N1 in do(drop(ψ1), S1), and the consequent follows from this and Definition

4.2.1. I will now prove that (a) and (b) holds.

For (a), assume that N1 = 0. Also, let’s call the starting situation of P2, SP2 , where

SP2 = do(drop(ψ1), SP1). Then by Definitions 6.2.8 and 4.3.4, I need to show that:

G(P1, N1, S1) ∧ Suffix(P2, P1, SP2) ∧K(SP2 , do(drop(ψ1), S1)).

435

From (6.55) and (6.57), to prove this I just need to show thatK(SP2 , do(drop(ψ1), S1)).

From (6.53), it follows that K(SP1 , S1). From this, the SSA for K (i.e. Axiom 3.4.10),

and the fact that the drop(ψ1) action is not a knowledge-producing action, it follows

that K(SP2 , do(drop(ψ1), S1)) holds if the drop(ψ1) action is possible in SP1 . This

follows from (6.57), Corollary 3.5.41, and Definition 3.3.1. Thus (6.58) and (a) hold:

K(SP2 , do(drop(ψ1), S1)). (6.58)

For (b), assume that N1 6= 0. Note that by (6.54), (6.57), and Definition 4.3.4, it

follows that Progressed(P2, N1, drop(ψ1), S1). I thus need to show that G∩(P2, N1 −

1, do(drop(ψ1), S1)). Note that by Lemma 6.3.9, this holds if ∀n. n < N1 ⊃ GR(P2,

n, do(drop(ψ1), S1)). By Corollary 6.3.5, I simply need to show that:

∀n. n < N1 ⊃ G(P2, n, do(drop(ψ1), S1)).

I will prove this by strong induction on n. First assume that n = 0. Then by (6.50),

Axiom 6.2.6, and Definitions 6.2.11 and 6.2.7, it follows that P2 is G-accessible at

level 0 in do(drop(ψ1), S1) if ProgressedCA(P2, 0, drop(ψ1), S1) holds. This follows

from (a) above. For the inductive case, assume that:

∀n. n < M1 ∧M1 < N1 − 1 ⊃ G(P2, n, do(drop(ψ1), S1)).

I need to show that G(P2,M1 + 1, do(drop(ψ1), S1)). Again, by (6.50), Axiom 6.2.6,

and Definitions 6.2.11 and 6.2.7, it follows that P2 is G-accessible at level M1 + 1 in

436

do(drop(ψ1), S1) if:

G∩(P2,M1, do(drop(ψ1), S1)) ∧ ProgressedCA(P2,M1 + 1, do(drop(ψ1), S1)).

From the inductive hypothesis, Corollary 6.3.5, and Lemma 6.3.9, it follows that

G∩(P2,M1, do(drop(ψ1), S1)). Finally, from (6.54), (6.57), (6.58), and Definitions

6.2.8 and 4.3.4, it follows that ProgressedCA(P2,M1+1, do(drop(ψ1), S1)). Thus it fol-

lows that ∀n. n < N1 ⊃ G(P2, n, do(drop(ψ1), S1)) and hence (b) holds as well.

I presented a corresponding version of this property for the optimizing agent frame-

work in Proposition 5.3.4. As shown there, unlike in the committed agent framework

goals persist under more relaxed conditions after one of their subgoal is dropped. In

particular, the situation s is not required to be executable, nor is the drop(ψ) action

required to be executable in s. Moreover, the agent is even allowed to have the c-goal

that the drop(ψ) action does not happen next. The reason behind these differences is

that in the optimizing agent framework, the agent’s set of G-accessible paths at some

level is allowed to be empty (p-goals are really “desires” there). Also, an agent can

have conflicting p-goals and thus having a p-goal that ψ in that framework does not

necessarily imply that the agent also has ψ as a c-goal. In contrast, all of the p-goals

of a committed agent are also her c-goals, and thus p-goal persistence requires much

stronger conditions.

437

6.3.4 Goal Introspection

Just like an optimizing agent, a committed agent should be able to introspect her goals

– if she has a realistic p-goal that φ, she should know that she has this as her realistic

p-goal; moreover, if she does not have a realistic p-goal that φ, she should know this.

It is easy to see that in this framework, the constraints on K and G that are required

to yield positive and negative introspection are the same as in the optimizing agent

framework. Thus, if the KGTrans constraint is satisfied for some priority level n and

some situation s, then the agents will have positive introspection of realistic p-goals at

n in s:

Proposition 6.3.34.

DSGCAgt |= ∀s, n. KGTrans(n, s) ⊃ (RPGoal(φ, n, s) ⊃ Know(RPGoal(φ, n), s)).

Proof. Same as that of Proposition 4.4.17.

Moreover, if the KGEuc constraint is satisfied for some priority level n in s, then

the agents will have negative introspection of realistic p-goals at n in s:

Proposition 6.3.35.

DSGCAgt |= ∀s, n. KGEuc(n, s) ⊃ (¬RPGoal(φ, n, s) ⊃ Know(¬RPGoal(φ, n), s)).

Proof. Same as that of Proposition 4.4.19.

438

I will next show that as in the optimizing agent framework, these constraints also

persist for executable situations in this framework if they hold for all initial situations

as they are preserved by the (modified) successor-state axiom for G. However, in

contrast to Chapter 4, I will prove just one (combined) property. This is necessary

to deal with subgoals i.e. the case for adoptRelTo actions.48 Also, for this I use the

following lemma, which says that for any situation s, the level n where a subgoal ψ is

adopted w.r.t. a parent goal φ in s is unique:

Lemma 6.3.36.

∀n1, n2, s. (AdoptedLevel(φ, n1, s) ∧ AdoptedLevel(φ, n2, s)) ⊃ n1 = n2.

Proof. Follows from Definition 5.2.4.

I next show the persistence of KGTrans and KGEuc:

Theorem 6.3.37.

DSGCAgt |= (∀n, s. Init(s) ⊃ KGTrans(n, s) ∧KGEuc(n, s)) ⊃

(∀n, s. Executable(s) ⊃ KGTrans(n, s) ∧KGEuc(n, s)).

48Recall that in Chapter 4, I did not prove persistence of KGTrans and KGEuc w.r.t. subgoal
adoptions, since subgoals are introduced later in Chapter 5. However, these persistence results can also
be shown to hold when subgoal adoptions are allowed by proving a theorem similar to Theorem 6.3.37
below.

439

Proof. (By induction on s) Assume that:

∀n, s. Init(s) ⊃ KGTrans(n, s) ∧KGEuc(n, s). (6.59)

The base case, where s is an initial situation, is trivial. For the inductive case, we fix

S1 and A1 and assume that:

Executable(do(A1, S1)). (6.60)

FixN1. I need to show thatKGTrans(N1, do(A1, S1)) andKGEuc(N1, do(A1, S1)).

From (6.60) and Lemma 3.5.29, we have:

Executable(S1), and (6.61)

Poss(A1, S1). (6.62)

(6.61) and the inductive hypothesis imply:

∀n. KGTrans(n, S1), and (6.63)

∀n. KGEuc(n, S1). (6.64)

I will next show that KGTrans(N1, do(A1, S1)) and KGEuc(N1, do(A1, S1)).

Proof of KGTrans(N1, do(A1, S1)): Assume that S2 = do(A1, S1). Let us expand

440

KGTrans(N1, S2); fix S1
2 , S

2
2 , and P2, and assume:

K(S1
2 , S2), (6.65)

K(S2
2 , S

1
2), (6.66)

G(P2, N1, S
1
2), (6.67)

Starts(P2, S
2
2). (6.68)

I need to show that G(P2, N1, S2). (6.65), (6.66), and Axiom 3.4.10 imply that there

exist S1
1 and S2

1 such that:

K(S1
1 , S1) ∧ S1

2 = do(A1, S
1
1), and (6.69)

K(S2
1 , S

1
1) ∧ S2

2 = do(A1, S
2
1). (6.70)

Now, note that by (6.65), (6.66), and the transitivity of K (i.e. Axiom 3.4.3), we have:

K(S2
2 , S2). (6.71)

Note that, since K is an equivalence relation (as it is reflexive, i.e. Axiom 3.4.2, and

Euclidean, i.e. Axiom 3.4.4), by (6.69), (6.63), and (6.64), it follows that S1 and S1
1

have the same set of G-accessible paths at all levels:

∀p, n. G(p, n, S1) ≡ G(p, n, S1
1). (6.72)

Moreover, by the fact thatK is an equivalence relation, (6.69), (6.72), Definition 4.2.4,

441

and Axiom 4.2.7, it follows that:

∀p, n. G∩(p, n, S1) ≡ G∩(p, n, S
1
1). (6.73)

Finally, by (6.69), (6.63), (6.64), Propositions 6.3.34 and 6.3.35, and Definition 5.2.4,

it follows that ∀n. AdoptedLevel(φ, n, S1) ⊃ AdoptedLevel(φ, n, S1
1), and from this

and Lemma 6.3.36, it follows that:

∀n. AdoptedLevel(φ, n, S1) ≡ AdoptedLevel(φ, n, S1
1). (6.74)

Now, to show that P2 is G-accessible at level N1 in situation S2, we will need

to analyze the SSA for G. A close look at it gives us five cases with five different

mutually exclusive conditions that apply in S1
1 : Case 1, where one simply progresses

the old set of G-accessible paths before the action A1 has happened (i.e. in S1
1) and

ensures that these paths start withK-accessible situations in S1
2 to obtain the new set of

G-accessible paths after the occurrence of A1, Case 2, which involves progression and

K-accessibility check with shifting levels, Case 3, which involves processing/filtering

the old set of G-accessible paths to handle the adoption of a goal at level N1, Case

4, which involves processing/filtering the old set of G-accessible paths to handle the

adoption of a subgoal w.r.t. a supergoal at levelN1, and Case 5 that involves processing

them to handle the dropping of a goal at level N1 as well as to handle regular actions

and drop actions that make p-goals at level N1 incompatible with other higher priority

442

p-goals and/or with the agent’s knowledge (see below for details). Let us discuss each

case, one at a time. Thus the successor-state axiom for G (i.e. Axiom 6.2.6) and (6.67)

give us five cases:

• Case 1. The action A1 is such that:

∀p. G(p,N1, do(A1, S
1
1)) ≡ ProgressedCA(p,N1, A1, S

1
1).

By Axiom 6.2.6 and Definitions 6.2.7, 6.2.9, 6.2.10, and 6.2.11, this is the case

if (a1) the action A1 is a regular (non-adopt/drop action) whose occurrence does

not make the p-goals at level N1 impossible or inconsistent with higher priority

goals and with the agent’s knowledge (i.e. there is a path P ∗ starting with situ-

ation SP ∗ that is in G∩ up to level N1 in S1
1 over which A1 happens next, and

do(A1, SP ∗) remains K-accessible from do(A1, S
1
1)), or (a2) A1 is an adopt ac-

tion, but it does not refer to the adoption of a goal φ at levelN1 or at some higher

priority level than N1 (and thus ¬(A1 = adopt(φ,M) ∧M ≤ N1)), or (a3) A1

is an adoptRelTo action, but it does not refer to the adoption of a subgoal ψ

w.r.t. a supergoal φ at level N1 or at some higher priority level than N1 (and thus

¬(A1 = adoptRelTo(ψ, φ)∧∃m. AdoptedLevel(φ,m, S1
1)∧m ≤ N1)), or (a4)

A1 is a drop(φ) action, but it does not refer to the dropping of a goal φ atN1 (i.e.

¬PGoal(φ,N1, S
1
1)) and the occurrence of A1 does not make the p-goals at level

443

N1 impossible or inconsistent with higher priority goals and with the agent’s

knowledge (and thus there is a path P ∗ starting with situation SP ∗ that is in G∩

up to level N1 in S1
1 over which A1 = drop(φ) happens next, and do(A1, SP ∗)

remainsK-accessible from do(A1, S
1
1)). By the SSA forG (i.e. Axiom 6.2.6 and

Definitions 6.2.7, 6.2.9, 6.2.10, and 6.2.11) and (6.67), in all these cases P2 is

the simple progression of some path P1 that was G-accessible at N1 in S1
1 , with

the additional condition that P2 must start with a K-accessible situation in S1
2 ,

i.e. ProgressedCA(P2, N1, A1, S
1
1). Thus, we have:

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1, S

1
1). (6.75)

Definition 4.4.16, (6.63), (6.69), (6.70), and (6.75) imply that:

G(P1, N1, S1). (6.76)

Note that, by (6.72) and the fact that the agent knows what the action A1 is (i.e.

A1 refers to the same action in all K-accessible situations, let’s call this fact

(f1)) it can be shown that all the conditions (a1) to (a4) that hold for S1
1 also

hold for S1. In particular, (a1) follows from the facts that A1 refers to the same

action in S1 and S1
1 (i.e. by (f1)), that S2 = do(A1, S1) and S1

2 = do(A1, S
1
1)

are in the same K equivalence class (by (6.65) and (6.69)), and (6.73). (a2)

follows from (f1). (a3) follows from (f1) and (6.74). Finally, (a4) follows from

444

(f1), (6.72), (6.65), (6.69), and (6.73). By this, Axiom 6.2.6, Definitions 6.2.7,

6.2.8, 6.2.9, 6.2.10, and 6.2.11, the assumption regardingA1 for this case, (6.75),

and (6.76), the progression of P1 (i.e. P2) will be retained in the G-relation at

N1 in S2 = do(A1, S1); this is because by (6.75), (6.76), and Definition 4.3.4,

Progressed(P2, N1, A1, S1) holds, and by (6.68) and (6.71), P2 starts with a K-

accessible situation in S2. Thus by these and Definition 6.2.8, ProgressedCA(P2,

N1, A1, S1), and hence we have G(P2, N1, S2).

• Case 2. A1 refers to the adoption of a goal φ at a higher priority level than

N1, i.e. ∃m. A1 = adopt(φ,m) ∧ m < N1 or to the adoption of a subgoal

ψ with respect to a parent goal φ at a higher priority level than N1, i.e. A1 =

adoptRelTo(ψ, φ) ∧ ∃m. AdoptedLevel(φ,m, S1
1) ∧m < N1. In this case, by

Definitions 6.2.9 and 6.2.10, P2 is the progression of some path P1 that was G-

accessible atN1−1 in S1
1 , provided that P2 starts with aK-accessible situation in

S1
2 , i.e. ProgressedCA(P2, N1−1, A1, S

1
1) (since adopting the (sub)goal at higher

priority than N1 has pushed all the goals that has priority lower than m−1 down

by one level):

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1 − 1, S1

1).

The rest of the proof for this case is similar to that of Case 1.

445

• Case 3. A1 refers to the adoption of a goal φ at N1, i.e. A1 = adopt(φ,N1).

Since A1 refers to the same action in S1 and S1
1 , then by Definition 6.2.9, P2

is included in the G-relation at N1 in S2 if it starts with a situation that is K-

accessible in S2, and if φ(P2) holds. (6.68) and (6.71) imply this former. The

latter also holds, otherwise by the SSA for G, P2 would have not been included

in the G-relation at N1 in S1
2 (but it is included by (6.67)).

• Case 4. A1 refers to the adoption of a subgoal ψ w.r.t. a parent goal φ at N1, i.e.

A1 = adoptRelTo(ψ, φ) ∧ AdoptedLevel(φ,N1, S
1
1). Note that, as in Case 1,

it can be shown that all the assumptions for this case for S1
1 also hold for S1; in

particular, we have AdoptedLevel(φ,N1, S1). Then by Definition 6.2.10, P2 is

included in theG-relation atN1 in S2 if (a) P2 is the progression of some path P1

that was G-accessible at N1−1 in S1, (b) P2 starts with a K-accessible situation

in S2, and (c) if ψ(P2) holds. Now, since by (6.67), G(P2, N1, S
1
2) holds, from

the SSA forG and the assumption for this case (including that for AdoptedLevel)

it follows thatG(P1, N1−1, S1
1). From this, (6.69), (6.70), (6.63), and Definition

4.4.16, it follows that G(P1, N1 − 1, S1). Thus (a) holds. Moreover, (b) follows

from (6.68) and (6.71). Finally, (c), i.e. that ψ(P2), also holds, otherwise by the

assumptions for this case regarding A1 (and AdoptedLevel) and the SSA for G,

P2 would have not been included in the G-relation at N1 in S1
2 (but it is included

446

by (6.67)).

• Case 5. The action A1 is such that:

∀p. G(p,N1, do(A1, S
1
1)) ≡ ∃s′. Starts(p, s′) ∧K(s′, do(A1, S

1
1)).

By Axiom 6.2.6 and Definitions 6.2.7 and 6.2.11, this is the case if the action

A1 is a regular action whose occurrence makes the p-goals at level N1 impos-

sible or inconsistent with higher priority goals and with the agent’s knowledge

(i.e. there are no paths P ∗ s.t. P ∗ starts with situation SP ∗ , P ∗ is in G∩ up to

level N1 in S1
1 , A1 happens over P ∗ next, and do(A1, SP ∗) remains K-accessible

from do(A1, S
1
1)), or A1 refers to the dropping of a goal φ, i.e. A1 = drop(φ),

where ¬PGoal(φ,N1, S1), but the occurrence of A1 makes the p-goals at level

N1 impossible or inconsistent with higher priority goals and with the agent’s

knowledge (i.e. there are no paths P ∗ s.t. P ∗ starts with situation SP ∗ , P ∗ is in

G∩ up to level N1 in S1
1 , A1 = drop(φ) happens over P ∗ next, and do(A1, SP ∗)

remains K-accessible from do(A1, S
1
1)), or A1 refers to the dropping of a goal φ

atN1, i.e.A1 = drop(φ),where PGoal(φ,N1, S
1
1). As in Case 1, it can be shown

that by the inductive hypothesis, all these conditions also hold for S1. Thus, by

Definitions 6.2.7 and 6.2.11, P2 is included in the G-relation at N1 in S2 if it

starts with a situation that is K-accessible in S2. Again, (6.68) and (6.71) imply

447

this condition.

It thus follows that KGTrans(N1, do(A1, S1)).

Proof of KGEuc(N1, do(A1, S1)): Let us expandKGEuc(N1, S2); fix S1
2 , S

2
2 , and P2,

and assume:

K(S1
2 , S2), (6.77)

K(S2
2 , S2), (6.78)

G(P2, N1, S2), (6.79)

Starts(P2, S
2
2). (6.80)

I need to show that G(P2, N1, S
1
2). (6.77), (6.78), and Axiom 3.4.10 imply that there

exist S1
1 and S2

1 such that:

K(S1
1 , S1) ∧ S1

2 = do(A1, S
1
1), and (6.81)

K(S2
1 , S1) ∧ S2

2 = do(A1, S
2
1). (6.82)

Now, note that by (6.77), (6.78), and the Euclideanism of K (i.e. Axiom 3.4.4), we

have:

K(S2
2 , S

1
2). (6.83)

Note that, since K is an equivalence relation (as it is reflexive, i.e. Axiom 3.4.2, and

Euclidean, i.e. Axiom 3.4.4), by (6.81), (6.63), and (6.64), it follows that S1 and S1
1

448

have the same set of G-accessible paths at all levels:

∀p, n. G(p, n, S1) ≡ G(p, n, S1
1). (6.84)

Moreover, by the fact thatK is an equivalence relation, (6.81), (6.84), Definition 4.2.4,

and Axiom 4.2.7, it follows that:

∀p, n. G∩(p, n, S1) ≡ G∩(p, n, S
1
1). (6.85)

Finally, by (6.81), (6.63), (6.64), Propositions 6.3.34 and 6.3.35, and Definition 5.2.4,

it follows that ∀n. AdoptedLevel(φ, n, S1) ⊃ AdoptedLevel(φ, n, S1
1), and from this

and Lemma 6.3.36, it follows that:

∀n. AdoptedLevel(φ, n, S1) ≡ AdoptedLevel(φ, n, S1
1). (6.86)

Now, to show that P2 isG-accessible at levelN1 in situation S1
2 , we will need to an-

alyze the SSA for G. A close look at it gives us five cases with five different mutually

exclusive conditions that apply in S1: Case 1, where one simply progresses the old set

of G-accessible paths before the action A1 has happened and ensures that these paths

start with K-accessible situations in S2 to obtain the new set of G-accessible paths

after the occurrence of A1, Case 2, which involves progression and K-accessibility

check with shifting levels, Case 3, which involves processing/filtering the old set of

G-accessible paths to handle the adoption of a goal at level N1, Case 4, which involves

449

processing/filtering the old set of G-accessible paths to handle the adoption of a sub-

goal w.r.t. a supergoal at level N1, and Case 5 that involves processing them to handle

the dropping of a goal at level N1 as well as to handle regular actions and drop actions

that make p-goals at level N1 incompatible with other higher priority p-goals and/or

with the agent’s knowledge (see below for details). Let us discuss each case, one at a

time. Thus the successor-state axiom for G (i.e. Axiom 6.2.6) and (6.79) give us five

cases:

• Case 1. The action A1 is such that:

∀p. G(p,N1, do(A1, S1)) ≡ ProgressedCA(p,N1, A1, S1).

By Axiom 6.2.6 and Definitions 6.2.7, 6.2.9, 6.2.10, and 6.2.11, this is the case

if (a) the action A1 is a regular (non-adopt/drop action) whose occurrence does

not make the p-goals at level N1 impossible or inconsistent with higher prior-

ity goals and with the agent’s knowledge (i.e. there is a path P ∗ starting with

situation SP ∗ that is in G∩ up to level N1 in S1 over which A1 happens next,

and do(A1, SP ∗) remains K-accessible from do(A1, S
1)), or (b) A1 is an adopt

action, but it does not refer to the adoption of a goal φ at level N1 or at some

higher priority level than N1 (and thus ¬(A1 = adopt(φ,M)∧M ≤ N1)), or (c)

A1 is an adoptRelTo action, but it does not refer to the adoption of a subgoal ψ

450

w.r.t. a supergoal φ at level N1 or at some higher priority level than N1 (and thus

¬(A1 = adoptRelTo(ψ, φ) ∧ ∃m. AdoptedLevel(φ,m, S1) ∧m ≤ N1)), or (d)

A1 is a drop(φ) action, but it does not refer to the dropping of a goal φ atN1 (i.e.

¬PGoal(φ,N1, S1)) and the occurrence of A1 does not make the p-goals at level

N1 impossible or inconsistent with higher priority goals and with the agent’s

knowledge (i.e. there is a path P ∗ starting with situation SP ∗ that is in G∩ up to

levelN1 in S1 over whichA1 = drop(φ) happens next, and do(A1, SP ∗) remains

K-accessible from do(A1, S
1)). By the SSA for G and (6.79), in all these cases

P2 is the simple progression of some path P1 that was G-accessible at N1 in S1,

with the additional condition that P2 must start with a K-accessible situation in

S2, i.e. i.e. ProgressedCA(P2, N1, A1, S1). Thus, we have:

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1, S1). (6.87)

Definition 4.4.18, (6.64), (6.81), (6.82), and (6.87) imply that:

G(P1, N1, S
1
1). (6.88)

Note that, by (6.84) and the fact that the agent knows what the action A1 is (i.e.

A1 refers to the same action in all K-accessible situations, let’s call this fact

(f1)) it can be shown that all the conditions (a1) to (a4) that hold for S1
1 also

hold for S1. In particular, (a1) follows from the facts that A1 refers to the same

451

action in S1 and S1
1 (i.e. by (f1)), that S2 = do(A1, S1) and S1

2 = do(A1, S
1
1)

are in the same K equivalence class (by (6.77) and (6.81)), and (6.85). (a2)

follows from (f1). (a3) follows from (f1) and (6.86). Finally, (a4) follows from

(f1), (6.84), (6.77), (6.81), and (6.85). By this, Axiom 6.2.6, Definitions 6.2.7,

6.2.8, 6.2.9, 6.2.10, and 6.2.11, the assumption regardingA1 for this case, (6.87),

and (6.88), the progression of P1 (i.e. P2) will be retained in the G-relation at

N1 in S1
2 = do(A1, S

1
1); this is because by (6.87), (6.88), and Definition 4.3.4,

Progressed(P2, N1, A1, S
1
1) holds, and by (6.80) and (6.83), P2 starts with a K-

accessible situation in S1
2 . Thus by these and Definition 6.2.8, ProgressedCA(P2,

N1, A1, S
1
1), and hence we have G(P2, N1, S

1
2).

• Case 2. A1 refers to the adoption of a goal φ at a higher priority level than

N1, i.e. ∃m. A1 = adopt(φ,m) ∧ m < N1 or to the adoption of a subgoal

ψ with respect to a parent goal φ at a higher priority level than N1, i.e. A1 =

adoptRelTo(ψ, φ) ∧ ∃m. AdoptedLevel(φ,m, S1) ∧m < N1. In this case, by

Definitions 6.2.9 and 6.2.10, P2 is the progression of some path P1 that was G-

accessible atN1−1 in S1, provided that P2 starts with aK-accessible situation in

S2, i.e. ProgressedCA(P2, N1− 1, A1, S1) (since adopting the (sub)goal at higher

priority than N1 has pushed all the goals that has priority lower than m−1 down

452

by one level):

Starts(P1, S
2
1) ∧ Suffix(P2, P1, do(A1, S

2
1)) ∧G(P1, N1 − 1, S1).

The rest of the proof for this case is similar to that of Case 1.

• Case 3. A1 refers to the adoption of a goal φ at N1, i.e. A1 = adopt(φ,N1).

Since A1 refers to the same action in S1 and S1
1 , then by Definition 6.2.9, P2

is included in the G-relation at N1 in S1
2 if it starts with a situation that is K-

accessible in S1
2 , and if φ(P2) holds. (6.80) and (6.83) imply this former. The

latter also holds, otherwise by the SSA for G, P2 would have not been included

in the G-relation at N1 in S2 (but it is included by (6.79)).

• Case 4. A1 refers to the adoption of a subgoal ψ w.r.t. a parent goal φ at N1, i.e.

A1 = adoptRelTo(ψ, φ) ∧ AdoptedLevel(φ,N1, S1). Note that, as in Case 1, it

can be shown that all the assumptions for this case for S1 also hold for S1
1 ; in

particular, we have AdoptedLevel(φ,N1, S
1
1). Then by Definition 6.2.10, P2 is

included in theG-relation atN1 in S1
2 if (a) P2 is the progression of some path P1

that was G-accessible at N1−1 in S1
1 , (b) P2 starts with a K-accessible situation

in S1
2 , and (c) if ψ(P2) holds. Now, since by (6.79), G(P2, N1, S2) holds, from

the SSA forG and the assumption for this case (including that for AdoptedLevel)

it follows thatG(P1, N1−1, S1). From this, (6.81), (6.82), (6.64), and Definition

453

4.4.18, it follows that G(P1, N1 − 1, S1
1). Thus (a) holds. Moreover, (b) follows

from (6.80) and (6.83). Finally, (c), i.e. that ψ(P2), also holds, otherwise by the

assumptions for this case regarding A1 (and AdoptedLevel) and the SSA for G,

P2 would have not been included in the G-relation at N1 in S2 (but it is included

by (6.79)).

• Case 5. A1 is a regular action whose occurrence makes the p-goals at level

N1 impossible or inconsistent with higher priority goals and with the agent’s

knowledge (i.e. there are no paths P ∗ s.t. P ∗ starts with situation SP ∗ , P ∗ is in

G∩ up to level N1 in S1, A1 happens over P ∗ next, and do(A1, SP ∗) remains

K-accessible from do(A1, S
1)), or A1 refers to the dropping of a goal φ, i.e.

A1 = drop(φ), where ¬PGoal(φ,N1, S1), but the occurrence of A1 makes the

p-goals at levelN1 impossible or inconsistent with higher priority goals and with

the agent’s knowledge (i.e. there are no paths P ∗ s.t. P ∗ starts with situation

SP ∗ , P ∗ is in G∩ up to level N1 in S1, A1 = drop(φ) happens over P ∗ next,

and do(A1, SP ∗) remains K-accessible from do(A1, S
1)), or A1 refers to the

dropping of a goal φ at N1, i.e. A1 = drop(φ), where PGoal(φ,N1, S1). As

in Case 1, it can be shown by the inductive hypothesis that all these conditions

also hold for S1
1 . Thus, by Definitions 6.2.7 and 6.2.11, P2 is included in the G-

relation at N1 in S1
2 if it starts with a situation that is K-accessible in S1

2 . Again,

454

(6.80) and (6.83) imply this condition.

It thus follows that KGEuc(N1, do(A1, S1)). The theorem thus follows.

6.3.5 Goal Persistence

I next discuss persistence of these motivational attitudes. As in the optimizing agent

case, I focus on persistence of achievement goals only. I will need the following defi-

nition for this:

Definition 6.3.38.

KnowProdAct(agt, a)
.
= BinarySensingAction(a) ∧ agent(a) = agt

∨ NonBinarySensingAction(a) ∧ agent(a) = agt

∨ ∃inf. a = informWhether(inf, agt,Ψ)

∨ ∃inf. a = informRef(inf, agt, θ).

That is, an action a is a knowledge-producing action for some agent agt if it is a binary

or non-binary sensing action whose agent is agt, or if a involves some informer inf

informing agt whether some formula Ψ holds or of the value of some term θ.

Given this, first I can show that if an agent has a (realistic) p-goal that 3Φ in some

executable situation s, then she will retain this p-goal after some action a has been

455

performed in s, provided that:49

• she knows in s that Φ has not yet been achieved,

• that a is not the action of dropping a p-goal,

• that a is not a knowledge-producing action for her,50

• and that the agent does not have the c-goal not to execute a next in s.

Proposition 6.3.39 (Persistence of PGoals).

DSGCAgt |= PGoal(3Φ, n, s) ∧ Executable(s) ∧ Know(¬Φ, s)

∧ ¬a = drop(ψ) ∧ ¬KnowProdAct(a) ∧ ¬CGoal(¬∃s′. Do(a, now, s′), s)

⊃ ∃m. PGoal(3Φ,m, do(a, s)).

49In the following, I use CGoal(∃s′. Do(a, now, s′), s) as an abbreviation for CGoal(Starts(now) ∧
∃s′. OnPath(s′)∧Do(a, now, s′), s); here now refers to the starting situation of the (suppressed) CGoal-
accessible path.

50As mentioned in Chapter 4, I suppress the agent argument agt in knowledge and goals. Following
this, I also suppress the agent argument in KnowProdAct(a) below.

456

Proof. Fix Φ1, N1, S1, and A1. By the antecedent, we have:

PGoal(3Φ1, N1, S1), (6.89)

Executable(S1), (6.90)

Know(¬Φ1, S1), (6.91)

¬A1 = drop(ψ), (6.92)

¬KnowProdAct(a), and (6.93)

¬CGoal(¬∃s′. Do(a, now, s′), S1). (6.94)

Now, by (6.89) and Definitions 4.2.1, 3.5.8, and 3.5.7, since the agent has the p-goal

that 3Φ1 at N1 in S1, the following holds:

∀p. G(p,N1, S1) ⊃ ∃s∗. OnPath(p, s∗) ∧ Φ1(s∗). (6.95)

Thus the p-goal that 3Φ1 will persist after A1 has been performed in S1 if there is a

level n such that 3Φ1 holds over all G-accessible paths at n in do(A1, S1). After the

A1 action has been performed in S1, the G relation at every level will be updated in

accordance with the SSA for G. By Axiom 6.2.6, there are four cases to consider: (1)

A1 is a regular action, (2) A1 is the adoption of some goal, (3) A1 is the adoption of a

subgoal w.r.t. some parent goal, or (4) A1 is the dropping of some goal. The last case,

i.e. an explicit dropping of a goal is ruled out by (6.92). So let us consider the other

three cases, one at a time:

457

1. A1 is a regular action (i.e. neither adopt, nor adoptRelTo, nor drop):

First, assume that A1 is a regular action. Then, by Axiom 6.2.6 and Definition

6.2.7, the set of G-accessible paths at N1 in S1 will be progressed and filtered to

reflect the fact that A1 has just happened. Note that, from (6.94) and Definition

4.2.10, it follows that there is a path P1 starting with some situation SP1 that is

in the G∩ relation in S1 and over which the next action performed is A1. Let’s

call the suffix of P1 starting in do(A1, SP1), P2. Thus, we have:

G∩(P1, S1) ∧ Starts(P1, SP1) ∧ Suffix(P2, P1, do(A1, SP1)). (6.96)

By (6.90), (6.89), Proposition 6.3.15, and Definition 4.2.10, it follows that:

3Φ1(P1). (6.97)

From (6.96) and Lemma 6.3.8, it follows that:

K(SP1 , S1). (6.98)

Since P1 is a path, by (6.96), Definition 3.5.16, Corollary 3.5.41 and Lemma

3.5.29 it follows that:

Poss(A1, SP1). (6.99)

Thus, by (6.98), (6.99), Axiom 3.4.10, and the fact that A1 is not a knowledge-

producing action for the agent (i.e. (6.93)), it follows that:

K(do(A1, SP1), do(A1, S1)). (6.100)

458

From (6.96), (6.90), and Proposition 6.3.14(b), it follows that:

∀n. G(P1, n, S1). (6.101)

I will now show that the following condition holds (let’s call it (a)):

∀p. G(p,N1, do(A1, S1)) ≡ ProgressedCA(p,N1, A1, S1). (a)

That is, all G-accessible paths at N1 in do(A1, S1) are suffixes of those that are

G-accessible at N1 in S1. By the fact that A1 is a regular action, Axiom 6.2.6,

and Definition 6.2.7, to show that (a) holds, I need to show that there exist a path

that is the progression by A1 of a G-accessible path in S1 that is consistent with

higher priority levels than N1 and knowledge. I will show that P2 satisfies this

condition. Put otherwise, by Axiom 6.2.6 and Definition 6.2.7, I need to show

that:

• ProgressedCA(P2, N1, A1, S1), if N1 = 0, and

• G∩(P2, N1 − 1, do(A1, S1)) ∧ Progressed(P2, N1, A1, S1), otherwise.

If these hold, then no new paths are added to the set of G-accessible paths at

N1 in do(A1, S1), i.e. the else clause in Definition 6.2.7 is never selected. First,

assume that N1 = 0. Then from (6.101), (6.100), (6.96), and Definitions 6.2.8

and 4.3.4, it follows that ProgressedCA(P2, 0, A1, S1). Also, from this, Axiom

459

6.2.6, Definition 6.2.7, and the fact that A1 is a regular action, we have:

G(P2, 0, do(A1, S1)). (6.102)

Next, consider the case where N1 6= 0. Note that from (6.101), (6.96), and

Definition 4.3.4, it follows that:

∀n. Progressed(P2, n, A1, S1). (6.103)

Thus I just need to show that ∀n. n ≥ 0 ⊃ G∩(P2, n, do(A1, S1)). I will show

this by induction on n. The base case, where n = 0, follows from (6.102),

Corollary 6.3.5, and Axiom 4.2.7. For the inductive step, fix levelK and assume

that G∩(P2, K, do(A1, S1)). From this, (6.103), Axiom 6.2.6, Definition 6.2.7,

and the fact that A1 is a regular action, it follows that G(P2, K + 1, do(A1, S1)).

From this and Corollary 6.3.5, it follows thatGR(P2, K+1, do(A1, S1)). Finally,

from this, the inductive hypothesis, and Axiom 4.2.7, it follows thatG∩(P2, K+

1, do(A1, S1)). Thus condition (a) follows.

Note that despite (a) above, 3Φ1 can still fail to be a p-goal at N1 in do(A1, S1)

if there is a G-accessible path at N1 in do(A1, S1), but 3Φ1 does not hold over

this path. Thus I will next show that this is not the case. Given (a), it follows

from Axiom 6.2.6 and Definition 6.2.7 that the G-accessible paths at level N1

in situation do(A1, S1) can only be obtained by progressing those at N1 in S1

460

and checking that these paths start with a K-accessible situation in do(A1, S1).

Thus 3Φ1 does not hold over a G-accessible path (and by Corollary 6.3.5, a

GR-accessible path) at N1 in do(A1, S1) if there is a K-accessible situation in

S1, say S ′1, where there is a path P ′1 that starts with S ′1, P ′1 is G-accessible at N1

in S1, the suffix of P ′1 that starts with do(A1, S
′
1), let’s call it P ′2, isGR-accessible

at N1 in do(A1, S1), and 3Φ1 does not hold over P ′2:

K(S ′1, S1) ∧ Starts(P ′1, S
′
1) ∧G(P ′1, N1, S1) ∧ Suffix(P ′2, P

′
1, do(A1, S

′
1))

∧GR(P ′2, N1, do(A1, S1)) ∧ ¬3Φ1(P ′2).

(6.104)

By (6.95) and (6.104), it follows that ∃s. OnPath(P ′1, s)∧Φ1(s). By this, (6.104),

and Definitions 3.5.8 and 3.5.7, it follows that Φ1(S ′1). But by (6.104), (6.91),

and Definition 3.4.5, we have ¬Φ1(S ′1), a contradiction! Thus it follows that

3Φ1 holds over all GR-accessible paths, and by Corollary 6.3.5, over all G-

accessible paths at N1 in do(A1, S1).

2. A1 is the adoption of some goal:

Fix Ψ1 and N2 and assume that A1 = adopt(Ψ1, N2). Again, we have two cases,

one where the agent adopts the goal Ψ1 at a lower priority level than N1, i.e.

N2 > N1, and another where she adopts the goal at level N1 or at a higher

priority level than N1, i.e. N2 ≤ N1. Let us consider each case, one at a time:

461

(a) Assume that N2 > N1. Now, from Axiom 6.2.6 and Definitions 6.2.9,

we can see that after the adopt(Ψ1, N2) action happens, the G-accessible

paths at level N1 in situation do(A1, S1) are those that can be obtained

by progressing those at N1 in S1 and checking that these paths start with

a K-accessible situation in do(A1, S1). If there are no such paths, then

the agent’s G-accessible paths at N1 in do(A1, S1) will be empty, and by

Definition 4.2.1, the agent will trivially have the p-goal that 3Φ1 at N1 in

do(A1, S1).

So, assume that there is indeed one such path, but 3Φ1 does not hold over

this path. I will prove by contradiction that this is impossible. Thus 3Φ1

does not hold over a G-accessible path (and by Corollary 6.3.5, a GR-

accessible path) at N1 in do(A1, S1) if there is a K-accessible situation in

S1, say S ′′1 , where there is a path P ′′1 that starts with S ′′1 , P ′′1 is G-accessible

at N1 in S1, the suffix of P ′′1 that starts with do(A1, S
′′
1), let’s call it P ′′2 , is

GR-accessible at N1 in do(A1, S1), and 3Φ1 does not hold over P ′′2 :

K(S ′′1 , S1) ∧ Starts(P ′′1 , S
′′
1) ∧G(P ′′1 , N1, S1) ∧ Suffix(P ′′2 , P

′′
1 , do(A1, S

′′
1))

∧GR(P ′′2 , N1, do(A1, S1)) ∧ ¬3Φ1(P ′′2).

(6.105)

By (6.95) and (6.105), it follows that ∃s. OnPath(P ′′1 , s) ∧ Φ1(s). By this,

462

(6.105), and Definitions 3.5.8 and 3.5.7, it follows that Φ1(S ′′1). But by

(6.105), (6.91), and Definition 3.4.5, we have ¬Φ1(S ′′1), a contradiction!

Thus it follows that3Φ1 holds over all GR-accessible paths, and by Corol-

lary 6.3.5, over all G-accessible paths at N1 in do(A1, S1).

(b) Assume that N2 ≤ N1. Similar to case (a) above, it can be shown that the

p-goal that 3Φ1 persists in this case as well, however at level N1 + 1 as

the p-goals at N1 in S1 are pushed down one level in the hierarchy after the

adopt action happens.

3. A1 is the adoption of some subgoal w.r.t. some parent goal: This case is similar

to case 2 above.

The proposition thus follows.

Note that, unlike in the optimizing agent case, we need to ensure that 3Φ is consis-

tent with higher priority active p-goals after a happens in s, since the successor-state

axiom for G in this case automatically drops such incompatible p-goals from the goal

hierarchy. In the above proposition, this is guaranteed by checking that the action a is

compatible with the agent’s current intentions (i.e. that the agent does not have a c-goal

not to execute a next). Thus in the absence of such an additional constraint, agents’

p-goals may not persist. Moreover, changes in the agent’s knowledge via knowledge-

463

producing actions may also force her to drop the p-goal, e.g. if she learns that the goal

is indeed impossible to achieve. This shows that agents’ p-goals are much more dy-

namic in the committed agent framework. Also, as in the optimizing agent case, the

level n where 3Φ is a p-goal may change, e.g. if the action performed is an adopt

action with priority higher than or equal to n. Again, I believe that the dropping of

an unrelated p-goal should not affect persistence, and hence it should be possible to

strengthen this proposition. This is left for future work.

I can show that this property also follows if we replace the consequent with CGoal(

3Φ, do(a, s)), provided that a is executable in s:

Proposition 6.3.40 (Persistence of CGoals).

DSGCAgt |= PGoal(3Φ, n, s) ∧ Executable(s) ∧ Know(¬Φ, s) ∧ Poss(a, s)

∧ ¬a = drop(ψ) ∧ ¬KnowProdAct(a) ∧ ¬CGoal(¬∃s′. Do(a, now, s′), s)

⊃ CGoal(3Φ, do(a, s)).

Proof. From the antecedent and Definition 3.3.1, it follows that Executable(do(a, s)).

The proposition follows from this and Propositions 6.3.39 and 6.3.15.

Again, by Corollary 6.3.20, this proposition also follows if the consequent is replaced

with a primary c-goal, i.e. PrimCGoal(3Φ, do(a, s)). Also, this shows that in contrast

to the optimizing agent framework, agents’ chosen goals are more persistent in the

464

committed agent framework in the sense that when actions are executable, the persis-

tence of p-goals necessarily implies the persistence of chosen goals in this framework.

6.4 Discussion and Conclusion

In this chapter, I presented a variant of my original “optimizing agent” prioritized goals

and subgoals framework (proposed in Chapter 4 and 5) that allows one to model more

committed agents by using a restricted notion of desires/goals. Here, I required that

initially the agent’s goals are known to be possible and consistent with each other. I

gave a modified successor-state axiom for the goal accessibility relationG and showed

that this axiom, along with the modified action precondition axioms for adopt and

drop actions, preserve the initially prescribed constraints on the agent’s goals for all

executable situations.

In this committed agent framework, all of the p-goals of the agent are always real-

istic and chosen (i.e. p-goals are c-goals too). Put otherwise, an agent’s chosen goals in

this framework are simply the consequential closure of her prioritized goals. As such,

all priority levels are always active. As a consequence, an agent’s p-goals are much

more dynamic in contrast to the original (optimizing agent) framework – an agent will

drop a p-goal if it becomes known to be impossible or inconsistent with other higher

priority p-goals and knowledge. On the other hand, an agent’s chosen goals in this

465

framework are much more persistent than in the original framework. The agent will

not drop a chosen goal φ simply because another higher priority chosen goal φ′ has

become impossible, triggering the activation of a third (higher priority than φ, lower

priority than φ′, and currently inactive) goal ψ that is inconsistent with φ; indeed such a

goal ψ would have been dropped by the committed agent earlier, since it is inconsistent

with the higher priority goal φ′. I proved variants of many of the properties (includ-

ing introspection and persistence properties) that I showed for optimizing agents and

discussed how they differ from those presented earlier in Chapter 4 and 5.

While it can be argued that agents specified in this committed agent framework

are somewhat overly committed to their goals in the sense that they will ignore op-

portunities to bring about more valuable goals in favor of already committed to and

conflicting goals, I maintain that this framework is nonetheless quite useful. First, it

provides an alternative commitment strategy to that of optimizing agents. Secondly,

this simple framework can be useful for dealing with complex domains and illustrating

other orthogonal issues therein with more clarity. In fact, in the next chapter, I use this

framework as a starting point for defining a rational BDI agent programming language,

and discuss some issues with rationality that have not been addressed previously. The

optimizing agent framework of Chapter 4 and 5 and the committed agent framework

of this chapter sit at opposite end of the continuum. In the former, the agent is contin-

466

uously reconsidering her commitment to goals and reoptimizing her choice over de-

sires, while in the latter once a goal is no longer chosen/committed to, it is permanently

dropped. Essentially, the committed agent thus eliminates “the opportunity analyzer

and the filter override mechanism” [21] from the underlying deliberation model. Nev-

ertheless, as mentioned in Chapter 4, it would be certainly interesting to study a hybrid

account that achieves some sort of balance between these two different commitment

strategies by providing some control over intention reconsideration. I leave this for

future work.

467

Chapter 7

SR-APL : Specifying A Simple Rational Agent

Programming Language with Prioritized Goals

7.1 Introduction

This chapter contributes to the foundations of Belief-Desire-Intention Agent Program-

ming Languages/frameworks (BDI APLs), such as PRS [108], AgentSpeak [172], etc.

Recall from Chapter 2 that while there has been much recent work on incorporat-

ing declarative goals in these APLs [100, 247, 185, 47, 101, 235, 186], to keep them

tractable and practical, they sacrifice some principles of rationality. In particular, while

selecting plans to achieve a declarative goal, they ignore other concurrent intentions

of the agent. As a consequence, the selected plan may be inconsistent with the agent’s

other intentions (I call this the intention consistency problem). Thus the execution of

468

such an intended plan can render other contemporary intentions impossible to bring

about. Also, these APLs with Declarative Goals (APLwDGs, henceforth) typically

rely on syntactic formalizations of declarative goals, subgoals, and their dynamics,

whose properties are often not well understood. Often, achievement goals are the only

type of temporally extended goals supported in these frameworks (e.g. [100, 47]).

In this chapter, I develop a logical framework for a BDI agent programming lan-

guage with prioritized declarative goals called Simple Rational APL (SR-APL, hence-

forth), that addresses most of these deficiencies of previous APLwDGs. SR-APL com-

bines ideas from the situation calculus-based Golog family of APLs (e.g. ConGolog

[51]), my expressive semantic formalization of prioritized goals, subgoals, and their

dynamics as specified in Chapter 6, and work on BDI APLs. I ensure that an SR-APL

agent’s chosen declarative goals and adopted plans are consistent with each other and

with her knowledge. In doing this, I will address two fundamental questions about

rational agency:

1. What does it mean for a BDI agent to be committed to concurrently execute a

set of plans next while keeping the option of further commitments to other plans

open, in a way that does not allow procrastination?

2. How can one ensure consistency between an agent’s adopted declarative goals

and adopted plans, given that some of the latter might be abstract, i.e., only

469

partially instantiated in the sense that they include subgoals for which the agent

has not yet adopted a (concrete) plan?

I will show how agents specified in the SR-APL framework satisfy some key ratio-

nality requirements. SR-APL is not a practical implemented APL and more work is

required to make it practical, perhaps by restricting the proposed representations and

reasoning. The framework however tries to bridge the gap between agent theories

and practical APLs by providing a model and specification of an idealized BDI agent

whose behavior is closer to what a rational agent does. As such, it serves as a ba-

sis for understanding how compromises made during the development of a practical

APLwDG affect the agent’s rationality.

I start the chapter by discussing a motivating example that illustrates the main

issues with current APLwDGs. I then describe the components of an SR-APL agent

and specify the semantics of SR-APL. Following that, I show that my agents behave in

ways that satisfy some key rationality principles. Finally, I summarize my results and

discuss possible future work.

7.2 A Motivating Example

Consider a blocks world agent AgtBW with domain DBW , where each block is one of

four possible colors: blue, yellow, green, and red, represented by the four predicates

470

B(b), Y(b), G(b), and R(b), respectively. There is only one action stack(b, b′) for

stacking block b onto block b′. A block b can be stacked on another block b′ in situation

s if b and b′ represent distinct blocks, both b and b′ are clear in s, and b is on the table

in s:

Axiom 7.2.1.

Poss(stack(b, b′), s) ≡ b 6= b′ ∧ Clear(b, s) ∧ Clear(b′, s) ∧ OnTable(b, s).

There are no unstacking actions, so the agent cannot use a block to build two different

towers at different times. In the following, I specify the successor-state axioms for the

fluents in this domain. First of all, block b is on the table after some action a happens

in situation s if and only if b is on the table in s and a is not the action of stacking it on

top of another block b′:

Axiom 7.2.2.

∀b, a, s. OnTable(b, do(a, s)) ≡ OnTable(b, s) ∧ ¬∃b′. a = stack(b, b′).

Secondly, block b is on block b′ after a has happened in s if and only if b is on the table

in s and a refers to the action of stacking b on b′, or if b is already on b′ in s:

Axiom 7.2.3.

∀b, b′, a, s. On(b, b′, do(a, s)) ≡ (OnTable(b, s) ∧ a = stack(b, b′)) ∨ On(b, b′, s).

471

Thirdly, in this domain, the color of the blocks (i.e. blue, yellow, green, and red) does

not change:

Axiom 7.2.4.

(i). ∀b, a, s. B(b, do(a, s)) ≡ B(b, s).

(ii). ∀b, a, s. Y(b, do(a, s)) ≡ Y(b, s).

(iii). ∀b, a, s. G(b, do(a, s)) ≡ G(b, s).

(iv). ∀b, a, s. R(b, do(a, s)) ≡ R(b, s).

Finally, I say that block b is clear in situation s if there are no blocks on b:

Definition 7.2.5.

∀b, s. Clear(b, s) def
= ¬∃b′. On(b′, b, s).

Assume that there are four blocks, BB, BY , BG, and BR, one of each color. The

agent AgtBW knows the color of these blocks, and knows that initially all the blocks

are on the table and are clear:

472

Axiom 7.2.6.

Know(∀x. OnTable(x) ≡ x = BB ∨BY ∨BG ∨BR, S0) ∧

Know(∀x. Clear(x) ≡ x = BB ∨BY ∨BG ∨BR, S0) ∧

Know(∀x. B(x) ≡ x = BB, S0) ∧ Know(∀x. Y(x) ≡ x = BY , S0) ∧

Know(∀x. G(x) ≡ x = BG, S0) ∧ Know(∀x. R(x) ≡ x = BR, S0).

Now let us go back to our discussion of BDI agent programming languages. Re-

call from Chapter 2 that a typical BDI APLwDG uses a user-specified hierarchical

plan library Π containing planning rules, a procedural goal-base Γ containing a set

of (possibly abstract) plans that the agent is committed to executing, and a declara-

tive goal-base ∆ containing the set of declarative goals that the agent is committed to

achieving. In response to events in the environment and to goals in ∆, in each cycle

the agent interleaves selecting plans from Π to handle such events and goals, adopting

them to Γ, and executing actions from plans in Γ. The execution of some of these

actions can in turn trigger the adoption of other declarative goals. This process is

repeated until all the goals in ∆ are successfully achieved and all plans in Γ are suc-

cessfully executed. In the following, I informally discuss a fundamental problem with

such a typical APLwDG, namely the intention consistency problem: when a new plan

is adopted, the plan is not required to be consistent with an agent’s current intentions,

473

and thus the intended procedural and declarative goals may become inconsistent in

these APLwDGs. Later, I will formally prove that an SR-APL agent is free from this

problem.

To this end, assume that our agent AgtBW has the following two declarative goals:

(1) to eventually have a 2 blocks tower that has a green block on top and a non-yellow

block underneath, and (2) to have a 2 blocks tower with a blue block on top and a

non-red block underneath; thus ∆ = {3TowerGȲ ,3TowerBR̄}, where these goals are

defined as follows:

Definition 7.2.7.

TowerGȲ
def
= ∃b, b′. OnTable(b′) ∧ On(b, b′) ∧ G(b) ∧ ¬Y(b′),

TowerBR̄
def
= ∃b, b′. OnTable(b′) ∧ On(b, b′) ∧ B(b) ∧ ¬R(b′).

Assuming that the goal3TowerGȲ has higher priority than3TowerBR̄ , the following

initial goal axioms can be used to specify the agent AgtBW ’s goals:51

Axiom 7.2.8.

(a). Init(s) ⊃ ((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧K(s′, s) ∧3TowerGȲ (p))

∧ ((G(p, 1, s) ≡ ∃s′. Starts(p, s′) ∧K(s′, s) ∧3TowerBR̄(p))).

(b). Init(s) ∧ n ≥ 2 ⊃ (G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧K(s′, s)).

51Note that in these axioms, I require that G-accessible paths start with a K-accessible situation in s
(rather than an arbitrary initial situation); this is needed to comply with Assumption 6.2.1.

474

Suppose that our agent AgtBW ’s plan library ΠBW has two planning rules:52

Definition 7.2.9.

ΠBW
def
= { 3TowerGȲ : [OnTable(b) ∧ OnTable(b′) ∧ b 6= b′ ∧ Clear(b)

∧ Clear(b′) ∧ G(b′) ∧ ¬Y(b)]← stack(b′, b),

3TowerBR̄ : [OnTable(b) ∧ OnTable(b′) ∧ b 6= b′ ∧ Clear(b)

∧ Clear(b′) ∧ B(b′) ∧ ¬R(b)]← stack(b′, b) }.

That is, if the agent AgtBW has the goal to have a green and non-yellow tower and

knows about a green block b′ and a distinct non-yellow block b that are both clear and

are on the table, then she should adopt the plan of stacking b′ on b, and similarly for the

goal of having a blue and non-red tower. Let’s define our blocks world domain DBW

as D ∪ {Axiom 7.2.1 – Axiom 7.2.8}.

Now, consider a typical APLwDG, that (without considering the overall consis-

tency of the agent’s intentions) simply selects plans whose context condition is satis-

fied from the rule-base Π for the agent’s goals in the declarative goal-base ∆, adds

these selected plans to the agent’s plan-base Γ, and eventually executes them in an

attempt to achieve her goals.53 I claim that such an APL is not always sound and ra-

52Recall that a planning rule of the form φ : Ψ ← σ means that the agent should consider adopting
and executing the plan σ if she has the goal that φ and she currently knows/believes that Ψ.

53While I will not attempt to do so, it would not be hard to modify the proposed language definition
in the next section to specify such an APLwDG.

475

tional in this example domain. For instance, according to this plan library, one way

of building a green non-yellow (and a blue non-red) tower is to construct a green-blue

(a blue-green, respectively) tower. While these two plans are individually consistent,

they are inconsistent with each other, since the agent AgtBW has only one block of

each color. Thus a rational agent should not adopt these two plans. However, the fol-

lowing would be a legal trace for our blocks world domain in such a typical APLwDG

(here as usual a configuration 〈Γ,∆〉 is a tuple consisting of the set of intended plans

Γ and the set of intended declarative goals ∆ of the agent; also C1 ⇒ C2 denotes a

transition from configuration C1 to configuration C2 that is allowed by the transition

system semantics of the APL):

〈{},∆〉 ⇒ 〈{stack(BB, BG)},∆〉 ⇒ 〈{stack(BB, BG), stack(BG, BB)},∆〉 ⇒

〈{stack(BG, BB)}, {3TowerGȲ }〉.

The agent AgtBW first moves to configuration 〈{stack(BB, BG)},∆〉 by adopting the

plan stack(BB, BG) in response to3TowerBR̄ , then to 〈{stack(BB, BG), stack(BG, BB)},

∆〉 by adopting stack(BG, BB) to handle3TowerGȲ , and then to 〈{stack(BG, BB)}, {3

TowerGȲ }〉 by executing the intended action stack(BB, BG). At this point, AgtBW is

stuck and cannot perform any further transitions and complete successfully. Thus,

in such an APL, not only is the agent allowed to adopt two inconsistent plans, but

the execution of one of these plans makes other concurrent goals impossible (e.g. the

476

execution of stack(BB, BG) makes the higher priority goal 3TowerGȲ impossible to

achieve).

The problem arises in part because actions are not reversible in this domain; there is

no action for moving a block back to the table or for unstacking it. This is common in

real world domains, for instance, most tasks with deadlines or that consume resources

are such, e.g. doing some errands before noon, a robot delivering mail without running

out of battery power, etc. While such irrational behavior could in principle be avoided

by using appropriate conditions in the antecedent of the plan-selection rules (e.g. by

stating that the agent should only adopt a given plan if she does not have certain other

interacting goals), this puts an excessive burden on the agent programmer. Ideally,

such reasoning about goals should be delegated to the agent.

7.3 Agent Programming with Prioritized Goals

The proposed framework SR-APL combines elements from BDI agent programming

languages such as AgentSpeak [172] and from the ConGolog logic programming lan-

guage [51], which is defined on top of the situation calculus. In addition, to facilitate

monitoring of goal achievement and performing plan failure recovery, I incorporate

declarative goals in SR-APL. To specify the operational semantics of plans in SR-

APL, I will use (elements of) the semantics of the ConGolog APL (see Chapter 3).

477

7.3.1 Components of SR-APL

Before going over the operational semantics of SR-APL, I first discuss its various com-

ponents. First of all, I have a set of axioms/theory DSGCAgt specifying actions that can

be done, the initial knowledge and goals of the agent, and their dynamics, as discussed

in Chapter 6. Henceforth, I will use D to refer to this theory. Recall that in the com-

mitted agent framework, I allow the agent to have infinitely many p-goals. However,

here I assume a finite set of initial p-goals. I also assume that these are all achievement

goals 3Φ, where Φ is a situation suppressed formula without temporal operators and

without epistemic or goal operators. Since a finite number of achievement p-goals is

assumed, I can use the abbreviation NPGoals(n, s), which states that n is the highest

priority level starting where (and after which) the agent’s goal hierarchy is empty, i.e.

where the agent has the trivial p-goal that she is in a K-accessible situation. Thus

if NPGoals(n, s) holds, then adopting a p-goal at level n in situation s essentially

amounts to adopting the p-goal at a lower priority level than any other existing p-goals

in s. I define NPGoals(n, s) as below.

478

Definition 7.3.1.

NPGoals(n, s) def
= (∀m. m ≥ n ⊃ NoGoalsAt(m, s))

∧ (¬NoGoalsAt(n− 1, s) ∨ n = 0),

where, NoGoalsAt(n, s) def
= OPGoal(∃s′. K(s′, s) ∧ Starts(s′), n, s).

That is, NPGoals(n, s) holds in some situation s if n is the highest priority level where

the agent’s p-goals at level n and all lower priority levels are the trivial p-goal that

she be in a K-accessible situation. Recall from the SSA for G (i.e. Axiom 6.2.6) that

when a p-goal at some level m is dropped or becomes impossible or inconsistent with

other higher priority p-goals and knowledge, the G-accessible paths at m are simply

replaced with paths that starts with a current K-accessible situation. In other words,

my SSA for G does not compact levels in the sense of removing such an empty level

altogether from the goal hierarchy. The above definition takes this into account and

thus there may be a level m that has higher priority than n and where the agent has

the trivial p-goal that she be in a K-accessible situation, as long as there is at least one

“non-empty” level with priority lower than m.

Note that in the situation calculus, both declarative and procedural goals are given

declarative semantics. For instance, the Do construct is used to represent an agent’s

adopted plans: having the goal that ∃s′. Starts(now) ∧ OnPath(s′) ∧ Do(σ, now, s′)

479

amounts to having the adopted plan that σ. Thus unlike in other APLwDGs, I use

the theory D to uniformly specify both declarative and procedural goals of the agent.

This considerably simplifies the task of maintaining the consistency between these two

types of goals compared to APLs where declarative and procedural goals are stored in

two separate goal bases.

Moreover, I also have a plan library Π with rules of the form φ : Ψ← σ, where φ

must be an achievement goal formula of the form3Φ, Ψ is an situation suppressed for-

mula expressing a condition on what the agent knows, and σ is a plan; φ,Ψ, and σ may

have free variables in them such that free(σ) ⊆ free(φ) ∪ free(Ψ). A rule φ : Ψ ← σ

means that if the agent has some instance of the c-goal that φ (i.e. has the ground c-goal

that φ′, where φ′ is φθ with some substitution θ of the free variables in φ) and knows

that some ground instance of Ψ, Ψ′θ holds, then she should consider adopting the plan

that σθ (for the substitution θ of the free variables in φ and Ψ). The plan language for

σ is a simplified version of ConGolog and includes the constructs listed in Table 7.1.

I use the ConGolog APL here because it has a situation calculus-based semantics that

is well specified and compatible with my agent theory. I could have used any APL

with these characteristics. Also, in order to keep the proposed framework in line with

current APLwDGs, I only use a subset of the ConGolog constructs. Here I assume that

primitive actions a in a plan cannot be exogenous. In addition to these ConGolog con-

480

nil The empty program

a Primitive action

φ? Waiting for a condition

σ1;σ2 Sequence

adoptRelTo(3Φ,∃s, s′. Starts(s) ∧ OnPath(s′) ∧ DoAL(σ, s, s′)) Subgoal adoption

Table 7.1: SR-APL Plan Language

structs, the plan language includes the special action for declarative subgoal adoption,

adoptRelTo(3Φ, ψ) as specified in Chapter 6; here3Φ is an achievement declarative

subgoal to be adopted and ψ is a path formula relative to which it is adopted. ψ is of

the form ∃s, s′. Starts(s) ∧ OnPath(s′) ∧ DoAL(σ, s, s′), which roughly says that ψ

holds over a path if the plan σ, possibly along with other actions is executed over the

path starting from the starting situation of the path (see Section 7.3.2 for the definition

of DoAL). Thus adoptRelTo(3Φ, ψ) here refers to the adoption of the achievement

declarative goal 3Φ w.r.t. the goal to execute σ, possibly along with other actions.

While my account of goal change is expressive enough to handle arbitrary temporally

extended goals, here I focus on achievement goals and procedural goals exclusively.

Thus I assume that the goal formula φ in a rule φ : Ψ ← σ must be an achievement

goal 3Φ. Note that extending my framework to support maintenance goals should

be straightforward, since maintenance goals behave like additional constraints on the

481

agent behavior in contrast to achievement goals for which the agent needs to plan for.

Nevertheless, I leave this for future work.

I now define an SR-APL agent as a tuple, 〈D,Π〉. Here, D is a (committed agent)

theory specifying the domain, i.e. the actions and the initial knowledge and goals of

the agent, and their dynamics. I assume that D is complete with respect to the actual

initial state, and thus for any situation suppressed formula Φ without K or G, either

D |= Φ(S0) or D |= ¬Φ(S0).54 Also, I constrain the initial goals of the agent in D to

declarative achievement goals only. Finally, Π is a plan library with rules of the form

φ : Ψ← σ that allows the agent to adopt new plans w.r.t. her declarative achievement

goals given her knowledge. φ here must be a declarative achievement goal 3Φ, and σ

is formed using the constructs in Table 7.1. Thus, for example, our blocks world agent

AgtBW in the initial situation can be specified using the program 〈DBW ,ΠBW 〉.

7.3.2 Semantics of SR-APL

Using these components, I next specify the semantics of SR-APL. I use a transition

system [168] for this. As mentioned above, I use my situation calculus domain theory

D to represent both adopted declarative goals and procedural goals/plans and how they

54This is required to handle sensing actions and exogenous actions that carry new information prop-
erly in the context of my meta-theoretical approach to the semantics of SR-APL below. I will come
back to this issue later.

482

evolve. Initially the goals in D are restricted to be achievement declarative goals only.

As specified by the successor-state axiom for G (i.e. Axiom 6.2.6), the goals in D

are updated by adding plans or other declarative goals to the agent’s goal hierarchy

when a transition rule makes the agent perform an adopt or adoptRelTo action (note

that while the SR-APL plan language in Table 7.1 does not include adopt actions, the

transition rules in Table 7.3 utilize both of these actions). I ensure that an agent’s

declarative goals and adopted plans are consistent with each other and with the agent’s

knowledge. In my semantics, I specify this by checking that there exists a course of

actions that the agent considers possible (i.e. a realistic path), and if she were to follow

this path, she would end up realizing all of her declarative goals and executing all of

her procedural goals.

Recall from Section 7.1 that specifying such a language raises some fundamental

questions about rational agency, for instance: how to specify a BDI agent’s open-

ended commitment towards concurrently executing multiple plans while ensuring that

the agent does not procrastinate? An SR-APL agent can work on multiple goals at

the same time. Thus at any time, an agent might be committed to several plans that

she will be executing in an interleaved fashion. We need a mechanism to model the

agent’s adopted plans in the goal hierarchy specified by D. One way of specifying an

agent’s commitment to execute a plan σ next at some level n inD is to say that she has

483

the p-goal at n that ∃s, s′. Starts(s) ∧ OnPath(s′) ∧ Do(σ, s, s′), i.e. that each of her

G-accessible paths p at n is such that it starts with some situation s, it has the situation

s′ on it, and s′ can be reached from s by executing σ. However, this does not allow for

the interleaved execution of several plans, since Do requires that σ be executed before

any other actions/plans.

A better alternative is to represent the procedural goal as ∃s, s′. Starts(s)∧OnPath(s′)

∧ DoAL(σ, s, s′), which says that the agent has the p-goal at level n to do at least the

plan σ next, and possibly more. DoAL(σ, s, s′) holds if there is an execution of plan

σ, possibly interleaved with zero or more actions by the agent herself, that starts in

situation s and ends in s′:55

Definition 7.3.2.

DoAL(σ, s, s′)
def
= Do(σ‖(πa. Agent(a) = agt?; a)∗, s, s′).

In addition to providing a mechanism for combining the already adopted plans, this

also allows the agent to be open towards future commitments to other plans. Put oth-

erwise, the DoAL construct in her already committed to plans allows her to accommo-

date other plans that she might have already or adopt in the future.

However, a new problem with this approach is that it allows the agent to procras-

55Note that, while my theory supports exogenous actions performed by other agents, I assume that
all actions in the plans of agt that specify her behavior must be performed by agt herself.

484

tinate in the execution of the intended plans in D. For instance, suppose that the agent

has the p-goal at priority level n1 to execute the plan σ1 and at level n2 to execute σ2

next. Then, according to my definition of DoAL, the agent has the intention at level

n1 to execute σ1 and at level n2 to execute σ2, possibly concurrently with other actions

next, since I use DoAL to specify those goals. The “other actions” at level n1 (n2, re-

spectively) are meant to be actions from the plan σ2 (σ1, respectively). However, noth-

ing requires that the additional actions that the agent might execute are indeed from

σ2(σ1, respectively), and thus this allows her to perform actions that are completely

unnecessary as long as they do not make the execution of σ1 and σ2 impossible.

To deal with this, I include an additional component, a procedural intention-base

Γ, in an SR-APL agent configuration. Γ is a finite list of plans that the agent is currently

actively pursuing. To avoid procrastination, I will require that any action that the agent

actually performs comes from Γ (as specified in the transition rule Astep below). In the

following, I will use Γ‖ to denote the concurrent composition of the plans in Γ:56

Definition 7.3.3.

Γ‖
def
= if (Γ = []) then nil else First(Γ)‖(Rest(Γ)‖).

56I will use various standard list operations, e.g. First (representing the first item of a list), Rest
(representing the sublist that contains all but the first item of a list), Cons (for constructing a new list
from an item and a list), Member (for checking membership of an item within a list), Remove (for
removing all occurrences of a given item from a list), Replace (for replacing all occurrences of a given
item by another item in a list), etc.

485

In SR-APL, a plan configuration 〈σ, s〉 is a tuple consisting of an SR-APL plan

σ and a ground situation term s. An agent configuration on the other hand is a tuple

〈Γ, s〉 that consists of a list of plans Γ and a ground situation term s. The initial agent

configuration is 〈[], S0〉. Note that implicitly an agent configuration also includes the

knowledge and the goals of the agent, but that these can be obtained from the (fixed)

theory D and the situation in the configuration.

The semantics of SR-APL are defined by a two-tier transition system. Plan-level

transition rules specify how a plan written in SR-APL’s plan language may evolve.

These rules are defined within the language/theory. On top of this, I define agent-

level transition rules to specify how an SR-APL agent’s configuration may evolve.

Unlike the plan-level transition rules, these rules are defined meta-theoretically as these

involve dealing with the procedural intention-base Γ.

Plan-Level Transition Rules

The plan-level transition rules are simply a subset of the ConGolog transition rules

specified in Axioms 3.6.1 and 3.6.2. Since plans are written using SR-APL’s plan

language in Table 7.1, I only need the subset for the constructs listed in Table 7.1.

Here, I will use 〈σ, s〉 → 〈σ′, s′〉 as an alternative notation for Trans(σ, s, σ′, s′). For

the reader’s convenience, I list these transition rules again in Table 7.2 (note that the

486

ΓF1 . Final(nil, s) ≡ True,

ΓF2
. Final(a, s) ≡ False,

ΓF3
. Final(φ?, s) ≡ φ(s),

ΓF4 . Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s),

ΓT1
. ¬∃δ′, s′. 〈nil, s〉 → 〈δ′, s′〉,

ΓT2 . 〈a, s〉 → 〈δ′, s′〉 ≡ Poss(a, s) ∧ δ′ = nil ∧ s′ = do(a, s),

ΓT3
. ¬∃δ′, s′. 〈φ?, s〉 → 〈δ′, s′〉,

ΓT4
. 〈[δ1; δ2], s〉 → 〈δ′, s′〉 ≡ ∃δ′1. (δ′ = [δ′1; δ2] ∧ 〈δ1, s〉 → 〈δ′1, s′〉)

∨ Final(δ1, s) ∧ 〈δ2, s〉 → 〈δ′, s′〉.

Table 7.2: Plan-Level Transition Rules

adoptRelTo special action is handled by the same rule as normal actions).

Agent-Level Transition Rules

The agent-level transition rules are given in Table 7.3 and are mostly similar to those

of a typical BDI APL.57 First of all, I have a rule Asel for selecting and adopting a plan

57In the following, I use CGoal(∃s′. DoAL(σ, now, s′), s) or simply CGoal(DoAL(σ), s) as a short-
hand for CGoal(∃s′. Starts(path, now) ∧ OnPath(path, s′) ∧ DoAL(σ, now, s′), s). Thus, DoAL(σ)
or ∃s′. DoAL(σ, now, s′) here is the path formula ∃s′. Starts(path, now) ∧ OnPath(path, s′) ∧
DoAL(σ, now, s′) that has a free path variable/placeholder path that is often suppressed; path will
get bound by the context in which the formula DoAL(σ) appears. Similarly, I will use DoAL(σ)
as an argument to the adoptRelTo action as in adoptRelTo(ψ,DoAL(σ)), as a shorthand for
adoptRelTo(ψ,∃s′. Starts(now) ∧ OnPath(s′) ∧ DoAL(σ, now, s′)). Finally, while DoAL(σ) is not
technically a program/plan and rather a predicate, here I often abuse the notation and say, e.g. that
“DoAL(σ) is executable” rather than that “DoAL(σ) holds”, etc.; in these I am actually referring to the

487

using the plan library Π for some realistic achievement p-goal 3Φ. It states that if:

(a) there is a rule in the plan library Π which says that the agent should adopt an

instance of the plan σ if she has an instance of 3Φ as her p-goal at some level n

and knows that some instance of Ψ holds,

(b) 3Φ′ is a (realistic) p-goal with priority n in situation s for which the agent hasn’t

yet adopted any subgoal,

(c) the agent knows in s that Ψ′,

(d) θ1 unifies Φ and Φ′, i.e. mgu(Φ,Φ′) = θ1, and θ2 unifies Ψ and Ψ′, i.e. mgu(Ψ,

Ψ′) = θ2, and

(e) the adoption of the plan of doing at least σθ1θ2 w.r.t. the p-goal3Φθ1 is possible

in s,

then she can adopt the plan σθ1θ2, adding DoAL(σθ1θ2) as a subgoal of 3Φθ1 to her

goals in the theory D, and adding σθ1θ2 to Γ. Here, I say that a theory D entails that

some goal φ has been “handled” in some situation s if and only if there exists a goal ψ

such that D entails that ψ is a subgoal of φ in s, i.e.:

program (σ‖(πa. Agent(a) = agt?; a)∗).

488

Definition 7.3.4.

Handled(φ, s,D) iff there exists a ψ such that D |= SubGoal(ψ, φ, s).

Recall that, by Axiom 6.2.4, it follows that if the action of adopting a subgoal ψ

relative to a parent goal φ is executable in some situation s, then the agent does not

have the c-goal that ¬ψ next in s. Assuming that the agent already has the c-goal to

execute DoAL(Γ‖) in s,58 this and condition (e) above imply that the agent does not

have the c-goal not to execute σθ1θ2 concurrently with Γ‖ and possibly other actions

next:

(I). ¬CGoal(¬∃s′, s′′. Do(adoptRelTo(DoAL(σθ1θ2),3Φθ1), now, s′)

∧ DoAL(σθ1θ2 ‖ Γ‖, s′, s′′), s).

Moreover, from Proposition 6.3.30, it follows that an SR-APL agent acquires the c-

goal that ψ after she adopts it as a subgoal of φ in s, provided that s is an exe-

cutable situation and that the adoptRelTo(ψ, φ) action is executable in s. Thus for

any executable situation s, (assuming that the agent already has the c-goal to execute

DoAL(Γ‖) in s) we have from this and (e) that:

(II). CGoal(∃s′. DoAL(σθ1θ2 ‖ Γ‖, now, s′),

do(adoptRelTo(DoAL(σθ1θ2),3Φθ1), s)).

58See Proposition 7.4.7 below, where I show that under appropriate conditions, this is indeed the case.

489

Member(3Φ : Ψ← σ,Π), D |= PGoal(3Φ′, n, s) for some n,

¬Handled(3Φ′, s,D), D |= Know(Ψ′, s), mgu(Φ,Φ′) = θ1, mgu(Ψ,Ψ′) = θ2,

(Asel) D |= Poss(adoptRelTo(DoAL(σθ1θ2),3Φθ1), s)

〈Γ, s〉 ⇒ 〈Cons(σθ1θ2,Γ), do(adoptRelTo(DoAL(σθ1θ2),3Φθ1), s)〉

Member(σ,Γ), D |= Know(〈σ, now〉 → 〈σ′, do(a, now)〉, s),

(Astep) D |= PGoal(DoAL(σ), n, s) for some n, D |= ¬CGoal(¬∃s′. Do(a, now, s′), s)

〈Γ, s〉 ⇒ 〈Replace(σ, σ′,Γ), do(a, s)〉

(Aexo) D |= Exo(a) ∧ Poss(a, s)

〈Γ, s〉 ⇒ 〈Γ, do(a, s)〉

(Aclean) Member(σ,Γ), D |= ¬∃n. PGoal(DoAL(σ), n, s)

〈Γ, s〉 ⇒ 〈Remove(σ,Γ), s〉

D |= Know(¬∃Γ′, s′. 〈Γ‖, now〉 → 〈Γ′, s′〉, s) D |= Know(¬Final(Γ‖, now), s),

For all σ such that Member(σ,Γ) we have:

D |= ∃n. PGoal(DoAL(σ), n, s), Handled(DoAL(σ), s,D),

D |= Agent(
→
a) = agt ∧ Know(∃s′. Do(

→
a , now, s′) ∧ ∃Γ′, s′′. 〈Γ‖, s′〉 → 〈Γ′, s′′〉, s),

(Arep) D |= NPGoals(m, s) for some m, D |= Poss(adopt(Do(
→
a),m), s)

〈Γ, s〉 ⇒ 〈Cons(
→
a ,Γ), do(adopt(Do(

→
a),m), s)〉

Table 7.3: Agent-Level Transition Rules

490

(I) ensures that the adopted subgoal σθ1θ2 is consistent with Γ‖ (and with all the declar-

ative goals of the agent) in the sense that they can be executed concurrently, possibly

along with other actions in s. (II) confirms that σθ1θ2 is indeed intended after the

adoptRelTo action has happened. Note that this notion of consistency is a weak one,

since it does not guarantee that there is an execution of the program (σθ1θ2 ‖ Γ‖) after

the adoptRelTo action happens, but rather ensures that DoAL(σθ1θ2 ‖ Γ‖) holds. In

other words, σθ1θ2 and the plans in Γ alone might not be concurrently executable, and

additional actions might be required. I will come back to this issue later.

Secondly, I have a transition rule Astep for single stepping the agent program by

executing an intended action from the procedural goal-base Γ. It says that if:

(a) the agent knows that a plan σ in Γ can make a plan-level transition in situation s

by performing a primitive action awith plan σ′ remaining in do(a, s) afterwards,

(b) DoAL(σ) is a (realistic) p-goal with priority n in s, and

(c) the transition is consistent with the agent’s goals in the sense that she does not

have the c-goal not to execute a in s,

then the agent can execute a, and Γ and s can be updated accordingly.

Once again I have a weak consistency requirement in condition (c) above. Ideally,

I would have added to (c) that the agent can continue from do(a, s) in the sense that

491

she does not have the c-goal not to execute the remaining plan σ′ concurrently with the

other plans in Γ in do(a, s), i.e. that:

D |= ¬CGoal(¬∃s′. Do(a; Replace(σ, σ′,Γ)‖, now, s′), s).

However, this would be too demanding as Γ may be incomplete in the sense that it

may include abstract plans that have actions that trigger the adoption of subgoals, for

which the execution of Γ‖ waits; but Γ does not have any adopted plans yet that can

achieve these subgoals. Thus Γ‖ by itself might currently have no complete execution,

and will only become completely executable when all such subgoals have been fully

expanded.

For example, consider a new agent for our blocks world domain Agt3TBW who has

the goal to eventually build a 3 blocks tower, i.e. 33Tower, where 3Tower is defined

as follows:

Definition 7.3.5.

3Tower def
= ∃b, b′, b′′. OnTable(b) ∧ On(b′, b) ∧ On(b′′, b′).

The agent Agt3TBW ’s initial goals can be defined using the following initial goal axiom:

Axiom 7.3.6.

(a). Init(s) ⊃ G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧K(s′, s) ∧33Tower(p).

(b). Init(s) ∧ n > 0 ⊃ G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧K(s′, s).

492

The agent Agt3TBW ’s domain theory D3T
BW is the same as that for DBW , but with the

substituted initial goal axioms, i.e. D3T
BW

def
= DBW \ {Axiom 7.2.9} ∪ {Axiom 7.3.6}.

Also, in addition to the rules in ΠBW , her plan library Π3T
BW as specified below includes

a new planning rule that can be used to build a 3 blocks tower.

Definition 7.3.7.

Π3T
BW

def
= ΠBW ∪ {33Tower : [¬Y(b) ∧ G(b′) ∧ Y(b′′) ∧ b 6= b′ ∧ Clear(b) ∧ Clear(b′)

∧ Clear(b′′) ∧ OnTable(b) ∧ OnTable(b′) ∧ OnTable(b′′)]

← σ1},

σ1
def
= adoptRelTo(3TowerGȲ ,DoAL(σ2));σ2,

σ2
def
= TowerGȲ ?; stack(b′′, b′).

This new rule says that, if the agent knows about a non-yellow block b, a distinct green

block b′, and a yellow block b′′ that are all clear and on the table, then her goal of

building a 3 blocks tower can be fulfilled by adopting the plan that involves adopting

the declarative subgoal to eventually build a green non-yellow tower, waiting for the

achievement of this subgoal, and then stacking the yellow block on the green block.

Now, suppose that in response to her goal 33Tower, the agent Agt3TBW adopted σ1

as above as a subgoal of this goal using the Asel rule, and thus σ1 is added to the

procedural goal-base Γ. In the next few steps, she will step through the adopted plan

493

σ1, executing one action at a time in an attempt to achieve her goal that 33Tower.

Note that in SR-APL, the hierarchical decomposition of a subgoal, e.g. σ1 above,

is a two step process. In the first step, in response to the execution (via Astep) of

the adoptRelTo(3TowerGȲ ,DoAL(σ2)) action in her plan σ1 in Γ, the agent adopts

3TowerGȲ as a subgoal of the remaining plan σ2, possibly along with other actions,

i.e. relative to DoAL(σ2). Then in the second step, she uses the Asel rule to select

and adopt a plan for the subgoal 3TowerGȲ . I assume that the subgoal 3TowerGȲ must

always be achieved before the supergoal. To do this, I suspend the execution of the

supergoal by waiting for the achievement of the subgoal. This can be specified by

the programmer by having the supergoal σ2 start with the wait action TowerGȲ ? that

waits for the subgoal to be achieved. But this means that σ2 (and thus σ1) by itself,

i.e. without the DoAL construct, might not have a complete execution as it might get

blocked when it reaches TowerGȲ ?. Moreover, since σ2 is a member of Γ, Γ‖ will have

a complete execution only when all the subgoals in Γ have been fully expanded. To

deal with this in rule Asel, I use a weak consistency check that does not verify if Γ‖ is

executable, but instead only guarantees that DoAL(Γ‖) is executable. However, my se-

mantics ensures that any action a performed by the agent must not make the concurrent

execution of all the adopted plans of the agent possibly with other actions impossible,

i.e. it must be consistent with DoAL(Γ‖), since Astep requires that doing amust be con-

494

sistent with all her DoAL procedural goals (and other concurrent declarative goals) in

her goal hierarchy, i.e. that D |= ¬CGoal(¬∃s′. Do(a, now, s′), s). This weak notion

of consistency thus addresses another fundamental issue of rational agency, namely,

maintaining consistency between an agent’s declarative and procedural goals, while

allowing the latter to include abstract plans with unexpanded subgoals.

In my definition of an SR-APL agent, I require that the theoryD be complete w.r.t.

the actual initial state S0. This is required to handle sensing. Without this assumption,

the agent may get stuck due to lack of knowledge about whether some action in the

current situation is executable or not, even after performing a corresponding sensing

action. For example, consider the plan where the agent senses the value of Φ (which

she doesn’t know initially) and then perform action a if Φ holds and b if ¬Φ holds.59

Suppose also that a is only possible if Φ holds and b is only possible if ¬Φ holds. If

the theory D did not say what the actual value of Φ is in S0, then neither a nor b could

be performed by the Astep rule after the sensing of Φ because it would not be entailed

that the agent knows that a is executable after senseΦ occurs, and similarly for b. Note

that given the above completeness assumption (which for the example says that either

D |= Φ(S0) or D |= ¬Φ(S0)), if D entails that Φ holds initially, D will also entail that

59While the SR-APL plan language does not include non-deterministic branch, this can be simu-
lated using the plan senseΦ; adoptRelTo(3Ψ,True) and two planning rules in the rule library Π that
condition on the outcome of the sensing.

495

that the agent knows that a is executable after senseΦ occurs, and similarly for the ¬Φ

case.

Note that another way (that does not require this constraint on D) to address this

issue with sensing is to updateD after a sensing action happens to add the sensed value

observed, i.e. by choosing a sensed fluent value that is consistent with D and changing

D toD∪{SF(a, s)} orD∪{¬SF(a, s)}. But this requires storing the updated theory or

the sensed values in the agent configuration. The first approach generates the possible

executions of the agent for a given environment (the one specified by D). If there is

uncertainty about the environment, each model needs to be considered separately. The

second approach generates the possible executions for all possible environments (i.e.

models of D). For simplicity, here I adopt our approach.

Thirdly, I have a rule Aexo for accommodating exogenous actions, i.e. actions oc-

curring in the agent’s environment that are not under her control. When such an action

a occurs in situation s, the agent must update her knowledge and goals by progressing

the situation component of her configuration to do(a, s), provided that doing a is pos-

sible in s. Note that, the condition in the antecedent of the Aexo rule is a strong one

since here I require that the theory D entails that the exogenous action a is possible

in situation s, i.e. D |= Poss(a, s). This eliminates some possible executions of the

agent program that involve exogenous actions. For instance, it may be the case that

496

Poss(a, s) holds in some model of D but does not hold in another. In such a case,

the agent should have considered the transition of a in s as a legal one. However,

this cannot arise in our case as we assume that D is complete w.r.t. the actual ini-

tial state. I could have dropped this assumption and used the weaker condition that

D∪{Exo(a)}∪ {Poss(a, s)} is satisfiable in the antecedent of the Aexo rule, but again

this requires updating the theory with Know(Poss(a, now), s) after a happens and stor-

ing the theory in the agent configuration. For simplicity, I stick with the condition that

Poss(a, s) be entailed by D here.

Fourthly, I use the Aclean rule for dropping adopted plans that are no longer in-

tended in the theoryD from the procedural goal-base Γ. It says that if there is a plan σ

in Γ, and executing σ possibly along with other actions is no longer a (realistic) p-goal,

then σ should be dropped from Γ. This is required when the occurrence of an exoge-

nous action a forces the agent to drop a plan from her goal hierarchy in D by making

it impossible to execute or rendering it inconsistent with her higher priority (realistic)

p-goals. Recall that my theory of prioritized goals for committed agents automatically

drops such plans from the agent’s goal-hierarchy specified by D in do(a, s), since by

Corollary 6.3.17 and Propositions 6.3.1 and 6.3.16, for any executable situation, an

SR-APL agent’s p-goals are both individually consistent and collectively consistent

with each other and with what she knows.

497

Finally, I have a rule Arep for repairing an agent’s plans in case she gets stuck, i.e.

when for all plans σ in Γ, the agent has the (realistic) p-goal that DoAL(σ) at some

level n in the goal hierarchy specified by theory D, and thus all of these DoAL(σ)

goals are still individually executable and collectively consistent, but together they are

not concurrently executable without some non-σ actions in the sense that Γ‖ has no

plan-level transition in s. This could happen as a result of an exogenous action or as

a side effect of my weak consistency check in rule Asel, as discussed below. The Arep

rule says that if:

(a) the agent knows that Γ‖ does not have a plan-level transition in s (which ensures

that Astep can’t be applied),

(b) she also knows that Γ‖ is not considered to be completed in s,

(c) for each plan σ in Γ:

– the agent currently has the (realistic) p-goal at some level that DoAL(σ)

(which ensures that Aclean can’t be applied), and

– DoAL(σ) has been handled (and thus Asel is not applicable),

(d) there is a sequence of actions
→
a such that the agent of these actions is the agent

herself, and
→
a repairs Γ in the sense that the agent knows that there is a plan-level

transition of Γ‖ after
→
a has been executed in s, and

498

(e) it is possible to adopt Do(
→
a) at the lowest priority level in situation s, i.e. at level

m, where NPGoals(m, s),

then in an attempt to repair Γ, the agent may adopt
→
a at the lowest priority level m.

Why do we need this rule? One reason is because the agent could get stuck due to

the occurrence of an exogenous action e, e.g. when emakes the preconditions of a plan

σ in Γ false. Note that, DoAL(σ) might still be known to be executable after the occur-

rence of e, e.g. if there is a known to be executable action r (implicitly represented by

the additional actions in the DoAL construct) that can be used to restore the precondi-

tions of σ. In such cases, DoAL(σ) may be retained in the goal hierarchy specified by

theory D after e occurs, and since this does not make the triggering condition of the

Aclean rule true, so may σ in Γ.

Another reason repair may be needed is that I use a weak consistency check when

adopting plans via Asel and executing actions via Astep. While adopting new plans,

the SR-APL semantics does not require the agent to ensure that all possible interleav-

ings of this plan and her already adopted plans be executable. In fact, it does not even

require that there be at least one such executable interleaving. Rather, it ensures that

there must be at least one possible interleaving of her new and existing plans, possibly

along with additional known to be executable actions (encoded by the DoAL construct,

as depicted in the example below). Similarly, while executing plans from the procedu-

499

ral goal-base Γ, the SR-APL semantics only ensures that the agent does not perform

an action that makes one of her goals impossible to bring about. But this action can

indeed come from an interleaving that is not further executable without executing ad-

ditional actions, and thus the agent might get stuck and need to add extra actions using

the repair rule to continue from there.

Let me give an example to clarify this. Assume a domain with actions a, b, and r,

all of which are initially known to be possible. The execution of b makes the precon-

ditions of a false, while that of r restores them. Our agent has two adopted plans in

the goal hierarchy in theory D, DoAL(a) and DoAL(b), and Γ = [a, b]. Note that an

SR-APL agent could end up having such a goal hierarchy (through the Asel rule), since

as discussed above, although b; a is not a valid execution of Γ‖ (since the execution of

b breaks the preconditions of a), both a; b and b; r; a are indeed valid executions of

DoAL(a) and DoAL(b). Now, since I only do weak consistency checking, my seman-

tics allows the agent to pick a “wrong” choice of plan interleaving, e.g. to perform b

as the first action.60 That is, to execute b using the Astep transition rule, we only need

to ensure that b has a plan-level transition in s and that this transition is consistent with

the agent’s goals in D, i.e. with DoAL(a) and DoAL(b), both of which hold. After the

execution of b, the agent will get stuck, as there is no action in the remainder of Γ (i.e.

60Note that this however does not mean that Astep allows the agent to perform an action that makes
one of her goals impossible, e.g. to execute b when such a repair action r is not available.

500

in [a]) that she can perform. To deal with this, I include the repair rule that makes the

agent plan for and commit to a sequence of actions that can be used to repair Γ, which

for my example is r.

Note that, I could have avoided the need for repairing plans in this case by strength-

ening the conditions of the Astep rule to do a strong consistency check by expanding all

subgoals in Γ. However, this requires modeling the plan selection/goal decomposition

process as part of the consistency check, which I leave for future work. I could have

also relied on plan failure recovery techniques [247]. Finally, note that my repair rule

does a form of conformant planning; more sophisticated forms of planning such as

synthesizing conditional plans that include sensing actions could also be performed.

When the agent has complete information, there must be a repair plan available to

the agent (whose actions can be performed by the agent herself) if her goals are con-

sistent. In my framework, since the successor-state axiom for G drops all inconsistent

goals/plans, the agent’s p-goals are always consistent, and thus if complete informa-

tion is assumed, it is always possible to repair the remaining plans. Consider another

example: assume that our agent has DoAL(a) and DoAL(b) as her (realistic) p-goals

and Γ = [a, b]. In addition, assume that she has the c-goal not to execute an action

from Γ‖ (i.e. CGoal(¬∃s′,Γ′. 〈Γ‖, now〉 → 〈Γ′, s′〉, s)); then it must be the case that

she does not have the c-goal not to execute Γ‖ along with other actions (e.g. some

501

repair action), i.e.:

¬CGoal(¬∃s′. DoAL(a‖b, now, s′), s).

Otherwise, one of DoAL(a) or DoAL(b) would have been dropped by the successor-

state axiom for G as by Propositions 6.3.1 and 6.3.16, for all executable situations, an

agent’s p-goals are always consistent with each other. Thus the agent thinks/considers

it possible that there exist a plan that can repair Γ. If the agent has complete informa-

tion, then she must know of such a plan
→
a . Also, since by Definition 7.3.2, the agent

of the “other actions” in the DoAL construct is the agent herself, this means that she

is also the agent of
→
a . If on the other hand the agent has only incomplete informa-

tion, then a repair plan may need to perform sensing actions and branch on the results.

Again, I leave this kind of conditional planning for future work.

Also, note that this rule allows the agent to procrastinate in the sense that in ad-

dition to the plan that actually repairs Γ, she is allowed to adopt and execute actions

that are unnecessary. This could be avoided by constraining the repair plan
→
a, e.g. by

requiring it to be the shortest or the least costly plan etc. I leave this for future work.

Finally, note that while SR-APL agents rely on a user-specified plan library Π, they

can achieve a goal even if such plans are not specified. Indeed the Arep rule can be used

as a first principles planner for goals that can be achieved using sequential conformant

plans. Thus, given a goal 3Φ, all the programmer needs to do to trigger the planner is

502

to add a plan of the form (3Φ : true← Φ?) to the plan library Π. Since the program

Φ? is neither executable nor final, it will eventually trigger the Arep rule, which will

make the agent adopt a sequence of actions to achieve Φ.

In my operational semantics, I want to ensure that the procedural goals in Γ are

consistent with those in the theory D before expansion of a subgoal/execution of an

action occurs; so I assume that the Aclean rule has higher priority than Asel and Astep.

We can do this by adding appropriate preconditions to the antecedent of the latter,

which I leave out for brevity.

To summarize, SR-APL is based on the committed agent theory presented in Chap-

ter 6, and thus it inherits many desirable properties therein. In particular, in SR-APL

I formalize both declarative goals and plans uniformly in the same goal hierarchy

specified by theory D. I maintain the consistency of adopted declarative and pro-

cedural goals by ensuring that there exist a path considered possible by the agent

over which all of her adopted declarative goals hold and that encodes the concur-

rent execution of all of her adopted plans, possibly along with other actions, i.e.

¬CGoal(¬∃s′. DoAL(Γ‖, now, s′), s). Whenever the agent’s goals/plans become in-

consistent due to some external interference, the successor-state axiom for G in D

drops some of the adopted goals/plans, respecting their priority, and consistency of the

goal-base is automatically restored. Moreover, in SR-APL I also have a procedural

503

goal-base Γ containing the adopted plans in D, whose sole purpose is to ensure that

the agent does not procrastinate w.r.t. her adopted plans. The set of transition rules

of SR-APL allows an SR-APL agent to select, adopt, and execute plans from the plan

library and thus serves as SR-APL’s practical reasoning component. While adopting

plans and executing actions, I use a weak consistency check, which avoids checking

if the plans in the procedural goal-base Γ are concurrently executable (without addi-

tional actions) while ensuring consistency. SR-APL also includes a repair rule that

can be used to repair plans if the agent gets stuck (1) due to external interferences, (2)

as a result of my weak consistency check, or (3) due to the existence of an adopted

declarative goal for which there is no plan specified in the plan library.

7.3.3 Execution Traces

Let me now define some useful notions of program execution in SR-APL.

Definition 7.3.8. A labeled execution trace T relative to a theory D is a (possibly

infinite) sequence of configurations 〈Γ0, s0〉
l0⇒ 〈Γ1, s1〉

l1⇒ 〈Γ2, s2〉
l2⇒ 〈Γ3, s3〉

l3⇒ · · · ,

such that 〈Γ0, s0〉 = 〈[], S0〉 is the initial configuration, and for all configurations

〈Γi, si〉 in T , the agent level transition rule li can be used to obtain 〈Γi+1, si+1〉.

Here li is one of Asel, Astep, Aexo, Aclean, and Arep in general, and in the absence

of exogenous actions, li can be one of Asel, Astep, Aclean, and Arep. I will sometime

504

suppress these labels.

Definition 7.3.9. A complete trace T relative to a theoryD is a finite labeled execution

trace relative to D, 〈Γ0, s0〉
l0⇒ · · · ln−1⇒ 〈Γn, sn〉, such that 〈Γn, sn〉 does not have an

agent level transition, i.e. 〈Γn, sn〉;.

Returning to our discussion on rationality properties, note that when arbitrary ex-

ogenous actions can occur, even the best laid plans can fail. So here I only consider

the case where exogenous actions are absent. I model this using the following axiom,

which I call NoExo:

Axiom 7.3.10 (NoExo).

∀a. ¬Exo(a).

I could have considered exogenous actions, but in that case I would have to complicate

the framework further, e.g. by assuming a fair environment that gives a chance to the

agent to perform actions. Moreover, it is not obvious what rational behavior means in

such contexts. I leave this for future work.

For our blocks world example, I can show that in the absence of external interfer-

ences, my SR-APL agent AgtBW for domain DBW will not adopt inconsistent plans

as seen in Section 7.2 (as rule Asel ensures that all adopted plans can be executed con-

currently) and will in fact achieve all her goals, i.e. have a green and non-yellow tower

505

and a blue and non-red tower built. Thus, we have that:

Proposition 7.3.11.

(a). There exists a complete trace T relative to DBW ∪ {NoExo} for our agent

〈DBW ∪ {NoExo},ΠBW 〉.

(b). For all such complete traces T = 〈Γ0, s0〉 ⇒ 〈Γ1, s1〉 ⇒ · · · ⇒ 〈Γn, sn〉, I have:

DBW ∪ {NoExo} |= Final(Γ‖n, sn) ∧ TowerGȲ (sn) ∧ TowerBR̄(sn).

(c). There are no infinite traces relative to DBW ∪ {NoExo}.

Proof Sketch. (a). This can be proven by constructing a trace and proving that it is

indeed a valid trace of our blocks world agent 〈DBW ∪ {NoExo},ΠBW 〉. The trace T

506

is as follows:

〈[], S0〉
Asel⇒

〈[stack(BG, BR)], do(A0, S0)〉 Asel⇒

〈[stack(BG, BR), stack(BB, BY)], do(A1, S1)〉 Astep⇒

〈[stack(BB, BY)], do(A2, S2)〉 Astep⇒

〈[], do(A3, S3)〉,

where: A0 = adoptRelTo(DoAL(stack(BG, BR)),3TowerGȲ),

A1 = adoptRelTo(DoAL(stack(BB, BY)),3TowerBR̄),

A2 = stack(BG, BR), and

A3 = stack(BB, BY),

and S1 = do(A0, S0), S2 = do(A1, S1), etc. The rest of the proof concern with show-

ing that T is indeed a proper trace, i.e. that each of these agent level transitions is

possible in the corresponding situation.

(b). This can be proven by constructing an execution tree for our blocks world agent

〈DBW∪{NoExo},ΠBW 〉. It can be shown that there are only six execution paths/traces

in the tree, all of which involve adopting (via the Asel rule) the two plans/actions

stack(BG, BR) and stack(BB, BY) in response to the two achievement goals in the

goal hierarchy, and executing these plans (via Astep), since executing these two plans

507

is the only way to achieve AgtBW ’s goals. These different traces reflect the order in

which each goal is handled and each adopted plan is executed. Any other execution

paths are ruled out since the conditions in the antecedent of any other candidate rule is

false in the corresponding situation. For example, it can be shown that a trace where

the agent tries to execute a plan before adopting it, or one where the agent tries to

apply the Aexo, the Aclean, or the Arep rule in any situation is not a valid trace since the

corresponding transition rules are not applicable given the situation.

Clearly in all these six cases, the agent’s goals of building the two towers are

achieved, since all of them involve executing the (executable) stack(BB, BY) and the

stack(BG, BR) actions in an executable situation.

(c). Follows from the discussion above.

Thus when exogenous actions cannot occur, any execution of our SR-APL blocks

world agent AgtBW terminates and achieves all her goals.

A similar result can be shown for our 3 blocks tower example:

Proposition 7.3.12.

(a). There exists a complete trace T relative to D3T
BW ∪ {NoExo} for our agent

〈D3T
BW ∪ {NoExo},Π3T

BW 〉.

(b). For all such complete traces T = 〈Γ0, s0〉 ⇒ 〈Γ1, s1〉 ⇒ · · · ⇒ 〈Γn, sn〉, I have:

508

D3T
BW ∪ {NoExo} |= Final(Γ‖n, sn) ∧ 3Tower(sn).

(c). There are no infinite traces relative to D3T
BW ∪ {NoExo}.

Proof Sketch. (a). This can be proven by constructing a trace and proving that it is

indeed a valid trace of our blocks world agent 〈D3T
BW ∪ {NoExo},Π3T

BW 〉. The trace T

is as follows:

〈[], S0〉
Asel⇒

〈[σ1], do(A0, S0)〉 Astep⇒

〈[σ2], do(A1, S1)〉 Asel⇒

〈[σ2, stack(BG, BR)], do(A2, S2)〉 Astep⇒

〈[σ2], do(A3, S3)〉 Astep⇒

〈[], do(A4, S4)〉,

where: σ1
.
= adoptRelTo(3TowerGȲ ,DoAL(σ2));σ2,

σ2
.
= TowerGȲ ?; stack(BY , BG), and

509

A0 = adoptRelTo(DoAL(σ1),33Tower),

A1 = adoptRelTo(3TowerGȲ ,DoAL(σ2)),

A2 = adoptRelTo(DoAL(stack(BG, BR)),3TowerGȲ),

A3 = stack(BG, BR),

A4 = stack(BY , BG).

and S1 = do(A0, S0), S2 = do(A1, S1), etc. The rest of the proof concern with show-

ing that T is indeed a proper trace, i.e. that each of these agent level transitions is

possible in the corresponding situation.

(b). Again, this can be proven by constructing an execution tree for our blocks world

agent 〈D3T
BW ∪ {NoExo},Π3T

BW 〉. It can be shown that there are only two execution

paths/traces in the tree; one is given in (a), while the other trace involves fulfilling the

subgoal 3TowerGȲ using a different substitution for its plan, namely stack(BG, BB).

Note that although at some point in each trace, the agent will have two plans in the

procedural goal-base, the adopted plans must be executed in a particular order in both

traces as one of them (i.e. σ2) cannot be executed before the execution of the other (in

this case, either stack(BG, BR) or stack(BG, BB)) since it must wait for the parent

goal of the latter to be fulfilled. Any other execution paths are ruled out since the

conditions in the antecedent of any other candidate rule is false in the corresponding

510

situation. For example, it can be shown that a trace where the agent tries to execute

a plan before adopting it, or one where the agent tries to apply the Aexo, the Aclean,

or the Arep rule in any situation is not a valid trace since the corresponding transition

rules are not applicable given the situation.

Clearly in both cases, the agent’s goals of building a 3 tower is achieved, since both

involve executing the (executable) stack(BG, b) (where b is either BR or BB) and the

stack(BY , BG) actions in an executable situation.

(c). Follows from the discussion above.

7.4 Rationality of SR-APL Agents

Let us now return to the general case. I can show that several rationality properties

hold for arbitrary SR-APL agents (again I only consider the cases where exogenous

actions do not occur). First of all, for all domains D that are part of an SR-APL agent,

in every executable situation the agent’s knowledge and c-goals/intentions as specified

by D must be consistent:61

Proposition 7.4.1 (Consistency of Knowledge and CGoals).

D |= ∀s. Executable(s) ⊃ ¬Know(False, s) ∧ ¬CGoal(False, s).

61This follows independently from the underlying agent theoryDSG
CAgt as discussed/shown in Chapter

3 and 6.

511

Proof. ¬Know(False, s) follows from the facts that I am using a possible worlds se-

mantics for knowledge, that K is initially constrained to be reflexive (and thus serial),

and that K continues to be reflexive after any executable sequence of actions since this

is preserved by the successor-state axiom for K (as discussed in Chapter 3). The proof

for ¬CGoal(False, s) on the other hand is as that of Proposition 6.3.1.

Before proceeding further, let me prove a useful lemma:

Lemma 7.4.2 (Situations on a Trace are Executable).

If T = 〈Γ0, s0〉
l0⇒ 〈Γ1, s1〉

l1⇒ · · · is a (possibly infinite) trace of an SR-APL agent

relative to a theoryD, then for all i such that i ≥ 0, we have thatD |= Executable(si).

Proof. (By induction in s) For the base case, by Axiom 3.2.2 and Lemma 3.5.17, it

follows that Executable(S0). For the inductive step, fix Si and assume that Executab-

le(Si). I need to show that the application of any agent-level transition rule that changes

the situation to do(A, Si) for some action A preserves the executability of the updated

situation, i.e. that Executable(do(A, Si)). By the inductive hypothesis and Definition

3.3.1, this is the case if Poss(A, Si) holds. Note that there are four such transition rules

(that changes the situation), namely all but rule Aclean. In all these cases, the antecedent

of the rule ensures that Poss(A, Si) (for Astep, this follows from the antecedent that

D |= Know(〈σ, now〉 → 〈σ′, do(A, now)〉, Si), Axiom 3.6.2, the reflexivity of K, i.e.

512

Axiom 3.4.2, and by induction on the structure of the program σ). It thus follows that

Executable(do(A, Si)).

Secondly, I can show that the procedural goals in Γ and the declarative and pro-

cedural goals in the theory D ∪ {NoExo} remain consistent. Let’s first define the

following notion of consistency:

Definition 7.4.3 (Consistency of goals in Γ and D in situation s).

The procedural goals in Γ are consistent with those in the theory D in situation s in

a configuration 〈Γ, s〉 if and only if for all σ such that Member(σ,Γ), we have that

D |= PrimCGoal(DoAL(σ), s).

Note that the above definition allows additional declarative goals in theory D in situ-

ation s that are not in Γ; however, this is not a problem since it is possible that these

goals have not yet been handled in s.

Also, let’s define DExo as follows:

Definition 7.4.4.

DExo
def
= D ∪ {NoExo}.

Furthermore, for this I will also need domains that do not involve actions that are

knowledge-producing for the agent agt under consideration. I model this using the

following axiom which I call NoKnowProdAct:

513

Axiom 7.4.5 (NoKnowProdAct).

∀a. ¬KnowProdAct(agt, a).

Finally, let’s define DExo,KPA as follows:

Definition 7.4.6.

DExo,KPA
def
= DExo ∪ {NoKnowProdAct}.

Then we have that:

Proposition 7.4.7 (Consistency of Γ and DExo,KPA).

If T = 〈Γ0, s0〉
l0⇒ 〈Γ1, s1〉

l1⇒ · · · is a (possibly infinite) trace of an SR-APL agent

relative to a theory DExo,KPA such that for all Astep transitions 〈Γj−1, sj−1〉
Astep⇒

〈Γj, do(aj−1, sj−1)〉 on T and σ1, σ2, if σ1 ∈ Γj−1 and σ2 ∈ Γj−1 and σ1 6= σ2, then

DExo,KPA |= Know(∃σ′1. 〈σ1, now〉 → 〈σ′1, do(aj−1, now)〉, sj−1) ≡ Know(¬∃σ′2.

〈σ2, now〉 → 〈σ′2, do(aj−1, now〉, sj−1):

then for all i such that i ≥ 0, we have that si+1 = do(a, si) for some a, and for all con-

figurations 〈Γi, si〉, the procedural goals in Γi are consistent with those in the theory

DExo,KPA in si.

Proof. (By induction on n, where n is the length of a partial trace of T) Fix an arbi-

trary partial trace of T of length n. First consider the base case where n = 1, i.e. where

514

there is only one configuration in the partial trace. Note that, it follows from Definition

7.3.8 that all traces of length 1 contain only the initial configuration 〈Γ0, S0〉, and Γ0

is of the form []. Since there are no plans in Γ0 that agent intend to execute (possi-

bly with other actions) next, and there is just one situation S0 in the partial trace, the

consequent thus trivially follows from Definition 7.4.3.

For the inductive step, assume that the proposition holds for all partial traces of

length n = M. I need to show that this is the case for all partial traces of length

n = M + 1, i.e. (given the inductive hypothesis) that for configuration 〈ΓM , SM〉 in

the partial trace, the procedural goals in ΓM are consistent with those in the theory

DExo,KPA in SM and that SM = do(A, SM−1) for some A. Note that by the transition

rules in Table 7.3, the only way the situation in the M + 1th configuration (i.e. SM) re-

mains unchanged is via the application of the Aclean rule. But from this, the antecedent

of the Aclean rule, and the inductive hypothesis, this is impossible as by the inductive

hypothesis there are no plans σ in ΓM−1 for which the agent does not have a primary

c-goal in SM−1 (and by Definition 4.2.12, the p-goal in SM−1) that DoAL(σ). Thus, in

the absence of exogenous actions, SM is of the form do(A, SM−1) for some action A;

also, only three of the agent-level transition rules can be applied, namely Asel, Astep,

and Arep. I will now show that the consistency between ΓM andDExo,KPA is preserved

for the application of all these rules.

515

The Case for Asel: The application of this rule changes the situation to SM =

do(adoptRelTo(DoAL(σ),3Φ), SM−1) for some σ and Φ, and also adds the plan σ to

ΓM . Since by Lemma 7.4.2, SM is an executable situation, by Definition 3.3.1, Axiom

6.2.4, and Proposition 6.3.31, the newly adopted goal DoAL(σ) is indeed a primary

c-goal at some level in SM . Thus I just need to show that the goals corresponding to

the previously adopted plans in ΓM are retained in DExo,KPA in SM , i.e. those that

are above or below the adopted level n, where AdoptedLevel(3Φ, n, SM) (note that

I do not need to consider level n itself, since by Axiom 6.2.6 and Definition 6.2.10,

any previously adopted plan in ΓM that is a p-goal at level n in SM is also a p-goal at

level n − 1 in SM). To this end, note that since by the antecedent of the Asel rule, the

adoptRelTo(DoAL(σ),3Φ) action is possible in SM−1, it follows from Axiom 6.2.4

that the agent does not intend in SM−1 not to execute DoAL(σ) next. Thus there is a

path P1 starting with some situation SP1 that is in G∩ in SM−1 and over which the next

action performed is the adoptRelTo(DoAL(σ),3Φ) action, and DoAL(σ) holds over

P2, which is the suffix of P1 that starts with SP2 = do(adoptRelTo(DoAL(σ),3Φ), SP1) :

G∩(P1, SM−1) ∧ Starts(P1, SP1) ∧ SP2 = do(adoptRelTo(DoAL(σ),3Φ), SP1)

∧ Suffix(P2, P1, SP2) ∧ ∃s. OnPath(P2, s) ∧ DoAL(σ, SP2 , s).

(7.1)

Now assume that there is a σ∗ in ΓM−1 and DoAL(σ∗) is a primary c-goal (and thus by

definition 4.2.12, a p-goal) at some level H that has higher priority than the adopted

516

level n (i.e. H < n) in SM−1, i.e.:

σ∗ ∈ ΓM−1 and D |= PrimCGoal(DoAL(σ∗), H, SM−1) ∧H < n. (asm-1)

I will first prove that the progression of DoAL(σ∗) after the adoptRelTo(DoAL(σ),3Φ)

action happens in SM−1, i.e. DoAL(σ∗) itself, is still a p-goal (and by Lemma 7.4.2

and Corollary 6.3.20, a primary c-goal) at level H after this action occurs. Note that,

by (7.1) and Proposition 6.3.14(b), P1 must also be G-accessible at H in SM−1:

G(P1, H, SM−1). (7.2)

Since P1 is a path, by Corollary 3.5.41 and Lemma 3.5.29 it follows that the adoptRel−

To(DoAL(σ),3Φ) action is executable in SP1 :

Poss(adoptRelTo(DoAL(σ),3Φ), SP1). (7.3)

Again, by (7.1) and Lemma 6.3.8, it follows that:

K(SP1 , SM−1). (7.4)

Now, from (7.4), (7.3), Axiom 3.4.10, and the fact that the adoptRelTo(DoAL(σ),3Φ)

action is not a knowledge-producing action, it follows that:

K(do(adoptRelTo(DoAL(σ),3Φ), SP1), SM).

517

Then, after the adoptRelTo(DoAL(σ),3Φ) action happens, we can see that by this,

(7.1), Axiom 6.2.6, and Definitions 6.2.10, 6.2.8, and 4.3.4, P2 is retained in the G-

relation at H in SM :

G(P2, H, SM). (7.5)

Also, since by assumption (asm-1) the agent has the p-goal that DoAL(σ∗) at level H

in SM−1, there are no paths that are G-accessible at H in SM−1 over which DoAL(σ∗)

does not hold, and thus by the SSA for G (i.e. Axiom 6.2.6, and Definitions 6.2.10,

6.2.8, and 4.3.4), none in SM either (over which the progression of DoAL(σ∗) after

adoptRelTo(DoAL(σ),3Φ) happens in SM−1, i.e. DoAL(σ∗) itself, does not hold).

From this, (7.5), and Definition 4.2.1, it follows that the agent has the p-goal (and

by Lemma 7.4.2 and Corollary 6.3.20, the primary c-goal) at H in do(adoptRelTo(

DoAL(σ),3Φ), SM−1) that DoAL(σ∗). Thus given assumption (asm-1) (i.e. that H <

n), the agent retains the plan DoAL(σ∗) at H in SM .

Similarly, it can be shown that if there is a σ′ in ΓM−1 and DoAL(σ′) is a primary

c-goal at some level L that has lower priority than the adopted level n (i.e. L > n) in

SM−1, then the agent will retain this primary c-goal at level L + 1 in SM (this is easy

to see by Axiom 6.2.6 and Definition 6.2.10). Thus the consistency between ΓM and

DExo,KPA is maintained w.r.t. the Asel rule.

The Case for Astep: From the antecedent of the rule, it follows that DExo,KPA |=

518

Know(〈σ, now〉 → 〈σ′, do(A, now)〉, SM−1), for some σ ∈ ΓM−1, σ
′, and A. From

this, Axiom 3.6.2, the reflexivity of K (i.e. Axiom 3.4.2), and by induction on the

structure of the program σ, it can be shown that:

Poss(A, SM−1). (7.6)

Moreover, it follows from the antecedent that there is a level N such that:

PGoal(DoAL(σ), N, SM−1), (7.7)

¬CGoal(¬∃s′. Do(A, now, s′), SM−1). (7.8)

Now, note that since A must come from a plan σ in ΓM−1, it must be of a form allowed

in the SR-APL plan language in Table 7.1, and thus must be either an adoptRelTo

action or a regular action. If A is an adoptRelTo action, then by this fact and (7.6),

the proof is similar to the Asel case (with the exception at level N ; since now the

adoptRelTo action is coming from the plan σ at level N , the progression of DoAL(σ)

after A happens in SM−1 in this case is DoAL(σ′); but this is accounted for in the

updated ΓM in the consequent of the Astep rule, and thus does not cause a problem).

Otherwise, A must be a regular action. Now, from (7.8), it follows that there is a path

P1 starting with some situation SP1 that is in the G∩ relation in SM−1 and over which

A happens next. Let’s call the suffix of P1 starting in do(A, SP1), P2. Thus:

Starts(P1, SP1) ∧G∩(P1, SM−1) ∧ Suffix(P2, P1, do(A, SP1)). (7.9)

519

Since P1 is a path, by Corollary 3.5.41 and Lemma 3.5.29 it follows that A is exe-

cutable in SP1 :

Poss(A, SP1). (7.10)

By (7.9) and Lemma 6.3.8, it follows that:

K(SP1 , SM−1). (7.11)

From (7.11), (7.10), Axiom 3.4.10, and the fact that A is not a knowledge producing

action, it follows that:

K(do(A, SP1), SM). (7.12)

Again, by (7.9), Lemma 7.4.2, and Proposition 6.3.14(b), it follows that:

∀n. G(P1, n, SM−1). (7.13)

Now, assume that σ∗ is a plan in ΓM−1. By the inductive hypothesis, there is a

level H such that PrimCGoal(DoAL(σ∗), H, SM−1). I will show that the progression

of DoAL(σ∗) afterA happens in SM−1 is retained as a p-goal (and by Lemma 7.4.2 and

Corollary 6.3.20, a primary c-goal) at level H . Note that the progression of DoAL(σ∗)

at all levels except at level N is simply DoAL(σ∗) since the action A comes from

the plan at level N (note that it is not possible for plans at different priority levels

to have the same first action A due to the restriction on T that for all Astep transitions

520

〈Γj−1, sj−1〉
Astep⇒ 〈Γj, do(aj−1, sj−1)〉 on T and σ1, σ2, if σ1 ∈ Γj−1 and σ2 ∈ Γj−1 and

σ1 6= σ2, then DExo,KPA |= Know(∃σ′1. 〈σ1, now〉 → 〈σ′1, do(aj−1, now)〉, sj−1) ≡

Know(¬∃σ′2. 〈σ2, now〉 → 〈σ′2, do(aj−1, now〉, sj−1)). On the other hand, the pro-

gression of DoAL(σ∗) at level N , i.e. that of DoAL(σ), is DoAL(σ′) as the action A

indeed comes from σ. But this does not pose a problem in the consistency between ΓM

and the p-goal at level N in do(A, SM−1) since this is accounted for in ΓM (as we can

see from the consequent of rule Astep).

Now, by Axiom 6.2.6 and Definitions 6.2.7, 6.2.8, and 4.3.4, to show that the

progression of DoAL(σ∗) is still a p-goal (and thus by Lemma 7.4.2 and Corollary

6.3.20, a primary c-goal) at level H , it suffices to show that:

• if H = 0 then ∃p. ProgressedCA(p,H,A, SM−1), and

• if H > 0 then ∃p. G∩(p,H − 1, do(A, SM−1)) ∧ Progressed(p,H,A, SM−1).

Thus the else clause in Definition 6.2.7 is never selected and as such no new paths are

added to the updated G relation at level H . Then the paths in G at level H in SM will

be those obtained by progressing the paths in G at H in SM−1 after A occurs. Since

all paths in G at H in SM satisfy DoAL(σ∗), the progression of DoAL(σ∗) will be

a p-goal at level H in SM by Definition 4.2.1. I will now show that P2 is indeed a

path that satisfies the above conditions for both H = 0 and H > 0. First consider the

521

case where H = 0; by (7.13), (7.12), (7.9), and Definitions 6.2.8 and 4.3.4, it follows

that ProgressedCA(P2, 0, A, SM−1). Thus by Axiom 6.2.6 and Definition 6.2.7, we also

have:

G(P2, 0, do(A, SM−1)). (7.14)

Next consider the case where H > 0. I will prove this by induction on level n.

Note that by (7.13), (7.9), and Definition 4.3.4, it follows that:

∀n. Progressed(P2, n, A, SM−1). (7.15)

Now, consider the base case, where n = 1; By (7.14), Corollary 6.3.5, and Axiom

4.2.7, it follows that G∩(P2, 0, do(A, SM−1)). The base case thus follows from this

and (7.15). For the inductive step, fix level n = L, where L ≥ 1, and assume that:

G∩(P2, L− 1, do(A, SM−1)) ∧ Progressed(P2, L, A, SM−1). (7.16)

I need to show that:

G∩(P2, L, do(A, SM−1)) ∧ Progressed(P2, L+ 1, A, SM−1).

From (7.16), Axiom 6.2.6, and Definition 6.2.7, it follows thatG(P2, L, do(A, SM−1)).

Moreover, from this, (7.16), Corollary 6.3.5, and Axiom 4.2.7, it follows that G∩(P2,

L, do(A, SM−1)). The inductive case then follows from this and (7.15). It thus follows

that the progression of all such DoAL(σ∗) plans are p-goals (and a primary c-goal) at

level H in the theory DExo,KPA in do(A, SM−1).

522

The Case for Arep: This case is similar to the Asel case, since in this case, the action is

an adopt action that the agent knows is possible in SM−1.

Thus in the absence of exogenous actions, the Aclean transition rule is never used

since the agent’s plans in Γ and in the theory DExo,KPA always remain consistent,

provided that whenever the Astep rule is used, the agent does not choose an action

that is a common prefix of two different plans.62 Note that, if the agent is allowed

to choose an action from such a plan, then it is possible that the agent’s procedural

goal-base Γ and theory DExo,KPA may become “inconsistent” (i.e. out of sync). Con-

sider the following example. Suppose that Γ = {[a; b], [a; c]} and DExo,KPA entails

that PrimCGoal(DoAL([a; b]), s) and PrimCGoal(DoAL([a; c]), s), and thus Γ and

DExo,KPA are consistent in s. Now suppose that the agent performs the action a via

the Astep rule to get Γ′ = {[b], [a; c]}. Note that, the progression by a of DoAL([a; b])

is DoAL(b | [a; b]), since the action a could have been produced by the outside action

part of DoAL. Similarly, the progression by a of DoAL([a; c]) is DoAL(c | [a; c]).

Then by Definition 7.4.3, to show that the agent’s plans in Γ′ and the theory DExo,KPA

are consistent in do(a, s), we need to show that DExo,KPA entails that:

1. DoAL(b | [a; b])(p) ⊃ DoAL(b)(p), and

62Recall from Table 7.3 that applications of Aclean do not change the situation.

523

2. DoAL(c | [a; c])(p) ⊃ DoAL([a; c])(p).

While the former holds, the latter does not (since a path over which c happens and a

never happens is one that satisfies DoAL(c | [a; c]) but not DoAL([a; c])(p)). The root

cause of this problem is that the Astep rule treats the members of the procedural goal-

base Γ as concurrently running plans and thus progresses only one plan when an action

happens, while in the declarative side the theory DExo,KPA allows actions to be shared

by multiple DoAL goals and thus progresses all of them when the action happens. I

could have avoided this issue, e.g. by renaming each instance of an action to include

its thread number, etc. I leave this for future work.

Also, note that for this proposition, I assume that the actions involved are not

knowledge-producing for the agent. When such knowledge-producing actions are al-

lowed, the agent may learn that one of her plans has become inconsistent with her other

(higher priority) plans; recall that in the committed agent framework, such inconsistent

plans (i.e. DoAL goals in the theory D) are automatically dropped to maintain consis-

tency. In that case, Γ and DExo,KPA will become “inconsistent”. One could modify

the Asel rule to ensure that intended plans are consistent in all K-alternatives. I leave

this for future work. Finally, I conjecture that given in addition that the trace T is com-

plete, when exogenous actions or actions that are knowledge-producing for the agent

are allowed, if si = si+1, then there exists j such that 0 < i < j < n (where n is the

524

length of T) and the goals in Γj are consistent with those in the theoryD in sj . That is,

whenever there is some procedural goal in Γi that is not a goal w.r.t. the theory D, the

Aclean rule will remove it from Γi, and eventually consistency will be restored. Note

that, the potential scenario where the agent must clear/drop an infinite set of goals is

ruled out since the trace T is assumed to be complete, and thus by Definition 7.3.9,

T is required to be a finite sequence whose last configuration does not have any agent

level transitions. I leave proving this conjecture for future work.

It follows from Proposition 7.4.7 that in all such configurations 〈Γ, s〉, the agent

intends to execute the plans in Γ concurrently starting in s, possibly with other actions:

Corollary 7.4.8 (Γ‖ is Intended).

If T = 〈Γ0, s0〉
l0⇒ 〈Γ1, s1〉

l1⇒ · · · is a (possibly infinite) trace of an SR-APL agent

relative to a theory DExo,KPA such that for all Astep transitions 〈Γj−1, sj−1〉
Astep⇒

〈Γj, do(aj−1, sj−1)〉 on T and σ1, σ2, if σ1 ∈ Γj−1 and σ2 ∈ Γj−1 and σ1 6= σ2, then

DExo,KPA |= Know(∃σ′1. 〈σ1, now〉 → 〈σ′1, do(aj−1, now)〉, sj−1) ≡ Know(¬∃σ′2.

〈σ2, now〉 → 〈σ′2, do(aj−1, now〉, sj−1):

then for all i such that i ≥ 0, we have that:

DExo,KPA |= CGoal(∃s′. DoAL(Γ
‖
i , now, s

′), si).

Proof. The proof is straightforward from Proposition 7.4.7 and Definitions 7.3.3, 7.4.3,

7.3.2, and 4.2.12.

525

Finally, my agents evolve in a rational way:

Proposition 7.4.9 (Rationality of Actions in a Trace).

If T = 〈Γ0, s0〉
l0⇒ 〈Γ1, s1〉

l1⇒ · · · is a (possibly infinite) trace of an SR-APL agent

relative to a theory DExo, then for all i such that i > 0 and for all a such that si =

do(a, si−1), we have:

(a). DExo |= ¬CGoal(¬∃s′. Do(a, now, s′), si−1).

(b). If li−1 = Astep then: there exists σ, σ′, such that Member(σ,Γi−1),

DExo |= Know(〈σ, now〉 → 〈σ′, do(a, now)〉, si−1), and

DExo |= CGoal(∃s′. DoAL(σ, now, s′), si−1).

(c). DExo |= ∀φ, ψ, n. (a = adoptRelTo(ψ, φ) ∨ a = adopt(ψ, n)) ⊃

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(a, s′)) ∧ ψ(p′), si−1).

Proof. Fix action A and situation Si−1.

(a). First, note that since the transition involves an action, in the absence of exogenous

actions, only three of the agent-level transition rules can be applied, namely Asel,Astep,

and Arep. I will thus prove this by showing that the antecedents of all these rules ensure

that the agent does not intend not to execute A next. Let’s consider Asel rule first. In

this case, A = adoptRelTo(ψ, φ) for some goals ψ and φ. Also, from the antecedent

of the rule, it follows that Poss(A, Si−1). The consequent follows from this and Axiom

526

6.2.4 (and Definitions 3.5.16, 3.6.4, and 3.6.3, and Axioms 3.6.2 and 3.6.1). For the

Astep rule, the consequent trivially follows from the antecedent of this rule. Finally,

the proof for the Arep rule case is similar to that for the Asel rule.

(b). Since li−1 = Astep, if follows from the antecedent of the rule that there is a level n

and plans σ, σ′, such that:

Member(σ,Γi−1), (7.17)

DExo |= Know(〈σ, now〉 → 〈σ′, do(A, now)〉, Si−1), and (7.18)

DExo |= PGoal(DoAL(σ), n, Si−1). (7.19)

From (7.19), Lemma 7.4.2, and Proposition 6.3.15, it follows that CGoal(DoAL(σ),

Si−1). The proposition follows from this, (7.17), and (7.18).

(c). Since exogenous actions are not possible and a is either an adoptRelTo or an

adopt action, we only need to consider three agent-level transition rules, namely Asel,

Arep, and Astep (since SR-APL’s plan language includes adoptRelTo actions). For the

first two type of rules, it follows from the antecedent of the rule that Poss(A, Si−1)

holds. Moreover, for the Astep rule, by the antecedent, it follows that there is a σ

in Γi−1 such that DExo |= Know(〈σ, now〉 → 〈σ′, do(A, now)〉, Si−1). From this,

Axiom 3.6.2, the reflexivity of K, i.e. Axiom 3.4.2, and by induction on the structure

of the program σ, it can be shown that Poss(A, Si−1) holds for this case as well. The

527

proposition then follows from this and Axioms 6.2.4 and 6.2.3.

This states that SR-APL is sound in the sense that any trace produced by the APL

semantics is consistent with the agent’s chosen goals. To be precise, (a) if an SR-APL

agent performs the action a in situation si−1, then it must be the case that she does not

have the intention not to execute a in si−1. Moreover, (b) if a is performed via Astep,

then a is indeed intended in si−1 in the sense that she has the intention to execute some

plan σ possibly along with some other actions next, and she knows that σ can execute

a next. Finally, (c) if a is the action of adopting a subgoal ψ w.r.t. a supergoal φ or

that of adopting a goal ψ at some level n (performed via Asel, Arep, or Astep), then the

agent does not have the c-goal in si−1 not to bring about ψ next.

These properties thus show that in the absence of exogenous actions, in all possible

executions an SR-APL agent behaves rationally in the sense that her mental states (i.e.

her knowledge and adopted declarative and procedural goals) always remain consistent

and that any action performed by the agent is consistent with her intentions.

7.5 Conclusion and Future Work

Based on the Committed Agent variant of my rich theory of goals, in this chapter I de-

veloped a specification of an rational BDI agent programming framework that handles

prioritized goals, provides semantics for goal dynamics and goal-subgoal dependen-

528

cies, and maintains the consistency of adopted declarative and procedural goals. I also

showed that an agent specified in this language satisfies some strong rationality proper-

ties. While doing this, I addressed some fundamental questions about rational agency.

I model an agent’s concurrent commitments by incorporating the DoAL construct in

her adopted plans, which allows her to be open-ended towards future commitments to

plans, while using a procedural goal-base Γ to prevent procrastination. I formalized a

weak notion of consistency between goals and plans that does not require the agent to

commit to a means to achieve all adopted goals while checking for consistency.

In addition to the APLs discussed in Chapter 2, there has been work that focuses on

maintaining consistency of a set of concurrent intentions. For example, Clement et al.

[33, 34] argue that agents should be able to reason about abstract HTN plans and their

interactions before they are fully refined. They propose a method for deriving summary

information (i.e. external preconditions and effects) of abstract plans and discuss how

this information can be used to coordinate the interactions of plans at different levels

of abstractions. Thangarajah et al. [221] use such summary information to detect

and resolve conflicts between goals at run time. Horty and Pollack [104] propose a

decision theoretic approach to compute the utility of adopting new (non-hierarchical)

plans, given a set of already adopted plans. While some of these approaches can be

integrated in APLs (e.g. [221]), they leave out many aspects of rationality (e.g. they do

529

not say what the agent should do if external interference makes two of her intentions

permanently incompatible), and do not deal with declarative goals.

In this chapter, I focused on developing an expressive agent programming frame-

work that yields a rational/robust agent without worrying about tractability. Thus my

framework is a specification and model of an ideal APL rather than a practical APL.

The idea behind this exercise is to bring current BDI agent programming languages a

step closer towards rational agent theories. As discussed, there are a few restrictions

to this framework. For instance, recall that to show our otherwise clean consistency

result, I had to limit to non-knowledge-producing actions; also I assumed that plans

do not share actions. I leave figuring out how to resolve these issues for future work.

In the future, I would also like to investigate how one can restrict SR-APL to ensure

decidability/tractability.

530

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, I have presented two frameworks for specifying prioritized goals of

agents. In developing these frameworks, I have made contributions that can be classi-

fied into five categories: setting the stage by formalizing infinite paths within the sit-

uation calculus, specifying prioritized goals and goal dynamics for optimizing agents,

modeling prioritized goals and goal dynamics for committed agents, capturing the de-

pendencies between goals and their subgoals, and exhibiting the applicability of my

approach by developing the BDI agent programming language SR-APL.

531

Formalizing Paths in the Situation Calculus

I extended Reiter’s formalization of the situation calculus [178] by incorporating a new

sort of infinite paths in this language. I gave a sound and complete axiomatization of

paths and proved many desirable properties about them. The utility of adding paths as

a new sort is twofold: it allows for first-order quantifications over paths; moreover I

can now have arbitrary temporally extended goals, which can be evaluated over these

infinite paths. This sets the stage for my frameworks for prioritized goals and subgoals.

Specifying Optimizing Agents

On top of this extended language, which is further enriched with Scherl and Levesque’s

Knowledge modality [188], I presented a framework for modeling agent’ prioritized

goals. My framework supports rich temporally extended desires, which are allowed

to be mutually contradictory. It specifies how these desires/goals change when ac-

tions/events occur, including goal adoption, goal drop, and exogenous actions. Given

an arbitrary situation and the prioritized desires of an agent in that situation, I have a

method for deriving the consistent set of chosen goals or intentions of the agent for

that situation. This method along with the proposed dynamics of desires ensure that

agents specified using this framework always optimize their chosen goals. In partic-

ular, my agents behave like Bratman’s intentional agents that always trigger the filter

532

override mechanism in an attempt to constantly optimize their chosen goals. Thus

agents specified using this optimizing agent framework are very idealized.

Among other intuitively desirable properties, I showed that my agents’ chosen

goals are consistent, realistic, and possible, that they are aware of their goals, that their

(achievement) chosen goals persist, and that their goals properly evolve as a result of

various actions (including external events). I also modeled an online travel planning

example and proved interesting properties of this domain.

Specifying Committed Agents

Optimizing agents are quite idealized and costly. Real-world agents have limited re-

sources. To deal with this, I proposed another framework where agents are strongly

committed to their chosen goals. For this, I revised the optimizing agent framework

essentially by forcing the agent to drop desires when they are no longer chosen. An

agent specified using this framework drops a desire when the desire becomes impos-

sible, or when it becomes inconsistent with other higher priority goals. Moreover, the

agent is not allowed to adopt a desire if it is inconsistent with her current chosen goals.

Such a framework, although still does not duly formalize Bratman’s original notion

of intentions — that agents should be strongly committed to their intentions, but must

also be able to revise them under certain (rare) conditions, in particular when doing so

533

increase their utility considerably — is applicable for the real-world. In particular, in

contrast to the computationally demanding optimizing agent framework, the commit-

ted agent framework is more suitable as a foundation for a BDI agent programming

language, albeit at the cost of rationality.

Modeling Goal-Subgoal Dependencies

I extended both these frameworks to include subgoals and their dynamics. In particu-

lar, I model subgoal change in a way that properly maintains the dependencies between

goals and their parent goals. I showed that when a goal is dropped, all of its subgoals

(and theirs, etc.) are also dropped. Moreover, when a chosen goal becomes impossi-

ble, all of its subgoals (and theirs, etc.) are also dropped from the agent’s set of chosen

goals. To the best of my knowledge, this is the first and the only account found in the

literature that uses a semantic approach to capture this relationship between goals and

subgoals.

Applicability of the Proposed Frameworks

In order to demonstrate the feasibility of using my prioritized goal frameworks to spec-

ify multiagent systems, I developed a model for a simple rational agent programming

language, SR-APL, that combines the committed agent framework, work on BDI agent

534

programming languages with declarative goals, and the situation calculus based Con-

Golog agent programming language [51]. I showed that agents specified using this

language behaves rationally, particularly when effects of actions are irreversible or

when time sensitive goals are involved. SR-APL thus contributes to bridging the gap

between rational agent theories and agent programming languages with declarative

goals.

8.2 Future Work

The work presented here can be extended in many ways. In my theory of prioritized

goals, I have proposed two frameworks that to some extent lies at the two extremes

of the “resource-boundedness vs. tractability” spectrum – the optimizing agent frame-

work formalizes ideally rational agents that always reconsider their intentions; on the

other hand, the committed agent framework models over-committed agents that never

give up their intentions even if opportunities to commit to higher priority goals arise,

and thus effectively minimizing their reasoning costs w.r.t. intention reconsideration.

Hence it would be interesting to work on a hybrid account of intention reconsideration

where the agent is strongly committed to her chosen goals but where she reconsiders

some of her prioritized goals under specific conditions.

I would like to work on a more complete set of AGM-like postulates for priori-

535

tized goals and their dynamics. These postulates will serve as a specification for the

relationship between an agent’s knowledge and her prioritized goals, and for the up-

date/revision and contraction of her prioritized goals.

For both optimizing and committed agent framework, I discussed some properties

that show when exactly an agent’s chosen achievement goals can be expected to persist.

It would be nice to generalize these persistence properties and identify the conditions

under which arbitrary temporally extended goals persist.

I have a method for dropping a subgoal when its parent goal is dropped or becomes

impossible. However my proposed subgoal dynamics do not give up a subgoal when its

parent goal is fulfilled unexpectedly. To this end, I would like to modify my framework

to handle early achievement of goals, i.e. automatically drop subgoals whose parent

goal have been achieved. Note that this seems quite challenging to do so for arbitrary

temporally extended goals, as in that case one first needs to identify the satisfaction

conditions of such a goal, and then do a case-by-case analysis and handle each type of

goals separately. The special case of achievement goals should be solvable with some

effort.

In [166], Pirri and Reiter proved a relative consistency property for basic action

theories in the situation calculus that states that such a theory is consistent if and only if

the initial state axioms are consistent. While I did not prove such a relative consistency

536

property, I conjecture that it should be possible to extend the results in [166] to show

that relative consistency holds for instances of my agent theories.

In the future, I would also like to investigate restricted versions of SR-APL that are

practical, with an understanding of how they compromise rationality. I think this can

be done. For instance if I assume a finite domain, then reasoning with the underlying

theory should be decidable. I could adapt techniques from partial order planning such

as summary information/causal links to support consistency maintenance [33, 34, 221].

I could also simply find a global linear plan and cache it, using summary information

to revise it when necessary. There are some controller synthesis techniques that can

deal with temporally extended goals [167, 29].

Also, it would be desirable to study a version of SR-APL where the agent fully

expands an abstract plan and checks its executability before adopting it. Finally, while

the underlying agent theory supports arbitrary temporally extended goals, in SR-APL

I only consider achievement goals. I would like to relax this in the future.

537

Bibliography

[1] C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the Logic of Theory

Change: Partial Meet Contraction and Revision Functions. Journal of Symbolic

Logic, 50(2):510–530, 1985.

[2] J. Ambros-Ingerson and S. Steel. Integrated Planning, Execution and Monitor-

ing. In Proceedings of the Seventh National Conference on Artificial Intelli-

gence (AAAI-88), pages 83–88, St. Paul, MN, USA, 1988.

[3] R. Arkin. Behavior-Based Robotics. MIT Press, 1998.

[4] J. L. Austin. How to Do Things with Words. Oxford University Press, Oxford,

England, 1962.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

538

[6] M. Baldoni, L. Giordano, A. Martelli, and V. Patil. Modeling Agents in a Logic

Action Language. In Proceeding of the Workshop on Rational Agents (FAPR-

00), London, UK, 2000.

[7] C. Baral and J. Zhao. Non-monotonic Temporal Logics for Goal Specification.

In Proceedings of the 20th International Joint Conference on Artificial Intelli-

gence (IJCAI-07), pages 236–242, 2007.

[8] C. Baral and J. Zhao. Non-monotonic Temporal Logics that Facilitate Elabo-

ration Tolerant Revision of Goals. In Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence (AAAI-08), pages 406–411, 2008.

[9] M. Barbuceanu, T. Gray, and S. Mankovski. Role of Obligations in Multiagent

Coordination. Applied Artificial Intelligence, 13(1):11–38, 1999.

[10] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE – A Java Agent

Development Framework. In R. H. Bordini, M. Dastani, J. Dix, and A. El F.

Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and

Applications, volume 15 of Multiagent Systems, Artificial Societies, and Simu-

lated Organizations Series, pages 125–148. Springer-Verlag, 2005.

[11] R. H. Bordini, A. L. C. Bazzan, R. O. Vicari, and V. R. Lesser. AgentS-

peak(XL): Efficient Intention Selection in BDI Agents via Decision-Theoretic

539

Task Scheduling. In Proceedings of the First International Joint Conference on

Autonomous Agents and Multi-Agent Systems (AAMAS-02), pages 1294–1302,

2002.

[12] R. H. Bordini, L. Braubach, M. Dastani, A. El F. Seghrouchni, J. J. Gomez-

Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A Survey of Programming

Languages and Platforms for Multi-Agent Systems. Informatica, 30:33–44,

2006.

[13] R. H. Bordini, M. Dastani, J. Dix, and A. El F. Seghrouchni, editors. Multi-

Agent Programming: Languages, Platforms and Applications, volume 15 of

Multiagent Systems, Artificial Societies, and Simulated Organizations Series.

Springer-Verlag, 2005.

[14] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Check-

ing AgentSpeak. In Proceedings of the Second International Joint Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS-03), pages 409–416,

2003.

[15] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifiable Multi-Agent

Programs. In Proceedings of the First International Workshop on Program-

540

ming Multi-Agent Systems: Languages, Frameworks, Techniques, and Tools

(ProMAS-03), pages 72–89, 2003.

[16] R. H. Bordini and J. F. Hübner. Jason : A Java-based Interpreter for an Extended

Version of AgentSpeak. http://jason.sourceforge.net, 2006.

[17] R. H. Bordini and A. F. Moreira. Proving BDI Properties of Agent-Oriented Pro-

gramming Languages – The Asymmetry Thesis Principles in AgentSpeak(L).

Annals of Mathematics and Artificial Intelligence, Special Issue on Computa-

tional Logic in Multi-Agent Systems, 42(1–3):197–226, 2004.

[18] R. H. Bordini, W. Visser, M. Fisher, C. Pardavila, and M. Wooldridge. Model

Checking Multi-Agent Programs with CASP. In W. A. Hunt Jr. and F. Somenzi,

editors, Proceedings of the Fifteenth Conference on Computer-Aided Verifica-

tion (CAV-03), volume 2725 of LNCS, pages 110–113. Springer-Verlag, 2003.

[19] C. Boutilier. Toward a Logic for Qualitative Decision Theory. In Proceedings of

the Third International Conference on Principles of Knowledge Representation

and Reasoning (KR-92), pages 75–86, 1992.

[20] M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University

Press, Cambridge, MA, USA, 1987.

541

[21] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and Resource-Bounded

Practical Reasoning. Computational Intelligence, 4:349–355, 1988.

[22] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A Short Overview. In

Proceedings of the Net. Object Days-04 Conference, pages 195–207, 2004.

[23] L. Braubach, A. Pokahr, W. Lamersdorf, and D. Moldt. Goal Representation

for BDI Agent Systems. In R. H. Bordini, M. Dastani, J. Dix, and A. El F.

Seghrouchni, editors, Proceedings of the Second International Workshop on

Programming Multiagent Systems, Languages, and Tools (ProMAS-04), volume

3346 of LNAI, pages 9–20. Springer-Verlag, 2004.

[24] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE

Journal of Robotics and Automation, 2(1):14–23, 1986.

[25] R. A. Brooks. Elephants don’t Play Chess. In P. Maes, editor, Designing Au-

tonomous Agents, pages 3–15. The MIT Press, 1990.

[26] R. A. Brooks. Intelligence without Reason. In Proceedings of the Twelfth Inter-

national Joint Conference on Artificial Intelligence (IJCAI-91), pages 569–595,

Sydney, Australia, 1990.

542

[27] R. A. Brooks. Intelligence without Representation. Artificial Intelligence,

47:139–159, 1991.

[28] D. Calvanese, G. De Giacomo, M. Montali, and F. Patrizi. On First-Order µ-

Calculus over Situation Calculus Action Theories. In Principles of Knowledge

Representation and Reasoning: Proceedings of the Fifteenth International Con-

ference (KR-16), pages 411–420, Cape Town, South Africa, 2016.

[29] D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about Actions and

Planning in LTL Action Theories. In Proceedings of the Eighth International

Conference on Principles of Knowledge Representation and Reasoning (KR-

02), pages 593–602, Toulouse, France, 2002.

[30] J. Carmo and A. J. I. Jones. Deontic Logic and Contrary-to-Duties. In Handbook

of Philosophical Logic, pages 209–285. Kluwer Academic Publishers, 2000.

[31] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press,

1980.

[32] J. Claßen and G. Lakemeyer. A Logic for Non-Terminating Golog Programs.

In Principles of Knowledge Representation and Reasoning: Proceedings of the

Eleventh International Conference (KR-08), pages 589–599, Sydney, Australia,

2008.

543

[33] B. J. Clement and E. H. Durfee. Theory for Coordinating Concurrent Hier-

archical Planning Agents Using Summary Information. In Proceedings of the

Sixteenth National Conference on Artificial Intelligence (AAAI-99), pages 495–

502, Orlando, Florida, 1999.

[34] B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract Reasoning for Planning

and Coordination. J. of Articial Intelligence Research, 28:453–515, 2007.

[35] P. R. Cohen and H. J. Levesque. Intention is Choice with Commitment. Artificial

Intelligence, 42(2–3):213–361, 1990.

[36] P. R. Cohen and H. J. Levesque. Persistence, Intention and Commitment. In P. R.

Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication,

pages 33–69. MIT Press, Cambridge, Mass., USA, 1990.

[37] P. R. Cohen and H. J. Levesque. Rational Interaction as the Basis for Commu-

nication. In P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in

Communication, pages 221–255. MIT Press, Cambridge, Mass., USA, 1990.

[38] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.

[39] P. R. Cohen, H. J. Levesque, and I. Smith. On Team Formation. Contemporary

Action Theory, Synthese, pages 87–114, 1997.

544

[40] P. R. Cohen and C. R. Perrault. Elements of a Plan Based Theory of Speech

Acts. Cognitive Science, 3:177–212, 1979.

[41] S. Costantini and A. Tocchio. A Logic Programming Language for Multi-Agent

Systems. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings

of the 8th European Conference on Logics in Artificial Intelligence (JELIA-02),

volume 2424 of LNAI, pages 1–13. Springer-Verlag, 2004.

[42] P. C. da Costa and A. Tettamanzi. Towards a Framework for Goal Revision.

In Proceedings of the Eighteenth Belgium-Netherlands Conference on Artificial

Intelligence (BNAIC), pages 99–106, Namur, Belgium, 2006.

[43] P. C. da Costa and A. Tettamanzi. A Belief-Desire Framework for Goal Revi-

sion. In Proceedings of the Eleventh International Conference on Knowledge-

Based Intelligent Information and Engineering Systems (KES), pages 164–171,

2007.

[44] P. C. da Costa, A. Tettamanzi, and L. Amgoud. Goal Revision for a Rational

Agent. In Proceedings of the Seventeenth European Conference on Artificial

Intelligence (ECAI), pages 747–178, 2006.

[45] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-Directed Requirements

Acquisition. Science of Computer Programming, 20(1–2):3–50, 1993.

545

[46] A. Darwiche and J. Pearl. On the Logic of Iterated Belief Revision. Artificial

Intelligence, 89(1–2):1–29, 1997.

[47] M. Dastani. 2APL: A Practical Agent Programming Language. Autonomous

Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[48] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer. A Pro-

gramming Language for Cognitive Agents: Goal Directed 3APL. In Proceed-

ings of the First International Workshop on Programming Multi-Agent Systems

(ProMAS-03), volume 3067 of LNAI, pages 111–130. Springer-Verlag, 2004.

[49] M. Dastani, M. B. van Riemsdijk, and M. Winikoff. Rich Goal Types in Agent

Programming. In Proceedings of the 10th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS-11), volume 1-3, pages 405–

412, 2011.

[50] E. Davis. Knowledge Preconditions for Plans. Journal of Logic and Computa-

tion, 4(5):721–766, 1994.

[51] G. De Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a Concurrent

Programming Language Based on the Situation Calculus. Artificial Intelligence,

121(1–2):109–169, 2000.

546

[52] G. De Giacomo, Y. Lespérance, H. J. Levesque, and S. Sardiña. On the Seman-

tics of Deliberation in IndiGolog – from Theory to Implementation. Annals of

Mathematics and Artificial Intelligence, 41(2–4):259–299, 2004.

[53] G. De Giacomo, Y. Lespérance, and F. Patrizi. Bounded Situation Calculus

Action Theories. Artificial Intelligence, 237:172–203, 2016.

[54] G. De Giacomo, Y. Lespérance, and A. R. Pearce. Situation Calculus-based

Programs for Representing and Reasoning about Game Structures. In Proceed-

ings of the Twelfth International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR-10), Torotno, ON, Canada, May 2010. Morgan

Kaufmann Publishing.

[55] G. De Giacomo and H. J. Levesque. An Incremental Interpreter for High-Level

Programs with Sensing. pages 86–102, 1999.

[56] G. De Giacomo, E. Ternovskaia, and R. Reiter. Non-Terminating Processes

in the Situation Calculus. In Working Notes of Robots, Softbots, Immobots:

Theories of Action, Planning and Control: AAAI-97 Workshop, 1997.

[57] G. Delzanno and M. Martelli. Proofs as Computations in Linear Logic. Theo-

retical Computer Science, 258(1–2):269–297, 2001.

547

[58] D. C. Dennett. The Intentional Stance. The MIT Press, Cambridge, MA, USA,

1987.

[59] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A Formal Specification

of dMARS. In M. P. Singh, A. S. Rao, and M. Wooldridge, editors, Intelligent

Agents IV–Proceedings of the Fourth International Workshop on Agent Theo-

ries, Architectures, and Languages (ATAL-97), volume 1365 of LNAI, 155–176,

1997. Springer-Verlag.

[60] M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A Formal Computa-

tional Model. 8(3):1–27, 1998.

[61] J. Doyle, Y. Shoham, and M. P. Wellman. A Logic for Relative Desire. In

Z. W. Ras and M. Zemankova, editors, Proceedings of the Sixth International

Symposium on Methodologies for Intelligent Systems (ISMIS-91), 16–31, 1991.

Springer-Verlag.

[62] T. Eiter and V. S. Subrahmanian. Heterogeneous Active Agents, II: Algorithms

and Complexity. Artificial Intelligence, 108(1–2):257–307, 1999.

[63] T. Eiter, V. S. Subrahmanian, and G. Pick. Heterogeneous Active Agents, I:

Semantics. Artificial Intelligence, 108(1–2):179–255, 1999.

548

[64] E. A. Emerson. Temporal and Modal Mogic. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science (Vol. B): Formal Models and Semantics,

pages 995–1072. MIT Press, Cambridge, MA, USA, 1991.

[65] E. A. Emerson. Model Checking and the Mu-calculus. In Descriptive Com-

plexity and Finite Models, Proceedings of a DIMACS Workshop 1996, pages

185–214, Princeton, New Jersey, USA, 1996.

[66] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” Revisited: On

Branching versus Linear Time Temporal Logic. Journal of ACM, 33(1):151–

178, 1986.

[67] E. A. Emerson and J. Srinivasan. Branching Time Temporal Logic. In J. W. de

Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Time, Branching

Time, and Partial Order in Logics and Models for Concurrency, pages 123–

172. Springer-Verlag, Cambridge, MA, USA, 1989.

[68] A.K.S.I External Interfaces Working Group. Specifications of the KQML Agent

Communication Language. Working Paper, 1993.

[69] R. Fagin and J. Y. Halpern. Belief, Awareness, and Limited Reasoning. Artificial

Intelligence, 34:39–76, 1988.

549

[70] R. Fagin, J. Y. Halpern, Y. Moses, , and M. Y. Vardi. Reasoning About Knowl-

edge. The MIT Press, 1995.

[71] I. A. Ferguson. Towards an Architecture for Adaptive, Rational, Mobile Agents.

In E. Werner and Y. Demazeau, editors, Decentralized AI 3–Proceedings of the

Third European Workshop on Modeling Autonomous Agents and Multi-Agent

Worlds (MAAMAW-91), pages 249–262, 1992.

[72] M. Fisher. Concurrent METATEM – A Language for Modeling Reactive Sys-

tems. In Parallel Architectures and Languages, Europe (PARLE), volume 694

of LNCS, pages 185–196, Munich, Germany, 1993. Springer-Verlag.

[73] M. Fisher. A Survey of Concurrent METATEM – The Language and Its Ap-

plications. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic –

Proceedings of the First International Conference, volume 827 of LNAI, pages

480–505. Springer-Verlag, 1994.

[74] M. Fisher and H. Barringer. Concurrent METATEM Processes – A Language

for Distributed AI. In Proceedings of the European Simulation Multiconference

(ESM-91), Copenhagen, Denmark, 1991.

550

[75] M. Fisher and C. Ghidini. The ABC of Rational Agent Modeling. In Pro-

ceedings of the First International Joint Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS-02), pages 849–856, Bologna, Italy, 2002.

[76] M. Fisher, C. Ghidini, and B. Hirsch. Organising Logic-Based Agents. In Pro-

ceedings of Formal Approaches to Agent-Based Systems (FAABS-02), volume

2699 of LNCS, pages 15–27. Springer-Verlag, 2003.

[77] M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Rational Agents.

In Proceedings of the 4th International Workshop on Computational Logic in

Multi-Agent Systems (CLIMA-IV), pages 16–33, Fort Lauderdale, FL, USA,

2004.

[78] N. Fornara and M. Colombetti. Operational Specification of a Commitment-

Based Agent Communication Language. In Proceedings of the First Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS-02), pages 536–542, 2002.

[79] Foundations for Intelligent Physical Agents. FIPA Communicative Act Library

Specification, 1997-2002.

[80] Foundations for Intelligent Physical Agents. FIPA Contract Net Interaction Pro-

tocol Specification, 1997-2002.

551

[81] Foundations for Intelligent Physical Agents. FIPA English Auction Interaction

Protocol Specification, 1997-2002.

[82] Foundations for Intelligent Physical Agents. FIPA Query Interaction Protocol

Specification, 1997-2002.

[83] Foundations for Intelligent Physical Agents. FIPA Request Interaction Protocol

Specification, 1997-2002.

[84] C. Fritz and S. A. McIlraith. Decision-Theoretic GOLOG with Qualitative

Preferences. In Proceedings, Tenth International Conference on Principles of

Knowledge Representation and Reasoning, pages 153–163, Lake District of the

United Kingdom, 2006.

[85] Alfredo Gabaldon. Precondition Control and the Progression Algorithm. In

Principles of Knowledge Representation and Reasoning: Proceedings of the

Ninth International Conference (KR-04), pages 634–643, Whistler, Canada,

2004.

[86] P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.

MIT Press, Cambridge, Massachusetts, USA, 1988.

552

[87] M. P. Georgeff. Situated Reasoning and Rational Behavior. In Proceedings of

the Pacific Rim International Conference on Artificial Intelligence, 1990.

[88] M. P. Georgeff and F. F. Ingrand. Decision-Making in an Enbedded Reason-

ing System. In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence (IJCAI-89), pages 972–978, Detroit, MI, 1989.

[89] H. Ghaderi, H. J. Levesque, and Y. Lespérance. A Logical Theory of Coordi-

nation and Joint Ability. In Proceedings of the Twenty-Second Conference on

Artificial Intelligence (AAAI-07), pages 421–426, 2007.

[90] C. Ghidini and F. Giunchiglia. Local Models Semantics, or Contextual Reason-

ing = Locality + Compatibility. Artificial Intelligence, 127(4):221–259, 2001.

[91] B. J. Grosz and S. Kraus. Collaborative Plans for Complex Group Actions.

Artificial Intelligence, 86(2):269–357, 1996.

[92] B. J. Grosz and C. L. Sidner. Plans for Discourse. In P. Cohen, J. Morgan, and

M. Pollack, editors, Intentions in Communication, pages 417–444. The MIT

Press, Cambridge, MA, 1990.

553

[93] Y. Gu and M. Soutchanski. Decidable Reasoning in a Modified Situation Cal-

culus. In Proceedings of the 20th International Joint Conference on Artificial

Intelligence (IJCAI-07), pages 1891–1897, 2007.

[94] H. J. Levesque and T. Barrie. Joint Ability. University of Toronto.

[95] A. R. Haas. The Case for Domain-Specific Frame Axioms. In F. M. Brown,

editor, The Frame Problem in Artificial Intelligence: Proceedings of the 1987

Workshop, pages 343–348. Morgan Kaufmann Publishing, 1987.

[96] J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Dis-

tributed Environment. In Symposium on Principles of Distributed Computing,

pages 50–61, 1984.

[97] A. Herzig and D. Longin. A Logic of Intention with Cooperation Principles

and with Assertive Speech Acts as Communication Primitives. In Proceedings

of the First International Joint Conference on Autonomous Agents and Multi-

Agent Systems (AAMAS-02), Bologna, Italy, 2002.

[98] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. A For-

mal Embedding of AgentSpeak(L) in 3APL. In Selected Papers from the 11th

Australian Joint Conference on Artificial Intelligence on Advanced Topics in

554

Artificial Intelligence, volume 1502 of LNAI, pages 155–166. Springer-Verlag,

1998.

[99] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent

Programming in 3APL. International Journal of Autonomous Agents and Multi-

Agent Systems, 2(4):357–401, 1999.

[100] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent

Programming with Declarative Goals. In C. Castelfranchi and Y. Lespérance,

editors, Intelligent Agents VII : Proc. of the 7th International Workshop ATAL

2000, volume 1986 of LNAI. Springer, 2000.

[101] K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent Programming

with Temporally Extended Goals. In Proceedings of the Eighth International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-09),

pages 137–144. IFAAMAS, 2009.

[102] J. Hintikka. Knowledge and Belief. Cornell Uiversity Press, Ithaca, NY, USA,

1962.

[103] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.

555

[104] J. F. Horty and M. E. Pollack. Evaluating New Options in the Context of Exist-

ing Plans. Artificial Intelligence, 127:199–220, 2001.

[105] N. Howden, R. Rönnquist, A. Hodgson, and Andrew Lucas. JACK Intelligent

AgentsTM– Summary of an Agent Infrastructure. In Proceedings of the Fifth

International Conference on Autonomous Agents, 2001.

[106] J. F. Hübner. Um Modelo de Reorganização de Sistemas Multiagentes. PhD

thesis, Universidade de São Paulo, Escola Politécnica, Brazil, 2003.

[107] T. F. Icard III, E. Pacuit, and Y. Shoham. Joint Revision of Beliefs and Intention.

In Principles of Knowledge Representation and Reasoning: Proceedings of the

Twelfth International Conference (KR-10), Toronto, Ontario, Canada, 2010.

[108] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for Real-Time

Reasoning and System Control. IEEE Expert, 7(6):34–44, 1992.

[109] N. R. Jennings. Commitments and Conventions: The Foundation of Coordina-

tion in Multi-Agent Systems. The Knowledge Engineering Review, 8(3):223–

250, 1993.

556

[110] N. R. Jennings. Controlling Cooperative Problem Solving in Industrial Multi-

Agent Systems using Joint Intentions. Artificial Intelligence, 75(2):195–240,

1995.

[111] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT

Press, 1999.

[112] S. M. Khan. Rational Agents: Prioritized Goals, Goal Dynamics, and Agent

Programming Languages with Declarative Goals. In Proceedings of the

9th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS-10), volume 1–3, pages 1653–1654, Toronto, Ontario, Canada, 2010.

[113] S. M. Khan and Y. Lespérance. ECASL: A Model of Rational Agency for Com-

municating Agents. In Proceedings of the Fourth International Joint Conference

on Autonomous Agents and Multi Agent Systems (AAMAS-05), pages 762–769,

Utrecht, The Netherlands, 2005.

[114] S. M. Khan and Y. Lespérance. A Logical Account of Prioritized Goals and their

Dynamics. In Proceedings of the Ninth International Symposium on Logical

Formalizations of Commonsense Reasoning (Commonsense-09), pages 85–90,

Toronto, Ontario, Canada, 2009.

557

[115] S. M. Khan and Y. Lespérance. Handling Prioritized Goals and Subgoals in

a Logical Account of Goal Change. In Proceedings of the 8th International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-09),

volume 2, pages 1155–1156, Budapest, Hungary, 2009.

[116] S. M. Khan and Y. Lespérance. A Logical Framework for Prioritized Goal

Change. In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS-10), volume 1–3, pages 283–290,

Toronto, Ontario, Canada, 2010.

[117] S. M. Khan and Y. Lespérance. Prioritized Goals and Subgoals in a Logical

Account of Goal Change - A Preliminary Report. In M. Baldoni, J. Bentahar,

M. B. van Riemsdijk, and J. Lloyd, editors, Declarative Agent Languages and

Technologies VII, 7th International Workshop, DALT 2009, Budapest, Hungary,

May 11, 2009. Revised Selected and Invited Papers, volume 5948 of LNCS,

pages 119–136. Springer, 2010.

[118] S. M. Khan and Y. Lespérance. Towards a Rational Agent Programming Lan-

guage with Prioritized Goals. In A. Omicini, S. Sardiña, and W. Vasconcelos,

editors, Working notes of the Eighth International Workshop on Declarative

558

Agent Languages and Technologies (DALT-10), pages 18–33, Toronto, Ontario,

Canada, 2010.

[119] S. M. Khan and Y. Lespérance. Logical Foundations for a Rational BDI Agent

Programming Language (Extended Version). In L. A. Dennis, O. Boissier, and

R. H. Bordini, editors, Programming Multi-Agent Systems - 9th International

Workshop, ProMAS 2011, Taipei, Taiwan, May 3, 2011, Revised Selected Pa-

pers, volume 7217 of LNCS, pages 3–21. Springer, 2011.

[120] S. M. Khan and Y. Lespérance. SR-APL: A Model for a Programming Lan-

guage for Rational BDI Agents with Prioritized Goals. In Proceedings of the

10th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS-11), volume 1–3, pages 1251–1252, Taipei, Taiwan, 2011.

[121] S. M. Khan and Y. Lespérance. Infinite Paths in the Situation Calculus (Ex-

tended Version). Technical Report EECS-2015-05, Electrical Engineering and

Computer Science, York University, Toronto, Ontario, Canada, 2015.

[122] S. M. Khan and Y. Lespérance. Infinite Paths in the Situation Calculus: Axiom-

atization and Properties. In Principles of Knowledge Representation and Rea-

soning: Proceedings of the Fifteenth International Conference (KR-16), pages

565–568, Cape Town, South Africa, 2016.

559

[123] D. Kinny. The Distributed Multi-Agent Reasoning System Architecture and

Language Specification. Technical report, Australian Artificial Intelligence In-

stitute, Melbourne, Australia, 1993.

[124] K. Konolige and M. E. Pollack. A Representationalist Theory of Intention. In

Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93),

pages 390–395, Chambéry, France, 1993.

[125] S. Kripke. Semantical Analysis of Modal Logic I: Normal Propositional Calculi.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96,

1963.

[126] S. Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fen-

nica, 16:83–94, 1963.

[127] S. Kripke. Semantical Analysis of Modal Logic II: Non-Normal Propositional

Calculi. In J. W. Addison, L. Henkin, and A. Tarski, editors, The Theory of

Models, pages 206–220. 1965.

[128] S. Kumar, M. J. Huber, D. McGee, P. R. Cohen, and H. J. Levesque. Semantics

of Agent Communication Languages for Group Interaction. In Proceedings

of the Seventeenth National Conference on Artificial Intelligence and Twelfth

560

Conference on on Innovative Applications of Artificial Intelligence (AAAI/IAAI-

00), pages 42–47, 2000.

[129] J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: An Architecture for

General Intelligence. Artificial Intelligence, 33:1–64, 1987.

[130] G. Lakemeyer and H. J. Levesque. AOL: A Logic of Acting, Sensing, Know-

ing, and Only-Knowing. In Principles of Knowledge Representation and Rea-

soning: Proceedings of the Sixth International Conference (KR-98), pages 316–

327, 1998.

[131] J. A. Leite. Evolving Knowledge Bases. Frontiers in Artificial Intelligence and

Applications, 81, 2003.

[132] J. A. Leite, J. J. Alferes, and L. M. Pereira. MINERVA – A Dynamic Logic

Programming Agent Architecture. In J.-J. Ch. Meyer and M. Tambe, editors,

Intelligent Agents VIII: Proceedings of the 8th International Workshop on Agent

Theories, Architectures, and Languages (ATAL), volume 2333 of LNAI, pages

141–157. Springer-Verlag, 2002.

[133] Y. Lespérance. On the Epistemic Feasibility of Plans in Multiagent Systems

Specifications. In J.-J. C. Meyer and M. Tambe, editors, Intelligent Agents

561

VIII, Agent Theories, Architectures, and Languages, 8th International Work-

shop (ATAL-2001), Seattle, WA, USA, 2001.

[134] Y. Lespérance, H. J. Levesque, F. Lin, and R. Scherl. Ability and Knowing How

in the Situation Calculus. Studia Logica, 66(1):165–186, 2000.

[135] Y. Lespérance and H.-K. Ng. Integrating Planning into Reactive High-Level

Robot Programs. In Proceedings of the Second International Cognitive Robotics

Workshop, pages 49–54, Berlin, Germany, 2000.

[136] E. Letier and A. van Lamsweerde. Deriving Operational Software Specifications

from System Goals. In Proceedings of the 10th ACM SIGSOFT Symposium on

the Foundations of Software Engineering, pages 119–128. ACM Press, 2002.

[137] H. J. Levesque. What is Planning in the Presence of Sensing? In Proceedings of

the Thirteenth National Conference on Artificial Intelligence, pages 1139–1146,

Portland, OR, USA, 1996.

[138] H. J. Levesque, P. R. Cohen, and J. T. Nunes. On Acting Together. In Proceed-

ings of the 8th National Conference on Artificial Intelligence (AAAI-90), pages

94–99, San Mateo, California, USA, 1990. Morgan Kaufmann Publishers, Inc.

562

[139] H. J. Levesque, F. Pirri, and R. Reiter. Foundations for a Calculus of Situations.

Electronic Transactions of AI (ETAI), 2(3–4):159–178, 1998.

[140] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG:

A Logic Programming Language for Dynamic Domains. Journal of Logic Pro-

gramming, 31:59–84, 1997.

[141] F. Lin and R. Reiter. State Constraints Revisited. Journal of Logic and Compu-

tation, 4(5):655–678, 1994.

[142] V. Louis. Conception et Mise en Oeuvre de Modèles Formels de Calcul de Plans

d’Action Complexes par un Agent Rationnel Dialoguant. PhD thesis, Université

de Caen, Caen, France, 2002.

[143] J. Malec. A Unified Approach to Intelligent Agency. In M. Wooldridge and

N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Lan-

guages, volume 890 of LNAI, pages 233–244. Springer-Verlag, Germany, 1995.

[144] V. Mascardi, M. Martelli, and L. Sterling. Logic-Based Specification Languages

for Intelligent Software Agents. Theory and Practice of Logic Programming,

4(4):429–494, 2004.

563

[145] M. J. Matarić. Behavior-Based Robotics as a Tool for Synthesis of Artificial Be-

havior and Analysis of Natural Behavior. Trends in Cognitive Science, 2(3):82–

87, 1998.

[146] F. McCabe and K. Clark. APRIL: Agent Process Interaction Language. In

M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Archi-

tectures, and Languages, volume 890 of LNAI, pages 324–340. Springer-Verlag,

Germany, 1995.

[147] J. McCarthy. Elaboration Tolerance. In Fourth Symposium on Logical Formal-

izations of Commonsense Reasoning, pages 198–216, London, England, 1998.

[148] J. McCarthy and P. J. Hayes. Some Philosophical Problems from the Standpoint

of Artificial Intelligence. Machine Intelligence, 4:463–502, 1969.

[149] J.-J.Ch. Meyer, W. van der Hoek, and B. van Linder. A Logical Approach to the

Dynamics of Commitments. Artificial Intelligence, 113(1–2):1–40, 1999.

[150] S. Minton, C. Knoblock, D. Kuokka, Y. Gil, R. Joseph, and J. Carbonell.

PRODIGY 2.0: The Manual and Tutorial. Technical Report CMU-CS-89-146,

Carnegie Mellon University, USA, 1989.

564

[151] R. C. Moore. A Formal Theory of Knowledge and Action. In J. R. Hobbs

and R. C. Moore, editors, Formal Theories of the Commonsense World, pages

319–358. Ablex, 1985.

[152] R. C. Moore. A Formal Theory of Knowledge and Action. In J. F. Allen,

J. Hendler, and A. Tate, editors, Readings in Planning, pages 480–519. Morgan

Kaufmann Publishers, San Mateo, CA, USA, 1990.

[153] À. F. Moreira and R. H. Bordini. An Operational Semantics for a BDI Agent-

Oriented Programming Language. In In J.-J. Ch. Meyer and M. J. Wooldridge,

editors, Proceedings of the Workshop on Logics for Agent-Based Systems

(LABS-02), pages 45–59, 2002.

[154] À. F. Moreira, R. Vieira, and R. H. Bordini. Extending the Operational Seman-

tics of a BDI Agent-Oriented Programming Language for Introducing Speech-

Act based Communication. In Proceedings of the Workshop on Declarative

Agent Languages and Technologies (DALT-03), volume 2990 of LNAI, pages

135–154. Springer-Verlag, 2003.

[155] Y. Moses and M. Tennenholtz. Artificial Social Systems. Computers and AI,

14(6):533–562, 1995.

565

[156] J. P. Müller, M. Pischel, and M. Thiel. Modeling Reactive Behavior in Vertically

Layered Agent Architectures. In M. Wooldridge and N. R. Jennings, editors, In-

telligent Agents: Theories, Architectures, and Languages, volume 890 of LNAI,

pages 261–276. Springer-Verlag, Germany, 1995.

[157] A. Newell and H. A. Simon. Computer Science as Empirical Enquiry. Commu-

nications of the ACM, 19:113–126, 1976.

[158] A. Omicini and E. Denti. From Tuple Spaces to Tuple Centres. Science of

Computer Programming, 41(3):277–294, 2001.

[159] L. Padgham and M. Winikoff. Prometheus: A Methodology for Develop-

ing Intelligent Agents. In Proceedings of the Third International Workshop

on Agent-Oriented Software Engineering (AOSE-02), pages 174–185, Bologna,

Italy, 2002.

[160] M. Pauly. A Logical Framework for Coalitional Effectivity in Dynamic Proce-

dures. Bulletin of Economic Research, 53(4):305–324, 2002.

[161] M. Pauly. A Modal Logic for Coalitional Power in Games. Journal of Logic

and Computation, 12(1):149–166, 2002.

566

[162] E. P. D. Pednault. ADL: Exploring the Middle Ground between STRIPS and

the Situation Calculus. In R. J. Brachman, H. J. Levesque, and R. Reiter, edi-

tors, Proceedings of the First International Conference on Principles of Knowl-

edge Representation and Reasoning (KR-89), pages 324–332, Torotno, Ontario,

Canada, May 1989. Morgan Kaufmann Publishing.

[163] R. C. Perrault. An Application of Default Logic to Speech Act Theory. In P. R.

Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication,

pages 161–185. MIT Press, Cambridge, Mass., USA, 1990.

[164] R. C. Perrault and J. F. Allen. A Plan-Based Analysis of Indirect Speech Acts.

American Journal of Computational Linguistics, 6(3–4):167–182, 1980.

[165] J. A. Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis, Univer-

sity of Toronto, Toronto, Ontario, Canada, 1994.

[166] F. Pirri and R. Reiter. Some Contributions to the Metatheory of the Situation

Calculus. Journal of the ACM, 46(3):325–361, 1999.

[167] M. Pistore and P. Traverso. Planning as Model Checking for Extended Goals in

Non-Deterministic Domains. In Proceedings of the Seventeenth International

Joint Conference on Artificial Intelligence (IJCAI-01), pages 479–484, Seattle,

Washington, USA, 2001.

567

[168] G. Plotkin. A Structural Approach to Operational Semantics. Technical Report

DAIMI-FN-19, Computer Science Dept., Aarhus University, Denmark, 1981.

[169] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the Eigh-

teenth Annual Symposium on Foundations of Computer Science (FOCS-77),

pages 46–57, 1977.

[170] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine.

In R. H. Bordini, M. Dastani, J. Dix, and A. El F. Seghrouchni, editors, Multi-

Agent Programming: Languages, Platforms and Applications, volume 15 of

Multiagent Systems, Artificial Societies, and Simulated Organizations Series,

pages 149–174. Springer-Verlag, 2005.

[171] J. L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. The

MIT Press, Cambridge, MA, 1995.

[172] A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable

Language. In W. V. Velde and J. W. Perram, editors, Agents Breaking Away,

volume 1038 of LNAI, pages 42–55. Springer-Verlag, 1996.

[173] A. S. Rao and M. P. Georgeff. Asymmetry Thesis and Side-Effect Problems

in Linear Time and Branching Time Intention Logics. In Proceedings of the

568

Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91),

pages 498–504, Sydney, Australia, 1991.

[174] A. S. Rao and M. P. Georgeff. Modeling Rational Agents with a BDI-

Architecture. In R. Fikes and E. Sandewall, editors, Proceedings of the 2nd

International Conference on Principles of Knowledge Representation and Rea-

soning (KR-91), pages 473–484, San Mateo, CA, USA, 1991. Morgan Kauf-

mann Publishers.

[175] A. S. Rao and M. P. Georgeff. An Abstract Architecture for Rational Agents.

In Proceedings of the 3rd International Conference on Principles of Knowl-

edge Representation and Reasoning (KR-92), pages 439–449, Cambridge, Mas-

sachusetts, USA, 1992. Morgan Kaufmann Publishers.

[176] R. Reiter. The Frame Problem in the Situation Calculus: A Simple Solution

(sometimes) and a Completeness Result for Goal Regression. In V. Lifschitz,

editor, Artificial Intelligence and Mathematical Theory of Computation: Papers

in the Honor of John McCarthy, pages 359–380. Academic Press, San Diego,

CA, USA, 1991.

[177] R. Reiter. Natural Actions, Concurrency and Continuous Time in the Situation

Calculus. In Proceedings of the Fifth International Conference on Principles

569

of Knowledge Representation and Reasoning (KR-96), pages 2–13, Cambridge,

Massachusetts, USA, 1996.

[178] R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Imple-

menting Dynamical Systems. MIT Press, 2001.

[179] S. Rosenschein and L. P. Kaelbling. The Synthesis of Digital Machines with

Provable Epistemic Properties. In J. Y. Halpern, editor, Proceedings of the 1986

Conference on Theoretical Aspects of Reasoning about Knowledge, pages 83–

98, San Mateo, CA, USA, 1986. Morgan Kaufmann Publishers.

[180] S. Shapiro. Integration of Mental Attitudes and Reasoning in Agent Theories,

Languages, and Architectures. University of Toronto, 1996.

[181] M. D. Sadek. A Study in the Logic of Intention. In Principles of Knowledge

Representation and Reasoning: Proceedings of the Third International Confer-

ence (KR-92), pages 462–473, Cambridge, MA, USA, 1992.

[182] M. D. Sadek. Communication Theory = Rational Principles + Communicative

Act Models. In AAAI Workshop on Planning for Interagent Communication,

1994.

570

[183] M. D. Sadek, P. Bretier, and E. Panaget. ARTIMIS: Natural Dialogue Meets

Rational Agency. In Proceedings of the Fifteenth International Joint Conference

on Artificial Intelligence (IJCAI-97), pages 1030–1035, 1997.

[184] M. D. Sadek, A. Ferrieux, A. Cozannet, P. Bretier, F. Panaget, and J. Simonin.

Effective Human-Computer Cooperative Spoken Dialogue: the AGS Demon-

strator. In Proceedings of the 4th International Conference on Spoken Language

Processing (ICSLP-96), Philadelphia, PA, USA, 1996.

[185] S. Sardiña, L. de Silva, and L. Padgham. Hierarchical Planning in BDI Agent

Programming Languages: A Formal Approach. In Proceedings of the Fifth

International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS-06), pages 1001–1008, Hakodate, Japan, 2003.

[186] S. Sardiña and L. Padgham. A BDI Agent Programming Language with Failure

Recovery, Declarative Goals, and Planning. Autonomous Agents and Multi-

Agent Systems, 23(1):18–70, 2011.

[187] S. Sardiña and S. Shapiro. Rational Action in Agent Programs with Prioritized

Goals. In Proceedings of the Second International Joint Conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS-03), pages 417–424, 2003.

571

[188] R. B. Scherl and H. J. Levesque. The Frame Problem and Knowledge-Producing

Actions. In Proceedings of the Eleventh National Conference on Artificial In-

telligence, pages 689–695, Washington, DC, USA, 1993. AAAI Press/The MIT

Press.

[189] R. B. Scherl and H. J. Levesque. Knowledge, Action, and the Frame Problem.

Artificial Intelligence, 144:1–39, 2003.

[190] L. K. Schubert. Monotonic Solution of the Frame Problem in the Situation

Calculus: An Efficient Method for Worlds with Fully Specified Actions. In

H. E. Kyberg, R. P. Loui, and G. N. Carlson, editors, Knowledge Representation

and Defeasible Reasoning, pages 23–67. Kluwer Academic Press, Boston, MA,

USA, 1990.

[191] J. R. Searl. Speech Acts: An Essay in the Philosophy of Language. Cambridge

University Press, 1969.

[192] J. R. Searl. Collective Intentions and Actions. In P. Cohen, J. Morgan, and

M. Pollack, editors, Intentions in Communication, pages 401–415. MIT Press,

Cambridge, MA, USA, 1990.

[193] A. El F. Seghrouchni and A. Suna. CLAIM: A Computational Language for

Autonomous, Intelligent and Mobile Agents. In Proceedings of the First Inter-

572

national Workshop on Programming Multi-Agent Systems: Languages, Frame-

works, Techniques, and Tools (ProMAS-03), volume 3067 of LNCS, pages 90–

110. Springer-Verlag, 2004.

[194] S. Shapiro. Specifying and Verifying Multiagent Systems Using the Cognitive

Agents Specification Language (CASL). PhD thesis, University of Toronto,

Toronto, Ontario, Canada, 2004.

[195] S. Shapiro. Belief Change with Noisy Sensing and Introspection. In Proceed-

ings of the Sixth Workshop on Nonmonotonic Reasoning, Action, and Change

(NRAC-05), Edinburgh, 2005.

[196] S. Shapiro and G. Brewka. Dynamic Interactions between Goals and Beliefs. In

Proceedings of the 20th International Joint Conference on Artificial Intelligence

(IJCAI-07), pages 2625–2630, Hyderabad, India, 2007.

[197] S. Shapiro and Y. Lespérance. Modeling Multiagent Systems with the Cogni-

tive Agents Specification Language - A Feature Interaction Resolution Appli-

cation. In C. Castelfranchi and Y. Lespérance, editors, Intelligent Agents Vol.

VII - Proceedings of the Seventh International Workshop on Agent Theories, Ar-

chitectures, and Languages (ATAL-00), volume 1986 of LNAI, pages 244–259,

Boston, USA, 2001.

573

[198] S. Shapiro, Y. Lespérance, and H. J. Levesque. Goals and Rational Action in the

Situation Calculus - A Preliminary Report. In Working Notes of the AAAI Fall

Symposium on Rational Agency: Concepts, Theories, Models, and Applications,

Cambridge, MA, USA, November 1995.

[199] S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying Communicative

Multi-Agent Systems with ConGolog. In Working Notes of the AAAI Fall 1997

Symposium on Communicative Action in Humans and Machines, pages 75–82,

Cambridge, MA, USA, 1997. AAAI Press.

[200] S. Shapiro, Y. Lespérance, and H. J. Levesque. Goal Change in the Situation

Calculus. Journal of Logic and Computation, 17(5):983–1018, 2007.

[201] S. Shapiro, Y. Lespérance, and H.J. Levesque. The Cognitive Agents Spec-

ification Language and Verification Environment for Multiagent Systems. In

C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the 1st Int.

Joint Conference on Autonomous Agents and Multiagent Systems, pages 19–26,

Bologna, Italy, July 2002. ACM Press.

[202] S. Shapiro, M. Pagnucco, Y. Lespérance, and H. J. Levesque. Iterated Belief

Change in the Situation Calculus. In A. G. Cohn, F. Giunchiglia, and B. Selman,

editors, Principles of Knowledge Representation and Reasoning: Proceedings

574

of the Seventh International Conference (KR-00), pages 527–538, San Fran-

cisco, CA, USA, 2000. Morgan Kaufmann Publishers.

[203] S. Shapiro, M. Pagnucco, Y. Lespérance, and H. J. Levesque. Iterated Belief

Change in the Situation Calculus. Artificial Intelligence, 175(1):165–192, 2011.

[204] Y. Shoham. AGENT0: A Simple Agent Language and Its Interpreter. In Pro-

ceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91),

pages 704–709, Anaheim, California, USA, 1991. AAAI Press.

[205] Y. Shoham. Agent-Oriented Programming. Artificial Intelligence, 60(1):51–92,

1993.

[206] Y. Shoham. Logical Theories of Intention and the Database Perspective. Journal

of Philosophical Logic, 38(6):633–647, 2009.

[207] Y. Shoham and M.Tennenholtz. On Social Laws for Artificial Agent Societies:

Off-Line Design. Artificial Intelligence, 73(1–2):231–252, 1995.

[208] M. P. Singh. Group Intentions. In Proceedings of the 10th International Work-

shop on Distributed Artificial Intelligence (IWDAI-90), Texas, USA, 1990.

575

[209] M. P. Singh. Group Ability and Structure. In Decentralized AI 2 – Proceedings

of the 2nd European Workshop on Modeling Autonomous Agents in a Multi-

Agent World (MAAMAW-91), pages 127–146, France, 1991.

[210] M. P. Singh. A Critical Examination of the Cohen-Levesque Theory of Inten-

tion. In Proceedings of the Tenth European Conference on Artificial Intelligence

(ECAI-92), pages 364–368, Vienna, Austria, 1992.

[211] M. P. Singh. A Semantics for Speech Acts. Annals of Mathematics and Artificial

Intelligence, 8(1–2):47–71, 1993.

[212] M. P. Singh. Intentions for Multiagent Systems. Technical Report KBNL-086-

93, Information Systems Division, Microelectronics and Computer Technology

Corporation, Austin, TX, USA, 1993.

[213] M. P. Singh. Multiagent Systems: A Theoretical Framework for Intentions,

Know-How, and Communications. Number 799 in LNAI. Springer-Verlag, Hei-

delberg, Germany, 1994.

[214] M. P. Singh. A Social Semantics for Agent Communication Languages. In

Issues in Agent Communication: Proceedings of the IJCAI-99 Workshop on

Agent Communication Languages, LNAI, pages 31–45. Springer Verlag, 2000.

576

[215] S. Sohrabi, J. A. Baier, and S. A. McIlraith. HTN Planning with Preferences. In

Proceedings of the 21st International Joint Conference on Artificial Intelligence

(IJCAI-09), pages 1790–1797, 2009.

[216] T. C. Son, E. Pontelli, and C. Baral. A Non-monotonic Goal Specification Lan-

guage for Planning with Preferences. In Advances in Knowledge Representa-

tion, Logic Programming, and Abstract Argumentation - Essays Dedicated to

Gerhard Brewka on the Occasion of His 60th Birthday, volume 9060 of LNCS,

pages 202–217. Springer, 2015.

[217] W. Spohn. Ordinal Conditional Functions: A Dynamic Theory of Epistemic

States. In W. L. Harper and B. Skyrms, editors, Causation in Decision, Belief

Change, and Statistics, volume 2, pages 105–134. 1987.

[218] M. Tambe. Towards Flexible Teamwork. Journal of Artificial Intelligence Re-

search, 7:83–124, 1997.

[219] M. Tan and R. Weihmayer. Integrating Agent-Oriented Programming and Plan-

ning for Cooperative Problem Solving. In Proceedings of the AAAI-92 Work-

shop on Cooperation among Heterogeneous Intelligent Systems, 1992.

577

[220] E. Ternovskaia. Automata Theory for Reasoning About Actions. In Proceedings

of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-

99), pages 153–159, 1999.

[221] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Inter-

ference between Goals in Intelligent Agents. In Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence (IJCAI-03), pages 721–

726, Acapulko, Mexico, 2003.

[222] M. Thielscher. FLUX: A Logic Programming Method for Reasoning Agents.

Theory and Practice of Logic Programming, 5(4–5):533–565, 2005.

[223] S. R. Thomas. PLACA, An Agent-Oriented Programming Language. Technical

Report STAN-CS-93-1487, Computer Science Department, Stanford Univer-

sity, Stanford, CA, USA, 1993.

[224] S. R. Thomas. The PLACA Agent Programming Language. In M. Wooldridge

and N. R. Jennings, editors, Intelligent Agents, ECAI-94 Workshop on Agent

Theories, Architectures, and Languages, Amsterdam, The Netherlands, August

89, 1994 Proceedings, volume 890 of LNAI, pages 355–370, Germany, 1995.

Springer-Verlag.

578

[225] J. van Benthem and F. Liu. Diversity of Logical Agents in Games. Philosophie

Scientiae, 8(2):163–178, 2004.

[226] J. van Benthem and F. Liu. Dynamic Logic of Preference Upgrade. Journal of

Applied Non-Classical Logics, 17(2):157–182, 2007.

[227] W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer. A Logic of Capabilities.

Technical Report IR-330, Faculty of Mathematics and Computer Science, Vrije

Universiteit Amsterdam, Amsterdam, The Netherlands, 1995.

[228] W. van der Hoek and M. Wooldridge. Cooperation, Knowledge, and Time:

Alternating-Time Temporal Epistemic Logic and its Application. Studia Logica,

75(1):125–157, 2003.

[229] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided

Tour. In Proceedings the International Joint Conference on Requirements En-

gineering, pages 249–263. IEEE, 2001.

[230] B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Tests as Epistemic

Updates–Pursuit of Knowledge. Technical Report UU-CS-1994-08, Dept. of

Computer Science, Utrecht University, Utrecht, The Netherlands, 1994.

579

[231] B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Actions That Make You

Change Your Mind. Knowledge and Belief in Philosophy and AI, pages 103–

146, 1995.

[232] B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. How to Motivate Your

Agents–on Making Promises that You can Keep. In International Joint Confer-

ence on Artificial Intelligence (IJCAI-95) Workshop on Agent Theories, Archi-

tectures, and Languages, Montréal, Canada, 1995.

[233] M. B. van Riemsdijk. Cognitive Agent Programming : A Semantic Approach.

PhD thesis, Department of Information and Computing Sciences, Universiteit

Utrecht, The Netherlands, 2006.

[234] M. B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Dynamics of

Declarative Goals in Agent Programming. In Declarative Agent Languages and

Technologies II. Second International Workshop, LNAI, pages 1–18. Springer-

Verlag, New York, NY, USA, 2004.

[235] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals in Conflict: Se-

mantic Foundations of Goals in Agent Programming. Autonomous Agents and

Multi-Agent Systems, 18(3):471–500, 2009.

580

[236] M. B. van Riemsdijk, M. Dastani, and M. Winikoff. Goals in Agent Systems: A

Unifying Framework. In Proceedings of the 7th International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS-08), volume 2, pages

713–720, 2008.

[237] M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent Program-

ming in Dribble: from Beliefs to Goals using Plans. In Proceedings of the

Second International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS-03), pages 393–400. ACM, 2003.

[238] S. Vassos and H. J. Levesque. Progression of Situation Calculus Action Theories

with Incomplete Information. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI-07), pages 2029–2024, 2007.

[239] M. Verdicchio and M. Colombetti. A Logical Model of Social Commitment

for Agent Communication. In Proceedings of the Second International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS-03), pages

528–535, Melbourne, Australia, 2003.

[240] S. Vere and T. Bickmore. A Basic Agent. Computational Intelligence, 6:41–60,

1990.

581

[241] R. Vieira, Á. Moreira, M. Wooldridge, and R. H. Bordini. On the Formal Se-

mantics of Speech-Act Based Communication in an Agent-Oriented Program-

ming Language. Journal of Artificial Intelligence Research, 29(221–267), 2007.

[242] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In

Proceedings of the Fifteenth International Conference on Automated Software

Engineering (ASE-00), pages 3–12. IEEE Computer Society, 2000.

[243] M. P. Wellman and J. Doyle. Preferential Semantics for Goals. In Proceedings

of the Ninth National Conference on Artificial Intelligence (AAAI-91), pages

698–703, California, USA, 1991.

[244] E. Werner. Toward a Theory of Communication and Cooperation for Multiagent

Planning. In Proceedings of the Second Conference on Theoretical Aspects

of Reasoning about Knowledge (TARK-88), pages 129–143. Morgan Kaufman,

1988.

[245] E. Werner. Cooperating Agents : A Unified Theory of Communication and

Social Structure. Distributed Artificial Intelligence, 2(3–36), 1989.

[246] E. Werner. What Can Agents Do Together? A Semantics for Reasoning about

Cooperative Ability. In Proceedings of the 9th European Conference on Artifi-

cial Intelligence (ECAI-90), pages 694–701, Stockholm, Sweden, 1990.

582

[247] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and

Procedural Goals in Intelligent Agent Systems. In Proceedings of the Eighth

International Conference on Principles of Knowledge Representation and Rea-

soning (KR-02), pages 470–481, 2002.

[248] S. Wood. Planning and Decision Making in Dynamic Domains. Ellis Horwood

Ltd., 1993.

[249] M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

[250] M. Wooldridge and N. R. Jennings. Formalizing the Cooperative Problem Solv-

ing Process. In Proceedings of the 13th International Workshop on Distributed

Artificial Intelligence (IWDAI-94), pages 403–417, WA, USA, 1994.

[251] M. Wooldridge and N. R. Jennings. Agent Theories, Architectures, and Lan-

guages: A Survey. In Proceedings of the workshop on agent theories, architec-

tures, and languages on Intelligent agents, pages 1–39, New York, NY, USA,

1995. Springer-Verlag.

[252] M. Wooldridge and N. R. Jennings. The Cooperative Problem Solving Process.

Journal of Logic and Computation, 9(4):563–592, 1999.

583

[253] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology for

Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-

Agent Systems, 3(3):285–312, 2000.

[254] P. Yolum and M. P. Singh. Commitment Machines. In J.-J. Ch. Meyer and

M. Tambe, editors, Intelligent Agents VIII : 8th International Workshop, ATAL

‘01, LNAI 2333, pages 235–247, Seattle, WA, USA, August 2002. Springer-

Verlag.

584

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Index to Symbols and their Definitions
	Introduction
	Introduction
	The Context
	The Problem
	The Approach
	Contributions
	Organization

	Literature Review
	Introduction
	Agent Theories
	Informational Attitudes and Action
	Motivational Attitudes
	Interattitudinal Constraints and Properties
	Success Theorems and Rational Action
	Multiagent Systems: Collective Mental Attitudes, Communication, and Coordination

	Agent Architectures
	Deliberative Architectures
	Reactive Architectures
	Reactive Plan Execution Architectures
	Hybrid/Cognitive Architectures
	Relation to Agent Theories

	Agent Programming Languages
	Logic-Based/Deductive Reasoning Languages
	Reactive Plan Execution Languages

	Declarative Goals in Agent Programs
	Advantages of Declarative Goals
	Issues in Agent Programming Languages with Declarative Goals
	Declarative Goal Oriented Languages

	Conclusion

	Foundations
	Introduction
	The Situation Calculus
	Action Theory
	Knowledge in the Situation Calculus
	Semantics
	Knowledge Change

	Infinite Paths in the Situation Calculus
	Axiomatization of Infinite Paths
	Properties
	Induction Principles
	Correctness of Axiomatization
	Related Work

	The ConGolog Agent Programming Language
	Conclusion

	A Formalization of Prioritized Goals for Optimizing Agents
	Introduction
	Prioritized Goals
	Goal Dynamics
	Properties
	Basic Properties
	Dynamic Properties
	Goal Introspection
	Persistence Properties

	An Example
	Conclusion, Discussion and Future Work

	Handling Subgoals
	Introduction
	Subgoal Dynamics
	Properties
	Conclusion

	A Revised Logical Framework of Prioritized Goals for Committed Agents
	Introduction
	Specifying Prioritized Goals and Goal Dynamics for Committed Agents
	Properties
	Basic Properties
	Dynamic Properties I: Preservation of PGoal Strong Realism and Consistency, and its Consequences
	Dynamic Properties II: Extensionality, Adoption, and Drop
	Goal Introspection
	Goal Persistence

	Discussion and Conclusion

	SR-APL : Specifying A Simple Rational Agent Programming Language with Prioritized Goals
	Introduction
	A Motivating Example
	Agent Programming with Prioritized Goals
	Components of SR-APL
	Semantics of SR-APL
	Execution Traces

	Rationality of SR-APL Agents
	Conclusion and Future Work

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

