
Logical Foundations for a Rational BDI Agent
Programming Language (Extended Version)?

Shakil M. Khan and Yves Lespérance

Department of Computer Science and Engineering
York University, Toronto, ON, Canada
{skhan, lesperan}@cse.yorku.ca

Abstract. To provide efficiency, current BDI agent programming languages with
declarative goals only support a limited form of rationality – they ignore other
concurrent intentions of the agent when selecting plans, and as a consequence,
the selected plans may be inconsistent with these intentions. In this paper, we
develop logical foundations for a rational BDI agent programming framework
with prioritized declarative goals that addresses this deficiency. We ensure that the
agent’s chosen declarative goals and adopted plans are consistent with each other
and with the agent’s knowledge. We show how agents specified in our language
satisfy some key rationality requirements.

1 Introduction

This paper contributes to the foundations of Belief-Desire-Intention agent programming
languages/frameworks (BDI APLs), such as PRS [10], AgentSpeak [19], etc. Recently,
there has been much work on incorporatingdeclarative goalsin these APLs [7, 28, 21,
5, 27, 22]. In addition to defining a set of plans that can be executed to try to achieve
a goal, these programming languages also incorporate goals as declarative descriptions
of the states of the world which are sought. A typical BDI APL with declarative goals
(APLwDG) uses a user-specified hierarchical plan libraryΠ containing abstract plans,
a procedural goal-baseΓ containing a set of plans that the agent is committed to exe-
cute, and a declarative goal-base∆ that has goals that the agent is committed to achieve.
In response to events in the environment and to goals in∆, in each cycle the agent in-
terleaves selecting plans fromΠ, adopting them toΓ , and executing actions inΓ . The
execution of some of these actions can in turn trigger the adoption of other declara-
tive goals. This process is repeated until all the goals in∆ are successfully achieved.
The role of these declarative goals in an APLwDG is essentially for monitoring goal
achievement and performing recovery when a plan has failed by decoupling plan fail-
ure/success from that of goal. Since these declarative goals capture the reason for exe-
cuting plans, they are necessary to perform rational deliberation, and react in a rational
way to changes in goals that result from communication, e.g. requests.

While current APLwDGs have evolved over the past few years — e.g. some of them
handle restricted forms of temporally extended goals [8] — to keep them tractable

? This paper is an extended version of [16] and is also a revised version of [14].

and practical, they sacrifice some principles of rationality. In particular, while select-
ing plans to achieve a declarative goal, they ignore other concurrent intentions of the
agent. As a consequence, the selected plan may be inconsistent with the agent’s other
intentions. Thus the execution of such an intended plan can render other contemporary
intentions impossible to bring about. Also, these APLwDGs typically rely on syntactic
formalizations of declarative goals, subgoals, and their dynamics, whose properties are
often not well understood.

Apart from this, there has been work that focuses on maintaining consistency of a
set of concurrent intentions. For example, Clement et al. [3, 4] argue that agents should
be able to reason about abstract HTN plans and their interactions before they are fully
refined. They propose a method for deriving summary information (i.e. external pre-
conditions and effects) of abstract plans and discuss how this information can be used
to coordinate the interactions of plans at different levels of abstractions. Thangarajah et
al. [26] use such summary information to detect and resolve conflicts between goals at
run time. Horty and Pollack [9] propose a decision theoretic approach to compute the
utility of adopting new (non-hierarchical) plans, given a set of already adopted plans.
While some of these approaches can be integrated in APLs (e.g. [26]), they leave out
many aspects of rationality (e.g. they do not say what the agent should do if external
interference makes two of her intentions permanently incompatible), and do not deal
with declarative goals.

In this paper, we develop a logical framework for a rational BDI APL with pri-
oritized declarative goals called Simple Rational APL (SR-APL, henceforth), that ad-
dresses these deficiencies of previous APLwDGs. Our framework combines ideas from
the situation calculus-based Golog family of APLs (e.g. [6]), our expressive semantic
formalization of prioritized goals, subgoals, and their dynamics [13, 15], and work on
BDI APLs. We ensure that the agent’s chosen declarative goals and adopted plans are
consistent with each other and with the agent’s knowledge. In doing this, we must ad-
dress two fundamental questions about rational agency: (1)What does it mean for a
BDI agent to be committed to concurrently execute a set of plans next while keeping the
option of further commitments to other plans open, in a way that does not allow pro-
crastination?(2) How to ensure consistency between an agent’s adopted declarative
goals and adopted plans, given that some of the latter might be abstract, i.e. might be
only partially instantiated in the sense that they include subgoals for which the agent
has not yet adopted a (concrete) plan?We show how agents specified in our framework
satisfy some key rationality requirements. We discuss how new practical programming
languages can be developed by restricting the proposed representation and reasoning.
Our framework tries to bridge the gap between agent theories and practical APLs by
providing a model and specification of an idealized BDI agent whose behavior is closer
to what a rational agent does. As such, it allows one to understand how compromises
made during the development of a practical APLwDG affect the agent’s rationality.

The paper is organized as follows: in the next section, we discuss a motivating
example. In Sections 3 and 4, we outline our formal BDI framework. In Section 5, we
specify the semantics of SR-APL. In Section 6, we show that in the absence of external
interference, our agent behaves in ways that satisfy some key rationality principles.
Then in Section 7, we summarize our results and discuss possible future work.

2 A Motivating Example
Consider a blocks world domain, where each block is one of four possible colors: blue,
yellow, green, and red. There is only a stacking actionstack(b, b′): b can be stacked
on b′ in states if b 6= b′, bothb andb′ areclear in s, andb is on the tablein s. There
are no unstacking actions, so the agent cannot use a block to build two different towers
at different times. Assume that there are four blocks,BB , BY , BG, andBR, one of
each color. the agent knows thecolor of these blocks, and knows that initially all the
blocks are on the table and are clear. Now assume that the agent has the following
two goals: (1) to eventually have a 2 blocks tower that has a green block on top and
a non-yellow block underneath, and (2) to have a 2 blocks tower with a blue block on
top and a non-red block underneath; thus∆ = {♦TwrGȲ ,♦TwrBR̄}, where TwrC1

C̄2

.=
∃b, b′. OnTbl(b′) ∧ On(b, b′) ∧ ¬C2(b′) ∧ C1(b). Suppose our agent’s plan libraryΠ
has two rules:

♦TwrGȲ : [OnTbl(b) ∧OnTbl(b′) ∧ b 6= b′ ∧ Clear(b)
∧ Clear(b′) ∧ ¬Y(b) ∧G(b′)]← stack(b′, b),

♦TwrBR̄ : [OnTbl(b) ∧OnTbl(b′) ∧ b 6= b′ ∧ Clear(b)
∧ Clear(b′) ∧ ¬R(b) ∧ B(b′)]← stack(b′, b).

That is, if the agent has the goal to have a green and non-yellow tower and knows about
a green blockb′ and a distinct non-yellow blockb that are both clear and are on the
table, then she should adopt the plan of stackingb′ on b, and similarly for the goal of
having a blue and non-red tower.

Now, consider a typical APLwDG, that (without considering the overall consistency
of the agent’s intentions) simply select plans fromΠ for the agent’s goals in∆ and
eventually executes them in an attempt to achieve her goals. We claim that such an APL
is not always sound and rational. For instance, according to this plan library, one way of
building a green non-yellow (and a blue non-red) tower is to construct a green-blue (a
blue-green, respectively) tower. While these two plans are individually consistent, they
are inconsistent with each other, since the agent has only one block of each color. Thus
a rational agent should not adopt these two plans. However, it can be shown that the
following would be a legal trace for our blocks world domain in such an APL:

〈{}, ∆〉 ⇒ 〈{σ1},∆〉 ⇒ 〈{σ1, σ2},∆〉 ⇒ 〈{σ2}, {♦TwrGȲ }〉.

The agent first moves to configuration〈{σ1},∆〉 by adopting the planσ1 = stack(BB ,
BG) in response to♦TwrBR̄ , then to〈{σ1, σ2},∆〉 by adoptingσ2 = stack(BG, BB)
to handle♦TwrGȲ , and then to〈{σ2}, {♦TwrGȲ }〉 by executing the intended actionσ1.
At this point, the agent is stuck and cannot complete successfully. Thus, in such an
APL, not only is the agent allowed to adopt two inconsistent plans, but the execution
of one of these plans makes other concurrent goals impossible (e.g. the execution of
stack(BB , BG) makes♦TwrGȲ impossible to achieve).

The problem arises in part because actions are not reversible in this domain; there
is no action for moving a block back to the table or for unstacking it. This is common
in real world domains, for instance, most tasks with deadlines or resources, e.g. doing
some errands before noon, a robot delivering mail without running out of battery power,

etc. While such irrational behavior could in principle be avoided by using appropriate
conditions in the antecedent of the plan-selection rules (e.g. by stating that the agent
should only adopt a given plan if she does not have certain other goals), this puts an
excessive burden on the agent programmer. Ideally, such reasoning about goals should
be delegated to the agent.

3 Preliminaries
Our base framework for modeling goal change is the situation calculus as formalized
in [17, 20]. In this framework, a possible state of the domain is represented by a situa-
tion. There is a set of initial situations corresponding to the ways the agent believes the
domain might be initially, i.e. situations in which no actions have yet occurred. Init(s)
means thats is an initial situation. The actual initial state is represented by a special
constantS0. There is a distinguished binary function symboldo wheredo(a, s) denotes
the successor situation tos resulting from performing the actiona. Thus the situations
can be viewed as a set of trees, where the root of each tree is an initial situation and
the arcs represent actions. Relations (and functions) whose truth values vary from situ-
ation to situation, are called relational (functional, respectively) fluents, and are denoted
by predicate (function, respectively) symbols taking a situation term as their last argu-
ment. There is a special predicate Poss(a, s) used to state that actiona is executable in
situations. Finally, the function symbol Agent(a) denotes the agent of actiona.

We use a theoryD that includes the following set of axioms:1 (1) action precondition
axioms, one per actiona characterizing Poss(a, s), (2) successor state axioms (SSA),
one per fluent, that succinctly encode both effect and frame axioms and specify exactly
when the fluent changes [20], (3) initial state axioms describing what is true initially
including the mental states of the agents, (4) axioms identifying the agent of actions,
one per actiona characterizing Agent(a), (5) unique name axioms for actions, and (6)
domain-independent foundational axioms describing the structure of situations [17].

Following [23], we model knowledge using a possible worlds account adapted to
the situation calculus.K(s′, s) is used to denote that in situations, the agent thinks
that she could be in situations′. UsingK, the knowledge of an agent is defined as:
Know(Φ, s) .= ∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knowsΦ in s if Φ holds in all of her
K-accessible situations ins.K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ knowledge is true, and that agents
have positive and negative introspection. The dynamics of knowledge is specified by
providing a SSA forK that supports knowledge expansion as a result of sensing actions
[23] and someinformingcommunicative actions [12]. As shown in [23], the constraints
onK continue to hold after any sequence of actions since they are preserved by the
SSA forK. We also assume that the agent is aware of all actions.

To support modeling temporally extended goals, we introduced a new sort ofpaths
along with an axiomatization for paths in [13]. A path is essentially an infinite sequence
of situations, where each situation along the path can be reached by performing some
executableaction in the preceding situation. We use (possibly sub/super-scripted) vari-
ablesp to denote paths. There is a predicate OnPath(p, s), meaning that the situations

1 We will be quantifying over formulae, and thus assumeD includes axioms for encoding of
formulae as first order terms, as in [25]. We will also be using lists of programs, and assume
thatD includes an axiomatization of lists.

is on pathp. Also, Starts(p, s) means thats is the starting situation of pathp. A pathp
starts withs iff s is the earliest situation onp.

We useΦ(s), Ψ(s), · · · , etc. to denotestate formulaein the context of knowledge
(andφ(p), ψ(p), · · · , etc. forpath formulaein that of goals), each of which has a free
situation variables (path variablep, respectively).s (andp) will be bound by the context
where the formulaΦ(s) (andφ(p), respectively) appears. Where the intended meaning
is clear, we sometimes suppress the situation variable (path variable) fromΦ, Ψ, · · · , etc.
(φ, ψ, · · · , etc. respectively). Also, we often usenow to refer to a placeholder constant
that stands for the current situation.

We will use some useful constructs that are defined in [13]. A state formulaΦ even-
tually holdsover the pathp if Φ holds in some situation that is onp, i.e.: ♦Φ(p) .=
∃s′. OnPath(p, s′) ∧ Φ(s′). Secondly, Suffix(p′, p, s) means that pathp′ is a suffix of
another pathp w.r.t. a situations; Suffix(p′, p, s) holds iff s is onp, andp′ is the sub-
path ofp that starts withs. Finally, SameHist(s1, s2) means that the situationss1 ands2
share the same history of actions, but perhaps starting from different initial situations.

4 Formalization of Prioritized Goals
In [13], we proposed a logical framework for modelingprioritized goalsand their dy-
namics. In that framework, an agent can have multiplegoalsor desiresat different pri-
ority levels, possibly inconsistent with each other. We specify how these goals evolve
when actions/events occur and the agent’s knowledge changes. We define the agent’s
chosen goalsor intentions, i.e. the goals that the agent is actively pursuing, in terms of
this goal hierarchy. In that framework, agents constantly optimize their chosen goals. To
this end, we keep all prioritized goals in the goal-base unless they are explicitly dropped.
At every step, we compute an optimal set of chosen goals given the hierarchy of priori-
tized goals, preferring higher priority goals, such that chosen goals are consistent with
each other and with the agent’s knowledge. Thus at any given time, some goals in the
hierarchy areactive, i.e. chosen, while others areinactive. Some of these inactive goals
may later become active (e.g. if a higher priority active goal that is currently blocking
an inactive goal becomes impossible or is dropped) and trigger the inactivation of other
currently active (lower priority) goals.

Goal Semantics As in [13], we specify the agent’s prioritized goals orp-goalsus-
ing accessibility relation/fluentG. A pathp is G-accessible at priority leveln in situ-
ations if all the goals of the agent at leveln are satisfied over this path and if it starts
with a situation that has the same action history ass. The latter requirement ensures
that the agent’sG-accessible paths are compatible with the actions that have been per-
formed so far. We say that an agent has the p-goal thatφ at leveln in situations (i.e.
PGoal(φ, n, s)) iff φ holds over all paths that areG-accessible atn in s. A smallern
represents higher priority, and the highest priority level is0. Thus as in [13], we assume
that the set of p-goals are totally ordered according to priority. Note that, in this frame-
work one can evaluate goals over infinite paths and thus can handle arbitrary temporally
extended goals; hence, unlike some other situation calculus based accounts where goal
formulae are evaluated w.r.t. finite paths (e.g. [24]), in this framework one can handle,
for example, unbounded maintenance goals.

As in [13], we allow the agent to have infinitely many p-goals. However in many
cases, the modeler will want to specify a finite set of initial p-goals. When a finite num-

ber of p-goals is assumed, we can use the functional fluentNPGoals(s) to represent the
number of prioritized goals that the agent has in situations. The modeler/programmer
will usually provide some specification of the agent’s initial p-goals at the various pri-
ority levels, using someinitial goal axioms. For instance, the initial prioritized goals for
our blocks world example with domain theoryDBW can be specified as follows:

(a) Init(s) ⊃ ((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ ♦TwrGȲ)

∧ (G(p, 1, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ ♦TwrBR̄)),
(b) ∀n, p, s. Init(s) ∧ n ≥ 2 ⊃ (G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′)).

(a) specifies the p-goals of the agent in the initial situations (we assume that the goal
♦TwrGȲ has higher priority than♦TwrBR̄); (b) makesG(p, n, s) true for every pathp that
starts with an initial situation forn ≥ 2. Thus at these levels, the agent has the trivial
p-goal that she be in an initial situation.

An agent’s chosen goals must be realistic. To filter out the paths that are known to
be impossible fromG, we definerealistic p-goal accessible paths:p is GR-accessible
at leveln in s if it is G-accessible atn in s and if it starts with a situation that isK-
accessible ins. In our framework, an agent has therealistic p-goalthatφ at leveln in
situations (i.e. RPGoal(φ, n, s)) iff φ holds over allGR-accessible paths atn in s.

We define chosen goals orc-goalsusing realistic p-goals. Note that an agent’s real-
istic p-goals at various priority levels can be viewed as candidates for her c-goals. Given
the set of realistic p-goals, in each situation the agent’s c-goals are specified to be those
that are in the maximal consistent set of higher priority realistic p-goals. We define this
iteratively starting with a set that contains the highest priority realistic p-goal accessible
paths, i.e.GR-accessible paths at level0. At each iteration we obtain the intersection of
this set with the set of next highest priorityGR-accessible paths. If the intersection is not
empty, a new chosen set of p-goal accessible paths (and p-goals defined by these paths)
at leveli is obtained. We call a p-goal chosen by this process anactivep-goal. If on the
other hand the intersection is empty, then it must be the case that the p-goal represented
by this level is either in conflict with another active higher priority p-goal/a combination
of two or more active higher priority p-goals, or is known to be impossible. In that case,
that p-goal is ignored (i.e. marked asinactive), and the chosen set of p-goal accessible
paths at leveli is the same as at leveli − 1. To get the prioritized intersection of the
set ofGR-accessible paths up to leveln, the process is repeated untili = n is reached.
G∩(p, n, s) is used to denote that in situations, pathp is in the prioritized intersection
of GR-accessible paths up to leveln. We say that a pathp isG∩-accessible in situation
s, i.e.G∩(p, s), if G∩(p, n, s) holds for all levelsn. Finally, we say that an agent has the
c-goal thatφ in situations (i.e. CGoal(φ, s)) if φ holds over allG∩-accessible paths in
s. We can show that initially our blocks world agent has the p-goals/c-goals that♦TwrGȲ
and♦TwrBR̄ , i.e.:DBW |= ∀s. Init(s) ⊃ CGoal(♦TwrGȲ ∧ ♦TwrBR̄ , s).

To get positive and negative introspection of goals, we impose two inter-attitudinal
constraints on theK andG-accessibility relations in the initial situations. We have
shown that these constraints then continue to hold after any sequence of actions since
they are preserved by the SSAs forK andG. See [11] for details.

Goal Dynamics An agent’s goals change when her knowledge changes as a result

of the occurrence of an action (including exogenous events), or when she adopts or
drops a goal. There are two special actions, foradopting a p-goalφ at some leveln
anddropping a p-goalφ, adopt(φ, n) anddrop(φ), and a third action foradopting a
subgoalψ relative to a supergoalφ, adoptRT (ψ, φ).

The dynamics of p-goals are specified using a SSA forG as follows (the agent’s
c-goals are automatically updated when her p-goals change). Firstly, to handle the oc-
currence of a non-adopt/drop actiona, all p-goals are progressed to reflect the fact that
this action has occurred. Secondly, to handle adoption of a p-goalφ at levelm, a new
formula containing the p-goal is added to the agent’s goal hierarchy atm. To be precise,
in addition to progressing all p-goals at all levels, a new level containing the p-goal that
φ is inserted atm and all current levels with priority greater or equal tom are pushed
one level down the hierarchy. Finally, to handle the dropping of a p-goalφ, the levels
that imply the dropped goal in the agent’s goal hierarchy are replaced by the trivial for-
mula that the history of actions in the current situation has occurred, and thus the agent
no longer has the p-goal thatφ. See [13] for details.

Handling Subgoals We also handle subgoal adoption and model the dependencies
between goals and the subgoals and plans adopted to achieve them. The latter is impor-
tant since subgoals and plans adopted to bring about a goal should be dropped when the
parent goal becomes impossible, or is dropped. We handle this as follows: adopting a
subgoalψ relative to a parent goalφ adds a new p-goal that containsboth this subgoal
and this parent goal, i.e. ψ ∧ φ. This ensures that when the parent goal is dropped,
the subgoal is also dropped, since when we drop the parent goalφ, all the p-goals at
all G-accessibility levels that implyφ includingψ ∧ φ are also dropped. Note that the
parent goalφ could be a p-goal at multiple levels. We assume that the subgoalψ is
always adopted w.r.t. thehighest priority supergoal level, i.e. the highest priority level
whereφ holds. Also, the subgoalψ is always adopted at the level immediately below
the supergoalφ’s level. The reason for doing this is that sinceψ is a means to the end
φ, they should have similar priorities.ψ is said to be a subgoal ofφ in situations (i.e.
SubGoal(ψ, φ, s)) iff there is aG-accessibility leveln in s such thatφ is a p-goal atn
while ψ is not, and for allG-accessibility levels ins whereψ is a p-goal,φ is also a
p-goal. See [15, 11] for details of our formalization of subgoals.

Prioritized Goals for Committed Agents The formalization of prioritized goal dy-
namics in [13] ensures that the agent always tries to optimize her chosen goals. She
will abandon a c-goalφ if an opportunity to commit to a higher priority but inconsistent
with φ goal arises. As such, our account in [13] displays an idealized form of rational-
ity. This is in contrast to Bratman’s [1] practical rationality that takes into consideration
the resource-boundedness of real world agents. According to Bratman, intentions limit
the agent’s reasoning as they serve as afilter for adopting new intentions. However, the
agent is allowed to override this filter in some cases, e.g. when adoptingφ increases
her utility considerably. The framework in [13] can be viewed as a theory of intention
where the filter override mechanism is always triggered.

Note that, in that framework, the agent’s c-goals are very dynamic. For instance, as
mentioned earlier, a currently inactive p-goalφ may become active at some later time,
e.g. if a higher priority active c-goal that is currently blockingφ (as it is inconsistent
with φ) becomes impossible. This also means that another currently active c-goalψ

may as a result become inactive, not becauseψ has become impossible, was achieved,
or was dropped, but due to the fact thatψ has lower priority than and is inconsistent
with the newly activated goalφ (see [13] for a concrete example).

Such very dynamic c-goals/intentions are problematic as a foundation for an APL,
as the agent spends a lot of effort in “recomputing” her intentions and plans to achieve
them, and her behavior becomes hard to predict for the programmer. To avoid this, here
we use a modified version of our formalization in [13] that eliminates the filter over-
ride mechanism altogether so that agents’ p-goals/desires are dropped as soon as they
become inactive. We can do this with the following simple changes: (1) we require
that initially the agent knows that her p-goals are all possible and consistent with each
other, (2) we don’t allow the agent to adopt p-goals that are inconsistent with her cur-
rent c-goals/intentions, and (3) we modify the SSA forG so that the agent’s p-goals
are dropped when they become impossible or inconsistent with other higher priority c-
goals. In the resulting “committed agent” framework, an agent’s p-goals are much more
dynamic than in the original framework. On the other hand, her c-goals are now much
more persistent, and are simply the consequential closure of her desires, as these must
now all be consistent with each other and with the agent’s knowledge. The resulting
model of goals is somewhat simplistic, but is sufficient in an APL context.

5 Agent Programming with Prioritized Goals
Our proposed framework SR-APL combines elements from BDI APLs such as AgentS-
peak [19] and from the ConGolog APL [6], which is defined on top of the situation
calculus. In addition, to facilitate monitoring of goal achievement and performing plan
failure recovery, we incorporate declarative goals in SR-APL. To specify the operational
semantics of plans in SR-APL, we will use a subset of the ConGolog APL. This subset
includes programming constructs such as primitive actionsa, wait/test actionsΦ?, se-
quence of actionsδ1; δ2, nondeterministic choice of argumentsπv. δ, nondeterministic
iterationδ∗, and concurrent execution of programsδ1‖δ2, to mention a few. Also, as
in ConGolog, we will use Trans(σ, s, σ′, s′) to say that programσ in situations can
make a single step to reach situations′ with the programσ′ remaining, and Final(σ, s)
to mean that the programσ may legally terminate in situations. Finally, Do(σ, s, s′)
means that there is a terminating execution of programσ that starts ins and ends ins′.

Components of SR-APL First of all, we have aset of axioms/theoryD specifying
actions that can be done, the initial knowledge and (both declarative and procedural)
goals of the agent, and their dynamics, as discussed in Section 3 and 4. Moreover, we
also have aplan libraryΠ with rules of the formφ : Ψ ← σ, whereφ is a goal formula,
Ψ is a knowledge formula, andσ is a plan; a ruleφ : Ψ ← σ means that if the agent
has the c-goal thatφ and knows thatΨ , then she should consider adopting the plan
thatσ. Theplan languagefor σ is a simplified version of ConGolog and includes the
empty program nil, primitive actionsa, waiting for a conditionΦ?, sequence(σ1;σ2),
and the special action for subgoal adoption,adoptRT (♦Φ, σ); here♦Φ is a subgoal
to be adopted andσ is the plan relative to which it is adopted.2 While our account of

2 We use the ConGolog APL here because it has a situation calculus-based semantics that is
well specified and compatible with our agent theory. We could have used any APL with these
characteristics.

goal change is expressive enough to handle arbitrary temporally extended goals, here
we focus on achievement goals and procedural goals exclusively. We believe that ex-
tending our framework to support maintenance goals should be straightforward, since
maintenance goals behave like additional constraints on the agent behavior in contrast
to achievement goals for which the agent needs to plan for.

Semantics of SR-APL An SR-APL agent can work on multiple goals at the same
time. Thus at any time, an agent might be committed to several plans that she will exe-
cute in an interleaved fashion. We use our situation calculus domain theoryD to model
both adopted declarative goals and plans. Initially D only contains declarative goals.
As specified by the SSA forG,D is updated by adding plans or other declarative goals
to the agent’s goal hierarchy when a transition rule (see below) makes the agent perform
anadopt or adoptRT action. We ensure that an agent’s declarative goals and adopted
plans are consistent with each other and with the agent’s knowledge. In our semantics,
we specify this by ensuring that there is at least one possible course of actions (i.e. a
path) known to the agent, and if she were to follow this path, she would end up realizing
all of her declarative goals and executing all of her procedural goals.

One way of specifying an agent’s commitment to execute a planσ next inD is to
say that she has the intention that Starts(s) ∧ ∃s′. OnPath(s′) ∧ Do(σ, s, s′), i.e. that
each of her intention-accessible pathsp is such that it starts with some situations, it
has the situations′ on it, ands′ can be reached froms by executingσ. However, this
does not allow for the interleaved execution of several plans, since Do requires thatσ
be executed before any other actions/plans.

A better alternative is to represent the procedural goal as Starts(s)∧∃s′. OnPath(s′)∧
DoAL(σ, s, s′), which says that the agent has the intention to executeat leastthe pro-
gramσ next, and possibly more. DoAL(σ, s, s′) holds if there is an execution of pro-
gramσ, possibly interleaved with other actions by the agent herself, that starts in situa-
tion s and ends ins′, which we define as:3

DoAL(σ, s, s′) .= Do(σ‖(πa. Agent(a) = agt?; a)∗, s, s′).

However, a new problem with this approach is that it allows the agent to procrastinate
in the execution of the intended plans inD. For instance, suppose that the agent has
the p-goal at priority leveln1 to execute the programσ1 and at leveln2 to executeσ2

next. Then, according to our definition of DoAL, the agent has the intention at leveln1

to executeσ1 and at leveln2 to executeσ2, possibly concurrently with other actions
next, since we use DoAL to specify those goals. The “other actions” at leveln1 (n2,
respectively) are meant to be actions from the planσ2 (σ1, respectively). However,
nothing requires that the additional actions that the agent might execute are indeed from
σ2(σ1, respectively), and thus this allows her to perform actions that are unnecessary as
long as they do not perturb the execution ofσ1 andσ2.

To deal with this, we include an additional component, aprocedural intention-base
Γ , to an SR-APL agent.Γ is a list of plans that the agent is currently actively pursuing.
To avoid procrastination, we will require that any action that the agent actually performs

3 We will use this construct to specify the procedural goals of an agentagt. Note that, while our
theory supports exogenous actions performed by other agents, we assume that all actions in
the plans ofagt that specify her behavior must be performed byagt herself.

comes fromΓ (as specified in the transition rule Astep below). In the following, we will
useΓ ‖ to denote the concurrent composition of the programs inΓ :4

Γ ‖ .= if (Γ = [nil]) then nil else First(Γ)‖(Rest(Γ))‖.

In SR-APL, aprogram configuration〈σ, s〉 is a tuple consisting of a programσ and
a ground situations. An agent configurationon the other hand is a tuple〈Γ, s〉 that
consists of a list of plansΓ and a ground situations. The initial agent configuration
is 〈[nil], S0〉. Although strictly speaking an agent configuration includes the knowledge
and the goals of the agent, these can be obtained from the (fixed) theoryD and the
situation in the configuration.

The semantics of SR-APL are defined by a two-tier transition system.Program-
level transition rulesspecify how a program written in our plan language may evolve.
On top of this, we useagent-level transition rulesto specify how an SR-APL agent
may evolve. Our program-level transition rules are simply a subset of the ConGolog
transition rules. We use〈σ, s〉 → 〈σ′, s′〉 as an abbreviation for Trans(σ, s, σ′, s′).

Agent-Level Transition Rules These transition rules are given in Table 1 and are
similar to those of a typical BDI APL.5 First of all, we have a rule Asel for selecting
and adopting a planusing the plan libraryΠ for some realistic p-goal♦Φ. It states that
if: (a) there is a rule in the plan libraryΠ which says that the agent should adopt an
instance of the planσ if she has♦Φ as her p-goal and knows that some instance ofΨ ,
(b) ♦Φ is a realistic p-goal with priorityn in s for which the agent hasn’t yet adopted
any subgoal, (c) the agent knows ins thatΨ ′, (d) θ unifiesΨ andΨ ′, and (e) the agent
does not intend not to adopt DoAL(σθ) w.r.t. ♦Φ next, then she can adopt the planσθ,
adding DoAL(σθ) as a subgoal of♦Φ to her goals in the theoryD, and addingσθ to Γ
(here Handled(φ, s) is defined as∃ψ. SubGoal(ψ, φ, s)).

We can show that if an agent does not have the c-goal ins not to adopt a subgoalψ
w.r.t. a supergoalφ, then she does not have the c-goal that¬ψ next ins, i.e.:

Theorem 1.

D |= ¬CGoal(¬∃s′. Do(adoptRT (ψ, φ), now, s′), s) ⊃
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adoptRT (ψ, φ), s′)) ∧ ψ(p′), s).

Theorem 1 and condition (e) above imply that the agent does not have the c-goal not to
executeσθ concurrently withΓ ‖ and possibly other actions next, i.e.:

(i). ¬CGoal(¬∃s′, s′′. Do(adoptRT (DoAL(σθ),♦Φ), now, s′)
∧ DoAL(σθ ‖ Γ ‖, s′, s′′), s).

4 We will use various standard list operations, e.g. First (representing the first item of a list), Rest
(representing the sublist that contains all but the first item of a list), Cons (for constructing a
new list from an item and a list), Member (for checking membership of an item within a list),
Remove (for removing a given item from a list), Replace (for replacing a given item with
another item in a list), etc.

5 We use CGoal(∃s′. DoAL(σ, now, s′), s) or simply CGoal(DoAL(σ), s) as a shorthand for
CGoal(∃s′. Starts(now) ∧OnPath(s′) ∧ DoAL(σ, now, s′), s).

Table 1.Agent Transition Rules

Member(♦Φ : Ψ ← σ, Π), D |= RPGoal(♦Φ, n, s),
D |= ¬Handled(♦Φ, s) ∧ Know(Ψ ′, s), mgu(Ψ, Ψ ′) = θ,

(Asel) D |= ¬CGoal(¬∃s′. Do(adoptRT (DoAL(σθ), ♦Φ), now, s′), s)
〈Γ, s〉 ⇒ 〈Cons(σθ, Γ), do(adoptRT (DoAL(σθ), ♦Φ), s)〉

Member(σ, Γ), D |= RPGoal(DoAL(σ), n, s),
(Astep) D |= 〈σ, s〉 → 〈σ′, do(a, s)〉 ∧ ¬CGoal(¬∃s′. Do(a, now, s′), s)

〈Γ, s〉 ⇒ 〈Replace(σ, σ′, Γ), do(a, s)〉

(Aexo) D |= Exo(a) ∧ Poss(a, s)

〈Γ, s〉 ⇒ 〈Γ, do(a, s)〉

(Aclean) Member(σ, Γ), D |= ¬∃n. RPGoal(DoAL(σ), n, s)

〈Γ, s〉 ⇒ 〈Remove(σ, Γ), s〉

D |= ¬∃s′. 〈Γ ‖, s〉 → 〈Γ ′, s′〉, D |= ¬Final(Γ ‖, s),
For allσ s.t. Member(σ, Γ) we have:
D |= ∃n. RPGoal(DoAL(σ), n, s) ∧ Handled(DoAL(σ), s),

D |= ¬CGoal(¬∃s′. Do(adopt(Do(
→
a), NPGoals(s)), now, s′), s),

(Arep) D |= Agent(
→
a) = agt ∧ Do(

→
a , s, s′) ∧ 〈Γ ‖, s′〉 → 〈Γ ′, s′′〉

〈Γ, s〉 ⇒ 〈Cons(
→
a , Γ), do(adopt(Do(

→
a), NPGoals(s)), s)〉

Moreover, it can be shown that in our framework, an agent acquires the c-goal thatψ
after she adopts it as a subgoal ofφ in s, provided that she has the realistic goal at some
leveln in s thatφ, and that she does not have the c-goal ins that¬ψ next, i.e.:

Theorem 2.

D |= ∃n. RPGoal(φ, n, s) ∧
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adoptRT (ψ, φ), s′)) ∧ ψ(p′), s)
⊃ CGoal(ψ, do(adoptRT (ψ, φ), s)).

From (b),(i), and Theorem 2, we have that:

(ii). CGoal(∃s′. DoAL(σθ ‖ Γ ‖, now, s′), do(adoptRT (DoAL(σθ),♦Φ), s)).
(i) ensures that the adopted subgoalσθ is consistent withΓ ‖ in the sense that they
can be executed concurrently, possibly along with other actions ins. (ii) confirms that
σθ is indeed intended after theadoptRT action has happened. Note that this notion
of consistency is a weak one, since it does not guarantee that there is an execution of
the program(σθ ‖ Γ ‖) after theadoptRT action happens, but rather ensures that the
program DoAL(σθ ‖ Γ ‖) is executable. In other words,σθ and the programs inΓ
alonemight not be concurrently executable, and additional actions might be required.
We’ll come back to this issue later.

Secondly, we have a transition rule Astep for single stepping the agent program by
executing an intended actionfrom Γ . It says that if: (a) a programσ in Γ can make

a program-level transition ins by performing a primitive actiona with programσ′

remaining indo(a, s) afterwards, (b) DoAL(σ) is a realistic p-goal with priorityn in s,
and (c) the transition is consistent with the agent’s goals in the sense that she does not
have the c-goal not to executea in s, then the agent can executea, andΓ ands can be
updated accordingly.

Once again we have a weak consistency requirement in condition (c) above. Ide-
ally, we would have added to (c) that the agent can continue fromdo(a, s) in the sense
that she does not have the c-goal not to execute the remaining programσ′ concur-
rently with the other programs inΓ in do(a, s), i.e. thatD |= ¬CGoal(¬∃s′. Do(a; (σ′

‖ Γ ‖), now, s′), s). However, note thatΓ may not be complete in the sense that it may
include plans that have actions that trigger the adoption of subgoals, for which the ex-
ecution ofΓ ‖ waits; butΓ does not have any adopted plans yet that can achieve these
subgoals. ThusΓ ‖ by itself might currently have no complete execution, and will only
become completely executable when all such subgoals have been fully expanded.

For example, consider a new agent for our blocks world domain who has a goal to
eventually build a 3 blocks tower, i.e.♦3Tower, where 3Tower

.= ∃b, b′, b′′. OnTbl(b)∧
On(b′, b) ∧On(b′′, b′). Also, in addition to the above rules, her plan libraryΠ includes
the following rule:

♦3Tower: [OnTbl(b) ∧OnTbl(b′) ∧OnTbl(b′′) ∧ b 6= b′ ∧
Clear(b) ∧ Clear(b′) ∧ Clear(b′′) ∧ ¬Y(b) ∧G(b′) ∧ Y(b′′)]← σ1,

where σ1 = adoptRT (♦TwrGȲ ,DoAL(σ2));σ2, and σ2 = TwrGȲ ?; stack(b′′, b′).

This says that, if the agent knows about a non-yellow blockb, a distinct green blockb′,
and a yellow blockb′′ that are all clear and on the table, then her goal of building a 3
blocks tower can be fulfilled by adopting the plan that involves adopting the subgoal to
eventually build a green non-yellow tower, waiting for the achievement of this subgoal,
and then stackingb′′ on b′. Suppose that in response to♦3Tower, the agent adoptedσ1

as above as a subgoal of this goal using the Asel rule, and thusσ1 is added toΓ . In the
next few steps, she will step through the adopted planσ1, executing one action at a time
in an attempt to achieve her goal that♦3Tower.

Note that, in SR-APL, the hierarchical decomposition of a subgoal, e.g.σ1 above,
is a two step process. In the first step, in response to the execution (via Astep) of the
adoptRT (♦TwrGȲ ,DoAL(σ2)) action in her planσ1 in Γ , the agent adopts♦TwrGȲ as
a subgoal of executing the remaining programσ2, possibly along with other actions,
i.e. w.r.t. DoAL(σ2). Then in the second step, she uses the Asel rule to select and adopt
a plan for the subgoal♦TwrGȲ . We assume that the subgoal♦TwrGȲ must always be
achieved before the supergoal. To do this, we suspend the execution of the supergoal by
waiting for the achievement of the subgoal. This can be specified by the programmer
by having the supergoalσ2 start with the wait action TwrGȲ ? that waits for the subgoal
to complete. But this means thatσ2 (and thusσ1) by itself, i.e. without the DoAL con-
struct, might not have a complete execution as it might get blocked when it reaches
TwrGȲ ?. Moreover, sinceσ2 is a member ofΓ , Γ ‖ will have a complete execution only
when all the subgoals inΓ have been fully expanded. To deal with this, we use a weak
consistency check that does not perform full lookahead overΓ ‖. However, our seman-
tics ensures that any actiona performed by the agent must not make the concurrent

execution of all the adopted plans of the agent possibly with other actions impossible,
i.e. it must be consistent with DoAL(Γ ‖), since Astep requires that doinga must be
consistent with all her DoAL procedural goals (and other concurrent declarative goals)
in her goal hierarchy, i.e. thatD |= ¬CGoal(¬∃s′. Do(a, now, s′), s).

Thirdly, we have a rule Aexo for accommodating exogenous actions, i.e. actions
occurring in the agent’s environment that are not under her control. When such an action
a occurs ins, the agent must update her p-goals by progressing the situation component
of her configuration todo(a, s).

Fourthly, we use the Aclean rule for dropping adopted plans from the procedural
goal-baseΓ that are no longer intended in the theoryD. It says that if there is a program
σ in Γ , and executingσ possibly along with other actions is no longer a realistic p-
goal, thenσ should be dropped fromΓ . This might be required when the occurrence
of an exogenous action forces the agent to drop a plan by making it impossible to
execute or inconsistent with her higher priority realistic p-goals. Recall that our theory
automatically drops such plans from the agent’s goal-hierarchy specified byD.

Finally, we have a rule Arep for repairing an agent’s plans in case she gets stuck,
i.e. when for all programsσ in Γ , the agent has the realistic p-goal that DoAL(σ)
at some leveln (and thus all of these DoAL(σ) are still individually executable and
collectively consistent), but together they are not concurrently executable without some
non-σ actions in the sense thatΓ ‖ has no program-level transition ins. This could
happen as a result of an exogenous action or as a side effect of our weak consistency
check, as discussed below. The Arep rule says that if: (a)Γ ‖ does not have a program
level transition ins (which ensures that Astep can’t be applied), (b)Γ ‖ is not considered
to be completed ins, (c) every program inΓ is currently a realistic p-goal that has been
handled (which ensures that Aclean and Asel can’t be applied), (d) there is a sequence
of actions

→
a that the agent does not intend not to execute next, and (e)

→
a repairsΓ in

the sense that there is a program level transition ofΓ ‖ after
→
a has been executed ins,

then in an attempt to repairΓ , the agent should adopt
→
a at the lowest priority level (i.e.

atNPGoals(s)).
Why do we need this rule? One reason is because the agent could get stuck due to

the occurrence of an exogenous actione, e.g. whene makes the preconditions of a plan
σ in Γ false; note that, DoAL(σ) might still be executable after the occurrence ofe, e.g.
if there is an actionr (encoded by the DoAL construct) that can be used to restore the
preconditions ofσ.

Another reason repair may be needed is that we use partial lookahead when exe-
cuting actions via Astep. For example, assume a domain with actionsa, b, andr, all
of which are initially possible. The execution ofb makes the preconditions ofa false,
while that ofr restores them. Our agent has two adopted plans, DoAL(a) and DoAL(b)
in the theoryD, andΓ = [a, b]. Note thatb; a is not a valid execution ofΓ ‖, since
the execution ofb breaks the preconditions ofa. But b; r; a is indeed a valid execution
of (DoAL(a) ∧ DoAL(b)). Since we only do partial consistency checking, our seman-
tics allows the agent to performb as the first action.6 That is, to executeb using the
Astep transition rule, we only need to ensure thatb has a program-level transition ins

6 Note that this does not mean that Astep allows the agent to perform an action that makes one
of her goals impossible, e.g. to executeb when such a repair actionr is not available.

and that this transition is consistent with the agent’s goals inD, i.e. with DoAL(a) and
DoAL(b), both of which hold. After the execution ofb, the agent will get stuck, as there
is no action in the progression ofΓ that she can perform. To deal with this, we include
the repair rule that makes the agent plan for and commit to a sequence of actions that
can be used to repairΓ , which for our example isr. Note that, we could have avoided
the need for repairing plans in this case by strengthening the conditions of the Astep rule
to do full lookahead by expanding all subgoals inΓ . However, this requires modeling
the plan selection/goal decomposition process as part of the consistency check, which
we leave for future work. We could have also relied on plan failure recovery techniques
[28]. Finally, our repair rule does a form of conformant planning; more sophisticated
forms of planning such as synthesizing conditional plans that include sensing actions
could also be performed.

When the agent has complete information, there must be a repair plan available
to the agent (whose actions can be performed by the agent herself) if her goals are
consistent. In our framework, since the SSA forG drops all inconsistent goals/plans,
the agent’s p-goals are always consistent, and thus if complete information is assumed,
it is always possible to repair the remaining plans. Consider our previous example: if the
agent has DoAL(a) and DoAL(b) as her realistic p-goals,Γ = [a, b], and if she has the
c-goal not to execute an action fromΓ ‖ (i.e. CGoal(¬∃s′. 〈Γ ‖, now〉 → 〈Γ ′, s′〉, s)),
then it must be the case that she does not have the c-goal not to executeΓ ‖ along
with other actions (e.g.r), i.e.¬CGoal(¬∃s′. DoAL(a‖b, now, s′), s). Otherwise, one
of DoAL(a) or DoAL(b) would have been dropped by the SSA forG as an agent’s
p-goals are always consistent with each other. Thus there must be a plan

→
a that can

repairΓ . Since the agent has complete information, this plan must work in all her
epistemic alternatives (our repair rule does a form of conformant planning). Also, since
by definition, the agent of the “other actions” in the DoAL construct is the agent herself,
this means that she is also the agent of

→
a . If on the other hand the agent has only

incomplete information, then a repair plan may need to perform sensing actions and
branch on the results. We leave this kind of conditional planning for future work.

Also, note that this rule allows the agent to procrastinate in the sense that in addition
to the plan that actually repairsΓ , she is allowed to adopt and execute actions that are
unnecessary. This could be avoided by constraining the repair plan

→
a , e.g. by requiring

it to be the shortest or the least costly plan etc. We leave this for future work.
In our operational semantics, we want to ensure that the procedural goals inΓ are

consistent with those in the theoryD before expansion of a subgoal/execution of an
action occurs; so we assume that the Aclean rule has higher priority than Asel and Astep.
We can do this by adding appropriate preconditions to the antecedent of the latter, which
we leave out for brevity.

To summarize, in SR-APL we formalize both declarative goals and plans uniformly
in the same goal hierarchy specified byD. We maintain the consistency of adopted
declarative and procedural goals by ensuring that there is at least one path known to the
agent over which all of her adopted declarative goals hold and that encodes the con-
current execution of all of her adopted plans, possibly along with other actions. When-
ever the agent’s goals/plans become inconsistent due to some external interference, the
successor-state axiom inD will drop some of the adopted goals/plans, respecting their

priority, and consistency of the goal-base is automatically restored. We also have a pro-
cedural goal-baseΓ containing the adopted plans inD, whose sole purpose is to ensure
that the agent does not procrastinate w.r.t. her adopted plans. The set of transition rules
of SR-APL allows an SR-APL agent to select, adopt, and execute plans from the plan
library and thus serves as SR-APL’s practical reasoning component. While adopting
plans and executing actions, we use a weak consistency check, and thus avoid searching
over the entire plan-space while ensuring consistency. SR-APL also includes a repair
rule that can be used to repair plans if the agent gets stuck (a) as a result of our weak
consistency check (and lack of lookahead in plan selection), (b) due to external inter-
ferences, or (c) due to the existence of an adopted declarative goal for which there is no
plan specified in the plan library.

Let us now define some useful notions of program execution in SR-APL. Alabeled
execution traceT relative to a theoryD is a (possibly infinite) sequence of configura-

tions〈Γ0, s0〉 l0⇒ 〈Γ1, s1〉 l1⇒ 〈Γ2, s2〉 l2⇒ 〈Γ3, s3〉 l3⇒ · · ·, s.t.Γ0 = [nil], s0 = S0 is the
actual initial configuration, and for all〈Γi, si〉, the agent level transition ruleli can be
used to obtain〈Γi+1, si+1〉. Hereli is one of Asel, Astep, Aexo, Aclean, and Arep, and
in the absence of exogenous actions,li can be one of Asel, Astep, Aclean, and Arep. We
sometimes suppress these labels. Acomplete traceT relative to a theoryD is a finite

labeled execution trace relative toD, 〈Γ0, s0〉 l0⇒ · · · ln−1⇒ 〈Γn, sn〉, s.t.〈Γn, sn〉 does
not have an agent level transition, i.e.〈Γn, sn〉;.

For our blocks world example, we can show that our SR-APL agent for this domain
will not adopt inconsistent plans as seen in Section 2 and will in fact achieve all her
goals. Note that, when arbitrary exogenous actions can occur, even the best laid plans
can fail. Here we only consider the case of where exogenous actions are absent. We
model this using the following axiom, which we callNoExo: ∀a. ¬exo(a). Given this,
we can show that:

Proposition 1 (a). There exists a complete traceT relative toDBW ∪ {NoExo}
for our blocks world program.(b). For all such complete tracesT = 〈Γ0, s0〉 ⇒
〈Γ1, s1〉 ⇒ · · · ⇒ 〈Γn, sn〉, we have:DBW∪{NoExo} |= Final(Γ ‖n , sn)∧TwrGȲ (sn)∧
TwrBR̄(sn). (c). There are no infinite traces relative toDBW ∪ {NoExo}.

Thus when exogenous actions cannot occur, any execution of our SR-APL blocks world
agent achieves all her goals.

6 Rationality of SR-APL Agents

We next prove some rationality properties that are satisfied by SR-APL agents. We
only consider the case when exogenous actions do not occur. We could have considered
exogenous actions, but in that case we would have to complicate the framework further,
e.g. by assuming a fair environment that gives a chance to the agent to perform actions.
Moreover, it is not obvious what rational behavior means in such contexts.

First of all, in each situation, for all domainsD that are part of an SR-APL agent,
the knowledge and c-goals/intentions as specified byD must be consistent:7

7 This follows independently from the underlying agent theory.

Theorem 3 (Consistency of Knowledge and CGoals).

D |= ∀s. ¬Know(false, s) ∧ ¬CGoal(false, s).

We can also show that the procedural goals inΓ and the declarative and procedural
goals in the theoryD ∪ {NoExo} remain consistent. Let’s say thatthe procedural
goals inΓ are consistent with those in the theoryD in situations in a configuration
〈Γ, s〉 iff for all σ s.t. Member(σ, Γ), we haveD |= CGoal(DoAL(σ), s). Also, define
D ¯Exo

.= D ∪ {NoExo}. We have that:

Theorem 4 (Consistency ofΓ and D ¯Exo). If T = 〈Γ0, s0〉 ⇒ 〈Γ1, s1〉 ⇒ · · · ⇒
〈Γn, sn〉 is a complete trace of an SR-APL agent w.r.t. a theoryD ¯Exo, then for alli s.t.
0 ≤ i < n, we have:
(a). If si+1 = do(a, si) for somea, then the procedural goals inΓi are consistent with
those in the theoryD ¯Exo in si,
(b). If si = si+1, then there existsj s.t. 0 < i < j ≤ n and the goals inΓj are
consistent with those in the theoryD ¯Exo in sj ,
(c). The procedural goals inΓn are consistent with those in the theoryD ¯Exo in sn.

(a) and (c) are self-explanatory. (b) shows that whenever there is some procedural goal
in Γi that is not a goal w.r.t. the theoryD ¯Exo, the Aclean rule will remove it fromΓi, and
eventually consistency is restored.8 It follows from Theorem 4 that in all configurations
〈Γ, s〉 where the plans inΓ are consistent with those in the theoryD ¯Exo in s, the agent
intends to execute the programs inΓ concurrently starting ins, possibly with other
actions, i.e.D ¯Exo |= CGoal(∃s′. DoAL(Γ ‖, now, s′), s).

Finally, our agents evolve in a rational way:

Theorem 5 (Rationality of Actions in a Trace). If T = 〈Γ0, s0〉 l0⇒ 〈Γ1, s1〉 l1⇒
· · · ln−1⇒ 〈Γn, sn〉 is a trace of an SR-APL agent relative to a theoryD ¯Exo, then for alli
s.t.0 < i ≤ n andsi = do(a, si−1), we have:

(a). D ¯Exo |= ¬CGoal(¬∃s′. Do(a, now, s′), si−1).
(b). If li−1 = Astep then D ¯Exo |= CGoal(∃s′. DoAL(a, now, s′), si−1).
(c). D ¯Exo |= ∀φ, ψ, n. a = adoptRT (ψ, φ) ∨ a = adopt(ψ, n) ⊃

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(a, s′)) ∧ ψ(p′), si−1).

This states that SR-APL is sound in the sense that any trace produced by the APL
semantics is consistent with the agent’s chosen goals. To be precise, (a) if an SR-APL
agent performs the actiona in situationsi−1, then it must be the case that she does
not have the intention not to executea next insi−1. Moreover, (b) if a is performed via
Astep, thena is indeed intended insi−1 in the sense that she has the intention to execute
a possibly along with some other actions next. Finally, (c) if a is the action of adopting
a subgoalψ w.r.t. a supergoalφ or that of adopting a goalψ at some leveln, then the
agent does not have the c-goal insi−1 not to bring aboutψ next.

8 Recall that applications of Aclean do not change situations.

7 Discussion and Conclusion

Based on a “committed agent” variant of our rich theory of prioritized goal/subgoal
dynamics [13], we developed a specification of an APL framework that handles priori-
tized goals and maintains the consistency of adopted declarative and procedural goals.
We also showed that an agent specified in this language satisfies some strong rationality
properties. While doing this, we addressed some fundamental questions about rational
agency. We model an agent’s concurrent commitments by incorporating the DoAL con-
struct in her adopted plans, which allows her to be open towards future commitments to
plans, using a procedural goal-baseΓ to prevent procrastination. We formalized a weak
notion of consistency between goals and plans that does not require the agent to expand
all adopted goals while checking for consistency.

While SR-APL agents rely on a user-specified plan library, they can achieve a goal
even if such plans are not specified. Indeed the Arep rule can be used as a first principles
planner for goals that can be achieved using sequential plans. Thus, given a goal♦Φ,
all the programmer needs to do to trigger the planner is to add a plan of the form
(♦Φ : true ← Φ?) to the plan libraryΠ. Since the programΦ? is neither executable
nor final, it will eventually trigger the Arep rule, which will make the agent adopt a
sequence of actions to achieveΦ.

Here, we focused on developing an expressive agent programming framework that
yields a rational/robust agent without worrying about tractability. Thus our framework
is a specification and model of an ideal APL rather than a practical APL. In the future,
we would like to investigate restricted versions of SR-APL that are practical, with an
understanding of how they compromise rationality. We think this can be done. For in-
stance if we assume a finite domain, then reasoning with the underlying theory should
be decidable. We could adapt techniques from partial order planning such as summary
information/causal links to support consistency maintenance. We could also simply find
a global linear plan and cache it, using summary information to revise it when necessary.
There are some controller synthesis techniques that can deal with temporally extended
goals [18, 2].

Also, it would be desirable to study a version where the agent fully expands an ab-
stract plan and checks its executability before adopting it. Finally, while our underlying
agent theory supports arbitrary temporally extended goals, in SR-APL we only consider
achievement goals. We would like to relax this in the future.

References

1. M. E. Bratman.Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA, USA, 1987.

2. D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about Actions and Planning in
LTL Action Theories. InProc. KR’02, pages 593–602, 2002.

3. B. J. Clement and E. H. Durfee. Theory for Coordinating Concurrent Hierarchical Planning
Agents Using Summary Information. InProc. AAAI’99, pages 495–502, 1999.

4. B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract Reasoning for Planning and Coor-
dination.J. of Artificial Intelligence Research, 28:453–515, 2007.

5. M. Dastani. 2APL: A Practical Agent Programming Language.J. of AAMAS, 16(3):214–248,
2008.

6. G. De Giacomo, Y. Lesṕerance, and H. J. Levesque. ConGolog, a Concurrent Programming
Language Based on the Situation Calculus.Artificial Intelligence, 121:109–169, 2000.

7. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent Programming with
Declarative Goals. InIntelligent Agents VII : Agent Theories, Architecture, and Languages,
vol. 1986 of LNAI, pages 228–243. Springer-Verlag, 2000.

8. K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent Programming with
Temporally Extended Goals. InProc. AAMAS’09, pages 137–144, 2009.

9. J. F. Horty and M. E. Pollack. Evaluating New Options in the Context of Existing Plans.
Artificial Intelligence, 127:199–220, 2001.

10. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for Real-Time Reasoning and
System Control.IEEE Expert, 7(6):34–44, 1992.

11. S. M. Khan.Rational Agents : Prioritized Goals, Goal Dynamics, and Agent Programming
Languages with Declarative Goals (in preparation). Ph.D. thesis, York University, Canada,
2011.

12. S. M. Khan and Y. Lesṕerance. ECASL: A Model of Rational Agency for Communicating
Agents. InProc. AAMAS’05, pages 762–769, 2005.

13. S. M. Khan and Y. Lesṕerance. A Logical Framework for Prioritized Goal Change. InProc.
AAMAS’10, pages 283–290, 2010.

14. S. M. Khan and Y. Lesṕerance. Towards a Rational Agent Programming Language with
Prioritized Goals. InWorking Notes of DALT VIII, pages 18–33, 2010.

15. S. M. Khan and Y. Lesṕerance. Prioritized Goals and Subgoals in a Logical Account of Goal
Change – A Preliminary Report. InProc. DALT VII, vol. 5948 of LNAI, pages 119–136,
Springer-Verlag, 2010.

16. S. M. Khan and Y. Lesṕerance. SR-APL: A Model for a Programming Language for Rational
BDI Agents with Prioritized Goals (Extended Abstract). To appear inProc. AAMAS’11,
2011.

17. H. J. Levesque, F. Pirri, and R. Reiter. Foundations for a Calculus of Situations.Electronic
Transactions of AI (ETAI), 2(3–4):159–178, 1998.

18. M. Pistore and P. Traverso. Planning as Model Checking for Extended Goals in Non-
Deterministic Domains. InProc. IJCAI’01, pages 479–484, 2001.

19. A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
Agents Breaking Away, vol. 1038 of LNAI, pages 42–55. Springer-Verlag, 1996.

20. R. Reiter.Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, 2001.

21. S. Sardĩna, L. de Silva, and L. Padgham. Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach. InProc. AAMAS’06, pages 1001–1008, 2006.

22. S. Sardĩna and L. Padgham. A BDI Agent Programming Language with Failure Recovery,
Declarative Goals, and Planning.J. of AAMAS(to appear), 2010.

23. R. Scherl and H. J. Levesque. Knowledge, Action, and the Frame Problem.Artificial Intel-
ligence, 144(1–2):1–39, 2003.

24. S. Shapiro and G. Brewka. Dynamic Interactions Between Goals and Beliefs. InProc.
IJCAI’07, pages 2625–2630, 2007.

25. S. Shapiro, Y. Lesṕerance, and H. J. Levesque. Goal Change in the Situation Calculus.J. of
Logic and Computation, 17(5):983–1018, 2007.

26. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference between
Goals in Intelligent Agents. InProc. IJCAI’03, pages 721–726, 2003.

27. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals in Conflict: Semantic Founda-
tions of Goals in Agent Programming.J. of AAMAS, 18(3):471–500, 2009.

28. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and Procedural Goals
in Intelligent Agent Systems. InProc. KR’02, pages 470–481, 2002.

