
On Deliberation under Incomplete Information and the
Inadequacy of Entailment and Consistency-Based

Formalizations ∗

Giuseppe De Giacomo
Dip. Informatica e Sistemistica
School of Computer Science

and Engineering
Univer. di Roma “La Sapienza”
Via Salaria 113, 00198 Roma

Italy

degiacomo@dis.uniroma1.it

Yves Lesperance
Dept. of Computer Science

School of Computer Science
and Engineering
York University

Toronto, ON, M3J 1P3
Canada

lesperan@cs.yorku.ca

Hector J. Levesque
Sebastian Sardiña

Dept. of Computer Science
University of Toronto

Toronto, ON, M5S 3G4
Canada

hector@cs.toronto.edu
ssardina@cs.toronto.edu

ABSTRACT
Much of the work in agent programming assumes an exe-
cution model where an agent has a knowledge base (KB)
about the current state of the world, and makes decisions
about what to do in terms of what is entailed or consistent
with this KB. Deliberation or planning then would involve
looking ahead and gauging what would be consistent or en-
tailed at various stages by future KBs. We show that in the
presence of sensing, this account of deliberation does not
work properly, and propose an alternative that does.

Keywords
Agent programming, deliberation, semantics, situation cal-
culus

1. INTRODUCTION
There has been considerable work on formal models of delib-
eration/planning under incomplete information, where the
agent can perform sensing actions to acquire additional in-
formation. This problem is very important in agent ap-
plications such as web information retrieval/management.
However, much of the previous work on formal models of
deliberation — models of knowing how, ability, epistemic
feasibility, etc. such as [16, 3, 10, 14, 5] — has been set
in epistemic logic-based frameworks and is hard to relate
to work on agent programming languages (e.g. 3APL [9],
AgentSpeak(L) [19], etc.). In this paper, we develop new
non-epistemic formalizations of deliberation that are much

∗(Produces the permission block, copyright information and
page numbering). For use with ACM PROC ARTICLE-
SP.CLS V2.6SP. Supported by ACM.

closer and easier to relate to standard agent programming
language semantics based on transition systems. Our re-
sults show that the commonly held view that deliberation
can simply be taken as a different control regime involving
search over the agent program’s transition tree is fundamen-
tally flawed in the presence of sensing actions.

When doing deliberation/planning under incomplete infor-
mation, one typically searches over a set of states, each of
which is associated with a knowledge base (KB) or theory
that represents what is known in the state. To evaluate tests
in the program and to determine what transitions/actions
are possible, one looks at what is entailed by the KB. To
allow for sensing results, one looks at which of these are
consistent with the KB. We call this type of approach to de-
liberation “entailment and consistency-based” (EC-based).
In this paper, we show that EC-based approaches do not
work in general, and propose an alternative. Our accounts
are formalized within the situation calculus and use Con-
Golog to specify agent programs as described in Section 2,
but we claim that the results generalize to most proposed
agent programming languages/frameworks. We point out
that this paper is mainly concerned with the semantics of
the deliberation process and not much with the actual algo-
rithms implementing such process.

In Sections 3 and 4, we develop a simple EC-based account
of deliberation (KHowEC). We show that this account gives
the wrong results on a simple example involving indefinite
iteration. Then, we show that whenever this account says
that a deliberation/planning problem is solvable, there is a
conditional plan (a finite tree program without loops) that is
a solution. It follows that this account is limited to problems
where the total number of steps needed can be bounded in
advance. We claim that this limitation is not specific to
the simple account and applies to all EC-based accounts of
deliberation.

The source of the problem with the EC-based account is
the use of local consistency checks to determine which sens-
ing results are possible. This does not correctly distinguish
between the models that satisfy the overall domain speci-

fication (for which the plan must work) and those that do
not. To get a correct account of deliberation, one must take
into account what is true in different models of the domain
together with what is true in all of them (what is entailed).
In Section 5, we develop such an entailment and truth-based
account (KHowET), argue that it intuitively does the right
thing, and show how it correctly handles our test examples.
Following this, we return to discuss the meaning of these
results for agent programming language semantics.

2. THE SITUATION CALCULUS AND IN-
DIGOLOG

The technical machinery we use to define program execu-
tion in the presence of sensing is based on that of [6, 4].
The starting point in the definition is the situation calculus
[15]. We will not go over the language here except to note
the following components: there is a special constant S0

used to denote the initial situation, namely that situation
in which no actions have yet occurred; there is a distin-
guished binary function symbol do where do(a, s) denotes
the successor situation to s resulting from performing the
action a; relations whose truth values vary from situation
to situation, are called (relational) fluents, and are denoted
by predicate symbols taking a situation term as their last
argument. There is a special predicate Poss(a, s) used to
state that action a is executable in situation s. We assume
that actions return binary sensing results, and we use the
predicate SF (a, s) to characterize what the action tells the
agent about its environment. For example, the axiom

Near(d, s) ⊃ [SF (senseDoor(d), s) ≡ Open(d, s)]

states that if the agent is near a door d then the action
senseDoor(d) tells it whether the door is open. For actions
with no useful sensing information, we write SF (a, s) ≡
True.

Within this language, we can formulate domain theories
which describe how the world changes as the result of the
available actions. Here, we use action theories of the follow-
ing form:

• Axioms describing the initial situation, S0.

• Action precondition axioms, one for each primitive ac-
tion a, characterizing Poss(a, s).

• Guarded successor state axioms of the form
α(~x, a, s) ⊃ [F (~x, do(a, s)) ≡ γ(~x, a, s)]

providing the usual solution to the frame problem but
only when the guard holds.

• Guarded sensed fluent axioms of the form
α(~x) ⊃ [SF (a, s) ≡ φ(~x, s)]

as described above.

• Unique names axioms for the primitive actions.

• A set of foundational, domain independent axioms for
situations Σ as in [20].

Such theories are essentially a special case of the guarded
action theories of [7], which generalize the basic action the-

ories of [20] to allow for fluents that change in unpredictable
ways under certain conditions and deal with sensing.1

To describe a run of a program which includes both ac-
tions and their sensing results, we use the notion of a his-
tory, i.e., a sequence of pairs (a, x) where a is a primi-
tive action and x is 1 or 0, a sensing result. Intuitively,
the history σ = (a1, x1) · . . . · (an, xn) is one where ac-
tions a1, . . . , an happen starting in some initial situation,
and each action ai returns sensing value xi. We use end[σ]
for the situation term defined by: end[ε] = S0; and end[σ ·
(a, x)] = do(a, end[σ]). We use Sensed[σ] for the formula
of the situation calculus defined by: Sensed[ε] = True;
and Sensed[σ · (a, 1)] = Sensed[σ] ∧ SF (a, end[σ]), and
Sensed[σ · (a, 0)] = Sensed[σ] ∧ ¬SF (a, end[σ]).

Next we turn to programs. The programs we consider here
are based on the ConGolog language defined in [4], an ex-
tension of Golog [12] providing a rich set of programming
constructs. Golog and its successors have been used to
build a number of applications. These include a demonstra-
tion mail delivery robot at Toronto and York Universities, a
robot museum guide at University of Bonn [2], a character
specification program for computer animation [8], a softbot
application in the personal banking domain [11], and others.
In this paper, we will only need the following procedure-free
subset:

α, primitive action
φ?, wait for a condition
δ1; δ2, sequence
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 | δ2, nondeterministic branch
π x. δ, nondeterministic choice of argument
δ∗, nondeterministic iteration
δ1 ‖ δ2, concurrency

In [4], a single step transition semantics in the style of [18]
is defined for ConGolog programs. Two special predicates
Trans and Final are introduced. Trans(δ, s, δ′, s′) means
that by executing program δ starting in situation s, one can
get to situation s′ in one elementary step with the program δ′

remaining to be executed. Final(δ, s) means that program
δ may successfully terminate in situation s.

Offline executions of programs, which are the kind of ex-
ecutions originally proposed for Golog and ConGolog [13,
4], are characterized using the Do(δ, s, s′) predicate, which
means that there is an execution of program δ that starts in
situation s and terminates in situation s′:

Do(δ, s, s′)
def

= ∃δ
′

.T rans
∗(δ, s, δ′, s′) ∧ Final(δ′

, s
′),

where Trans∗ is the reflexive transitive closure of Trans.
An offline execution of δ from s is a sequence of actions
a, . . . , an such that: D∪C |= Do(δ, s, do(an, . . . , do(a1, s) . . .)),
where D is an action theory as mentioned above, and C is a
set of axioms defining the predicates Trans and Final and
the encoding of programs as first-order terms [4].

1Guarded theories, however, provide a passive account of
sensing by using online sensors instead of specific sensing
actions.

Observe that an offline executor has no access to sensing
results, available only at runtime. IndiGolog, an extension
of ConGolog to deal with online executions with sensing, is
proposed in [6]. The semantics defines an online execution
of a program δ starting from a history σ, as a sequence of
online configurations (δ0 = δ, σ0 = σ), . . . , (δn, σn) such that
for i = 0, . . . , n−1:

D ∪ C ∪ {Sensed[σi]} |= Trans(δi, end[σi], δi+1, end[σi+1]),

σi+1 =

�� � σi if end[σi+1] = end[σi],
σi · (a, x) if end[σi+1] = do(a, end[σi])

and a returns x.

An online execution successfully terminates if

D ∪ C ∪ {Sensed[σn]} |= Final(δn, end[σn]).

In Golog and ConGolog, a programmer can write a nonde-
terministic program and rely on the interpreter to do looka-
head to find a way to successfully execute the program; this
can be used for planning. In IndiGolog, lookahead is not
automatic. Instead, a search operator Σ(δ) is introduced to
allow the programmer to specify when lookahead should be
performed. We do not present the formal details here. How-
ever, suffice it to say that this operator only allows a tran-
sition for δ if there exists a sequence of further transitions
that would allow δ to terminate successfully. Unfortunately,
this fails to rule out cases where a sequence must exist but
where the agent cannot determine what the sequence is. A
more satisfactory notion of deliberation is presented in [5],
and is the basis for the ideas presented here.

3. DELIBERATION: EC-BASED ACCOUNT
Perhaps the first approach to come to mind for defining
when an agent knows how/is able to execute a program δ in
a history σ goes as follows: the agent must be able to repeat-
edly choose some action that is known to be executable and
allowed by the program, such that no matter what sens-
ing output is obtained as a result of doing the action, he
can continue this process with what remains of the program
and eventually reach a configuration where he knows he can
legally terminate. We can formalize this idea as follows.

We define KHowEC(δ, σ) to be the smallest relation R(δ, σ)
such that:

(A) for all pairs (δ, σ), if

D ∪ C ∪ {Sensed[σ]} |= Final(δ, end[σ])

then R(δ, σ);

(B) for all pairs (δ, σ), if there exists δ′ such that

D ∪ C ∪ {Sensed[σ]} |=
Trans(δ, end[σ], δ′, end[σ])

and R(δ′, σ), then R(δ, σ);

(C) for all pairs (δ, σ), if there exist δ′ and an action a such
that

D ∪ C ∪ {Sensed[σ]} |=
Trans(δ, end[σ], δ′, do(a, end[σ]))

and for all sensing results µ such that D∪C∪{Sensed[σ·
(a, µ)]} is consistent, it is the case that R(δ′, σ ·(a, µ)),
then R(δ, σ).

Note that here, the agent’s lack of complete knowledge in a
history σ is modeled by the theory D ∪ C ∪ {Sensed[σ]} be-
ing incomplete and having many different models. KHowEC

uses entailment to ensure that the agent knows what tran-
sition he may perform next. For instance, for a conditional
program involving different actions a1 and a2 in the “then”
and “else” branches (i.e., such that D ∪ C ∪ {Sensed[σ]} |=
a1 6= a2), the agent must know whether the test holds and
know how to execute the appropriate branch:

KHowEC(if φ then a1 else a2 endIf, σ) iff
D ∪ C ∪ {Sensed[σ]} |= φ(end[σ]) andKHowEC(a1, σ)

or
D ∪ C ∪ {Sensed[σ]} |= ¬φ(end[σ]) andKHowEC(a2, σ).

KHowEC uses consistency to determine which sensing re-
sults can occur, for which the agent needs to have a subplan
that leads to a Final configuration. Due to this, we say that
KHowEC is an entailment and consistency-based (EC-based)
account of knowing how.

We can easily define a notion of when an agent can achieve
a goal φ in a history σ, CanEC(φ, end[σ]), based on this as
follows:

CanEC(φ, σ) iff KHowEC(while ¬φ do (πa.a) end, σ),

i.e., the agent knows how to execute the program that in-
volves repeatedly choosing and executing some action until
the goal has been achieved. Note how this shows that ability
to achieve a goal is a special case of knowing how to execute
a (nondeterministic) program.

The EC-based account of deliberation seems quite intuitive
and attractive. However it has a fundamental limitation: it
fails on programs involving indefinite iteration. The follow-
ing simple example taken from [10] shows the problem.

Consider a situation in which an agent wants to cut down
a tree. Assume that the agent has a primitive action chop
to chop at the tree, and also assume that he can always
find out whether the tree is down by doing the (binary)
sensing action look. If the sensing comes 1, then the tree
is down; otherwise the tree still remains up. There is also
a fluent RemainingChops(s), which we assume ranges over
the natural numbers � and is meant to represent how many
chop actions are still required in s to bring the tree down.
The agent’s goal is to bring the tree down, which means
bringing about a situation s such that the Down(s) holds.
The abbreviation Down(s) is an defined as follows:

Down(s)
def

= RemainingChops(s) = 0

The action theory Dtc is the union of:

1. The foundational axioms for situations Σ.

2. Duna = {chop 6= look}.

3. Dss contains the following successor state axiom:

RemainingChops(do(a, s)) = n ≡
a = chop ∧ RemainingChops(s) = n + 1 ∨
a 6= chop ∧ RemainingChops(s) = n.

4. Dap contains the following two precondition axioms:

Poss(chop, s) ≡ True,
Poss(look, s) ≡ (RemainingChops > 0).

5. DS0
= {RemainingChops(S0) 6= 0}.

6. Dsf contains the following two sensing axioms:

SF (chop, s) ≡ True,
SF (look, s) ≡ (RemainingChops(s) = 0).

Notice that sentence ∃n.RemainingChop(S0) = n (where
the variable n ranges over �) is entailed by this theory so
“infinitely” hard tree trunks are ruled out. Nonetheless, the
theory does not entail the sentence RemainingChop(S0) <

k for any constant k ∈ � . Hence, there exists some n ∈ � ,
though unknown and unbounded, such that the tree will fall
after n chops. Because of this, intuitively, we should have
that the agent can bring the tree down CanEC(Down, S0),
since if the agent keeps chopping, the tree will eventually
come down, and the agent can find out whether it has come
down by looking. Moreover, for the program

δtc = while ¬Down do chop; look endWhile

we should have that KHowEC(δtc, ε) (note that δtc is deter-
ministic). However, this is not the case:

Theorem 3.1. Let δtc be the above mentioned program to
bring the tree down. Then, for all k ∈ � ,
KHowEC(δtc, ((chop, 1) · (look, 0))k) does not hold. In par-
ticular, when k = 0, KHowEC(δtc, ε) does not hold.

Thus, the simple EC-based formalization of knowing how
gives the wrong result for this example. Why is this so? In-
tuitively, it is easy to check that if KHowEC(δtc, ε), then for
all j ∈ � , KHowEC(δtc, ((chop, 1) · (look, 0))j) and
KHowEC(look; δtc, ((chop, 1) · (look, 0))j · (chop, 1)). Now
consider a possible execution where an agent keeps chopping
and looking and seeing that the tree is not down forever.
There is no model of Dtc where δtc yields this execution,
as the tree is guaranteed to come down after a finite num-
ber of chops. However, by the above, we see that KHowEC

is in fact taking this execution into account in determining
whether the agent knows how to execute δtc, since every fi-
nite prefix of the execution is indeed consistent with Dtc.
The problem is that the set of all of them together is not.
This is why KHowEC fails. In the next section, we show that
KHowEC ’s failure on the tree chopping example is due to a
general limitation of the KHowEC formalization. Note that
Moore’s original account of ability [16] is closely related to
KHowEC and also fails on the tree chopping example [10].

4. KHowEC CAN ONLY HANDLE BOUNDED
SOLUTIONS

In this section, we show that whenever KHowEC(δ, σ) holds
for some program δ and history σ, there is simple kind of
conditional plan, what we call a TREE program, that can be
followed to execute δ in σ. Since for TREE programs (and
conditional plans), the number of steps they perform can
be bounded in advance (there are no loops), it follows that
KHowEC will never be satisfied for programs whose execu-
tion cannot be bounded in advance. Since there are many
such programs (for instance, the one for the tree chopping
example), it follows that KHowEC is fundamentally limited
as a formalization of knowing how and can only be used
in contexts where attention can be restricted to bounded
strategies. As in [5], we define the class of (sense-branch)
tree programs TREE with the following BNF rule:

dpt ::= nil | False? | a; dpt1 | True?; dpt1 |
senseφ; if φ then dpt1 else dpt2

where a is any non-sensing action, and dpt1 and dpt2 are
tree programs.

This class includes conditional programs where one can only
test a condition that has just been sensed (or trivial tests,
which are introduced only for technical reasons). Thus as
shown in [5], whenever a TREE program is executable, it
is also epistemically feasible, i.e., the agent can execute it
without ever getting stuck not knowing what transition to
perform next. As well, TREE programs are clearly deter-
ministic.

Let us define a relation KHowByEC : Program× History×
TREE . The relation is intended to associate a program δ
and history σ for which KHowEC holds with some TREE
program(s) that can be used as a strategy for successfully
executing δ in σ.

We define KHowByEC(δ, σ, δtp) to be the least relation
R(δ, σ, δtp) such that:

(a) If D ∪ C ∪ {Sensed[σ]} |= Final(δ, end[σ]), then
R(δ, σ, nil).

(b) If D ∪ C ∪ {Sensed[σ]} |=

Trans(δ, end[σ], δ′, end[σ]) and R(δ′, σ, δtp′

), then

R(δ, σ, T rue?; δtp′

).

(c) If D ∪ C ∪ {Sensed[σ]} |=
Trans(δ, end[σ], δ′, do(a, end[σ])) and for all µ such that
D ∪ C ∪ {Sensed[σ · (a, µ)]} is consistent, there exists
δtp

µ such that R(δ′, σ · (a, µ), δtp
µ) then

R(δ, σ, a; if φ then δtp′
else δtp′

endIf) where φ is the
condition on the right hand side of the sensed fluent
axiom for a, and if D ∪ C ∪ {Sensed[σ · (a, 1)]} is in-

consistent then δtp′

= False? else δtp′

= δ
tp
1 and if

D ∪ C ∪ {Sensed[σ · (a, 0)]} is inconsistent then δtp′

=

False? else δtp′

= δ
tp
0 .

We first show that for every program δ and history σ for
which KHowEC(δ, σ) holds, there is a program δtp such that
KHowByEC(δ, σ, δtp) holds (we show later that δtp must be
a TREE program):

Theorem 4.1. For all programs δ and histories σ,
if KHowEC(δ, σ), then there exists a program δtp such that
KHowByEC(δ, σ, δtp).

Next, we show that whenever KHowByEC(δ, σ, δtp) holds,
then δtp is a TREE program which is guaranteed to ter-
minate in a Final situation of the given program δ (in all
models), and KHowEC(δ, σ) holds. Note that TREE pro-
grams are by definition deterministic, and thus this means
that all executions of δtp must be executions of δ as well
(which execution we get depends only on the sensing results
obtained).

Theorem 4.2. For all programs δ, histories σ, and pro-
grams δtp, if KHowByEC(δ, σ, δtp) then we have that

• δtp is a TREE program,

• KHowEC(δ, σ),

•
D ∪ C ∪ {Sensed[σ]} |=

∃s.Do(δtp, end[σ], s) ∧ Do(δ, end[σ], s).

Since the number of steps a TREE program performs can
be bounded in advance, it follows that KHowEC will never
hold for programs/problems that are solvable, but whose
execution requires a number of steps that cannot be bounded
in advance, for instance, the program in the tree chopping
example. Thus KHowEC is severely restricted as an account
of knowing how; it can only be complete when all possible
strategies are bounded.

5. DELIBERATION: ET-BASED ACCOUNT
We saw in Section 3 that the reason KHowEC failed on the
tree chopping example was that it required the agent to
have a choice of action that guaranteed reaching a Final
configuration even for histories such as σω that were incon-
sistent with the domain specification. There was a branch
in the configuration tree that corresponded to that that his-
tory. This occurred because “local consistency” was used
to construct the configuration tree. The consistency check
kept switching which model of D∪C (which may be thought
as representing the environment) was used to generate the
next sensing result, postponing the observation that the tree
had come down forever. But in the real world, sensing re-
sults come from a fixed environment (even if we don’t know
which environment this is). It seems reasonable that we
could correct the problem by fixing the model of D∪C used
in generating possible configurations in our formalization of
knowing how. This is what we will now do.

Assume for the time being that we are only dealing with de-
terministic programs, i.e. programs that do not use the non-
deterministic constructs |, π, ∗, and ‖. We define when an
agent knows how to execute a program δ in a history σ and
model M (which represents the environment),
KHowInM(δ, σ, M), as the smallest relation R(δ, σ) such
that:

(A) for all pairs (δ, σ), if

D ∪ C ∪ {Sensed[σ]} |= Final(δ, end[σ])

then R(δ, σ);

(B) for all pairs (δ, σ), if there exists δ′ such that

D ∪ C ∪ {Sensed[σ]} |=
Trans(δ, end[σ], δ′, end[σ])

and R(δ′, σ), then R(δ, σ);

(C) for all pairs (δ, σ), if there exist δ′ and an action a such
that

D ∪ C ∪ {Sensed[σ]} |=
Trans(δ, end[σ], δ′, do(a, end[σ]))

and if M |= SF (a, end[σ]) then it is the case that
R(δ′, σ · (a, 1)) and if M |= ¬SF (a, end[σ]) then it
is the case that R(δ′, σ · (a, 0)), then R(δ, σ).

The only difference between this and KHowEC is that the
sensing results come from the fixed model M . Given this, we
obtain the following formalization of when an agent knows
how to execute a program δ in a history σ:

KHowETd(δ, σ) iff for every model M such that
M |= D ∪ C ∪ {Sensed[σ]}, KHowInM(δ, σ, M).

We call this type of formalization entailment and truth-
based, since it uses entailment to ensure that the the agent
knows what transitions he can do, and truth in a model to
obtain possible sensing results.

KHowETd actually works for programs δ that are determin-
istic. For instance, it handles the tree chopping example
correctly: KHowETd(δtc, ε) holds. However, for nondeter-
ministic programs, KHowETd is too weak. Consider the fol-
lowing example. There is a treasure behind one of two doors
but the agent does not know which. We want to know if the
agent knows how to execute the program δtreas:

[(open1; look) | (open2; look)]; AtTreasure?

Intuitively, the agent does not know how to execute δtreas

because he does not know which door to open to get to the
treasure. However, KHowETd(δtreas, ε) holds. Indeed in a
model M1 where the treasure is behind door 1, the agent can
pick the open1 action, and then we have
KHowInM(look; AtTreasure?, [(open1, 1)], M1), and thus
KHowInM(δtreas, ε, M1). Similarly, in a model M2 where
the treasure is behind door 2, he can pick open2, and thus
KHowInM(δtreas, ε, M2).

The problem with KHowETd for nondeterministic programs
is that the action chosen need not be the same in different
models even if they have generated the same sensing results
up to that point and are indistinguishable for the agent.2

We can solve this problem by requiring that the agent have
a common strategy for all models/environments, i.e., that

2Note that KHowEC does not suffer from this problem and
works just fine for nondeterministic programs, provided they
can only execute a bounded number of steps.

he have a deterministic program δd that he knows how to
execute (in all models of the theory) and knows will termi-
nate in a Final situation of the given program δ:

KHowET (δ, σ) iff there is a deterministic program δd such
that KHowETd(δ

d, σ) and

D ∪ C ∪ {Sensed[σ]} |=
∃s.Do(δd, end[σ], s) ∧ Do(δ, end[σ], s).

We do not think that it is possible to obtain a much simpler
general formalization of knowing how and to avoid the quan-
tification over deterministic programs/strategies. A notion
of ability to achieve a goal can be defined in terms of the
KHowET account as we did for KHowEC in Section 3.

6. DISCUSSION
What are the implications of our results for work on agent
programming languages (e.g. 3APL [9], AgentSpeak(L) [19],
etc.)? The semantics of such languages are usually specified
as a transition system. For instance in 3APL, configurations
are pairs involving a program and a belief base, and a tran-
sition relation over such pairs is defined by a set of rules.
Evaluating program tests is done by checking whether they
are entailed by the belief base. Checking action precon-
ditions is done by querying the agent’s belief base update
relation, which would typically involve determining entail-
ments over the belief base — the 3APL semantics abstracts
over the details of this. Sensing is not dealt with explicitly,
although one can suppose that it could be handled by sim-
ply updating the belief base (AgentSpeak(L) has events for
this kind of thing).

Most work in this area only deals with on-line reactive exe-
cution, where no deliberation/lookahead is performed; this
type of execution just involves repeatedly selecting some
transition allowed in the current configuration. However, a
commonly held view is that deliberation can simply be taken
as a different control regime involving search over the agent
program’s transition tree. It is understood that in the pres-
ence of sensing, one needs to find more than just a path to
a final configuration in the transition tree; one needs some
sort of plan/subtree where the agent has chosen some tran-
sition among those allowed but must have branches for all
possible sensing results. The natural way of determining
which sensing results are possible is checking their consis-
tency with the current belief base. This is essentially an
EC-based approach. Also in work on planning under in-
complete information, e.g. [1, 17], a similar sort of setting
is typically used, and finding a plan involves searching a (fi-
nite) space of knowledge states that are compatible with the
planner’s knowledge. Whereas the planner in [1] uses BDDs
to represent the set of possible states, the planner in [17]
uses restricted formulas instead. In any case, the underly-
ing models are meant to represent only the current possible
states of the environment, which, in turn, are updated upon
the hypothetical execution of an action at planning time.
This is quite different from the way models are used here.
We use models that are dynamic in the sense that they rep-
resent the potential responses of the environment for any
future state. In that way, then, what the above planners are
doing is deliberation in the style of KHowEC . Our results
show that this view of deliberation is fundamentally flawed

when sensing is present. It produces an account that only
handles problems that can be solved in a bounded number
of actions. As an approach to implementing deliberation,
this may be perfectly fine. But as a semantics or specifica-
tion, it is wrong. What is required is a much different kind
of account, like our ET-based one.

We believe that there is a close relationship between KHowET

some of the earlier epistemic accounts of knowing how and
ability [16, 3, 10, 14, 5]. We hope to get some correspon-
dence results on this soon. The work presented here is also of
great relevance for defining a more adequate
search/deliberation operator in IndiGolog.

7. REFERENCES
[1] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso.

Planning in nondeterministic domains under partial
observability via symbolic model checking. In
Proceedings of IJCAI-01, pages 473–478, 2001.

[2] W. Burgard, A. B. Cremers, D. Fox, D. Hahnel,
G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun.
The interactive museum tour-guide robot. In
Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI’98), Madison, Wisconsin,
1998.

[3] E. Davis. Knowledge preconditions for plans. Journal
of Logic and Computation, 4(5):721–766, 1994.

[4] G. De Giacomo, Y. Lespérance, and H. J. Levesque.
ConGolog, a concurrent programming language based
on the situation calculus. Artificial Intelligence,
121:109–169, 2000.

[5] G. De Giacomo, Y. Lespérance, H. J. Levesque, and
S. Sardiña. On the semantics of deliberation in
IndiGolog: From theory to implementation. In
D. Fensel, F. Giunchiglia, D. McGuiness, and M.-A.
Williams, editors, Principles of Knowledge
Representation and Reasoning, Proc. of the 8th Int.
Conf. (KR2002), pages 603–614, Toulouse, France,
April 2002. Morgan Kaufmann. Also appeared in
Proc. AIPS’02.

[6] G. De Giacomo and H. J. Levesque. An incremental
interpreter for high-level programs with sensing. In
H. J. Levesque and F. Pirri, editors, Logical
Foundations for Cognitive Agents, pages 86–102.
Springer-Verlag, 1999.

[7] G. De Giacomo and H. J. Levesque. Progression and
regression using sensors. In Proc. of IJCAI-99, pages
160–165, 1999.

[8] J. Funge. Making Them Behave: Cognitive Models for
Computer Animation. PhD thesis, University of
Toronto, Toronto, Canada, 1998.

[9] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J. J. C. Meyer. A formal semantics for an abstract
agent programming language. In Proceedings of
ATAL-97, pages 215–229, 1998.

[10] Y. Lespérance, H. J. Levesque, F. Lin, and R. B.
Scherl. Ability and knowing how in the situation
calculus. Studia Logica, 66(1):165–186, 2000.

[11] Y. Lespérance, H. J. Levesque, and S. Ruman. An
experiment in using golog to build a personal banking
assistant. In L. Rao and W. Wobcke, editors,
Intelligent Agent Systems: Theoretical and Practical
Issues, volume 1209 of Lectures Notes in Artificial
Intelligence (LNAI), pages 27–43. Springer-Verlag,
1997.

[12] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and
R. Scherl. GOLOG: A logic programming language for
dynamic domains. Journal of Logic Programming,
31:59–84, 1997.

[13] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. B. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming,
31(59–84), 1997.

[14] F. Lin and H. J. Levesque. What robots can do:
Robot programs and effective achievability. Artificial
Intelligence, 101:201–226, 1998.

[15] J. McCarthy and P. Hayes. Some philosophical
problems from the standpoint of artificial intellig ence.
In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463–502. Edinburgh
University Press, 1979.

[16] R. C. Moore. A formal theory of knowledge and
action. In J. R. Hobbs and R. C. Moore, editors,
Formal Theories of the Common Sense World, pages
319–358. Ablex Publishing, Norwood, NJ, 1985.

[17] R. Petrick and F. Bacchus. A knowledge-based
approach to planning with incomplete information and
sensing. In Proceedings of the International
Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2002), pages 212–221, 2002.

[18] G. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI-FN-19, Computer
Science Dept., Aarhus University, Denmark, 1981.

[19] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logica computable language. In W. V. Velde and J. W.
Perram, editors, Agents Breaking Away (LNAI),
volume 1038, pages 42–55. Springer-Verlag, 1996.

[20] R. Reiter. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

