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Abstract

Representation and reasoning about strategic abil-
ities has been an active research area in AI and
multi-agent systems. Many variations and exten-
sions of alternating-time temporal logic ATL have
been proposed. However, most of the logical
frameworks ignore the issue of coordination within
a coalition, and are unable to specify the inter-
nal structure of strategies. In this paper, we pro-
pose JAADL, a modal logic for joint abilities un-
der strategy commitments, which is an extension of
ATL. Firstly, we introduce an operator of elimina-
tion of (strictly) dominated strategies, with which
we can represent joint abilities of coalitions. Sec-
ondly, our logic is based on linear dynamic logic
(LDL), an extension of linear temporal logic (LTL),
so that we can use regular expressions to represent
commitments to structured strategies. We analyze
valid formulas in JAADL, give sufficient/necessary
conditions for joint abilities, and show that model
checking memoryless JAADL is in EXPTIME.

1 Introduction
Representation and reasoning about strategic abilities has
been an active research area in AI and multi-agent systems.
The foundational work is Alternating-time Temporal Logic
ATL/ATL∗ [Alur et al., 2002] where formula ⟪A⟫φ expresses
that coalition A has a group strategy to ensure temporal goal
φ holds no matter what the other agents do. The formulas
are interpreted over concurrent game structures where multi-
ple agents act concurrently and the system transition is deter-
mined by the collective behavior of agents.

Many variations and extensions of ATL/ATL∗ have been
proposed, e.g., semantic variants about different abilities of
agents under perfect vs imperfect information and perfect
vs imperfect recall [Schobbens, 2004], explicit quantifica-
tion over strategies [Chatterjee et al., 2010; Mogavero et al.,
2014], probabilistic extensions [Huang et al., 2012], epis-
temic extensions or variations [van der Hoek and Wooldridge,
2003; Jamroga and van der Hoek, 2004; Naumov and Tao,
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2018], resource bounded variations [Alechina et al., 2010],
etc.

However, most extensions ignore the coordination prob-
lem. As discussed in [Ghaderi et al., 2007], a coalition may
have many group strategies to ensure a goal, yet a player
may not know other players’ choices, hence the coalition
may end up with a group strategy which may not ensure the
goal. They studied the coordination problem and present a
formalization of joint ability of coalitions based on the idea
of iterated elimination of (strictly) dominated strategies [Os-
borne and Rubinstein, 1999]. Essentially, a coalition has joint
ability to achieve a goal if after iterated elimination of dom-
inated strategies, any remaining joint strategy achieves the
goal. Further, [Xiong and Liu, 2016] presented a formaliza-
tion of joint ability of coalitions under commitments to strat-
egy programs. However, both works use the very expressive
situation calculus [Reiter, 2001], making it difficult to ana-
lyze properties of the logics. Recently, based on coalition
logic [Pauly, 2002], [Hawke, 2017] proposed a logic of joint
ability in two-player tacit games with a joint ability modal-
ity ((A))ϕ: two players have joint ability to achieve a goal if
after iterated elimination of punishment strategies, i.e., those
strategies that fail to achieve the goal no matter what other
agents do, any remaining joint strategy achieves the goal. So
they only eliminate punishment strategies, hence their con-
cept of joint ability is much weaker than that of [Ghaderi et
al., 2007].

Social rules [Shoham and Tennenholtz, 1995], such as traf-
fic rules, play an important role in coordination. [Ågotnes et
al., 2007] used normative systems to describe norms/social
rules semantically. As pointed out by [Ramanujam and Si-
mon, 2008; Eijck, 2013], most extensions of ATL treat strate-
gies as abstract objects rather than considering the internal
structure of strategies. They proposed to use regular expres-
sions to represent structured strategies. Existing strategic log-
ics are based on various temporal logics such as LTL [Pnueli,
1977] and CTL [Clarke and Emerson, 1981]. [De Giacomo
and Vardi, 2013] proposed linear dynamic logic LDL, an ex-
tension of LTL with regular expressions. Thus it is valuable
to explore strategic logics based on LDL so that structured
strategies can be represented.

Moreover, there have been works on specifying strategic
abilities under constraints of rationality, by using various so-
lution concepts in game theory. [Huang and Ruan, 2017]



integrated correlated equilibrium (CE) into ATL, taking CE
as agents’ joint strategy and optimizing over the utilitarian
value. [Gutierrez et al., 2014] proposed a logic containing
operator [NE]ψ, meaning ψ holds on all Nash equilibrium
computations. [Gutierrez et al., 2017] investigated techniques
for the characterization and verification of equilibria in multi-
play games with goals expressed using logics based on LDL.

In this paper, based on the idea of [Ghaderi et al., 2007], we
propose JAADL (meaning Alternating-time Dynamic Logic
with Joint Abilities), a modal logic for joint abilities un-
der strategy commitments, which is an extension of ATL∗.
Firstly, we introduce an operator (A)∞ψ ϕ, meaning ϕ holds
after iterated elimination of (strictly) dominated strategies
w.r.t. group A and goal ψ. Then coalition A has joint ability
to achieve ψ can be represented as the formula (A)∞ψ ⟪∅⟫ψ,
where ∅ is the empty set, which means that after iterated
elimination of (strictly) dominated strategies, any remaining
joint strategy achieves ψ. Secondly, our logic is based on
LDL, so that we can use regular expressions to represent com-
mitments to structured strategies such as traffic rules, and this
can really help eliminate lack of coordination and achieve
joint abilities in many cases. For example, the commitment
that Car 1 cannot drive in Lane 4 is represented by the regular
expression (¬move1(4))∗. This is similar to Xiong and Liu’s
work where strategy commitments are described by Golog
programs. We present the syntax and semantics of JAADL,
analyze valid formulas, give four sufficient/necessary condi-
tions for joint abilities, and apply these conditions to ana-
lyze some interesting examples. Finally, we show that model
checking memoryless JAADL is in EXPTIME.

2 Preliminaries
In this section, we introduce the concepts of concurrent game
structures and strategies.

Let AP be a finite non-empty set of atoms, AC a finite
non-empty set of actions, and let AG={1, . . . , n} be a finite
non-empty set of agents. We use ∅ to denote the empty set.
Definition 1 (Concurrent Game Structures). A concurrent
game structure (CGS) is a tuple G = ⟨W,L,P, τ,w0⟩, where

• W is a finite non-empty set of states; w0 ∈W is a desig-
nated initial state; L is a labeling function mapping each
state to a subset of AP; τ is a transition function mapping
a state w and a decision at w to a new state;

• for each agent i, Pi is a possible action function mapping
each state to a subset of AC; a decision at state w is a
function mapping each agent i to an action from Pi(w);
we use D(w) to denote the set of decisions at w;

Example 1 (Three-player Collaborative PRS (Paper, Rock,
and Scissors)). As shown in Figure 1, three players simulta-
neously play the actions of Paper, Rock, and Scissors. The
group wins if Player a is not beaten by Player b and Player b
is not beaten by Player c. We formalize the game as a CGS G
as follows:

• AG = {a, b, c}, AP = {win}, AC = {R,P,S};
• W = {si, sw, sl}, w0 = si;
• L(si) = L(sl) = ∅, L(sw) = {win};
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Figure 1: Three-player Collaborative PRS
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Figure 2: The Traffic Rule Example

• Pa(si) = {R,S}, Pb(si) = {P,S}, Pc(si) = {R,P};

• τ(si, d) = sw for d ∈ Dw = {RSP,SPR,SPP,SSP},
τ(si, d) = sl for d ∈Dl = {RPR,RPP,RSR,SSR}.

Example 2 (The Traffic Rule Example). As shown in Fig-
ure 2, there are 4 lanes, and two cars that drive in opposite
directions. We model this example as a CGS where

• AG = {1,2}, AP = {crash}, AC = {move(k) ∣ k ∈{1,2,3,4}}, where move(k) means moving forward
one unit while switching to Lane k.

• W = {(x1, y1, x2, y2) ∣ 1 ≤ x1, x2 ≤ 100,1 ≤ y1, y2 ≤
4}, where (xi, yi) represents the position of car i.

• w0 = (1,2,100,3).

• For any w = (x1, y1, x2, y2) ∈ W , crash ∈ L(w) iff(x1, y1) = (x2, y2).

• For any i = 1,2, w ∈W , if crash /∈ L(w), Pi(w) = AC,
otherwise, Pi(w) = ∅.

• τ can be easily given. For example,
τ((5,3,2,4), (move(4),move(2))) = (6,4,1,2).

We now define the concepts of tracks and paths. Tracks are
finite state-decision sequences, they are used to define strate-
gies: a strategy is a mapping from tracks to actions. Paths
are infinite state-decision sequences, they are used to inter-
pret JAADL path formulas.

Definition 2. A track h in a CGS G is a finite state-decision
sequencew0d0w1d1...wk s.t. for all i (0 ≤ i < k), di ∈D(wi),
and wi+1 = τ(wi, di). We use last(h) to denote wk.

Definition 3. A path λ in a CGS G is an infinite state-decision
sequence w0d0w1d1... s.t. for all i ≥ 0, di ∈ D(wi), and
wi+1 = τ(wi, di).

Definition 4. A strategy for agent i starting from state w is
a function mapping each track h beginning from w to an ac-
tion from Pi(last(h)). We let Stri(w) denote the set of all
strategies for agent i starting from w.



Since we will handle elimination of strategies, we intro-
duce the concept of strategy spaces. A strategy space speci-
fies the set of possible strategies for each agent.

Definition 5. A strategy space s starting from state w is a
function mapping each agent i to a subset of Stri(w). The
full strategy space fs(w) starting from state w maps each
agent i to Stri(w).

Definition 6. A memoryless strategy for agent i is a func-
tion mapping each state w to an action from Pi(w). The full
memoryless strategy space, denoted by fms , maps each agent
i to the set of all memoryless strategies for i.

We use σ to range over strategies. A group strategy of
A ⊆ AG is a mapping from A to strategies. We use σA to
range over group strategies of A. As a special case, we use σi
to range over strategies for agent i. A joint strategy is a group
strategy of AG. We use σall to range over joint strategies.
For i ∈ AG, we use −i to denote AG − {i}.

Definition 7. A state w and a joint strategy σall determine a
unique path w0d0w1d1w2d2 . . . as follows: w0 = w0, and
for each j ≥ 0, dj is the decision associated to the track
w0 . . .wj , i.e., for each agent i, dj(i) = σi(w0 . . .wj), and
wj+1 = τ(wj , dj). We use out(w,σall) to denote this path.

3 Syntax and Semantics of JAADL
In this section, we introduce the syntax and semantics of
JAADL. The logic is an extension of ATL∗ in that it is based
on LDL and introduces operators of elimination of dominated
strategies (EDS).

We begin with the syntax of JAADL. We use ϕ to denote
state formulas, ψ path formulas, φ propositional formulas,
and ρ path expressions, which are regular expressions over
propositional formulas and tests of path formulas. Other than
atomic propositions from AP, we introduce atomic proposi-
tions of the form ai where a ∈ AC and i ∈ AG, meaning agent
i does action a. We use ⊺ to denote true.

Definition 8. JAADL formulas are built as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ⟪A⟫ψ ∣ (A)ψϕ ∣ (A)∞ψ ϕ
ψ ∶∶= ϕ ∣ ¬ψ ∣ ψ1 ∧ ψ2 ∣ ⟨ρ⟩ψ

ρ ∶∶= φ ∣ ψ? ∣ ρ1 + ρ2 ∣ ρ1;ρ2 ∣ ρ∗
φ ∶∶= p ∣ ai ∣ ¬φ ∣ φ1 ∧ φ2

where p ∈ AP , and A ⊆ AG.

Intuitively, ⟨ρ⟩ψ means that from the current state in the
path there exists an execution satisfying the path expression
ρ such that its last state satisfies ψ. We use [ρ]ψ as abbrevia-
tion for ¬⟨ρ⟩¬ψ. It is easy to encode LTL into path formulas
as follows: Xϕ translates to ⟨⊺⟩ϕ; Gϕ translates to [⊺∗]ϕ;
ϕ1Uϕ2 translates to ⟨(ϕ1?;⊺)∗⟩ϕ2.

Intuitively, ⟪A⟫ψ means group A has a strategy to achieve
ψ. A special case of ⟪A⟫ψ is ⟪∅⟫ψ, which means ψ al-
ways holds no matter how the agents play. We usually write⟪i1, . . . , ik⟫ instead of ⟪{i1, . . . , ik}⟫ where i1, . . . , ik ∈ AG.(A)ψϕ means ϕ holds after one step of elimination of dom-
inated strategies w.r.t. group A and the goal ψ. (A)∞ψ ϕ

means ϕ holds after iterated elimination of dominated strate-
gies w.r.t. group A and the goal ψ. We use (A)2ψϕ to denote(A)ψ(A)ψϕ, and similarly for (A)kψϕ, where k ∈ N.

We use ((A))kψ to abbreviate for (A)kψ⟪∅⟫ψ. When
k = 1, we simply write ((A))ψ. Intuitively, ((A))kψ means
after k-round elimination of dominated strategies, ψ holds no
matter how the agents play, and we say group A has stage
k joint ability to achieve ψ. We use ((A))∞ψ to abbreviate
for (A)∞ψ (⟪A⟫ψ ∧ ⟪∅⟫ψ). The reason we conjoin ⟪A⟫ψ to⟪∅⟫ψ is that as we will show at the end of this section, the
strategy space might become empty after iterated elimination
of dominated strategies. We omitted the ⟪A⟫ψ part in the
introduction to avoid confusion. Intuitively, ((A))∞ψ means
group A has joint ability to ensure ψ.
Example 2 cont’d. We are concerned about whether
the two cars have joint ability to ensure no crash
will ever happen (resp. under the commitment that
Car 1 cannot drive in Lane 4). This can be rep-
resented by the formula ((1,2))∞[⊺∗]¬crash (resp.((1,2))∞[(¬move1(4))∗]¬crash).

We now provide the semantics of JAADL. We begin with
the semantics of propositional formulas, which are inter-
preted over state-decision pairs.
Definition 9. Given a CGS G, a state w, and a decision d at
w, we interpret propositional formulas inductively:

• w,d ⊧ p if p ∈ L(w);
• w,d ⊧ ai if d(i) = a;
• w,d ⊧ ¬φ if w,d /⊧ φ;
• w,d ⊧ φ1 ∧ φ2 if w,d ⊧ φ1 and w,d ⊧ φ2.
We interpret state formulas and path formulas inductively.

The interpretation is wrt a strategy space. When interpret-
ing state formulas, we make use of two operators on strategy
spaces: RA,ψ,w(s) and R∞

A,ψ,w(s). Intuitively, RA,ψ,w(s)
means the reduction of s via elimination of dominated strate-
gies, and R∞

A,ψ,w(s) means the reduction of s via iterated
elimination of dominated strategies.
Definition 10 (JAADL Semantics). Given a CGS G, a state
w, a strategy space s, and a path λ, we interpret state formulas
and path formulas (we omit the cases of ¬ and ∧) and define
the operators RA,ψ,w(s) and R∞

A,ψ,w(s) inductively:

• w, s ⊧ p if p ∈ L(w).
• w, s ⊧ ⟪A⟫ψ if there exists a group strategy σA ∈
sA such that for all strategies σ−A ∈ s−A, we have
out(w, (σA, σ−A)), s ⊧ ψ.

• w, s ⊧ (A)ψϕ if w,RA,ψ,w(s) ⊧ ϕ.
• w, s ⊧ (A)∞ψ ϕ if w,R∞

A,ψ,w(s) ⊧ ϕ.

• λ, s ⊧ ϕ if w0, s ⊧ ϕ, where λ = w0d0w1 . . ..
• λ, s ⊧ ⟨φ⟩ψ if w0, d0 ⊧ φ and λ′, s ⊧ ψ, where λ =
w0d0w1 . . . and λ′ = w1d1 . . ..

• λ, s ⊧ ⟨ψ1?⟩ψ2 if λ, s ⊧ ψ1 and λ, s ⊧ ψ2.
• λ, s ⊧ ⟨ρ1 + ρ2⟩ψ if λ, s ⊧ ⟨ρ1⟩ψ or λ, s ⊧ ⟨ρ2⟩ψ.
• λ, s ⊧ ⟨ρ1;ρ2⟩ψ if λ, s ⊧ ⟨ρ1⟩⟨ρ2⟩ψ.



STAGE 1

agent i σi M(σi)
a

R SP
S PR,PP,SP

b
P SP,SR
S RP,SP

c
R SP
P SP,RS,SS

Figure 3: Iterative EDS for coalition {a, b, c}

• λ, s ⊧ ⟨ρ0⟩ψ if λ, s ⊧ ψ.

• λ, s ⊧ ⟨ρk+1⟩ψ if λ, s ⊧ ⟨ρk;ρ⟩ψ for k ∈ N.

• λ, s ⊧ ⟨ρ∗⟩ψ if there exists k ∈ N such that λ, s ⊧ ⟨ρk⟩ψ.

For σi ∈ si, we define the set of strategies of −i that work
with σi to ensure ψ wrt state w and strategy space s as fol-
lows: Mψ,w,s(σi) = {σ−i ∈ s−i ∣ out(w, (σi, σ−i)), s ⊧
ψ}. Sometimes when ψ, w and s are clear from the con-
text, we omit them and write M(σi). For σi, σ′i ∈ si, we
write σi ≥ψ,w,s σ′i if Mψ,w,s(σi) ⊇ Mψ,w,s(σ′i); we write
σi >ψ,w,s σ′i if Mψ,w,s(σi) ⊃ Mψ,w,s(σ′i), and we say σi
dominates σ′i.

For a strategy space s, we define the reduction of s wrt
groupA, goal ψ and state w as follows: RA,ψ,w(s) = s′ s.t. if
i ∉ A, s′i = si; otherwise, s′i = {σi ∈ si ∣ ¬∃σ′i ∈ si. σ′i >ψ,w,s
σi}. For k ≥ 2, we define RkA,ψ,w(s) = RA,ψ,w(Rk−1A,ψ,w(s)).
Finally, we define the iterative reduction of s: R∞

A,ψ,w(s) = s′
s.t. for i ∈ AG, s′i = ⋂∞k=0RkA,ψ,w(s)i.
Definition 11. We say a state formula ϕ is valid if for all CGSG, we have G ⊧ ϕ, meaning w0, fs(w0) ⊧ ϕ, where w0 is the
initial state of G.

Recall fs(w) is the full strategy space starting from state w.
Note that when we write ((A))kψ, it means that the for-

mula holds from a third-person point of view. Thus the
third-person imitates the process of elimination of dominated
strategies for each agent in A.
Example 1 cont’d. We have G ⊧ ⟪a, b⟫⟨⊺⟩win, since agents
a and b have a group strategy SP to achieve win no matter c
plays R or P.

The procedures of iterative EDS for coalitions {a, b, c} and{a, b} are shown in Figures 3 and 4, respectively.
During the procedures, for each agent i in AG, for each

available strategies σi of i, we list all the group strategies in
M(σi), which is just the set of strategies of −i that work with
σi to ensure the goal ⟨⊺⟩win w.r.t. the initial state and the full
strategy space. Then we eliminate those strategies σi of agent
i, whose M(σi) is a strict subset of some M(σj). ThusG ⊭ ⟪∅⟫⟨⊺⟩win, G ⊧ ((a, b, c))⟨⊺⟩win,G ⊭ ((a, b))⟨⊺⟩win, G ⊧ ((a, b))2⟨⊺⟩win.

We now introduce some terminology about strategies,
which will be used in analyzing properties of our logic.

Definition 12. We say σ is a winning strategy for iwrtψ,w, s
if Mψ,w,s(σ) is s−i. We say σ is a punishment strategy for i
wrt ψ,w, s ifMψ,w,s(σ) = ∅. We say σ is an optimal strategy
for i wrt ψ,w, s, if for any σ′ ∈ si, σ ≥ψ,w,s σ′.

STAGE 1

agent i σi M(σi)
a

R SP
S PR,PP,SP

b
P SR,SP
S RP,SP

c
P
R

STAGE 2

agent i σi M(σi)
a S PR,PP,SP

b
P SR,SP
S SP

c
P
R

Figure 4: Iterative EDS for coalition {a, b}
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Figure 5: Each strategy will eventually be eliminated

Thus σ is a winning strategy for i if σ works with any strat-
egy of −i. The formula ⟪i⟫ψ represents that i has a winning
strategy wrt goal ψ. Similarly, σ is a punishment strategy
for i if σ works with no strategy of −i. The formula ⟪i⟫¬ψ
expresses that i has a punishment strategy wrt goal ψ. An
optimal strategy for i is one that weakly dominates all others.
Unfortunately, we cannot represent in JAADL that i has an
optimal strategy wrt goal ψ.

Definition 13. We say that two strategies σ and σ′ are equiv-
alent wrt ψ,w, s if Mψ,w,s(σ) = Mψ,w,s(σ′). We say
that two strategies σ and σ′ are incomparable wrt ψ,w, s if
Mψ,w,s(σ) ⊈Mψ,w,s(σ′) and Mψ,w,s(σ′) ⊈Mψ,w,s(σ).

Definition 14. Given a CGS G, a state w, a strategy space s,
and a goal ψ, the payoff matrix for ψ, denoted Cψ is a 0-1
matrix defined as follows: for each σall ∈ s, Cψ(σall) = 1 iff
out(w,σall), s ⊧ ψ.

Intuitively, in the 0-1 matrix, the payoff for a joint strategy is
1 if it achieves the goal, and 0 otherwise.

The definition of payoff matrices clarifies that our defini-
tion of elimination of dominated strategies is an instance of
the one from game theory [Osborne and Rubinstein, 1999].

Note that different from game theory, when the strategy
space is infinite, it might become empty after iterative elimi-
nation of dominated strategies. We illustrate with an example.

Example 3. There are two agents 1 and 2. Each agent i
has infinitely many strategies σ1

i , σ
2
i , . . .. Figure 5 shows the

payoff matrix for the goal ψ: The infinitely many rows and
columns show agents 1 and 2’s strategies, respectively; for
each row j, there are only 1s in columns j and j + 1. This
means: for each σj1, the set of strategies of 2 that work with
σj1 to achieve the goal ψ is {σj2, σj+12 }. At stage 1, Column
1 is eliminated since it is dominated by Column 2; then at
stage 2, Row 1 is eliminated since it is dominated by Row 2.
Then Column 2 and Row 2 will be eliminated. Eventually,
each strategy will be eliminated. By our definitions, neither((1,2))kψ where k ∈ N nor ((1,2))∞ψ holds.



4 Properties of JAADL
In this section, we analyze valid formulas in JAADL, and give
sufficient/necessary conditions for joint abilities, which we
use to analyze some interesting examples.

First of all, it is easy to prove the following result. Item
1 says the elimination operators satisfy the K axiom. Item 2
says the negation operator can move inside elimination op-
erators. Item 3 says the absence of stage k joint ability is
equivalent to the existence of a joint strategy to achieve the
negation of the goal after k round elimination of dominated
strategies. Item 4 says stage k joint ability implies stage j
joint ability, where j ≥ k or j = ∞. Item 5 says stage k joint
ability implies the existence of a group strategy to achieve the
goal. Item 6 says a coalition does not have joint ability if the
other agents have a strategy to ensure the negation of the goal.

Proposition 1. The following formulas are valid:

1. (A)kψ(ϕ1 → ϕ2)→ ((A)kψϕ1 → (A)kψϕ2), k ∈ N∪{∞}.

2. ¬(A)kψϕ ≡ (A)kψ¬ϕ, k ∈ N ∪ {∞}.

3. ¬((A))kψ ≡ (A)kψ⟪AG⟫¬ψ, k ∈ N.

4. ((A))kψ → ((A))jψ, where j ≥ k or j =∞.

5. ((A))kψ → ⟪A⟫ψ, k ∈ N ∪ {∞}.

6. ⟪A⟫¬ψ → ¬((A))∞ψ, where A = AG −A.

Proof. Let G be a CGS, w its initial state, and s = fs(w).

1. Suppose w, s ⊧ (A)kψ(ϕ1 → ϕ2) and w, s ⊧ (A)kψϕ1.
Then w,RkA,ψ,w(s) ⊧ ϕ1 → ϕ2 and w,RkA,ψ,w(s) ⊧ ϕ1.
Thus w,RkA,ψ,w(s) ⊧ ϕ2, so w, s ⊧ (A)kψϕ2.

2. w, s ⊧ ¬(A)kψϕ iff w, s ⊭ (A)kψϕ iff w,RkA,ψ,w(s) ⊭ ϕ
iff w,RkA,ψ,w(s) ⊧ ¬ϕ iff w, s ⊧ (A)kψ¬ϕ.

3. w, s ⊧ ¬((A))kψ iff w, s ⊭ (A)kψ⟪∅⟫ψ iff
w,RkA,ψ,w(s) ⊭ ⟪∅⟫ψ iff w,RkA,ψ,w(s) ⊧ ⟪AG⟫¬ψ
iff w, s ⊧ (A)kψ⟪AG⟫¬ψ.

4. Suppose w, s ⊧ ((A))kψ, i.e., w,RkA,ψ,w(s) ⊧ ψ. Since
RjA,ψ,w(s) ⊆ RkA,ψ,w(s), where j ≥ k or j =∞, we have
w,RjA,ψ,w(s) ⊧ ψ, so w, s ⊧ ((A))jψ.

5. Supposew, s ⊧ ((A))kψ. ThenRkA,ψ,w(s) ≠ ∅ and each
σA ∈ RkA,ψ,w(s)A ensures ψ. Thus w, s ⊧ ⟪A⟫ψ.

6. Suppose w, s ⊧ ⟪A⟫¬ψ. Then there exists σ−A ∈ s−A
such that for all σA ∈ sA, (σA, σ−A) cannot achieve ψ.
Thus w, s ⊭ ((A))∞ψ.

The following result says that if coalition A has a strategy
to achieve ψ, then after elimination of dominated strategies,
no agent inA has a punishment strategy. This is because such
a strategy is already eliminated.

Proposition 2. ⟪A⟫ψ → (A)ψ⋀a∈A ¬⟪a⟫¬ψ is valid.

Proof. Let G be a CGS, w its initial state, and s = fs(w).
Suppose w, s ⊧ ¬(A)ψ⋀a∈A ¬⟪a⟫¬ψ. By Proposition 1(2),
w, s ⊧ (A)ψ⋁a∈A⟪a⟫¬ψ. So w,RA,ψ,w(s) ⊧ ⋁a∈A⟪a⟫¬ψ.
Then there exists a ∈ A such that w,RA,ψ,w(s) ⊧ ⟪a⟫¬ψ.
Thus w, s ⊧ ¬⟪A⟫ψ, otherwise each σa ∈ sa that ensures ¬ψ
will be eliminated and not be in RA,ψ,w(s).

The following result says that coalition A has joint abil-
ity iff after iterative EDS, some agent a in A has a winning
strategy. This is because if a has a winning strategy, then ev-
ery remaining strategy is a winning strategy, otherwise, it is
already eliminated.

Proposition 3. ((A))∞ψ ≡ ⋁a∈A(A)∞ψ ⟪a⟫ψ is valid.

Proof. Let G be a CGS, w its initial state, and s = fs(w).
Suppose w, s ⊧ ((A))∞ψ. Then w,R∞

A,ψ,w(s) ⊧ ⟪A⟫ψ ∧⟪∅⟫ψ. Then for all a ∈ A, w,R∞
A,ψ,w(s) ⊧ ⟪a⟫ψ. So w, s ⊧(A)∞ψ ⟪a⟫ψ. Now suppose w, s ⊧ (A)∞ψ ⟪a⟫ψ for some a ∈

A. Then some σa ∈ R∞
A,ψ,w(s)a is a winning strategy wrt ψ.

Thus any strategy in R∞
A,ψ,w(s)a is a winning strategy. So

w,R∞
A,ψ,w(s) ⊧ ⟪A⟫ψ ∧⟪∅⟫ψ. Hence w, s ⊧ ((A))∞ψ.

Note that if ψ1 → ψ2 is valid, ((A))kψ1 → ((A))kψ2,
where k ∈ N ∪ {∞}, may not be valid. In general, the pro-
cesses of iterated elimination for two different goals might be
different, even if there is a logical relationship between them.
For example, there are two agents, and each agent has two
strategies. The following shows the payoff matrices for the
strategies wrt goals ψ1 and ψ2. Since ψ1 → ψ2 is valid, when
we have a 1 in Cψ1 , we must have a 1 in the same position in
Cψ2 . It is clear that ((A))∞ψ1 holds, but ((A))∞ψ2 does not
hold.

Cψ1 = [0 0
0 1

] Cψ2 = [1 0
0 1

].

It is easy to prove the following

Proposition 4. When A ⊆ B, ((A))ψ → ((B))ψ is valid.

Proof. When A ⊆ B, for each agent a, RB,ψ,w(s)a ⊆
RA,ψ,w(s)a. Let G be a CGS, w its initial state, and s =
fs(w). Suppose w, s ⊧ ((A))ψ, i.e., (A)ψ⟪∅⟫ψ. Then
w,RA,ψ,w(s) ⊧ ⟪∅⟫ψ. Thus w,RB,ψ,w(s) ⊧ ⟪∅⟫ψ. Hence
w, s ⊧ ((B))ψ.

However, when A ⊆ B, ((A))kψ → ((B))kψ, where k ∈
N ∪ {∞}, may not be valid.

We now give three sufficient conditions for joint abilities.
The following result shows that if at stage k, some agent in

the coalition has a winning strategy, then there is joint ability
at stage k + 1.

Theorem 1. (A)kψ⟪a⟫ψ → ((A))k+1ψ, a ∈ A, is valid.

Proof. Suppose a has a stage k winning strategy σa. Then σa
remains at stage k+1. For every strategy σ′a which remains at
stage k+1, it must be a stage k+1 winning strategy, otherwise,
σa > σ′a, hence it is already eliminated. Thus there is joint
ability at stage k + 1.
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Figure 6: Autonomous Cars Example

Theorem 2. If ⟪A⟫ψ holds, and at stage k, each agent in
A has an optimal strategy, then there is joint ability at stage
k + 1.

Proof. Suppose ⟪A⟫ψ holds, and at stage k, each agent in
A has an optimal strategy. Then for each joint strategy σall
where for each a ∈ A, σa is an optimal strategy, σall achieves
ψ. At the next stage, each non-optimal strategy will be
deleted. Hence, there is joint ability at stage k + 1.

Theorem 3. If ⟪A⟫ψ holds, and at stage k, ∣A∣ − 1 agents in
A have optimal strategies, then there is joint ability at stage
k + 2.

Proof. Suppose ⟪A⟫ψ holds, a ∈ A, and at stage k, each
agent in A− {a} have an optimal strategy. Then a has a strat-
egy σa such that for each group strategy σ−a where for each
b ∈ A − {a}, σb is an optimal strategy, (σa, σ−a) achieves the
goal. At stage k + 1, each non-optimal strategy of each agent
inA−{a} will be deleted. Thus amust have a remained strat-
egy which is a winning strategy. By Theorem 1, there is joint
ability at stage k + 2.

Below, we give a necessary condition for joint abilities.

Theorem 4. Suppose at some stage, no agent inA has a win-
ning strategy, and any two strategies are either equivalent or
incomparable, then there is no joint ability.

Proof. When any two strategies are either equivalent or in-
comparable, no elimination is possible. Since no agent in A
has a winning strategy, there is no joint ability.

Finally, we apply the above theorems to analyze the traffic
rule example and two more interesting examples.
Example 2 cont’d. Clearly, G ⊭ ((1,2))∞[⊺∗]¬crash. This
is because any two different strategies are incomparable, by
Theorem 4, there is no joint ability.

However, if Car 1 cannot drive in Lane 4, then the two cars
will have joint ability to ensure no crash will ever happen, i.e.,G ⊧ ((1,2))[(¬move1(4))∗]¬crash. This is because Car 2
can choose to always drive in Lane 4, which is a winning
strategy. By Theorem 1, there is stage 1 joint ability.

Example 4 (Autonomous Cars). As shown in Figure 6, two
cars move in the same direction. They need to switch lanes to
avoid obstacles on the road. The two cars win if both get to
the destination without crashing into each other or the obsta-
cles. We can model it as a CGS G whereAP = {win, crash},
and AC = {K,W,S}, where K means keeping moving, W
means waiting, and S means switching lanes, i.e., moving up
or down.

We first consider the situation where there are no obsta-
cles on the road. We model this as the CGS G′. We use
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(-1,-1) (1,-1)

(1,1)

(0,0)
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Squirrel 2X
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Figure 7: The Squirrels World

AK to denote the strategy of always keeping moving. ThenG′ ⊧ ((1,2))∞[⊺∗]¬crash. This is because AK won’t make
a crash. Thus AK is a winning strategy. By Theorem 1, there
is stage 1 joint ability.

We also have G′ ⊧ ((1,2))⟨⊺∗⟩win. We prove that for each
car, AK is an optimal strategy: Let σ′ be a strategy of the
other car. Suppose that (σ,σ′) achieves the goal, then there is
no crash, and the other car gets to the destination. Since AK
won’t make a crash, (AK,σ′) achieves the goal. By Theorem
2, there is stage 1 joint ability.

Now we consider the case with obstacles. We have G ⊧((1,2))2⟨⊺∗⟩win. This is because Car 1 has an optimal strat-
egy: keep going, switch lane at position 7, and keep going.
By Theorem 3, there is stage 2 joint ability.

Example 5 (The Squirrels World). There are two squirrels
and two acorns living in a finite grid. Each squirrel can do
actions below: pick up an acorn if she is located at the same
cell as this acorn and does not hold any acorn; and move up,
down, right, and left a cell. As shown in Figure 7, initially,
squirrel 1 is located at the cell (−1,−1) and 2 is located at the
cell (1,1); there is only one acorn in each of the cell (−1,1)
and (1,−1), and in other cells there are no acorns.

We can model this squirrels world as a CGS G, and we omit
the details here. We use two atoms hold1 and hold2, where
holdi means squirrel i holds an acorn.

We first consider the formula ψ = ⟨⊺;⊺;⊺⟩(hold1∧hold2),
which means each squirrel will hold an acorn in exactly 3
steps. Clearly, G ⊧ ⟪1,2⟫ψ. This is because the two squirrels
have a strategy to achieve ψ, for example, Squirrel 1 does
the action sequence right; right;pick and Squirrel 2 does
left; left;pick. However, G ⊭ ((1,2))∞ψ3. It is easy to
show that at stage 1, any two different strategies are incom-
parable. By Theorem 4, there is no joint ability.

If we require the first actions of the two squirrels to
be (right, left) or (up, down), there is joint ability, i.e.,G ⊧ ((1,2))⟨right1 ∧ left2;⊺;⊺⟩(hold1 ∧ hold2) and G ⊧((1,2))⟨up1 ∧ down2;⊺;⊺⟩(hold1 ∧ hold2). This is because
in each case, each agent has an optimal strategy. By Theorem
2, there is stage 1 joint ability.

5 Model-Checking Memoryless JAADL
In this section, we explore the computational complexity of
model checking JAADL where we consider only memoryless
strategies, which are functions from states to actions.



Algorithm 1 Labeling State Space

1: Label(G, s, ϕ)
2: for ϕ′ in Sub(ϕ) do
3: case ϕ′ = p ∶ [ϕ′]s ← {w ∈W ∣ p ∈ L(w)}
4: case ϕ′ = ¬ϕ ∶ [ϕ′]s ←W − [ϕ]s
5: case ϕ′ = ϕ1 ∧ ϕ2 ∶ [ϕ′]s ← [ϕ1]s ∩ [ϕ2]s
6: case ϕ′ = ⟨⟨A⟩⟩ψ ∶
7: [ϕ′]s ← {w ∣ ∃σA ∈ sA∀σ−A ∈ s−A.

PathF (G,w, (σA, σ−A), s, ψ) = true}
8: case ϕ′ = (A)ψϕ1 ∶ [ϕ′]s ← [ϕ1]StrS(A,ψ,w,s)
9: case ϕ′ = (A)∞ψ ϕ1 ∶ [ϕ′]s ← [ϕ1]StrS∞(A,ψ,w,s)

10: end for
11: return [ϕ]s
Algorithm 2 Model-Checking Path Formulas

1: function PathF (G,w, σall, s, ψ)
2: Max(ψ)← the set of maximal state-subformulas in ψ
3: for each ϕ ∈Max(ψ) do
4: define a fresh atom pϕ,

let w ∈ L(pϕ) iff w ∈ Label(G, s, ϕ)
5: end for
6: replace each occurrence in ψ of ϕ ∈ Max(ψ) by pϕ to

get a pure LDL formula ψldl
7: return whether Kripke(w,σall) ⊧ldl

ψldl

We first formally state the model checking problem for
memoryless JAADL: Given a CGS G, and a JAADL formula
ϕ, decide if w0, fms ⊧ ϕ, where w0 is the initial state of G.
Recall fms denotes the full memoryless strategy space of G.

Now we give a labeling algorithm (Algorithm 1) which,
given a CGS G = ⟨W,L,P, τ,w0⟩, a strategy space s, and a
state formula ϕ, returns [ϕ]s, denoting the set of all states
satisfying ϕ, i.e., [ϕ]s = {w ∈ W ∣ w, s ⊧ ϕ}. Note that
different from ATL, JAADL formulas are evaluated w.r.t. a
strategy space, thus the notation [ϕ]s has s as the subscript.

Our algorithm proceeds by cases. For case ⟪A⟫ψ, we
make use of function PathF shown in Algorithm 2, which
is used to decide whether out(w,σall), s ⊧ ψ. A joint strat-
egy σall and a state w in a CGS G uniquely determine an infi-
nite path out(w,σall), which can be viewed as a finite Kripke
model with initial state w, we denote it as Kripke(w,σall).
Given a pure LDL formula ψldl, we can call the LDL model-
checking algorithm [Faymonville and Zimmermann, 2017]
with minor change due to our action atoms, to verify whether
Kripke(w,σall) ⊧ldl ψldl. Their algorithm is polynomial in
the model size and exponential in the formula size.

For case (A)ψϕ1, we call function StrS given in Algo-
rithm 3, which is used to calculate RA,ψ,w(s). For case
ϕ′ = (A)∞ψ ϕ1, R∞

A,ψ,w(s) can be computed as follows: re-
peat s← StrS(A,ψ,w, s) until there is no change to s.

Theorem 5. Model-checking memoryless JAADL can be
done in time exponential in the model size and formula size.

Proof. Let n be the model size and l the formula size. Then
the number of different memoryless strategies is O(2n). Cal-
culating the reduction and iterative reduction of a strategy

Algorithm 3 Calculating Reduced Strategy Space

1: function StrS(A,ψ,w, s)
2: for each i ∈ A do
3: for each σi ∈ si, compute Mψ,w,s(σi), i.e.,{σ−i ∈ s−i ∣ PathF (G,w, (σi, σ−i), s, ψ) = true}
4: for each σi, σ′i ∈ si,

if Mψ,w,s(σi) ⊃Mψ,w,s(σ′i) then si ← si − {σ′i}
5: end for
6: return s

space takes time O(2n2l), and so does processing the case⟨⟨A⟩⟩ψ. Thus the whole algorithm takes time O(2n2l).

The exponential complexity result is due to the fact that
the concept of joint abilities is based on elimination of domi-
nated strategies. Model checking strategic logics beyond ATL
usually has high complexity. Even restricting to memoryless
strategies does not help much. For example, model check-
ing memoryless Strategy Logic (SL) is PSPACE-complete
wrt both the model size and the formula size [Čermák et al.,
2018]. The paper presents a labeling algorithm for model
checking memoryless SL which is exponential time wrt both
the model size and the formula size, and gives a symbolic
implementation of the labeling algorithm.

6 Conclusions

In this paper, we have proposed JAADL, a modal logic for
joint abilities under strategy commitments, which is an ex-
tension of ATL∗. Firstly, we introduce an explicit operator for
elimination of dominated strategies so that joint abilities can
be expressed. Secondly, the logic is based on LDL, so that
regular expressions can be used to represent constraints of
structured strategies such as norms/social laws. We analyze
valid formulas in the logic, and identify three sufficient condi-
tions and a necessary condition for joint abilities. These con-
ditions make use of the concepts of winning strategies, opti-
mal strategies, equivalent strategies, and incomparable strate-
gies. We use examples to illustrate that we can conveniently
apply these conditions to analyze whether there exist joint
abilities. Finally, we prove that model checking memoryless
JAADL is in EXPTIME.

In the future, we are interested in a thorough investigation
of the computational complexity of model-checking JAADL,
including the exact complexity of the memoryless case and
the general case. Also, we are interested in implementing a
symbolic model checker for memoryless JAADL.
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[Čermák et al., 2018] Petr Čermák, Alessio Lomuscio,
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