
Exploiting Reward Machines with Deep
Reinforcement Learning in Continuous Action

Domains⋆

Haolin Sun[0009−0001−7185−0921] and Yves Lespérance[0000−0003−1625−0226]

York University, Toronto, Canada sun0907@yorku.ca,lesperan@yorku.ca

Abstract. In this paper, we address the challenges of non-Markovian
rewards and learning efficiency in deep reinforcement learning (DRL) in
continuous action domains by exploiting reward machines (RMs) and
counterfactual experiences for reward machines (CRM). RM and CRM
were proposed by Toro Icarte et al.. A reward machine can decompose
a task, convey its high-level structure to an agent, and support certain
non-Markovian task specifications. In this paper, we integrate state-of-
the-art DRL algorithms with RMs to enhance learning efficiency. Our
experimental results demonstrate that Soft Actor-Critic with counter-
factual experiences for RMs (SAC-CRM) facilitates faster learning of
better policies, while Deep Deterministic Policy Gradient with coun-
terfactual experiences for RMs (DDPG-CRM) is slower, achieves lower
rewards, but is more stable. Option-based Hierarchical Reinforcement
Learning for reward machines (HRM) and Twin Delayed Deep Determin-
istic (TD3) with CRM generally underperform compared to SAC-CRM
and DDPG-CRM. This work contributes to the ongoing development of
more efficient and robust DRL approaches by leveraging the potential of
RMs in practical problem-solving scenarios.

Keywords: Deep Reinforcement Learning · Reward Machines

1 Introduction

In reinforcement learning (RL), an agent interacts with the environment by
performing actions in each state, receiving a reward signal in return and the
agent’s goal is to learn a policy (mapping observations to actions) that maximizes
the expected cumulative reward and improves its policy from past experiences.

In simple discrete action domains, like turn-based games with finite states
and actions, basic RL algorithms such as Q-learning [23] suffice to quickly find

⋆ This version of the contribution has been accepted for publication, after peer review
but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: https://doi.org/
10.1007/978-3-031-43264-4\protect_6. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.

com/gp/open-research/policies/accepted-manuscript-terms.

https://doi.org/10.1007/978-3-031-43264-4\protect _6
https://doi.org/10.1007/978-3-031-43264-4\protect _6
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 Haolin Sun and Yves Lespérance

the optimal policy. However, in more complex continuous action domains like
autonomous driving, where variables like acceleration and steering angle have
infinite domains, the agent cannot try all possible actions. Consequently, Q-
learning fails to identify actions with the highest expected rewards and deter-
mine the optimal policy, and struggles to explore the state space effectively. Deep
reinforcement learning (DRL) was developed to address hard RL problems such
as those in continuous action domains. DRL combines neural networks’ under-
standing capabilities with RL’s decision-making, allowing agents to tackle more
complex problems in such domains [7].

Reward functions in RL algorithms are typically “black boxes”. As a result,
learning requires extensive interaction with the environment, consuming signif-
icant time and computational resources. However, if the agent can access the
reward function’s internal structure and understand the task’s high-level idea,
it can leverage this information to expedite optimal policy learning.

To provide agents access to the reward function, Toro Icarte et al. proposed
using finite state machines called reward machines (RMs) [21,22,20], which de-
fine a novel form for reward functions that support certain non-Markovian task
specifications. The reward is non-Markovian when it doesn’t just depend on the
current world state but on the whole history. A reward machine can define mul-
tiple forms of reward functions, including concatenation, loops, and conditional
rules. It can also decompose a complex task into subtasks, revealing each sub-
task’s reward function to the agent. The RM is assumed to be fully known to the
agent; as the agent transitions between RM states, the specific subtask’s reward
is returned, enabling state-by-state learning and thus allowing the agent to con-
duct less exploration and speed up the learning. Reward machines offer flexible
expression, allowing tasks to be represented using Linear Temporal Logic over
infinite or finite traces (LTL/LTLf) [15,4] or other formal languages before trans-
lation into a reward machine. A related approach is that of “restraining bolts”
[3], where LTLf restraining specifications are compiled into automata and used
in RL to ensure that the learned behavior conforms to them [1]. Another related
approach is called “logically constrained RL” [9], where one specifies rules about
the finite set of actions that are allowed in a given state, avoiding an exhaus-
tive update over the whole state space, thus guiding the agent to learn more
efficiently and conform to desired behaviors.

To utilize an RM’s structure, Toro Icarte et al. proposed a novel approach
called counterfactual experiences for reward machines (CRM) [22,20]. CRM
leverages reward function information from RMs during agent-environment in-
teractions to generate synthetic experiences, helping the agent make more ex-
plicit judgments about RM states thus accelerating learning speed.

Reward machines can be applied in both discrete and continuous action do-
mains. In discrete action domains, Toro Icarte et al. enhanced the learning effi-
ciency of existing RL and DRL algorithms by combining reward machines with
Q-learning [23] and Double DQN [10], where RM-based Q-learning can converge
to the optimal policy. However, in continuous action domains, only DDPG [12]
and option-based Hierarchical Reinforcement Learning (HRL) [19] have been

Exploiting Reward Machines with Deep Reinforcement Learning 3

combined with reward machines. As new deep RL algorithms emerged, the per-
formance of DDPG and option-based HRL has become less prominent, with some
newly proposed algorithms surpassing their performance. To address this issue
and further improve the learning efficiency of RM-based algorithms in continuous
action domains, we focused on two aspects in our work.

First, we combined CRM with two widely used and well-performing deep RL
algorithms, Soft Actor-Critic (SAC) [8] and Twin-Delayed Deep Deterministic
Policy Gradient (TD3) [6]. We call the resulting algorithms Soft Actor-Critic
with CRM (SAC-CRM) and Twin-Delayed Deep Deterministic Policy Gradient
with CRM (TD3-CRM).

Next, we expanded the range of tasks tested compared to prior experiments,
e.g., [22]. Based on the RM model, we defined six new tasks in two different
continuous action domains. We ran experiments and compared the performance
of existing and new RM-based deep RL algorithms and analyzed reasons for
performance differences. Through these experiments, we found that SAC-CRM
was generally the best-performing algorithm among those studied. The learning
speed and reward values it achieved within the specified learning steps were
generally the best amongst all the algorithms.

2 Preliminaries

2.1 Reward Machines in RL

Reward Machines To support non-Markovian rewards, Toro Icarte et al.
[21,22,20] introduced a novel reward function form called the reward machine
(RM). Formally, given a set of propositional symbols P, a set of (environment)
states S, and a set of actions A, a reward machine (RM) is a tuple RPSA =
⟨U, u0, F, δu, δr⟩ where U is a finite set of states, u0 ∈ U is the initial state, F is a
finite set of terminal states (where U∩F = ∅), δu is the state-transition function,
δu : U×2P → U∪F , and δr is the state-reward function, δr : U → S×A×S → R.

Consider a simple example where our agent (see Fig. 1) is a cheetah-like
robot, as in the OpenAI Gym Half-Cheetah domain [2], and the task is to start
from an arbitrary point between A and B, first go to point A, then to B and then
C, then back to B, then back to C again, and then finally to point D to receive a
reward of 1000 (which is Task 3 of the Half-Cheetah domain in Section 4). The
agent can move in this 2D environment by choosing the moving angle and force
to apply at each joint. Notice that this task involves non-Markovian rewards.

Fig. 1: An example RM environment (Half-Cheetah)

4 Haolin Sun and Yves Lespérance

Fig. 2: The automaton for the task

Also, since the agent starts far from point D, and the task contains multiple back-
and-forth operations (e.g., to do pick ups and deliveries), if the task description
only specifies the final goal of reaching point D, the agent must spend significant
time exploring. However, using a reward machine (RM) allows the task to be
decomposed into subtasks by introducing multiple RM states to represent each
intermediate reward function. With this, the agent can learn to reach each point
sequentially, thus getting closer to the target with each subtask. This approach
reduces exploration time and improves learning efficiency. The automaton for
this task is shown in Fig. 2. In this automaton, the reward value is a small
control penalty CP for transitions among the non-terminal RM states u0 to u5,
and when the agent reaches point D while in u5, it arrives at the terminal RM
state, and it will receive a reward value of 1000. In this environment, the set of
propositional symbols P can be defined as P = {A,B,C,D}, where event e ∈ P
occurs when the agent is at location e. To assign truth values to symbols in P, a
labelling function L : S×A×S → 2P will be needed. L can assign truth values to
symbols in P given an environment experience (s, a, s′), where s′ is the resulting
state after executing action a from the environmental state s. In the example, U
is the set of all the non-terminal RM states, including {u0, u1, u2, u3, u4, u5}; F
is the set of the terminal RM state, which is the state after u5. When the agent
reaches point A, the state-transition function δu will transfer the agent’s current
RM state from u0 to u1 (otherwise it remains in u0), and it will transfer the
RM state from u1 to u2 when the agent reaches point B, and so forth. When the
agent reaches point D, a terminal state, the state-reward function δr will give
the agent a reward of 1000.

MDPRM In traditional reinforcement learning, the underlying environment
model of the agent is assumed to be a Markov Decision Process (MDP) [5]. An
MDP is a tuple M = ⟨S,A, r, p, γ, µ⟩, where S is a finite set of states, A is a
finite set of actions, r : S ×A× S → R is the reward function, p (st+1 | st, at) is
the transition probability distribution, γ ∈ (0, 1] is the discount factor, and µ is
the initial state distribution where µ (s0) is the probability that the agent starts
in state s0 ∈ S. By using reward machines, the agent learns in the environment
considering not only the environmental state st at time t, but also the RM
state ut at time t. The extra consideration of the RM state ut changes the
learning environment from a traditional MDP to a Markov Decision Process
with a Reward Machine (MDPRM) [21,22,20]. A Markov Decision Process with
a Reward Machine (MDPRM) is a tuple T = ⟨S,A, p, γ, µ,P, L, U, u0, F, δu, δr⟩,
where S, A, p, γ and µ are defined as in an MDP, P is a set of propositional

Exploiting Reward Machines with Deep Reinforcement Learning 5

symbols, L is a labelling function L : S ×A× S → 2P , and U , u0, F , δu, and δr
are defined as in a reward machine. In an MDPRM, the policy learned by the
agent then changes from π(a | s) to π(a | s, u), and the experience changes from
⟨s, a, r, s′⟩ to ⟨s, u, a, r, s′, u′⟩. It can be seen that MDPRMs are regular MDPs
when considering the cross-product between the environmental states S and the
RM states U . As such, standard RL algorithms can learn in MDPRMs by using
the cross-product of environment and RM states [1,11].

CRM To exploit the information provided by the RM, Toro Icarte et al. pro-
posed a method called Counterfactual experience for Reward Machines (CRM)
[22,20]. CRM also learns policies over the cross-product π(a | s, u), but uses
counterfactual reasoning to generate synthetic experiences. In CRM, the RM
will go through every RM state ū ∈ U after each action, and use the state tran-
sition function δu (ū, L (s, a, s′)) to determine the next RM state ū′; the agent
will also receive a reward of r̄ using the reward transition function δr(ū) (s, a, s

′).
That is, instead of just providing the actual experience in an MDPRM, the RM
can now provide one experience per RM state. In this manner, after taking just
one action, the agent will get to know whether the action could cause a transi-
tion in any of the RM states and what the reward would be if that happened.
In other words, the agent will be able to determine precisely whether its current
action, made in the current environmental state, would have an impact on any
subtask. This greatly improves the efficiency of the agent’s exploration.

2.2 Deep RL Algorithms

Deep Deterministic Policy Gradient (DDPG) Deep Deterministic Policy
Gradient (DDPG) [12] is an off-policy deep reinforcement learning algorithm
that incorporates an actor-critic architecture to address complex, continuous
control problems. DDPG utilizes two distinct neural networks, namely the actor
network and the critic network. The actor network is responsible for learning the
optimal policy, while the critic network approximates the optimal Q-function,
which estimates the expected reward of taking a given action in a given state.

In DDPG, the actor network takes the current environment state as input and
outputs a continuous-valued action derived from the current policy. The critic
network estimates the value of state-action pairs based on the actor network’s
output. By adopting a deterministic policy gradient approach, DDPG is able to
effectively handle continuous action spaces, while the incorporation of experience
replay and target networks stabilizes the learning process.

Option-based Hierarchical Reinforcement Learning (HRL) Option-based
Hierarchical Reinforcement Learning (HRL) [19] is a framework for efficiently
learning and planning in complex environments with long-term goals and multi-
ple abstraction levels. In HRL, agents learn a set of subgoals, or ”options”, which
can be combined to create high-level plans. Options serve as reusable subroutines
learned through experience. During training, agents learn intra-option policies to

6 Haolin Sun and Yves Lespérance

achieve each subgoal and inter-option policies for transitioning between subgoals.
This allows agents to navigate complex environments by decomposing problems
into smaller, more manageable subtasks. Thus a key advantage of HRL is its
ability to reduce the amount of training needed, particularly in tasks involving
long action sequences.

Soft Actor-Critic (SAC) Soft Actor-Critic (SAC) [8] is an off-policy deep
RL algorithm specifically designed for continuous control tasks. SAC aims to
concurrently maximize the policy’s entropy and its cumulative return, i.e., obtain
an agent that succeeds at the task while acting as randomly as possible. To do
this, it incorporates an entropy term into the Q-function:

Qπ
soft(s, a) = E

st,at∼ρπ

[∞∑
t=0

γtr (st, at) + α

∞∑
t=1

γtH (π (· | st)) | s0 = s, a0 = a

]
where entropy is defined as: H(P) = E

x∼P
[− logP (x)].

Adding this entropy component enables deeper exploration of the state space,
which is crucial in continuous control tasks characterized by high-dimensional
state and action spaces.

The maximum entropy model offers several advantages, including making
the fewest assumptions about the environment’s unknown information while
matching observed data. This approach ensures that the model remains robust
and adaptable to various environments. Furthermore, by controlling the entropy
value, the agent can maintain a high level of exploration capability. This prevents
the agent from prematurely converging to a local optimum and allows for the
discovery of more optimal solutions in complex problem domains.

Twin Delayed Deep Deterministic Policy Gradient (TD3) Twin De-
layed Deep Deterministic Policy Gradient (TD3) [6] is an off-policy deep RL
algorithm for continuous control tasks, improving upon the original Deep Deter-
ministic Policy Gradient (DDPG) algorithm by addressing several limitations.
A primary enhancement in TD3 is the use of two critic networks instead of one,
estimating the value of state-action pairs and reducing overestimation bias. TD3
also employs delayed policy updates, updating the policy less frequently than
the critic networks to decrease policy update variance and stabilize learning.
Another notable feature of TD3 is target policy smoothing, which adds noise
to actions selected by the actor network, regularizing the policy and increasing
its robustness to environmental perturbations. This is especially beneficial in
continuous control tasks where minor action changes significantly impact the
agent’s behavior.

For more technical details about these algorithms, see [18].

3 Adapting Deep RL Algorithms with Reward Machines

Toro Icarte et al. [22,20] proposed a variant of DDPG that incorporates the CRM
approach, calling it DDPG-CRM. Concurrently, they introduced an options-

Exploiting Reward Machines with Deep Reinforcement Learning 7

based Hierarchical Reinforcement Learning (HRL) algorithm that learns options
to move between states of a RM, which they call HRM. The integration of CRM
into DDPG is achieved by initially modifying the learning environment to suit
the Markov Decision Process with a Reward Machine (MDPRM), followed by
the inclusion of counterfactual experiences into the replay buffer. Instead, HRM
applies DDPG to learn the option policies while employing Deep Q-Network
(DQN) [13] to learn the high-level policy. In this work, we incorporate the CRM
approach into two additional deep RL algorithms that are currently widely rec-
ognized for their strong performance, namely Soft Actor-Critic (SAC) [8] and
Twin Delayed Deep Deterministic Policy Gradient (TD3) [6]. Note that we also
experimented with combining CRM with PPO [17] but the performance/learning
efficiency was very poor, see [18] for details. PPO is an on-policy RL method and
it is not clear how counterfactual experiences can be incorporated effectively in
such approaches.

3.1 Soft Actor-Critic (SAC) with CRM

First, we use SAC as a base and propose a new algorithm, SAC-CRM, that takes
advantage of the task structure that the RM has made visible. In SAC-CRM,
the agent still uses the entropy value from the baseline SAC when updating the
Q-function and continues the Energy-Based Policy model from the baseline SAC.
In contrast to the baseline, SAC-CRM changes the type of the actual experience
compared to the baseline SAC and also adds counterfactual experiences to the
replay buffer. The pseudocode of SAC-CRM is shown in Algorithm 1.

In SAC-CRM, the learning environment becomes an MDPRM, so the RM
experience will be added to the replay buffer. The actual experience learned by
the agent will change from the original ⟨s, a, r, s′⟩ to ⟨s, ū, a, r̄, s′, ū′⟩, where ū and
ū′ are the RM states before and after the action a, and r̄ is the reward given
by the reward machine. Also, CRM will generate one counterfactual experience
for each RM state after the agent takes an action (see line 7 in Alg. 1). To
generate the counterfactual experiences, the agent will traverse each RM state
ū ∈ U after making an action. If the agent’s action in ū causes the environmental
state s change to the next environmental state s′, then the next RM state will
be calculated by the state-transition function, which is ū′ = δu (ū, L (s, a, s′)),
and the agent will receive a reward given by the state-reward function, which is
r̄ = δr(ū) (s, a, s

′). CRM generates one counterfactual experience for each RM
state. The expression of the counterfactual experience set is:

{(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′))) | ū ∈ U}

Correspondingly, SAC-CRM will learn the information provided by CRM when
updating the policy. Specifically, the agent will consider both the actual expe-
rience and counterfactual experiences. In terms of reward, the agent will now
consider the RM reward provided by the state-reward function. At this point,
since the agent learns in an MDPRM, SAC-CRM will not only consider the ac-
tual environmental state but the cross-product of the environmental state and

8 Haolin Sun and Yves Lespérance

Algorithm 1 Soft Actor-Critic with counterfactual experiences for RMs (CRM).

Input: initial policy parameters θ,Q-function parameters ϕ1, ϕ2, empty replay buffer
D, labelling function L, a finite set of states U , a finite set of terminal states F ,
state-transition function δu, state-reward function δr, initial RM state u0 ∈ U

1: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

2: Initialize u← u0 and s← EnvInitialState()
3: repeat
4: Observe state s and select action a ∼ πθ(· | s, u)
5: Execute a in the environment and observe next state s′

6: Compute the reward r ← δr(u) (s, a, s
′) and next RM state u′ ←

δu (u, L (s, a, s′)), and done signal d to indicate whether s′ is terminal
7: Set experience ← {(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′)) , d) | ū ∈ U}
8: Store experience in replay buffer D
9: If s′ is terminal or ū ∈ F , reset environment state.
10: if it’s time to update then
11: for j in range (however many updates) do
12: Randomly sample a batch B of transitions from D
13: Compute targets for the Q functions:

y
(
r̄, s′, ū′, d

)
= r+γ(1−d)

(
min
i=1,2

Qϕtarg,i

(
s′, ū′, ã′)− α log πθ

(
ã′ | s′, ū′)) ,

ã′ ∼ πθ

(
· | s′, ū′)

14: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,ū,a,r̄,s′,ū′,d)∈B

(
Qϕi(s, ū, a)− y

(
r̄, s′, ū′, d

))2
for i = 1, 2

15: Update policy by one step of gradient ascent using

∇θ
1

|B|
∑

s,ū∈B

(
min
i=1,2

Qϕi (s, ū, ãθ(s, ū))− α log πθ (ãθ(s, ū) | s, ū)
)

where ãθ(s, ū) is a sample from πθ(· | s, ū) which is differentiable wrt θ via
the reparametrization trick.

16: Update target network with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

17: end for
18: end if
19: until convergence or maximum training step reached

Exploiting Reward Machines with Deep Reinforcement Learning 9

the RM state, as well as the counterfactual experiences provided by CRM (line
9 to line 15 in Alg. 1). Note that we follow [8] and maintain two independent
Q functions and use the minimum of the two in the policy improvement step
(line 15) to mitigate positive bias. The updated policy is selected by minimizing
the distance between it and the energy-based policy (EBP) for the Q function,
where the distance is measured via Kullback-Leibler divergence.

3.2 Twin Delayed Deep Deterministic Policy Gradient (TD3) with
CRM

We chose Twin Delayed Deep Deterministic Policy Gradient (TD3) as another
algorithm to integrate with CRM. The integration process is similar to SAC-
CRM and involves two steps. First, we added reward machine information to
the actual experience, which includes current and next RM states and the RM
reward. Then, we added counterfactual experiences to the replay buffer.

Because the learning environment becomes an MDPRM, we need to include
reward machine information in the actual experience. Specifically, we added the
cross-product of the environmental states and the RM states to the actual ex-
perience, as well as the reward provided by the reward machine, changing the
agent’s experience from ⟨s, a, r, s′⟩ to ⟨s, u, a, r, s′, u′⟩. Then, we added counter-
factual experiences by generating a corresponding counterfactual experience for
each RM state after the agent executes each action. This experience contains the
next RM state ū′ calculated using the state-transition function δu(ū) and the
RM reward r̄ calculated by the state-reward function δr(ū), which is the same
form as the counterfactual experience in SAC-CRM.

For more details about all these algorithms, see [18]; the code is available at
https://github.com/haolinsun0907/Exploiting_RMs_with_DRL).

4 Experimental Evaluation

In this section, we test the proposed algorithms (SAC-CRM and TD3-CRM) in
two continuous action domains, comparing their performance with existing algo-
rithms (DDPG-CRM and HRM). The test environments are the Half-Cheetah
(2D) and Ant (3D) domains in OpenAI Gym [2]. All CRM-based algorithms
have a batch size of 100n, where n = |U | represents the number of non-terminal
RM states. For HRM, option policies are learned using DDPG, and the high-
level policy is learned using DQN. The batch size of HRM is 100n, where n
represents the available options. The neural networks for all algorithms use two
hidden layers with 256 units and RELU activation functions.

In both domains, the agent’s task involves reaching multiple points in a spe-
cific order, making the rewards non-Markovian. This tests each algorithm’s abil-
ity to control the agent’s movement by coordinating its limbs, as well as CRM’s
impact on task completion. The efficiency of the baseline algorithms determines
the agents’ movement speed, affecting the steps required to reach target points.
Additionally, since the environments are RM environments with complex tasks,

https://github.com/haolinsun0907/Exploiting_RMs_with_DRL

10 Haolin Sun and Yves Lespérance

it is difficult for the agent to learn to complete the task using only the baseline al-
gorithm running over the cross-product of the environment and reward machine
states. To substantiate this assertion, we conducted a performance comparison
between the baseline SAC and DDPG running over the cross-product states
versus their counterparts, SAC-CRM and DDPG-CRM, that generate counter-
factual experiences. The test results (on the Half-Cheetah Tasks 1 and 2 below)
revealed a significant performance boost when counterfactual experiences were
utilized, thus underscoring their pivotal role in enhancing the efficacy of these
algorithms; see [18] for details. CRM provides more specific task information,
improving the agent’s learning efficiency in completing multi-target point tasks.

4.1 Results in the Half-Cheetah Domain

In the Half-Cheetah domain, our first experimental environment, the agent is a
cheetah-like robot with six joints, see Fig. 1. The robot must learn to control
these joints to stand, move forward, or backward. It chooses how much force to
apply to each joint per step, resulting in an infinite action space. The continuous
state space includes each joint’s location (coordinates’ values on the plane) and
velocity. We will test the new and existing algorithms on four tasks, including
one original task defined by Toro Icarte et al. [22,20] (Task 1). The tasks are:

– Task 1: Starting between points A and B, first go to point B, then repeatedly
go back and forth between A and B.

– Task 2: Starting between points A and B, first go to point A, then to B,
then to C, then back to B, and then A, and repeat indefinitely.

– Task 3: Starting between points A and B, first go to point A, then to B,
then C, then back to B, then to C again, then reach point D and stop.

– Task 4: Starting between points A and B, either go to point A or to B, then
go to point C, and finally reach point D and stop.

We will use these tasks to test and compare the performance of our new algo-
rithms, SAC-CRM and TD3-CRM, against [22]’s RM-based algorithms, DDPG-
CRM and HRM. For all tasks, the agent starts from an arbitrary position be-
tween points A and B. Following the original approach in [22], to prevent the
agent from ceasing exploration, the agent receives a small negative reward value,
called Control Penalty (CP), after each RM state transition.

Fig. 3 displays the performance of the evaluated algorithms. The horizontal
axis represents the total number of training steps (three million), while the
vertical axis indicates the total reward received by the agent within an episode
(of 1,000 training steps). Different coloured lines represent the mean episode
reward among 10 trials for each algorithm, and the shaded area indicates the
range between the highest and lowest episode rewards for each trial. Note that
the results for the first task with DDPG-CRM and HRM, initially presented by
Toro Icarte et al. [22], were reconfirmed in our study. After repeating the task
ten times, we found our results consistent with theirs.

It can be seen that SAC-CRM outperforms all other algorithms in this do-
main, exhibiting faster learning speeds and higher reward values. In Task 1,

Exploiting Reward Machines with Deep Reinforcement Learning 11

Fig. 3: Results in Half-Cheetah domain

SAC-CRM achieves the same performance level as the second-best performer,
DDPG-CRM, in 150,000 training steps—up to 20 times faster. The mean re-
ward value after two million training steps for SAC-CRM is about 30% higher
than DDPG-CRM. With a highest episode reward of around 11,000, SAC-CRM
can complete the task approximately 11 times in one episode, three more than
DDPG-CRM. SAC-CRM also excels in the other tasks, demonstrating the fastest
learning speed and highest episode reward.

Other algorithms do not perform as well as SAC-CRM. DDPG-CRM ranks
second, with more stable learning curves than SAC-CRM. HRM performs reason-
ably well but has lower rewards than SAC-CRM and DDPG-CRM. TD3-CRM
fails to complete the task within the training period (without counterfactual
experiences, it works effectively in the easier tasks).

4.2 Results in the Ant Domain

We further tested the algorithms’ performance in the Ant domain to increase the
environment and task complexity. The Ant robot is a 3D robot with a torso and
four legs, each with two links. The main goal is to coordinate the four legs by
applying torques to the eight hinges, allowing movement in any direction on the
plane. The state space (coordinates of the joints in 3D space) and action space
(torque on the joints) are also continuous, similar to the Half-Cheetah domain.

12 Haolin Sun and Yves Lespérance

The Ant domain was chosen for several reasons. First, it is a 3D environment,
providing a larger moving space and more diverse states. Second, the Ant robot’s
higher number of joints requires more complex movement coordination, making
learning more difficult. Consequently, the Ant domain is ideal for testing the
performance of RM-based algorithms in a more complex environment.

Fig. 4: The abstract representation of Ant

We will test three tasks in the Ant environment, which has designated points
similar to the Half-Cheetah domain. Fig. 4 shows an abstract representation of
the domain. In all three tasks, the ant robot starts at a random location near
the origin:

– Task 1: Starting nearby the origin, go to point B, then repeatedly move
between points A and B.

– Task 2: Starting nearby the origin, go to points A, B, and C sequentially,
then back to B, A, and repeat indefinitely.

– Task 3: Starting nearby the origin, choose either point A or B, go to the
chosen point, then to points C and D. From point D, return to the chosen
point (A or B) and stop.

Fig. 5 displays the learning curves of all algorithms across tasks. Only SAC-
CRM and DDPG-CRM achieve significant rewards within the specified learning
steps, while the other algorithms do not.

It can be seen that SAC-CRM outperforms all other algorithms, demonstrat-
ing faster learning and higher reward values compared to DDPG-CRM. This is
primarily due to SAC’s greater exploration capability. In the Ant domain, the
agent’s movement expands to backward, forward, left, and right, increasing the
movement space. SAC’s high exploration tendency enables it to try new di-
rections and explore joint coordination more effectively, improving movement
speed faster than other algorithms. Conversely, DDPG-CRM’s exploration rate
diminishes as it learns, resulting in slower performance improvement.

Notably, HRM performs poorly in the Ant domain, with a significant per-
formance gap compared to the Half-Cheetah domain. Although it quickly finds
local optimal solutions, HRM’s policies often get stuck in local optima. In the
Half-Cheetah domain, lower environmental complexity allows the agent to rely

Exploiting Reward Machines with Deep Reinforcement Learning 13

Fig. 5: Results in Ant domain

on local optimal policies for relatively high rewards. However, in more complex
environments, the gap between local and global optimal policies widens, and
local optimal policies become insufficient for obtaining high rewards, resulting
in HRM’s poor performance in the Ant domain.

Lastly, TD3-CRM’s performance remains weak, similar to its results in the
Half-Cheetah domain.

5 Discussion

Performance of SAC-CRM The experimental results reveal that SAC-CRM
consistently outperforms the other tested RM-based algorithms across all tasks,
demonstrating superior learning speed and policy quality. Its advantage is par-
ticularly pronounced in the more complex Ant domain. Therefore, SAC-CRM is
deemed the optimal choice for all tasks in both Half-Cheetah and Ant domains
explored in this paper.

The standout performance of SAC-CRM can be attributed mainly to its
unique entropy-based policy update mechanism. In our continuous experimental
environments, numerous action combinations influence the agent’s movement,
some leading to failure, some to slow progress, and others to rapid advancement.
The entropy-based mechanism encourages extensive exploration, enabling the

14 Haolin Sun and Yves Lespérance

policy to avoid early local optima and maintain high exploration levels while
maximizing reward value.

Furthermore, SAC-CRM’s success is bolstered by its generation of stochastic
policies. In the continuous action domain, multiple optimal actions often exist
in a specific state. Unlike deterministic policies, which limit the discovery of
better action combinations by outputting a unique action, SAC-CRM saves all
available actions in a given state, allocating their probabilities based on their
Q-values. This broader ‘vision’ in action selection allows more frequent testing
of different action combinations, accelerating learning for complex tasks such as
multi-limb robot control.

Performance of DDPG-CRM Despite not achieving the highest rewards
in most tasks, DDPG-CRM displays consistent performance, outshining other
RM-based algorithms in stability, especially compared to SAC-CRM.

However, DDPG-CRM’s drawbacks include its slow learning speed and lower
rewards compared to SAC-CRM. The experimental results show that in all tasks,
DDPG-CRM lags behind SAC-CRM in both learning speed and reward achieved.
This gap widens in the more complex Ant domain. Due to its deterministic policy
learning, DDPG-CRM is less exploratory, limiting the agent’s capacity to seek
better action combinations. Moreover, its traditional Q-function-based learning
may overestimate Q-values, causing premature convergence to a local optimum.

In summary, DDPG-CRM is robust and stable, making it a viable choice for
simpler environments like Half-Cheetah when stability is more important than
optimal performance. However, its reward output falls short compared to SAC-
CRM, making it less suitable for complex environments like the Ant domain.

Performance of HRM The experimental results show that HRM performs rea-
sonably well in the Half-cheetah domain. While not as efficient as SAC-CRM, it
achieves comparable performance to DDPG-CRM in learning speed and reward,
and it also often surpasses DDPG-CRM in early training stages.

However, HRM’s performance declines sharply in the more complex Ant do-
main. This is due to HRM’s predisposition to find local optima. HRM has no
guarantee of convergence to a global optimum, which becomes problematic as
the gap between local and global optima widens in complex environments. Thus,
while HRM performs well in low-complexity settings, it becomes less effective
in more complex environments. Note that HRM’s performance depends on it
using a good decomposition for the task; but we think that the RM-based task
decompositions are reasonably good for our test tasks.

Performance of TD3-CRM TD3-CRM’s performance in all tasks is far from
ideal, earning the lowest rewards among all the evaluated algorithms. The reason
appears to be a conflict between CRM and TD3’s policy updating mechanism.

First, TD3-CRM assigns the lower Q-value to an action using two learned
Q-functions. This works well in MDPs, where Q-values are often overestimated,

Exploiting Reward Machines with Deep Reinforcement Learning 15

but not in MDPRMs. In an MDPRM, the RM information is critical for the
agent to transfer from one RM state to another; specifically, the actions that
can make the RM state change usually have high Q-values, which encourage the
agent to keep using these actions to make transitions between the RM states.
Nevertheless, TD3 always tries to “underestimate” the Q-values, which will avoid
these beneficial actions.

Furthermore, TD3’s target policy smoothing regularization, which adds noise
to actions, restricts optimal action selection and steers the agent towards close
alternatives instead. This contrasts with CRM’s encouragement for the agent
to execute optimal actions that trigger RM state changes. Consequently, this
contradiction confuses the agent, causing infrequent correct actions and resulting
in poor performance.

6 Conclusion

Training a practical deep RL agent for specific scenarios typically requires ex-
tensive training data and time. Furthermore, agents often face complex tasks
with non-Markovian rewards, making learning high-quality policies from limited
information a significant challenge. Therefore, observing more information and
fully utilizing it is crucial for improving training efficiency.

Our research is inspired by previous work on reward machines and deep RL
algorithms, particularly the work by Toro Icarte et al. [22,20]. Our contribu-
tions include extending two mainstream deep RL algorithms, SAC and TD3,
to exploit reward machine models and counterfactual experiences, yielding two
new reward machine-based algorithms, SAC-CRM and TD3-CRM. In order to
simulate the tasks that an intelligent agent might encounter in the real world,
we introduced seven different task types in two simulated continuous action do-
mains. We evaluated experimentally the performance of all RM-based deep RL
algorithms across these tasks. We found that the newly proposed SAC-CRM
performed best in most tasks.

For future work, there are several key areas of focus. First, more extensive pa-
rameter tuning could potentially enhance algorithm performance, as the current
uniform parameters may not allow for optimal performance. Second, expanding
experimental evaluations to include a wider variety of tasks and domains would
allow for more comprehensive robustness testing and a better understanding of
the environments and tasks best suited for each algorithm. Third, finding ways to
stabilize the policies of SAC-CRM, which currently fluctuate in learning curves
across tasks, could make it a more robust algorithm. Fourth, incorporating Au-
tomated Reward Shaping [14] into CRM-based algorithms may further improve
learning speed by providing intermediate rewards for subtask completion. Fifth,
it’s worth exploring ways to combine CRM and on-policy deep RL algorithms
such as PPO [17] and TRPO [16]. This could further expand the use cases for RM
and CRM. Lastly, applying these RL algorithms to real-world hybrid domains,
which involve both discrete and continuous decision variables, could offer more

16 Haolin Sun and Yves Lespérance

practical solutions to real-world problems, expanding their usability beyond the
purely continuous control problems they currently address.

Acknowledgements

Work supported by the National Science and Engineering Research Council of
Canada and York University.

References

1. Brafman, R.I., Giacomo, G.D., Patrizi, F.: LTLf/LDLf Non-Markovian Rewards.
In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018. pp. 1771–1778. AAAI Press (2018), https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17342

2. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym. CoRR abs/1606.01540 (2016), http://arxiv.org/
abs/1606.01540

3. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Restraining bolts for rein-
forcement learning agents. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020. pp. 13659–13662. AAAI Press (2020), https://ojs.aaai.org/index.
php/AAAI/article/view/7114

4. De Giacomo, G., Vardi, M.Y.: Linear Temporal Logic and Linear Dynamic Logic
on Finite Traces. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013.
pp. 854–860. IJCAI/AAAI (2013), http://www.aaai.org/ocs/index.php/IJCAI/
IJCAI13/paper/view/6997

5. Feinberg, A.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming (Martin L. Puterman). SIAM Rev. 38(4), 689 (1996).
https://doi.org/10.1137/1038137, https://doi.org/10.1137/1038137

6. Fujimoto, S., van Hoof, H., Meger, D.: Addressing Function Approximation Error
in Actor-Critic Methods. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Re-
search, vol. 80, pp. 1582–1591. PMLR (2018), http://proceedings.mlr.press/
v80/fujimoto18a.html

7. Guillen-Perez, A., Cano, M.: Learning from oracle demonstrations - A new
approach to develop autonomous intersection management control algorithms
based on multiagent deep reinforcement learning. IEEE Access 10, 53601–
53613 (2022). https://doi.org/10.1109/ACCESS.2022.3175493, https://doi.org/
10.1109/ACCESS.2022.3175493

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://ojs.aaai.org/index.php/AAAI/article/view/7114
https://ojs.aaai.org/index.php/AAAI/article/view/7114
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1137/1038137
https://doi.org/10.1137/1038137
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1109/ACCESS.2022.3175493
https://doi.org/10.1109/ACCESS.2022.3175493
https://doi.org/10.1109/ACCESS.2022.3175493

Exploiting Reward Machines with Deep Reinforcement Learning 17

8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft Actor-Critic: Off-Policy Maxi-
mum Entropy Deep Reinforcement Learning with a Stochastic Actor. In: Dy, J.G.,
Krause, A. (eds.) Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018.
Proceedings of Machine Learning Research, vol. 80, pp. 1856–1865. PMLR (2018),
http://proceedings.mlr.press/v80/haarnoja18b.html

9. Hasanbeig, M., Kroening, D., Abate, A.: LCRL: certified policy synthesis via
logically-constrained reinforcement learning. In: Ábrahám, E., Paolieri, M. (eds.)
Quantitative Evaluation of Systems - 19th International Conference, QEST 2022,
Warsaw, Poland, September 12-16, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13479, pp. 217–231. Springer (2022). https://doi.org/10.1007/978-3-
031-16336-4 11, https://doi.org/10.1007/978-3-031-16336-4_11

10. van Hasselt, H., Guez, A., Silver, D.: Deep Reinforcement Learning with Double
Q-Learning. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA. pp. 2094–2100. AAAI Press (2016), http://www.aaai.org/ocs/
index.php/AAAI/AAAI16/paper/view/12389

11. Lacerda, B., Parker, D., Hawes, N.: Optimal policy generation for partially satisfi-
able co-safe LTL specifications. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp. 1587–1593. AAAI Press
(2015), http://ijcai.org/Abstract/15/227

12. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. In: Bengio, Y.,
LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016),
http://arxiv.org/abs/1509.02971

13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M.A., Fidjeland, A., Ostrovski, G., Petersen, S., Beat-
tie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., Hassabis, D.: Human-level control through deep reinforcement learning. Nat.
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236, https://doi.
org/10.1038/nature14236

14. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: Bratko, I., Dzeroski, S. (eds.) Pro-
ceedings of the Sixteenth International Conference on Machine Learning (ICML
1999), Bled, Slovenia, June 27 - 30, 1999. pp. 278–287. Morgan Kaufmann (1999)

15. Pnueli, A.: The temporal logic of programs. In: 18th Annual Sympo-
sium on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977. pp. 46–57. IEEE Computer Society
(1977). https://doi.org/10.1109/SFCS.1977.32, https://doi.org/10.1109/SFCS.
1977.32

16. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust region policy
optimization. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015.
JMLR Workshop and Conference Proceedings, vol. 37, pp. 1889–1897. JMLR.org
(2015), http://proceedings.mlr.press/v37/schulman15.html

17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal pol-
icy optimization algorithms. CoRR abs/1707.06347 (2017), http://arxiv.org/
abs/1707.06347

http://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1007/978-3-031-16336-4_11
https://doi.org/10.1007/978-3-031-16336-4_11
https://doi.org/10.1007/978-3-031-16336-4_11
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://ijcai.org/Abstract/15/227
http://arxiv.org/abs/1509.02971
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

18 Haolin Sun and Yves Lespérance

18. Sun, H.: Exploiting Reward Machines with Deep Reinforcement Learning in Con-
tinuous Action Domains. Master’s thesis, EECS Dept., York University, Toronto,
Canada (2022)

19. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning. Artif. Intell. 112(1-2), 181–
211 (1999). https://doi.org/10.1016/S0004-3702(99)00052-1, https://doi.org/

10.1016/S0004-3702(99)00052-1

20. Toro Icarte, R.: Reward Machines. Ph.D. thesis, University of Toronto, Canada
(2022), http://hdl.handle.net/1807/110754

21. Toro Icarte, R., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning.
In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 2112–2121.
PMLR (2018), http://proceedings.mlr.press/v80/icarte18a.html

22. Toro Icarte, R., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Reward machines:
Exploiting reward function structure in reinforcement learning. J. Artif. Intell.
Res. 73, 173–208 (2022). https://doi.org/10.1613/jair.1.12440, https://doi.org/
10.1613/jair.1.12440

23. Watkins, C.J.C.H., Dayan, P.: Q-Learning. Mach. Learn. 8, 279–292 (1992).
https://doi.org/10.1007/BF00992698, https://doi.org/10.1007/BF00992698

https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
http://hdl.handle.net/1807/110754
http://proceedings.mlr.press/v80/icarte18a.html
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

	Exploiting Reward Machines with Deep Reinforcement Learning in Continuous Action Domains

