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Abstract

Spacecraft docking using vision is a challenging task.
Not least among the problems encountered is the
need to visually localize the docking target. Here
we consider the task of adapting the local illumina-
tion to assist in this docking. An online approach is
developed that combines images obtained under dif-
ferent exposure and lighting conditions into a single
image upon which docking decisions can be made.
This method is designed to be used within an intel-
ligent controller that automatically adjusts lighting
and image acquisition in order to obtain the “best”
possible composite view of the target for further im-
age processing.
Keywords: Image Entropy, High Dynamic Range.

1 Introduction
Perhaps the most interesting vision tasks involve
guiding semi-autonomous vehicles such as unmanned
underwater vehicles, mining machines and space-
craft. Given the widely varying and often poor light-
ing conditions encountered in such tasks, the remote
video camera is often associated with one or more
(typically fixed) but controllable light sources. The
camera itself often has a variety of controllable pa-
rameters such as shutter speed and aperture. Given
the controllable intrinsic camera parameters, and the
controllable light sources, the remote operator ma-
nipulates the various camera parameters and lighting
options in order to be able to carry out the required
task. This task may be performed directly by a hu-
man operator or it may be performed by a software
agent with or without human intervention. In either
case, the operator manipulates the camera param-
eters and the available lighting in order to ensure
that those portions of the image that are critical to
the task at hand are illuminated appropriately (see
Figure 1a).

Choosing an appropriate illumination for a hu-
man operator is an extremely complex problem.
Maximizing one illuminant may place portions of the

scene in high relief, while at the same time casting
shadows over other portions of the image. Interac-
tions between the illuminants and gain control within
the camera itself complicates the task even further.
Perhaps the most common version of this problem
is the lighting problem portrait photographers en-
counter: How should the various illuminates be lit
and the camera controlled in order for the camera to
best capture the subject? Note that what “best” is

depends significantly on the specific task on hand.

In the machine vision domain, the task becomes
even more complex. Cameras typically have a lim-
ited dynamic range so they often cannot be used to
effectively image the whole scene in one acquisition.
Unlike natural settings, one simplifying assumption
that is often made is that the only active agent in
a teleoperated setting is the teleoperated agent. As-
suming that the scene is static, then it is possible to
illuminate different parts of the image under differ-
ent illuminates and camera capture parameters, and
then to combine different parts of the image captured
under different conditions into a single composite im-
age.

To consider this illumination problem in its sim-
plest form, consider a spacecraft equipped with a
camera-light arrangement like that given in Fig-
ure 1b. If one assumes that the underlying camera
capture and scene geometry is static, i.e., the space-
craft are not moving relative to each other and the
position of the camera, the lights and object being
viewed remain unchanged, then the camera’s intrin-
sic parameters and the level of illumination provided
by each light can be manipulated. Furthermore, if
the aperture, focus and focal length of the camera re-
main unchanged, then over a set of images taken un-
der different lighting and camera parameters, a given
pixel (u, v) in the camera will always image the same
scene point and image blur will remain constant. Un-
der these conditions, the process of combining mul-
tiple images into a single image can be expressed at
the pixel level – how should a specific pixel values at
(u, v), taken under different illumination and camera



(a) A computer graphics rendering of
the space shuttle docking procedure.
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(b) An intelligent controller can manipulate light-
ing intensities and camera intrinsics in order to
derive an accurate model of the relationships be-
tween the spacecrafts involved in a docking pro-
cedure.

Figure 1: Illumination issues in teleoperation. How can the scene be best illuminated and captured in order
to dock the two vehicles?

parameters, be combined to obtain a composite pixel
value at (u, v)?

1.1 Formal Statement of the Problem

Given a set of images {I1, . . . , IN}, a function φ is de-
sired that combines the set into a single image Ĩ1...N .
Notationally, we seek a function φ() that operates at
the pixel level and that has the following properties:

Ĩ1 = φ(I1)

Ĩ1...N = φ(I1, I2, . . . , IN )

In order for the image merging to operate in an ef-
ficient, online manner φ should have the property
that

Ĩ1...N+1 = φ(Ĩ1...N , IN+1)

That is, it should be efficient to compute the N +1th

image of Ĩ given the computation for the N th image.

2 Related Work
The problem of combining multiple images taken un-
der varying sensor/lighting conditions has received
considerable attention in the literature, although not
in the limited scope of the algorithm being consid-
ered here. High dynamic range images have many
properties in common with the task being consid-
ered here (see [1] for an introduction to the prob-
lem of high dynamic range images). A commonly
considered problem in high dynamic range images is
the task of rendering the wide range of data avail-
able at a given pixel (u, v) given the limited display
range of the intended displays: That is, given the

set I how to compute an image Ĩ that best repre-
sents the input images. In the high dynamic range
image case, the various images I are typically cap-
tured before the image processing takes place and an
offline version of the algorithm is appropriate – the
display is not updated as new bands of image infor-
mation are obtained. Several approaches to this ‘ren-
dering of high dynamic range images’ problem have
been devised and implemented in both hardware and
software. Cameras like the QinetiQ High Dynamic
Range Logarithmic CMOS Cameras1 compress the
dynamic range of the image using on-board logarith-
mic intensity compression. The system described in
[1] uses several images under different exposures to
recover the camera’s response function and from that
is able to fuse the images into a single, high dynamic
range radiance map. In [2] a contrast compression al-
gorithm using a coarse-to-fine hierarchy is described.
In [3] a system is developed that performs gradient
attenuation to reduce the dynamic range in the im-
age. The algorithm described in this work is based in
part on the approach of Goshtasby [4]. The basic ap-
proach of [4] is to combine images in a manner that
maximizes the entropy of the resulting combined im-
age, while using a smoothing function to ensure that
the resulting image does not exhibit intensity discon-
tinuities that were not present in the input images.

3 Basic Approach
The basic approach developed for the online com-
bination of images builds upon Goshtasby’s entropy
based high dynamic range reduction algorithm [4],

1QinetiQ LogCMOS Camera - http://www.qinetiq.com
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Figure 2: Top row: (a) Illumination by illuminant 1 only at 100% (b) Illumination by illuminant 2 only at
100% (c) Illumination by illuminant 3 only at 100% (d) Illumination by illuminant 1,2 and 3 all at 100%.
Bottom row: (e)-(g) The composite image at various stages during the addition of the 512 source images.
(h) The final composite image after all 512 images have been added.

but differs in how the images are combined. In this
system, the images are merged on a pixel per pixel
basis by weighting the local pixel values by their local
entropy estimate.

Entropy was chosen as a measure of the detail
provided by each picture. The entropy (see [5]) is
defined as the average number of binary symbols nec-
essary to code a given input given the probability of
that input appearing an a stream. High entropy is
associated with a high variance in the pixel values,
while low entropy indicates that the pixel values are
fairly uniform, and hence little detail can be derived
from them. Therefore, when applied to groups of
pixels within the source images, entropy provides a
way to compare regions from the different source im-
ages and decide which provides the most detail.

The method developed for this task, though sim-
ple, is both flexible and powerful. Every pixel in the
final image is computed as the weighted average of
the corresponding pixels in the source images where
each value is weighted by the entropy of the sur-
rounding region. For each pixel p = (u, v) in the final
image there are corresponding pixels p1, p2, . . . , pN ,
one for each source image. For each pixel pi in each
image, the local entropy (measured within a fixed
window) vi is computed, and the weighted average p

is computed as

p =

N∑
i=1

pivi

N∑
i=1

vi

The entropy for the pixel window is computed as

vi =
∑

k

−qk × log2(qk)

where qi is the probability that a random pixel cho-
sen from the window centered on pk will have inten-
sity i.

3.1 Online Computation

When docking a spacecraft feedback is necessary in
order to adjust the myriad of parameters required
for the task. The system must function before all
images are available. It may even be desirable to use
a partial computation of I to aid in the choice of
future camera capture parameters.

For every pixel p in the final image, two running
sums are maintained for each colour component: The
first is Gr

p the sum of the intensity of channel r at
location p in the source images, multiplied by the en-
tropy of the surrounding pixel window in each source
image. The second sum Ir

p is the sum of the entropy
in each source image channel.
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Figure 3: The combined result of all 512 images after
gamma correction
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Storing the final image as a set of sums provides
the system with the capability to add and remove
images from the collective quickly and easily, while
at the same time ensuring that the final image can
also be generated quickly.

The agent developed to control the addition and
removal of images as well as the intensities of the
related light sources is described in [6].

4 Results
The images in Figure 2 are take from a set of 512
images of the same orbital object (a latch from the
Hubble Space Telescope) taken under different light-
ing conditions. The 512 images were captured un-
der 512 different illumination conditions (three light
sources each with 8 possible light values). The sec-
ond row of the image shows four different merged
images. These were obtained by merging different
subsets of the images together. Image (h) is the re-
sult of the merger of all 512 images. Figure 3 is an
expanded version of Figure 2 (h) after gamma cor-
rection. The fine detail of the latch is quite visible.

The process of merging the images together on a
pixel-by-pixel basis permits the complex set of 512
images to be rendered as a single image that can be
viewed by either a human operator or used as the in-
put to later computational stages. The merging pro-
cess weights the images by the local entropy. Figure
4 shows the relative entropy of each of the 512 source
images as well as the entropy of the combined image
made from images 0..N (where N is in the range 0 to
511). The wide variability in the Entropy of individ-
ual images is evident in Figure 4 as is the stability
of the merged image after a small number of images
have been combined.

Figure 4: A graph of the evolving composite entropy
and the entropy of the 512 source images

A second example is given in Figure 5. The source
images are of a satellite docking module and are
taken at increasing luminosities. The composite im-
ages in Figure 5 are computed with window sizes 5,
11, 21, and 41 respectively. Clearly, since entropy
can be sampled over a larger area, larger windows
yield a smoother image.

Also of interest is the effect of both random noise
and blank images on the composite. Figure 6 pro-
vides such a comparison. While blank frames (of any
colour) have no effect on the composite due to their
low entropy, as expected images with random noise
have a detrimental effect on the composite. How-
ever, we are assuming all images in the input set will
be highly correlated and should therefore not exhibit
such random noise.

5 Discussion
In this paper an on-line method for combining multi-
ple images taken under different lighting conditions
was presented. The method involves weighting each
pixel by the surrounding entropy such that each el-
ement in the final image is in high relief but lacks
abrupt contrast changes due to the different light
sources that might introduce spurious lines and other
artifacts. The method also allows for fast addition
and removal of images from the collective.

The resulting merged image can be used by ei-
ther a human operator or by a software agent. Of
particular interest is the development of a software
system that automatically adjusts the camera and
illumination parameters in order to obtain the ‘best’
combined image automatically using a small number
of different illumination settings. The development
of such a system is the subject of ongoing research



(see [6]).
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Figure 5: Top row: (a)-(g) Images taken as luminosity increases. Bottom row: (h)-(k) Composites of (a)-(g)
images with window sizes 5, 11, 21, 41 respectively
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Figure 6: Shows the effect of random noise as well as blank images on the composite. Top row: The source
images (a) an image taken of the object, (b) an image of random noise, (c) a blank image. Bottom Row:
(d) A composite comprised of (a) and (b), (e) a composite comprised of (a) and (c)


