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Abstract

Agent supervision is a form of control/customization where a supervisor restricts the behavior of an

agent to enforce certain requirements, while leaving the agent as much autonomy as possible. This frame-

work is based on the situation calculus and a variant of the ConGolog agent programming language. In this

dissertation, we focus on two of the open problems with the original account of agent supervision. The

first open problem is supervising an agent that may acquire new knowledge about her environment during

an online execution, for example, by sensing. The second open problem concerns the supervision of agents

that operate in complex domains and have complex behavior. Such agents typically need to represent and

reason about a large amount of knowledge. One approach to cope with this challenge is to use abstraction,

which involves developing an abstract/high-level model of the agent behavior that suppresses less important

details. Hence, we first investigate abstracting an agent’s behavior in o✏ine executions, and formalize a

notion of sound and/or complete abstractions. Sound abstractions can be used to perform several forms

of reasoning about action, such as planning, agent monitoring, and generating high-level explanations of

low-level/concrete agent behavior. Moreover, we investigate abstraction of agent’s behavior in online execu-

tions, and discuss its relation to hierarchical contingent planning. We then use our results on o✏ine agent

abstraction to formalize hierarchical agent supervision: in a first step, we only consider the high-level model

and obtain the maximally permissive supervisor to customize the abstract agent behavior; then in a second

step, we obtain a low-level supervisor by refining the high-level supervisor’s actions locally. We show that

this process can be done incrementally, without precomputing the local refinements.
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1 Introduction

Knowledge representation and reasoning is a subfield of Artificial Intelligence (AI) that focuses on how

knowledge can be represented symbolically and manipulated in an automated way by reasoning programs.

More informally, it is a part of AI that is concerned with cognition, and how thinking contributes to intelligent

behavior [21]. Reasoning about action and change (RAC) is a prominent area of research within this field

that focuses on representation and reasoning about actions of intelligent agents (as well as other actors in

the environment) operating in dynamical domains.

Such agents typically have knowledge of when a certain action is executable, and how it a↵ects the world.

Moreover, they often have (incomplete) beliefs about the state of the world and its dynamics. These agents

may also be able to perform sensing during execution to acquire additional knowledge about the world. Such

properties enable agents to reason about what action to perform in each situation to ensure they can execute

their task and/or achieve their goals.

In many settings, an agent’s behavior needs to be restricted to conform to a set of specifications. For

instance, the activities of agents in an organization have to adhere to business rules and privacy/security

protocols. Similarly, a mobile robot has to conform to safety specifications and avoid causing injuries to

others. One form of restricting an agent’s behavior is customization, where a generic agent behavior for

performing a task or achieving a goal, typically involving several alternative courses of actions, is refined to

satisfy a client’s constraints or preferences.

As intelligent agents are capable of reasoning about actions and exhibiting autonomous behavior, a key

challenge in such settings is ensuring conformance to specifications while preserving the agent’s autonomy. In

the area of reasoning about action and change, motivated by this challenge and inspired by the Supervisory

Control of Discrete Event Systems (SCDES) [166, 24], De Giacomo, Lespérance and Muise (DLM) [35]

proposed agent supervision, as a form of control/customization of an agent’s behavior. This framework is

based on the situation calculus [110, 132], a predicate logic language designed for representing and reasoning

about dynamically changing worlds and a variant of the ConGolog agent programming language [33]. In

this variant, all programs are assumed to be situation-determined (SD), meaning that a (partial) execution

of the program is uniquely determined by the sequence of actions it has produced. DLM represent the

agent’s possible behaviors as a (non-deterministic) SD ConGolog program. Another SD ConGolog program

1



represents the supervision specification, i.e., which behaviors are acceptable/desirable. If it is possible

to control all of the agent’s actions, then it is straightforward to specify the result of supervision as the

intersection of the execution of the agent and the supervision specification programs. However in general,

some of agent’s actions may be uncontrollable. These are often the result of interaction of an agent with

external resources, or may represent aspects of agent’s behavior that must remain autonomous and cannot

be controlled directly. In this context, controllability of a supervision specification with respect to the agent

program in a situation is informally defined as follows: given any sequence of actions that is a prefix of

a complete run of both the supervision specification and the agent program in a given situation, if an

uncontrollable action is executable by the agent after this sequence of actions, then the uncontrollable action

must also be executable in the specification after the sequence of actions. Given a specification, a supervisor

is a component that observes the run of the agent so far, and disallows some of the controllable actions in

order to satisfy the specification. A supervisor is maximally permissive if it disallows actions that cause the

agent to violate the specification, but leaves the agent as much freedom as possible to choose among the

remaining actions. We will provide formal definitions of situation-determined programs, controllability of a

specification with respect to agent behavior, and maximally permissive supervisors in Chapter 3. Note that

due to its first-order logic foundations, the agent supervision framework can handle infinite states, and thus

generalizes most approaches to SCDES which are based on finite state settings.

Note that since one could implement a new agent that satisfies the specification by design, it may seem

that having a supervisor only adds to the complexity of the system. Here however, we aim to customize the

generic behavior of an existing agent, and we are not focused on designing an agent from scratch that satisfies

some specification. In either case, one of the main advantages of this approach is that it promotes system

evolvability: as user requirements change, agents are relocated to new environments and new protocols come

into place, the agent behavior does not need to be re-defined.

1.1 Motivation

In this dissertation, we aim to generalize the original agent supervision framework proposed by DLM to deal

with the following two open problems:

1. Supervising Online Agents. The original DLM account of agent supervision assumes that the agent

does not acquire new information while executing and does not perform sensing. In other words, it

considers an agent’s o✏ine executions [39]. Typically, agents work in settings where they acquire new

knowledge through sensing and exogenous actions. Consider for instance a travel planner agent that

needs to book a seat on a certain flight. Only after querying the airline web service o↵ering that flight

will the agent know if there are seats available on the flight.

2



2. Supervising Complex Agents. In more complex domains, agents need to represent and reason

about a large amount of knowledge about their environment and have complex behaviors. Due to

complexity of the behavior logic, designing and enforcing specifications for customization of agent’s

behavior can be a di�cult task. Consider for example a logistics planner agent that needs to plan the

shipment of items between various locations. Such an agent has to choose among a network of roads

while considering a number of factors such as temporary road closures, municipal rules with respect to

usage of roads by heavy vehicles, bad weather, service level agreements regarding priority shipments,

etc., that could all a↵ect choices of available roads.

Customization and control of systems is appealing to various research communities; examples include

specialization of scientific workflows [73], customization of the behavioral aspect of software systems [106],

automation of collaboration between two di↵erent business processes [104], increasing the accuracy of pro-

grams generated through using the programming by instruction technique [60] and configuration of products

in software product lines [5, 154].

One may view behavior (i.e., the logic of any artifact operating in an environment) or web service

composition as a type of process customization, as it involves selecting some available behaviors/web services

and controlling their interaction to produce the desired behavior or service. Some major approaches to

automated service composition, for instance [113], treat it essentially as the problem of customizing a generic

process.

Similarly, in the Internet of Things (IoT) [6] field, advanced functionalities (e.g., home surveillance) can be

achieved through the cooperation of many simple yet heterogeneous robotic devices pervasively embedded in

the environment (e.g., video cameras or mobile phones). The IoT has wide area of applications, for example,

industrial automation, elderly assistance, intelligent energy management and tra�c management.

1.2 Our Approach and Contributions

Our framework is based on the situation calculus [110, 132], and a variant of the ConGolog agent programming

language [33] that assumes all programs are situation-determined. Moreover, through several examples, we

motivate our work and demonstrate how our framework can be applied in di↵erent domains.

1.2.1 Online Agent Supervision

To accommodate agents that acquire knowledge during executions, we consider the agent’s online executions

[39, 140], where she must make decisions based on what she knows, and her knowledge may be updated as

she executes the program. The agent’s knowledge base is represented by a situation calculus basic action

theory. Similar to DLM, we represent the agent’s possible behaviors as well as the supervision specification
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(i.e., which behaviors are acceptable/desirable) as situation-determined ConGolog programs. We first define

a meta-theoretic1 online transition relation between agent configurations. Then, to ensure that for any

sequence of actions that the agent can perform in an online execution, there is a unique resulting agent

configuration, i.e., agent belief state and remaining program, we formalize the notion of online situation-

determined agents.

Next, we provide a formalization of the online maximally permissive supervisor (online MPS) and show

its existence and uniqueness. The online supervisor can depend on the information that the agent acquires

as it executes; it can also deal with the fact that an action’s controllability may not be known at the outset.

The online supervisor ensures that the agent behavior satisfies the supervision specification no matter how

the world turns out to be.

Moreover, we meta-theoretically define a program construct, the supervision operator for online super-

vised execution that given the agent and specification, executes them to obtain only runs allowed by the

maximally permissive supervisor, showing its soundness and completeness. To ensure that the agent un-

der the supervision operator construct considers only runs that can be successfully completed (i.e., ensure

non-blockingness), we also define a new lookahead search construct.

1.2.2 Agent Abstraction and Hierarchical Agent Supervision

To supervise an agent with complex behaviors, the approach we use is abstraction. In essence, it involves

developing an abstract model of the agent/domain that suppresses less important details. Abstraction is an

interesting topic in its own right and has been investigated in various areas of AI and Computer Science to

improve e�ciency in planning (e.g., [112]), facilitate verification (e.g., [118]), enable automated reasoning

(e.g., [74]), capture the social practices of multi-agent systems (e.g., [50]), facilitate model checking (e.g.,

[28]) and data integration (e.g., [97]). In first-order settings, while some approaches (e.g., [74, 122]) have

formalized a general framework for abstraction of “static” logical theories,2 there does not seem to be any

work that focuses on a general framework for abstraction of dynamic domains.

Abstraction can provide a number of benefits; for example, the abstract model typically allows us to

reason more easily about the agent’s possible behaviors and to provide high-level explanations of the agent’s

behavior. Moreover, to e�ciently solve a complex reasoning problem, one may first try to find a solution in

the abstract model, and then use this abstract solution as a template to guide the search for a solution in the

concrete model. Systems developed using abstractions are typically more robust to change, as adjustments

1We model the agent’s acquiring new information during an online execution by using updated theories, that include the
initial theory together with the new knowledge acquired during di↵erent stages of execution. Thus, we define an online transition
relation that holds over agent configurations that include such updated theories as mathematical objects at the metalevel.

2A static theory describes a single non-changing state of a↵airs; this is in contrast to dynamic theories, such as situation
calculus basic action theories, where due to execution of actions, value of fluents may change.
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to more detailed levels may leave the abstract levels unchanged. Also, it may be possible to adapt solutions

for the abstract level to a large spectrum of the concrete problems.

Hence, we divide the work addressing this open problem in terms of abstraction of agent behavior

and hierarchical agent supervision, where we first obtain a maximally permissive supervisor based on a

abstract/high-level model of the agent and then utilize it to obtain a maximally permissive supervisor for

the concrete/low-level model of the agent.

1.2.2.1 Abstraction of O✏ine Agent Behavior

We assume we have a high-level/abstract action theory and a low-level/concrete action theory both repre-

senting the agent behavior at di↵erent levels of detail and a refinement mapping between the high-level and

the low-level action theories. The mapping associates each high-level primitive action to a (possibly non-

deterministic) ConGolog program defined over the low-level action theory that “implements it”. Moreover,

it maps each high-level fluent to a state formula in the low-level language that “characterizes the concrete

conditions” under which it holds.

In this setting, we define a notion of a high-level theory being a sound abstraction of a low-level theory

under a given refinement mapping. The formalization involves the existence of a suitable bisimulation relation

[115, 117] between models of the low-level and high-level theories. With a sound abstraction, whenever the

high-level theory entails that a sequence of actions is executable and achieves a certain condition, then

the low level must also entail that there exists an executable refinement of the sequence such that the

“translated” condition holds afterwards. Moreover, whenever the executability of refinement of a sequence

of high-level actions that achieve a refinement of a certain condition is satisfiable at the low level, then the

executability of the sequence of high-level actions that achieve a certain condition is satisfiable at the high

level. Thus, sound abstractions can be used to perform e↵ectively several forms of reasoning about action,

such as planning, agent monitoring, and generating high-level explanations of low-level behavior. We also

provide a proof theoretic characterization that gives us the basis for automatically verifying that we have a

sound abstraction. In addition, we define a dual notion of complete abstraction.

We also identify a set of constraints that ensure that for any low-level action sequence, there is a unique

high-level action sequence that it refines. This is useful for providing high-level explanations of behavior and

agent monitoring.

1.2.2.2 Hierarchical Agent Supervision in O✏ine Executions

To facilitate agent supervision for complex agents, and inspired by the hierarchical supervisory control of

discrete event systems [166], we build on the results of Section 1.2.2.1 and formalize a framework for hierar-
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chical agent supervision in the context of o✏ine executions, where the agent does not acquire new knowledge

during a run. We assume we have a low-level/concrete basic action theory and a high-level/abstract basic

action theory, both representing the agent behavior at di↵erent levels of detail and a refinement mapping

between the two. We further assume that the high-level basic action theory is a sound abstraction of the

low-level basic action theory relative to the refinement mapping. Moreover, the low-level behavior of the

agent can be monitored at the high level, i.e., any complete low-level run of the agent must be a refinement

of a sequence of high-level actions.

The constraints on the agent’s behavior to be enforced by the supervisor are represented by a high-level

situation-determined ConGolog program, which specifies the behaviors that are acceptable/desirable. Our

task is to synthesize a maximally permissive supervisor for the low-level agent behavior and specification

(which we can translate into a low-level program).

To facilitate this task, we identify the constraints required to ensure that controllability of individual

actions at the high-level accurately reflects the controllability of their refinements. Then we show that these

constraints are in fact su�cient to ensure that any controllable set of runs at the high level has a controllable

refinement that corresponds to it and vice versa. We define a new program construct that executes a set of

programs P non-deterministically without committing to which element of P being executed unless it has to.

With the help of this construct and the constraints identified above, we show that the low-level MPS for the

mapped specification is a refinement of the high-level MPS for the specification. Moreover, we show that we

can obtain the low-level MPS incrementally by using the high-level MPS as a guide and refining its actions

locally while remaining maximally permissive. The resulting hierarchically synthesized MPS has exactly the

same runs as that of the low-level MPS obtained by mapping the supervision specification to the low-level.

Our approach is inspired by the hierarchical supervisory control of discrete event systems [166], but the

foundations of our work is di↵erent: the framework is based on a rich first-order logic language; we use a

notion of bisimulation to relate the models of the high-level and low-level theories; in addition to actions

(which abstract over programs), our high-level theory includes fluents (which abstract over formulas); and

through preconditions for actions, we are able to enforce local constraints on the low-level agent.

1.2.2.3 Abstraction of Online Agent Behavior

We build on the results of abstraction of o✏ine agent behavior to formalize a general abstraction framework

for an agent that executes online, i.e., can acquire new information as it executes. Similar to Section 1.2.2.1,

we assume that we have a high-level/abstract action theory and a low-level/concrete action theory and a

refinement mapping between the two.

To formalize a notion of sound abstraction in online executions, we first identify a su�cient condition

that ensures a high-level basic action theory remains a sound abstraction of a low-level basic action theory
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with respect to a refinement mapping as the agent acquires new knowledge. We then extend the results on

basic properties of sound abstractions in o✏ine executions to online executions.

To be able to reliably execute a task/achieve a goal in online executions, an agent must have a strategy.

We formalize a model of contingent planning over the agent’s online executions that ensures it has a strategy

to only perform actions that can be extended to a successfully terminating execution of the program, no

matter how the environment behaves. Contingent planning involves synthesizing such a strategy. We then

show that under some reasonable conditions, if we have sound abstraction and the agent has a strategy for

accomplishing a task or achieving a goal at the high level, it is possible to refine it into a low-level strategy

piecewise, and the resulting low-level strategy is guaranteed to achieve the refinement of the goal.

1.2.3 Contributions

The main contributions of this dissertation are as follows:

1. Online Agent Supervision. The results of this contribution have been presented in [14, 13, 12].

• We define a notion of online situation-determined agent which ensures that for any sequence of

actions that the agent can perform online, the resulting agent configuration (i.e., belief state and

remaining program) is unique (Section 4.2.2).

• We provide a formalization of the online maximally permissive supervisor and show its existence

and uniqueness (Section 4.3.2).

• Moreover, we meta-theoretically define a program construct (i.e., supervision operator) for online

supervised execution that given the agent and specification, executes them to obtain only runs

allowed by the online maximally permissive supervisor, showing its soundness and completeness

(Section 4.3.3). To ensure the agent under the supervision operator construct considers only runs

that can be successfully completed (i.e., ensure non-blockingness), we also define a new lookahead

search construct (Section 4.3.4).

2. Abstraction of O✏ine Agent Behavior. The results of this contribution have been presented in

[15, 11].

• We formalize a notion of a high-level basic action theory being a sound abstraction of a low-level

basic action theory under a given refinement mapping. This notion is based on a suitable notion

of bisimulation between models of the high-level and low-level theories. We also provide a proof

theoretic characterization that gives us the basis for automatically verifying that we have a sound

abstraction (Section 5.3). In addition, we define a dual notion of complete abstraction (Section

5.4).
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• We also identify a set of constraints that ensure that for any low-level action sequence, there

is a unique high-level action sequence that it refines. This is useful for providing high-level

explanations of behavior and monitoring (Section 5.5).

3. Hierarchical Agent Supervision. The results of this contribution have been submitted [16].

• We identify the constraints required to ensure that controllability of individual actions at the

high-level accurately reflects the controllability of their refinements. Then we show that these

constraints are in fact su�cient to ensure that any controllable set of runs at the high level has a

controllable refinement that corresponds to it and vice versa (Section 6.3).

• We define a new program construct that executes a set of programs P non-deterministically

without committing to which element of P being executed unless it has to (Section 6.1.2). With

the help of this construct and the constraints identified above we show that the low-level MPS for

the mapped specification is a refinement of the high-level MPS for the specification (Section 6.3).

• Moreover, we show that we can obtain the low-level MPS incrementally by using the high-level

MPS as a guide and refining its actions locally while remaining maximally permissive. We then

show that the resulting hierarchically synthesized MPS has exactly the same runs as that of the

low-level MPS obtained by mapping the supervision specification to the low-level (Section 6.4).

4. Abstraction of Online Agent Behavior.

• We first identify a su�cient condition that ensures a high-level basic action theory remains a

sound abstraction of a low-level basic action theory with respect to a refinement mapping as the

agent acquires new knowledge (Section 7.2).

• We formalize a model of contingent planning over agent’s online executions that ensures a strategy

exists for the agent to only perform actions that can be extended to a successfully terminating

execution of the program, no matter how the environment behaves (Section 7.3).

• We then show that under some reasonable conditions, if we have sound abstraction and the agent

has a strategy for accomplishing a task or achieving a goal at the high level, then we can refine

it into a low-level strategy piecewise, and the resulting low-level strategy ensures achieving the

refinement of the goal (Section 7.4).

Note that although we approached the work on abstraction of o✏ine and online agent behavior (con-

tributions 2 and 4 respectively) from the point of view of agent supervision, they have many applications

beyond this area (e.g., hierarchical classical/contingent planning, agent monitoring, and providing high-level

explanations).
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1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 provides a survey of the related literature.

In AI, there does not seem to be many approaches that directly relate to the problems addressed in this

dissertation. Hence, we discuss a number of relevant approaches that relate to certain aspects of our work.

Chapter 3 lays the theoretical foundations for this dissertation. Chapters 4, 5, 6 and 7 present the main

contributions of the dissertation. In Chapter 4, we investigate online supervision of an agent that may

acquire new knowledge about her environment during execution and at each time point she must make

decisions on what to do next based on what her current knowledge is. In Chapter 5, we formalize a notion of

abstracting o✏ine agent behavior which is represented by situation calculus action theories, and we discuss

the framework’s applications in hierarchical planning, providing high-level explanations of low-level agent

behavior, and agent monitoring. Chapter 6 builds on the results of Chapter 5 and presents a framework

for hierarchical agent supervision in an o✏ine context. Chapter 7 extends the results of Chapter 5 and

formalizes a notion of abstraction for online agent behavior and its application in hierarchical contingent

planning. Finally, in Chapter 8 we conclude with a summary of the contributions of the dissertation and a

discussion of future research.
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2 Related Literature

In this chapter, we provide a survey of the related literature. In AI, there does not seem to be many

approaches that directly relate to our work. Hence, we focus on a number of relevant approaches that

relate to certain aspects of our work. Section 2.1 provides a brief overview on reasoning about action and

change and two of the main approaches to agent programming in AI. In Section 2.2, we focus on some of

the approaches to control and customization of agent behavior. This is followed by the related work on

reasoning about knowledge and action in Section 2.3. An overview of some of the semantic and syntactic

approaches to abstraction in first order logic is provided in Section 2.4. Finally, in Section 2.5 we review the

literature on classical and hierarchical supervisory control of discrete event systems as well as some of the

recent approaches in AI that are inspired by this work.

2.1 Reasoning About Actions and Agency

2.1.1 Reasoning About Action and Change

Intelligent agents operating in dynamical domains need to reason about what actions to perform to pursue

their goals. They also need to keep track of changes made to the environment as a result of the actions

performed, by themselves or other agents acting in the domain; such changes are governed by specific domain-

specific causal laws. Thus, the study of frameworks and formalisms for reasoning about action and change

(RAC) is central to the field of knowledge representation and reasoning.

Reasoning about actions and change gives rise to three well-known problems. The first is the frame

problem [110, 132], which expresses the di�culty to specify and infer all the properties of the world that do

not change as a result of performing a specific action. For example, paining an object does not cause it to

be broken. The second problem is the ramification problem [59, 132]. The di�culty is in formalization of

all the indirect e↵ects of an action, which can be immense. For instance, painting an object causes all its

component parts to be painted as well. Finally, the qualification problem [110, 132] expresses the di�culty

of e↵ective formalization of all the preconditions of each action, which again can be immense. For example,

to paint an object, the object must not be wet, it must be accessible, etc.

A number of logic-based formalisms for RAC exist in the literature, including the situation calculus
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[110, 132], the event calculus [90, 149], the fluent calculus [157, 158], temporal action logics (TAL) [52],

and action languages (e.g., [67]). The situation calculus is one of the most influential logical formalisms

for representing and reasoning about dynamical worlds. In this dissertation, we use Reiter’s version of the

situation calculus [132], which provides a solution to the frame problem. It is a multi-sorted dialect of first

order logic with equality which includes three sorts: action for actions, situation for situations and a catch-all

sort object for everything else depending on the domain of application. Actions are assumed to be the cause

of all changes in the world, and situations denote a possible world history of sequences of actions performed

so far. The changing properties of the world are represented by fluents, which are dynamic predicates or

functions that take a situation argument. To represent dynamic domains, Reiter proposed the notion of

basic action theories (BATs). These include action precondition axioms which describe when an action is

executable (a special predicate Poss(a, s) specifies that action a is executable in situation s); successor state

axioms that describe how the value of fluents change; and initial state axioms that describe the initial state

(see Section 3.1 for an overview). This framework has been applied in areas such as planning [132], plan

recognition [75], customization and control (e.g., [113, 35]), explanation [111], program verification [118], etc.

Reasoning about action and change has not only been central in the field of knowledge representation

and reasoning, but it has also played an important role in the more general area of computer science. One

may view a computer program as a complex structure whose execution produces a list of actions which the

computer performs one after the other, changing the value of variables, and a↵ecting the world (e.g., through

an interface). In this way, reasoning about actions provides a means to reason about execution of programs

and their e↵ects, and as a result, prove a program’s correctness. Dynamic logic [81], is a type of modal logic

that is intended for verification and reasoning about computer programs that explicitly refers to the actions

the computer is executing. Propositional Dynamic Logic (PDL) [81] is one of the best known variants of

dynamic logic [164].

A di↵erent way of reasoning about programs, typically for non-terminating programs in reactive systems,

is expressed in temporal logic. This logic is a formalism that augments conventional propositional logic with

temporal modalities, making it possible to reason about the ordering of events in time. For example, using

temporal modalities always and eventually, one could assert that “a property p which is not true in the

present should eventually become true in a future evolution of the system”. Or, “a property p should always

be true in all future evolutions of the system”. Such assertions often express liveness or safety properties

of the system. Temporal logic comes in number of flavors such as Linear Temporal Logic (LTL) [128],

Computation Tree Logic (CTL) [54], CTL* [55],3 Alternating-Time Temporal Logic (ATL) [4], µ-calculus

[53], etc., and each type has a specific expressive power.

3CTL* combines the expressive powers of LTL and CTL.

11



2.1.2 Agent Programming

Agent programming languages are typically based on theoretical agent frameworks. Such languages include

some structure corresponding to an agent, and provide a way to represent attributes of agency such as

knowledge, beliefs, goals, commitments or other mentalistic notions [167]. The beginning of the current

interest in agent programming languages is a result of Shoham’s proposal for agent-oriented programming

[151].

One of the influential approaches to agent programming is the situation calculus based high-level language

of Golog [103] and its successors (e.g., ConGolog [33] and IndiGolog [34]). These languages provide a middle

ground between classical planning [120, 121] and programming. The programmer may provide a sketchy

non-deterministic program using the domain specific actions and test conditions. Then the interpreter, by

using the action theory which includes agent’s beliefs about the state of the world, as well as the precon-

ditions and e↵ects of actions, will try to find a provably correct execution of the program. By controlling

the level of non-determinism in the program, the high-level program execution task can be made as easy as

deterministic program execution or as hard as classical planning. ConGolog [33] extends Golog with concur-

rency programming constructs and supports exogenous events. IndiGolog generalizes ConGolog with support

for sensing and online execution and enables the programmer to control planning/lookahead. We provide an

overview on high-level programs based on the situation calculus and online executions in sections 3.2 and

2.3.3 respectively.

Another influential approach to agent programming is based on the BDI (Belief-Desire-Intention) model of

agency which is rooted in Bratman’s [22] theory of practical reasoning and Denett’s [48] theory of intentional

systems. Examples of BDI programing languages and platforms include PRS [69], AgentSpeack [18], dMars

[51], Jack [163] and 3APL [31].

An important aspect of BDI programming languages and platforms is the interleaved account of sensing,

deliberation and execution [68]. Typically, such systems do not perform lookahead or planning in the

traditional sense; rather, they rely on programmer defined “plan-libraries” that achieve goals. By executing

as they reason, BDI agents aim to make decisions based on updated beliefs and remain responsive to the

environment by context-sensitive subgoal selection and expansion. Plan libraries provide computational

e�ciency, making such systems well-suited for operating in real-time scenarios; however, this approach

works well only if good plans can be specified in advance for all objectives that the agent may acquire and

all contingencies that may arise.

A recent work by Sardina et al. [143] integrates a BDI agent system with a Hierarchical Task Network

(HTN) [120, 121] o✏ine planner as a “lookahead” component in the context of the BDI agent language
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CANPLAN. The relation between the BDI based model of agency and situation calculus based programs

has also been investigated; for example, Sardina and Lespérance [142] show how to program BDI-style agent

systems in IndiGolog.
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2.2 Control and Customization of Agent Behavior

2.2.1 Norms

Norms are typically defined as established, expected pattern of behavior of an autonomous agent and have

been widely used to regulate and coordinate multi-agent systems. Norms may define what an agent is obliged

to do or what she is prohibited from doing; they may also express temporal constraints such as a deadline.

Some norms can be regimented, and the agent has no choice but to follow them; in some other cases, it

may be possible to violate the norm, and the agent is punished for violating the norm or given a reward for

compliance [49].

Alechina et al. [2] present a framework for practical enforcement of regimented norms in multi-agent

organizations. A transition system describes the behavior of a (multi-)agent system where each state is

labeled with a set of propositions, representing the facts in the world. Norms are specified in LTL, which

can be viewed as a set of “good runs” of a transition system which uniquely defines a linear time property.

Guards are used to enforce norms; a guard function (characterized by LTL formula with past operators

[153]), following a history, can disable specific transitions that (could) violate a norm. Guards are enforced

at runtime, thus o↵ering agents more autonomy as disabling of transitions dynamically depends on the

history. The authors further define the notion of a canonical guard. If a canonical guard can enforce a norm

and it is deadlock free, it is considered the optimal guard as it leaves the agents with the greatest degree of

autonomy.

It is also shown that even in the presence of unlimited computational power to reason about the future

events (i.e., unbounded lookahead) the guard can not enforce certain types of norms (e.g., liveness properties

that correspond to obligations without a deadline). The authors further investigate canonical guards for

bounded lookahead for liveness and safety properties. An algorithm is presented for computing the minimal

window size k such that the canonical guard of a state-based safety norm can enforce the norm. Moreover,

a method is provided to compute a lookahead that allows enforcing (although not perfectly or optimally) a

liveness norm.

Gabaldon [65] investigates how to express and enforce norms in the Golog programming language. Three

types of norms are considered: ought-to-do norms, prescribing some actions to be forbidden or obliged;

ought-to-be norms, prescribing that a state-condition is forbidden; and norms that are a form of deadline.

The norms are represented as formulas, e.g., �(~x, s), with s being the only situation term appearing in the

formula. Norms of the same type (e.g., those defining forbidden (resp. obligatory) actions) are re-formatted

in a compact normal form. This encoding results in a situation calculus formula that indicates, in any

given situation, whether or not an action is forbidden (resp. obligatory). Then, a notion of norm compliant
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sequence of actions s (i.e., compliant(s)) with respect to each type of norm is defined. For example, in case

of ought-to-do norms, compliant(s) indicates that a sequence of actions s is compliant with the given norms

if and only if s is the empty sequence, S0, or s is the sequence of actions s0 followed by action a, where s0

is compliant and satisfies the norms in s0. A Golog program � is compliant with a set of norms N if all its

execution traces comply with the norms (i.e., D |= 8(s0, s).Do(�, s0, s) � compliantN (s)).

The author then formalizes a method for incorporating a set of norms into the agent’s underlying action

theory (i.e., domain description) in the form additional preconditions in the action precondition axioms. For

example, in case of ought-to-do norms, for an action A(~x), the following conditions are added to the existing

precondition axioms: 1) A(~x) is not a forbidden action, and 2) if there is any obligatory action at all, it is

A(x). In this way, the agent is guaranteed to behave in a norm compliant manner. Gabaldon also describes

notions of equivalence between norm systems with respect to an agent’s background theory in the situation

calculus, as well as notions of norm system subsumption and consistency.

2.2.2 Control Knowledge

One of the strategies used to decrease the complexity of planning is to employ domain specific constraints

often referred to as control knowledge. Imposing domain control knowledge on the definition of a valid general

plan results in restricting the courses of action (i.e., paths) that achieve the goal. Some influential work in

this area include TLPlan [8] and TALPlanner [94] which use control knowledge in the form of declarative

constraints expressed in temporal logic formulas.

Gabaldon [64] provides a procedure for compiling search control knowledge into non-Markovian action

theories in the situation calculus. In nonMarkovian action theories, successor state axioms and action

precondition axioms can refer to situation terms other than the “current” situation s under the restriction

that they refer to the past or to an alternative, explicitly bounded future relative to s. Informally, a situation

calculus formula is bounded by situation term s if all the situation variables it mentions are restricted, through

equality or the @ (i.e., situation precedence) relation, to range over subsequences of s. A formula that is

strictly bounded by s has its situation terms restricted to the past relative to s [62].

In this framework, past temporal logic connectives such as prev, since, sometime and always are defined

similarly to [62] by using strictly bounded formulas. Since control knowledge is e↵ectively viewed as additional

constraints on executability of actions, they are considered to be closely related to the qualification problem.

This approach is similar to that of Lin and Reiter’s [107] that incorporates state constraints in preconditions

of actions. Gabaldon adds control knowledge to the precondition axioms. Given C(s), a formula bounded

by s which models some part of the control knowledge, and action A(~x), C(do(A(~x), s)) is added to the

preconditions of the action A(~x). By adding the domain closure assumption on actions, a guarantee is
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provided that a situation is executable only if it satisfies the constraints.

The author also presents a method for transforming a nanMarkovian action theory into Markovian one.

The proposed method applies regression steps and introduces additional fluents and their corresponding

successor state axioms. This transformation is then used for compiling search control knowledge into normal

action preconditions.

2.2.3 Process Customization and Behavior/Service Composition

In process customization, a generic process for performing a task or achieving a goal is customized (i.e.,

refined) to satisfy a client’s specification (e.g., constraints or preferences) [95]. Process customization in-

cludes personalization and configuration and has been applied in numerous areas such as in configuration

and specialization of scientific workflows [73], personalization of travel planning [61], customization of the

behavioral aspect of software systems [105] and increasing the accuracy of programs generated through using

the programming by instruction technique [60].

One may also view behavior4 or web service5 composition as a type of process customization, as it involves

selecting some available processes and controlling their interaction to produce the desired behavior or service.

In AI, automated behavior/service composition has been the focus of many researchers (e.g., [112, 46, 109,

26, 44]) and various techniques such as planning or synthesis have been used to accomplish the task. In this

section, we focus on two of the main approaches in the literature.

McIlraith & Son [113] adopt the situation calculus as a theoretical framework for web service composition.

Web services are modeled as primitive or complex actions [112] which typically have knowledge and non-

knowledge preconditions and e↵ects. In this work, a flexible template for composition in the form of a generic

non-deterministic ConGolog procedure is provided. This procedure provides a wide range of alternative ways to

perform a task, and during customization, alternatives that violate a given user’s constraints are eliminated

(and the parameters in the remaining alternatives could be instantiated appropriately). A distinguished

fluent (Desirable(a, s)) is defined that captures a user’s personal constraints with respect to an action

a. Then, the computational semantics of the program are updated to ensure the program only makes a

transition by executing action a if it satisfies Desirable(a, s) in addition to the domain specific preconditions

of a. Moreover, to ensure the agent has su�cient knowledge to execute the program, a notion of self-su�cient

program is introduced (we discuss this notion in more detail in Section 2.3.4). This work has been extended

4A behavior stands for the logic of any artifact that can operate in the environment, including web services, agents, software
libraries, hardware components, and workflows [44].

5Web services are regarded as self-describing, self-contained, modular applications that can be published, located, and
invoked across the World Wide Web [125].
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[61] to support first-order LTL temporal constraints and preferences. These are compiled into ConGolog and

evaluated over a finite horizon. The approach also considers quantitative preferences, and uses DTGolog to

maximize the expected utility within the set of most qualitatively preferred plans.

In the “Roman Model” [46, 144, 43, 44] approach to behavior/web service composition, the available be-

haviors/services (and the shared environment) are abstracted as (non-deterministic) finite state transition

systems while the target behavior/service is represented as a deterministic transition system. The composi-

tion amounts to synthesizing a controller that orchestrates (i.e., activates, stops or resumes) the concurrent

execution of the available modules to “mimic” the desired target behavior/service. The “mimicking” is cap-

tured through the formal notion of simulation [82].6 This work has been extended in a number of directions,

such as composition under partial observability [42], and synthesis of a controller generator, i.e., an implicit

representation of all controllers, proposed by De Giacomo et al. [44], that returns, at each step, the set of

all available services capable of performing the requested action, while ensuring the possibility of delegating

to available services all (target-compliant) requests that can be issued in the future.

Yadav et al. [169] extend the “Roman Model” approach by presenting a technique for building the largest

realizable (i.e., supremal) fragment of a given target specification for behavior composition in the presence

of (partially) controllable available behaviors. The behaviors are represented by (non-deterministic) finite

transition systems. The notion of enacted system behavior is used to refer to the behavior that emerges from

the joint execution of available behaviors. The target behavior specification is modeled by another (non-

deterministic) finite transition system. A target behavior TRTB is a realizable target behavior of a target

specification T , if a) TRTB can be simulated by T and b) TRTB can be non-deterministically simulated [144]

by the system of behaviors (i.e., there is an exact composition for TRTB on the system).

The technique for obtaining the supremal target behavior relies on two parts: 1) building the synchronous

product of the system of behaviors and the target specification; and 2) modifying the obtained structure

to enforce conformance on its states which cannot be distinguished by the agent using the target (to re-

quest transitions) through introduction of belief level states. This yields the belief-level full-enacted system.

The authors show that the belief-level full-enacted system represents the unique supremal realizable target

behavior.

Then, inspired by supervisory control theory of discrete event systems [166, 24] (see Section 2.5) and

reasoning about actions, the composition of behaviors in the presence of uncontrollable exogenous actions is

investigated. Such actions are considered to be special events that behaviors may spontaneously generate.

The authors propose modifications to the simulation relation and the belief-level full-enacted system that

6Intuitively, a transition system A1 simulates another transition system A2, if A1 is able to match any step performed by
A2 and afterwards, is able to continue to simulate A2; see [115] for a formal definition.
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enable them to show how the supremal realizable target can again be defined and computed whether the

exogenous events are observable or not to the agent using the target.

The “Roman Model” approach has also been investigated in the context of the situation calculus and

in the presence of potentially infinite object domains that may go through an infinite number of states as

a result of actions [138]. Given a library of available ConGolog programs and a target program not in the

library, it is first verified if the target program executions can be realized by composing fragments of the

executions of the available programs so as to mimic the virtual transitions of the target program at each point

in time. The mimicking is realized by using a greatest fixpoint second-order formula based on a suitable

notion of simulation [115, 117]. In general, checking such a fixpoint formula over ConGolog programs is

undecidable. However, the authors provide a sound procedure that is based on three parts: 1) computation

of the simulation through fixpoint approximates, hoping it is possible to compute the fixpoint in a finite

number of iterations; 2) use of the characteristic graphs7 introduced by Clasen & Lakemeyer [29] to finitely

cope with the potential infinite branching of ConGolog programs (due to ConGolog’s ⇡x.� construct); and 3)

use of regression [132] to compute the preimage of a formula (or weakest precondition). If it is possible

to verify the target program executions can be realized by composing fragments of the executions of the

available programs, then a delegator is synthesized that does the composition automatically. The authors

assume the agent has complete information in the intitial state.

7A characteristic graph compactly represents all the possible configurations that a ConGolog program may visit during its
execution. Given a ConGolog program, a characteristic graph can be constructed whose nodes represent program configurations
(hence a node abstracts a number of program states). Edges in the graph stand for single transitions between program
configurations and are labeled with actions and conditions under which these actions can be taken.

18



2.3 Reasoning About Knowledge and Action

Often, agents do not have complete information about their environment, and in many cases, they may be

able to acquire new knowledge during execution. In this section, we first discuss some approaches to sensing

in the situation calculus, which allows the agent to acquire new knowledge from the environment; we then

discuss how knowledge may be represented and a↵ected (by sensing actions) in the situation calculus. In

Section 2.3.3 we look at some approaches to online execution of an agent in the situation calculus, where

executions are considered to allow for interleaving sensing and deciding what action to execute next. We

then look at some approaches in the situation calculus that model ability, which is typically used to refer

to the agent having the necessary knowledge to achieve a goal, to execute a plan, or to achieve a goal by

executing a given plan. Finally, we discuss some approaches to conditional planning in the situation calculus,

which provides a way to plan in presence of uncertainty.

2.3.1 Sensing

In the situation calculus, sensing actions provide an agent with new knowledge about her environment and

as such, a↵ect her mental state, leaving the world unchanged otherwise. For instance, by performing the

action of sensing if a certain road is closed, the agent comes to know whether the road is closed. Thus, such

actions are often called knowledge-producing actions [132]. Various ways of modeling sensing in the situation

calculus have been proposed; in the following we look at the main approaches.

Levesque [101] introduces a special fluent SF (a, s) (for sensed fluent value). He further formalizes axioms

that describe how the truth value of the fluent SF becomes correlated with those aspects of a situation which

are being sensed by action a. For instance, the axiom SF (senseRoadClosure(r), s) ⌘ Closed(r, s) states

that when the action senseRoadClosure(r) is executed, some sensor returns a value, which then informs

the agent whether road r is closed in situation s. Scherl and Levesque [145] show how non-binary sensing

results, such as reading a temperature which returns a numerical value, can also be represented within the

framework.

DeGiacomo and Levesque [40] generalize Levesque’s approach [101] and allow conditional sensing axioms.

It is assumed that the agent has a number of sensors that provide sensing readings at any time. The fluent

SF is replaced by a finite number of sensing functions. These are unary functions whose only argument is

a situation (e.g., roadClosure(s)). A sensor-fluent formula is defined to be a formula of the language, that

does not include Poss, and uses at most a single situation term, which is a variable; this term only appears

as the final argument of a sensor function or fluent. A sensor formula is a sensor fluent formula that does

not include any fluents. A guarded sensed fluent axiom (GSFA) is defined as ↵(~x, s) � [F (~x, s) ⌘ ⇢(~x, s)],

19



where ↵ is a sensor-fluent formula referred to as the guard of the axiom, F is a relational fluent, and ⇢

is a sensor formula. An action theory may contain any number of GSFAs for each fluent. For example,

nearRoad(r, s) � Closed(r, s) ⌘ roadClosure(s) = 1 indicates that when the agent is near road r, and the

result of sensing function roadClosure(s) is 1, then the road r is closed.

Lespérance et al. [99] on the other hand, represent sensing as an ordinary action which queries a sen-

sor, followed by the reporting of a sensor result, in the form of an exogenous action. For example, to

sense whether fluent Closed(r, s) holds within a ConGolog program, the macro senseRoadClosure(r)
.
=

qryRoadClosure(r); (report(r, 1) | report(r, 0)) is defined, where qryRoadClosure(r) is an ordinary action

that is always executable and is used to query (i.e., sense) if the road r is closed and report(r, x) is an

exogenous action with no e↵ect on the state/fluents that informs the agent if Closed(r, s) holds through its

precondition axiom, which is of the form Poss(report(r, x), s) ⌘ Closed(r, s)^x = 1_¬Closed(r, s)^x = 0.

In this way, the agent learns that action’s preconditions must have held and that the road must have been

closed if and only if x = 1 (if she did not know this information already).

2.3.2 Knowledge

In many dynamical systems where an agent has incomplete information about her environment, it is necessary

to formalize an explicit notion of the agent’s knowledge as well as the e↵ects of knowledge-producing actions

on her mental state. Moore [119] was the first to provide a possible-world semantics8 for a logic of knowledge

in the situation calculus by considering situations as possible worlds.

Based on Moore’s work, Scherl and Levesque [145] introduce a new binary predicate K(s0, s) which is

an accessibility relation over situations; K(s0, s) indicates that situation s0 is accessible from situation s,

meaning that as far as the agent knows in situation s, she might be in situation s0. An agent knows a

proposition � in the situation s, i.e., Knows(�, s), if � is true in all K-accessible situations: Knows(�, s)
def
=

8s0.K(s0, s) � �[s0]. Novel to Scherl and Levesque’s approach, is the successor state axiom for fluent K that

captures the e↵ect of actions on knowledge, while providing a solution to the frame problem:

K(s0, do(a, s)) ⌘ 9s00.s0 = do(a, s00) ^K(s00, s) ^ Poss(a, s00) ^ [SF (a, s00) ⌘ SF (a, s))]

Intuitively, the axiom states that after performing an action a in situation s, the agent thinks she may be in

situation s0 if and only if, s0 is the situation resulting from executing action a in some situation s00 which is

K-accessible in s, assuming that action a is executable in s00 and s0 and s agree on the value of SF (i.e., the

8The possible worlds semantics for modal logics had earlier been proposed by di↵erent researchers including Kripke [91] and
Hintikka [83]; the latter dealt with epistemic logic.

20



property being sensed). The e↵ect of this axiom is to remove from consideration those accessible situations

where the sensed property has a di↵erent value. To accommodate the notion of epistemic alternatives, the

foundational axioms of basic action theories are adapted to allow for multiple initial situations. It is further

shown that if the K relation on the set of initial situations is restricted to conform to some important general

properties of accessibility relations like reflexivity along with some subset of the symmetric, transitive and

Euclidean properties, then the K relation at every non-initial situation, will satisfy the same set of properties.

In the approaches by Lespérance et al. [99] and DeGiacomo and Levesque [40] an explicit notion of

knowledge is not represented in the language; instead, the logical consequences (entailments) of the basic

action theory are used indicate what the agent knows about its environment. Such approaches avoid the

complexity of modeling knowledge explicitly, but at the same time, are not able to represent introspection.

2.3.3 Online Executions

High-level programs defined over the situation calculus, such as Golog and its successors [103, 33, 140] enable

a user to specify an agent’s behavior by providing a sketchy non-deterministic program. In o✏ine executions

[39] the interpreter must find a sequence of actions constituting an entire legal execution of a program

before actually executing any of actions in the world. In online executions [39, 140, 34] instead, incremental

executions of the program are considered that allow for interleaving sensing and deciding what action to

execute next.

De Giacomo et al. [39, 34] and Sardina et al. [140] present a framework for online executions that

uses the SF fluent to specify sensing. To describe what the agent has learned so far, the notion of a

history � and the formula Sensed[�] are used. A history � = (a1, µ1) . . . (an, µn) is a sequence of actions

performed (ai) together with their sensing results (µi which can be 0 or 1). SF is specified by axioms as

mentioned earlier. Sensed[�] is the conjunction of sensed information obtained in history �. For example,

Sensed[(a, 1), (b, 0), (c, 1)] = SF (a, S0) ^ ¬SF (b, do(a, S0)) ^ SF (c, do(b, do(a, S0))).

The program execution uses the theory together with results of sensing accumulated so far to decide if

it has already reached its goal and can terminate, take a step of the program by executing a single action,

or take a step of the program with no action needed. After the agent performs an action, any new sensing

results provided by this action are gathered, and the execution process iterates. Unlike o✏ine executions

where the reasoner may need to determine lengthy course of action before executing the program, online

executions utilize the sensing information provided by the first n actions performed in deciding the (n+1)th

action. However, once the agent performs an action, and later in the execution it becomes clear that a

non-deterministic choice was resolved incorrectly, there may be no way to backtrack. As a solution, a new
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programing construct, namely the search operator ⌃s is introduced in [39, 34]. Given a program �, the

program ⌃s(�) executes online in a similar way that � does o✏ine. Hence, before committing to any action,

it first ensures by o✏ine reasoning that this action can be extended to a complete execution of �. Being able

to search in an o✏ine manner in an online system presents a challenge of finding the right balance between

o✏ine reasoning which provides a safer execution but more downtime, and online responsiveness.

In the approach by Lespérance et al. [99] mentioned earlier however, the sensing results are stored in

the situation (which includes all actions executed so far including the exogenous actions used for sensing.

Executable(do(~a, S0)), which means that the preconditions of every action performed in sequence of actions

~a were satisfied in the situation in which it occurred, captures what the agent has learned so far during

execution (instead of Sensed[�]).

A challenge in online executions is that an agent’s predicted mental world (as determined by her theory)

may not always conform to the actual state of the world (as indicated by sensing results). Execution moni-

toring [45] and process adaptation [47] are two approaches that investigate how to resolve such discrepancies.

A middle ground between o✏ine and online execution has also been investigated by McIlraith and Son

[113]. In this approach online sensing collects the relevant information while the e↵ects of world-altering

actions are simulated o✏ine, and if successful, carried out. This approach operates under the assumption of

reasonable persistence of sensed information, which in some scenarios, may not hold.

2.3.4 Ability

In the literature on agent theories, ability has been used to refer to the agent having the necessary knowledge

to achieve a goal, to execute a plan, or achieve a goal by executing a given plan [70]. The notion of ability has

been studied under di↵erent names such as “epistemic feasibility”, “self su�cient programs”, “knowledge

prerequisites of actions”, “knowing how to execute a program”, “ability to achieve a goal”, etc. Moore [119]

was one of the first to consider the concept of ability. He formalized a theory that integrates knowledge and

action into a single framework using Hintikka’s modal logic of knowledge [83] and a modal adaptation of

McCarthy’s situation calculus [110]. Based on Moore’s approach to formalizing ability and using McCarthy’s

situation calculus, Davis [32] provided a formal account of ability. These approaches do not address the frame

problem. Moreover, Davis does not consider the ability to achieve a goal. Van der Hoek, van Linder, and

Meyer [160] on the other hand, proposed a propositional modal logic of ability. We would also like to

mention the approach by Singh [152], which formalized a framework for a logic of situated know-how based

on a propositional branching time temporal logic. In the following we look at several influential approaches

to defining ability that are based on Reiter’s situation calculus.
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Lespérance et al. [100] formalize an account of knowing how to execute a plan and ability to achieve a goal

for an agent that can acquire information about her environment at runtime. This framework is based on the

Scherl and Levesque’s model of knowledge [145].To enable an agent to know which action to execute in each

situation to achieve a goal, a notion of strategy is introduced. A strategy is defined as an action selection

function, i.e., a mapping from situations to primitive actions. The predicate CanGet(�,�, s) denotes that

the agent, starting in situation s, knows at every step the action prescribed by strategy � so that she “can

get” to a situation where she knows the goal � holds. The agent “can” achieve a goal � in situation s, i.e.,

Can(�, s), if and only if there exists a strategy � such that she knows in s that she “can get” to a situation

where the goal holds by following �. This framework is shown to handle both ability and inability of agents

in cases involving unbounded iteration.

The authors further formalize the notion of knowing how to execute a plan represented by a Golog

program. A path selection function is defined that specifies a deterministic execution strategy over a non-

deterministic Golog program. The agent “can execute” a program � following a given strategy � in s, denoted

by CanExec(�,�, s) if and only if the program terminates when executed according to � and at every point

during the execution, the agent knows whether the program has terminated and if not, she knows which

action to execute next. Based on this definition, the notions of dumb know-how and smart know-how are

introduced. In dumb know-how, the agent may arbitrarily pick any action during execution of a non-

deterministic program, as she is able to execute the program according to all strategies to ensure successful

execution. This notion is particularly useful in cases where an agent wishes to delegate a task to another

agent; in this case the other agent only has to execute the program. On the other hand, in smart know-how,

the agent must look ahead before committing to any execution strategy; thus it is only required that there

exists a strategy that the agent knows she can follow to execute the program.

The relation between the notions of ability to achieve a goal and knowing how to execute a plan is

also investigated; an agent is able to achieve a goal � if and only if she smartly knows how to execute the

program while ¬Know(�) do ⇡a a;, which intuitively means while she does not know that � holds, she

can non-deterministically choose any action and execute it. By considering ahead of time whether there are

alternatives at every choice point whose choice guarantees that she will be able to complete the execution of

the program, she can ensure a successful execution.

Sardina et al. [139] develop a non-epistemic formalization of deliberation9/planning under the assumption

of incomplete information and sensing. This framework is based on the situation calculus and ConGolog. Two

approaches for defining when an agent knows how/is able to execute a deterministic program � in a history �

are considered: an Entailment-Consistency (EC)-based knowing how and an Entailment-Truth (ET)-based

9Deliberation refers to reasoning about possible execution strategies.
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knowing how.

In the EC-based approach, KHowEC(�,�) is defined as the smallest relation that contains all the pro-

gram configurations that are either terminating, or from which an action transition exists such that for every

consistent sensing outcome, the resulting configuration is in KHowEC(�,�). The relation KHowEC(�,�)

uses entailment to ensure that the available information is su�cient to determine which transition should

be performed next; consistency is used to determine which sensing results may occur, for which the agent

should have a sub-plan that can lead to a final configuration. It is then shown that the EC based account of

knowing how fails on some programs involving unbounded iteration. The problem results from the local con-

sistency checks that determine which sensing results are possible; the models that satisfy the overall domain

specification, and those that do not, can not be distinguished. On the other hand, whenever KHowEC(�,�)

holds, a finite/bounded conditional plan (i.e., a tree program) exists that can be followed to execute � in

�. Note that Moore’s account of ability is closely related to KHowEC and thus inadequate for dealing with

unbounded iteration.

In the ET-based account of knowing how, models of the environment are fixed (although it is not

known exactly which model represents the actual environment). KHowET (�,�,M) is defined similarly

to KHowEC(�,�), with the di↵erence that the sensing results come from the fixed model M . Given this

definition, an agent knows how to execute a program � in �, i.e., KHowET (�,�), if and only if for every

model M that satisfies the theory and the sensing results accumulated so far, KHowET (�,�,M) holds. Thus,

the ET based account is able to handle cases of programs with unbounded iteration.

In related work, Sardina et al. [141] identify a fundamental limitation with planning over belief states

under incomplete information. In such settings, the actions of a planning problem are typically modeled as

non-deterministic transitions over the belief states of the planner. A plan is considered adequate if it works

from the initial belief state, and, where a plan is considered to work from some belief state if and only if

either (1) it indicates no action should be taken and the goal is believed to hold, or (2) it indicates some

action should be taken, and for every possible belief state that can be reached by doing the action, the

remaining plan works in the resulting state. It is then shown that such view of plan adequacy requires an

upper bound of the number of actions performed, thus, making it impossible to work for iterative planning.

The authors then suggest viewing actions as deterministic transitions over world states while applying

plans to belief states. The belief state is considered to be a non-empty set of the world states. A procedure

for inducing a belief-based planning problem from a world-based planning problem is provided which includes

a definition of k(w, a, b). This definition is similar to the successor state axiom of [145], where w represents

the real world, b the set of worlds accessible from w and k(w, a, b) models the new set of accessible worlds

after doing action a in world w and belief state b.
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The world-based version of planning is used to show why unbounded plans are considered as not adequate.

Based on definition of the adequate plan, at any point during execution, the plan must work under the

assumption that sensing results may come from any member w of the current belief state b. Thus, until it

becomes known that the goal has been reached, there will always be elements of b where more actions need

to be executed to reach the goal. This in turn results in a situation where no progress seems to be happening

in the real world.

To resolve this issue, each world state in the initial belief state needs to be considered separately, to see

if the plan will work in each case. The definition for plan adequacy is then adapted to consider sensing

with respect to a world state w (that changes systematically as actions are performed) instead of arbitrary

elements of the current belief state b.

McIlraith and Son [113] formalize a self su�cient (ssf) property of Golog programs, which indicates

that at each step of program execution, the agent has all the required knowledge to execute that step.

A Golog program � is self su�cient in situation s, denoted by ssf(�, s) if and only if the agent has the

necessary knowledge to execute � in s. ssf is defined inductively over the structure of �. For example,

ssf('?, s) ⌘ KWhether(', s), indicates the test action ' is considered self su�cient in situation s if and

only if KWhether(', s) holds, i.e., the truth value of ' is known in situation s [145]. The authors also iden-

tify syntactic accounts of self-su�ciency; for instance, programs in which each conditional or loop construct

that conditions on ' is preceded by a sensing action that ensures the truth value of ' is known prior to such

constructs and persists until it is queried. This approach is incomplete for programs that involve indefinite

iteration.

2.3.5 Conditional Planning

Conditional planning [120, 121] provides a way to plan in presence of uncertainty, making it possible to deal

with any contingencies that may arise. The sources of uncertainty include partial observability, incomplete

information in initial state and non-deterministic e↵ects of actions.

Several approaches have studied planning under incomplete information and sensing. These include PKS

[126], a knowledge-based planner based on generalization of STRIPS; planning based on model checking

[26]; and a dynamic programming method for computing belief-based policies and a heuristic search method

for computing history-based policies proposed by Ge↵ner and Bonet [66]. Reasoning about strategies in

presence of incomplete information in the situation calculus has also been investigated [168].

Lespérance et al. [99] develop a formal model of contingent planning for an agent operating in a dynamic

and incompletely known environment. The agent’s task and the behavior of other agents in the environment
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are represented as concurrent high-level non-deterministic programs � and ⇢ respectively. Programs can

belong to any agent programming language with a transition semantics. It is assumed that ⇢ runs at a

higher priority than �, and it is further required that in each state, either the agent or the environment can

execute an action. Moreover, the agent program can perform an action when it knows (i.e., it is entailed

by its belief base) that there is legal transition involving that action to the next program configuration; the

environment actions may occur if they are consistent with agent’s belief base. The environment (exogenous)

actions are considered to be fully visible. Upon observing any environment action, the planning agent can

learn that the action must have been executable; in other words, its preconditions held. In this way, any

environment action can be considered as “knowledge-producing”. In such a context, the planner is required

to provide the agent with a deterministic conditional plan that can be successfully executed against every

possible execution of the environment. A number of restrictions are imposed on the environment program,

for example, in any configuration, it should be known what the environment may do next.

In this framework, Able(�, ⇢, s)+ denotes that the agent is able/knows how to execute � in an environment

with behavior specified by ⇢ in state s, and is defined as the smallest relation R(�, ⇢, s), which holds for all

triples (�, ⇢, s) when 1) the environment can not execute any actions and the agent program is final, 2) the

agent can execute some action that leads it to a configuration (�0, s0) where R(�0, ⇢, s0) holds, and 3) for all

the finite sequences of transitions the environment may perform leading to configuration (⇢0, s0), R(�, ⇢0, s0)

holds.

Able(�, ⇢, s)+ can be used to generate a conditional plan � for the agent to follow to successfully execute

its program no matter how the environment behaves. AbleBy(�, �, ⇢, s) is defined as the smallest relation

R(�, �, ⇢, s) such that 1) for all triples (�, ⇢, s), if the environment is blocked and the agent program is

final, then R(nil, �, ⇢, s) holds; 2) for all quadruples (�, �, ⇢, s), if the agent program can make a transition

to configuration (�0, s0), and R(�, �0, ⇢, s0) where s0 = s (i.e., the agent program performed a test action),

then R(�, �, ⇢, s); 3) for all quadruples (�, �, ⇢, s), if the agent program can execute some action a that

leads it to a configuration (�0, s0) then a is prefixed to the existing strategy �, and R((a;�), �, ⇢, s) holds;

and, 4) for all triples (�, ⇢, s), if for all the finite sequences of transitions the environment may perform

leading to configuration (⇢0, s0) where the environment becomes blocked, implies for some �0, R(�0, �, ⇢0, s0)

holds, then R(�, �, ⇢, s) holds where � is adapted to include a sub-strategy for each possible action by the

environment. This framework does not support goals which require plans with unbounded iteration. A

concrete formalization of this framework for the ConGolog agent programming language is also defined.
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2.4 Abstraction

2.4.1 Theoretical approaches to abstraction in AI

Logical theories of abstraction are oriented towards theorem proving and have typically involved either

a (mainly) syntactic or semantic approach to abstraction. While syntactic theories consider abstractions

defined as mappings between logical languages that do not deal with models of theories, semantic abstractions

are primarily concerned with the correspondence between models. In this section we provide an overview of

some of the influential approaches that focus on first-order formal systems.

2.4.1.1 Syntactic Theories of Abstraction

Plastid [127] was the first to propose a general theory of abstraction focused on theorem proving and in

particular on resolution. He viewed abstraction as mapping from a set of clauses B to a simpler (i.e., more

abstract) sets of clauses A. Given a problem in B, the solution corresponds to a solution in A, but A may

have additional solutions. Thus solutions in A are used as a guide to search for solutions in B.

An abstraction is defined as an association of set f(C) of clauses with each clause C such that: 1) if

clause C3 is a resolvent of clauses C1 and C2, and moreover, D3 2 f(C3), then there exists D1 2 f(C1) and

D2 2 f(C2) such that some resolvent of D1 and D2 subsumes D3; 2) f(Nil) = {Nil}; and, 3) if C1 subsumes

C2, then for each abstraction D2 of C2 there exists an abstraction D1 of C1 such that D1 subsumes D2. If

f is a mapping that satisfies these properties, then it is called an abstraction mapping of clauses. Moreover,

if D 2 f(C) then D is called an abstraction of C. Plastid then shows how an abstraction mapping between

clauses and sets of clauses can be obtained from a mapping between the literals.

Plastid provided several examples of abstraction mappings, such as propositional abstraction, deleting

arguments and renaming predicate and function symbols. In the latter, several predicates (resp. functions)

could be renamed to the same predicate (resp. function) in the abstract clause. Plastid was aware that

this approach could create an inconsistent abstract space from consistent ground space (e.g., renaming both

predicates p1 and p2 to the same predicate p, and assuming that the ground space satisfies p1 and ¬p2) and

he called this issue the “false proof” problem.

Tenenberg [156] focused on predicate abstractions which can be considered as a special case of renaming

predicate and function symbols. Predicate abstractions view distinctions among a set of predicates P1, . . . , Pn

as often irrelevant with respect to a certain reasoning task. Tenenberg introduced Restricted Predicate

Mapping, and defined abstraction at a syntactic level as a mapping between predicates, where among all

correspondences between predicates in the ground and abstract spaces, only those that preserve consistency

are kept. For example, suppose the concrete level includes the predicates p1 and p2, and that we wish to
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map them both to predicate p in the abstract level. Suppose further that the low-level theory includes

the following: p1(x) � a(x), p2(x) � a(x), and p2(x) � b(x). One solution is to remove from mapping all

those predicates in the original theory that distinguish among p1 and p2, in this case, b. So the abstract

theory could only contain p(x) � a(x). This solution may be stronger than required, so a weakening of the

requirement is to allow abstractions such as p1(x) _ p2(x) � p(x).

A highly influential approach by Giunchiglia and Walsh [74] considers abstraction as a mapping between

two representations of a problem modeled as formal systems. A formal system (i.e., a formal description of

the theory) is defined as a pair ⌃ = (⇥, L), where ⇥ is a set of well-formed formulas (w↵s) in the language

L. Typically the language L is defined by the alphabet, the set of well-formed terms, and w↵s; however,

for simplicity, it is assumed the language is the set of w↵s; the alphabet and well-formed terms are given

implicitly by providing the set of w↵s.

An abstraction f : ⌃base ) ⌃abs is defined as a mapping between formal systems ⌃base (i.e., the ground

space) and ⌃abs (i.e., the abstract space), with languages Lbase and Labs, respectively, and an e↵ective, total

function fL : Lbase ! Labs which is referred to as the mapping function.

In a formal system, TH(⌃), the set of theorems of ⌃ represents the minimal set of w↵s, including the

axioms, that is closed under the inference rules. As the authors are focused on theorem proving, they

investigate how an abstraction a↵ects provability; that is, when ⇥ is TH(⌃). The abstraction mappings are

classified with respect to provability preservation: the set of theorems TH(⌃abs) can be equal, a subset or a

superset of the abstractions of the theorem set TH(⌃base). These are referred to as Theorem-Constant (TC)

abstraction, Theorem-Decreasing (TD) abstraction and Theorem-Increasing (TI) abstraction respectively.

TI abstractions can generate false proofs.

Giunchiglia andWalsh classify di↵erent uses of abstraction in theorem proving, along two main dimensions

of deductive versus abductive, and positive versus negative. For TD abstractions, with the combination

of deductive/positive, if it can be proved that an abstract w↵ is a theorem (fL(↵) 2 TH(⌃abs)), then

it is guaranteed that the ground w↵ is a theorem (↵ 2 TH(⌃base)). However, with the combination of

abductive/negative, if it can not be proved that an abstract w↵ is a theorem, then it may be the case that

the ground w↵ may not be one as well. For TI abstractions, with the combination deductive/negative, if it

cannot be proved that an abstract w↵ is a theorem, then the ground w↵ is not a theorem. However, with

the combination of abductive/positive, if it can be proved that an abstract w↵ is a theorem, it may be the

case that the ground w↵ may be a theorem as well.

The authors also investigate when two abstractions are considered equal and when one abstraction is

stronger than the other. A notion of composition of abstractions is also studied. Giunchiglia and Walsh

reconstruct a number of influential approaches to abstraction, such as planning with ABSTRIPS and pred-
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icate abstraction of Plastid and Tenenberg in their framework and analyze their properties. For example,

Plastid’s approach is considered a TI abstraction while Tenenberg’s restricted predicate mapping is viewed

as TD abstraction.

The syntactic theory of abstraction captures important aspects of di↵erent types of abstractions. Many

abstractions are a result of manipulating formulas syntactically. Also, as theorem provers reason by applying

inference rules to formulas, understanding the properties of abstractions as mappings among formulas is

essential [122]. On the other hand, a major shortcoming of the syntactic theory of abstraction is that

while it captures the final result of an abstraction, the theory does not explicitly capture the underlying

justifications or assumptions that lead to the abstraction, nor the mechanism that generates the abstraction

itself [122, 137]. We look at some semantic approaches to abstraction that address this shortcoming in the

following section.

2.4.1.2 Semantic Theories of Abstraction

Ghidini and Giunchiglia [72] propose a semantic formalization of the notion of abstraction that is based on

the Local Models Semantics [71]. The semantics captures the two main intuitions underlying contextual

reasoning: (1) reasoning is mainly local and uses only part of what is potentially available (e.g., partial view

of the system), this part is called context (of reasoning); at the same time, (2) there is compatibility among

the reasoning performed in di↵erent contexts.

Abstraction is defined as a mapping function fabs : Lbase ! Labs between a ground language Lbase and

an abstract language Labs. This function is total, e↵ective and surjective; moreover, it only maps atomic

formulas in the languages. The abstract (resp. ground) language has a set of models Mabs (resp Mbase) which

consist of local models. Then, a domain relation is defined that represents the relation between domains of

the ground and abstract models. All domain relations are assumed to be total and surjective functions. It

is further assumed that all local models in each set agree on the interpretation of terms, but may di↵er in

interpretation of predicates. A compatibility pair represents either a pair of local models in Mbase and Mabs

or the empty set ;. The abstraction mapping is represented by a compatibility relation, which is a set of

compatibility pairs; the compatibility relations link what is true in the two sets of models. In this way, a

model of an abstraction function is a set of pairs of models, which are models of the ground and abstract

languages.

Nayak and Levy [122] propose a semantic theory of abstraction as a model level mapping. They view

abstraction as a two-step process: in the first step, the intended domain model is abstracted; and in the

second step, a set of abstract formulas is constructed that capture the abstracted domain model.
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Given a base language Lbase and an abstract language Labs, an abstraction mapping ⇡ is defined as a

mapping between interpretations of the two languages: ⇡ : Interpretations(Lbase) ! Interpretations(Labs).

The authors further define the notion of Model Increasing (MI) abstractions. Given Tabs and Tbase are sets

of sentences in Labs and Lbase respectively, and ⇡ is an abstraction mapping, Tabs is an MI abstraction of

Tbase, relative to ⇡, if for every model Mb of Tbase, ⇡(Mb) is a model of Tabs. MI abstractions are a subset

of TD abstractions and thus do not generate false proofs.

The mapping ⇡ is characterized in terms of interpretation mappings [56]. To specify the abstraction

mapping ⇡, one must find the appropriate formulas in the base language Lbase that define how the abstract

universe and denotations for abstract object, function and relations are constructed from a base model. More

formally, an interpretation mapping ⇡ that maps a model Mb of Tbase to an interpretation of ⇡(Mbase) of

Labs consists of:

(1) a w↵ ⇡8 with a single free variable v1. Given any model Mbase of Tbase, ⇡8 formalizes the universe of

⇡(Mbase) as the set defined by ⇡8 in Mbase

(2) for every n-ary relation Rabs in Labs, a w↵ ⇡R
abs

with n free variables v1, . . . , vn that defines Rabs. More

specifically, given any model Mbase of Tbase, ⇡R
abs

formalizes an n-ary relation in Mbase. Moreover,

the denotation of Rabs in ⇡(Mbase) is this relation restricted to the universe of ⇡(Mbase)

(3) similar w↵s are used to specify denotations of abstract functions and objects [56]

MI abstractions have a number of properties. For instance, given that Tabs is an MI abstraction of

Tbase, if Tabs is inconsistent, then Tbase is also inconsistent. As another example, MI abstractions support

compositionality: given that Tabs is an MI abstraction of Tbase with respect to to ⇡ and Sabs is an MI

abstraction of Sbase with respect to ⇡, then Tabs [ Tbase is an MI abstraction of Tbase [ Sbase with respect

to to ⇡. The authors further present the notion of strongest MI abstraction of a base theory, which is the

result of an abstract theory precisely implementing the intended model level abstraction. A procedure based

on resolution is provided that constructs the strongest MI abstraction for a given model level mapping. In

this procedure, the authors focus on the case where Labs results from adding a set of new predicates and

removing some old predicates from Lbase; the object and function constants are unchanged and the abstract

language is assumed to not include equality.

In Model theory [84], an interpretation of a structure A1 in another structure A2 (whose signature may be

unrelated to A1) is a notion that approximates the idea of representing A1 inside A2. Interpreting structure

A1 in a structure A2 results in the ability to translate every first-order statement about A1 into a first order

statement about A2; this implies the complete theory of A1 can be read from that of A2. If it is possible

to generalize this notion to interpreting a family of models of a theory T1, always using the same defining
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formulas, then the resulting structures will all be models of a theory T2 that can be read from T1 and the

defining formulas. This can indicate when the theory T1 is interpreted in the theory T2. This notion can be

used to indicate if one theory is reducible to another.

2.4.2 Hierarchical Planning

Planning [120, 121] is one of the fields in which abstraction has played an important role since the beginning.

In this context abstraction typically involves transformation of a problem representation to one which allows

the problem to be solved with reduced computational e↵ort. Thus, often a hierarchical representation is

generated that corresponds to di↵erent levels of abstraction and cost reduction [137].

In the planning literature, di↵erent notions of abstraction have been investigated. These include pre-

condition elimination abstraction, first introduced in the context of ABSTRIPS [135]; task networks in

Hierarchical Task Networks (HTNs) (e.g., [170, 57]), which abstract over a set of (non-primitive) tasks; and

macro operators (e.g., [89]), which represent meta-actions built from a sequence of action steps. Another

recent approach is generalized planning [86], where a general solution for a problem class can be used to

solve any particular instance of the class. Aguas et al. [1] propose hierarchical finite state controllers for

generalized planning that can solve a range of similar planning problems.

McIlraith and Fadel [112] investigate planning with complex actions (a form of macro actions) specified

as Golog [103] programs. In this work, the authors focus on terminating deterministic complex actions.

To enable a planner to compose both primitive and complex actions to achieve a goal, preconditions and

successor state axioms for complex actions are defined. Abbreviation doca(�, s) denotes a situation resulting

from performing complex action � in s. For each complex action �, Possca(�, s) denotes its preconditions

which are intuitively defined in terms of the preconditions of all the actions that make up the execution of �,

(i.e., Possca(�, s) ⌘ 9s.Do(�, s, s0)). Moreover, the e↵ects of a complex action � are assumed to be e↵ects of

each action in the execution of � modulo the e↵ects of subsequent actions. Technically, since complex actions

involve multiple intermediate situations, successor state axioms for complex actions can not be defined, and

instead, pseudo-successor state axioms are defined. The truth of fluent F after performing � is defined

as Possca(�, s) ! [F (~x, doca(�, s)) ⌘ 9s.Do(�, s, s0) ^ F (~x, s0) ^ s0 = doca(�, s)]. To enable planning with

complex actions as operators, the preconditions need to be characterized strictly in terms of the situation in

which the complex action execution is initiated, and e↵ects, in terms of initiating and terminating situation

of the complex action. To achieve this, the authors define a new version of the regression operator [132],

that regresses over the successor state axioms for the primitive actions in the theory. The defined regression

operator is used to regress over the right hand side of the action precondition axioms for each complex action,

and the right hand side of the pseudo-successor state axioms for each fluent-complex action pair.
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Given an action theory TA and a set of complex actions �A, first �A is compiled into the theory resulting

in a new theory T 0
A where each complex action is represented as a new primitive action. After producing a

plan in T 0
A, the theory is re-written and expanded to replace complex actions with a sequence of primitive

actions. The authors further provide some experimental results which shows that in some domains, planning

with complex actions can improve the e�ciency of planning.

Gabaldon [63] provides an encoding of totally ordered HTNs in Golog. The HTN planning problem is

defined as P = (d, S0, D), where d is a task network, S0 is the initial situation, and D is a planning domain

consisting of set of methods in addition to a situation calculus basic action theory.

Primitive tasks are represented as primitive actions. For each compound task, with a set of methods,

a Golog procedure is defined in terms of non-deterministic choice of all the methods. The procedure non-

deterministically chooses one of the methods to execute, and then the sequence of precondition tests and

tasks relevant to that method are executed. �P is used to denote the resulting set of procedure declarations.

Furthermore, a Golog program �d is obtained from the task network d which has the same form as the

procedures defined for each method. Given the above encoding, a logical specification of the planning problem

in terms of Golog is D |= (9s)Do(�P ; �d, S0, s), which means that the theory entails there is an execution of

�P followed by �d which terminates in situation s. Gabaldon further shows that the operational semantics of

an HTN-planning problem, i.e., the set of solutions, corresponds to the set of execution traces derived from the

situation calculus formalization i.e., � 2 solutions(d, S0, D) if and only if DP |= Do(�P ; �d, S0, do(�, S0)).

A similar approach is taken for defining partially ordered HTN in ConGolog which supports concurrent

execution of procedures. The author also shows how advanced features such as sensing and exogenous

actions can be utilized in this encoding.

2.4.3 Conditional Planning with Abstraction

Di↵erent approaches to hierarchical planning in presence of incomplete information have been suggested.

These include conditional HTN planners [93, 3], and an approach by Srivastava [155] based on model checking

techniques [136] for abstracting collections of states with di↵erent objects quantities and properties.

Baier and McIlraith [10], building on the results of [112], investigate planning with sensing where both

primitive and complex actions are used as building blocks of the plan. This framework is based on the

situation calculus and the Golog programming language and uses the knowledge model of Scherl and Levesque

[145]. The authors focus on deterministic tree programs. To ensure that at each step of program execution,

the agent has the necessary knowledge to execute that step, the programs are required to satisfy the self-

su�ciency property [113] (see Section 2.3.4). The authors propose an o✏ine execution semantics for Golog
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programs with sensing that incorporates the knowledge of the agent. In this approach, the right hand side

of the transition semantics (Trans) of the primitive action, test, conditional and while loop constructs are

extended with a Knows(', s) predicate that explicitly requires the agent to know the value of the condition

' in order to proceed.

A compilation algorithm is presented that transforms the action theory with complex actions into a

new theory where a complex action � is replaced by a new primitive action prim�. The new primitive

action should be executable in s exactly when � is executable in s. To ensure prim� preserves the physical

e↵ects of �, for each fluent, e↵ect axioms for prim� are added such that whenever � makes F true/false,

prim� will also make it true/false. Moreover, to preserve the knowledge e↵ects of �, prim� should emulate

� with respect to the K fluent. To write these new axioms, a special form of the regression operator

Rs [112] is used to ensure that precondition and e↵ect axioms only talk about situation s. For example,

Poss(prim�(~y), s) ⌘ Rs[(9s0)Do(�(~y), s, s0)] indicates that prim� can be executed in situation s if and only

if � can. The new theory is then used to find a plan that achieves a goal G. The authors show that to obtain

a counterpart of this plan in the original theory, every occurrence of the prim� can be replaced by �.

2.4.4 Norm Abstraction

Grossi and Digum [79, 78] use a KD45 multi modal logic corresponding to a propositional logic of contexts

[108] to model norms at di↵erent levels of abstractions. Levels of abstraction constitute a structure ordered

according to the relation “i is strictly less abstract than j”. It is assumed that this relation is irreflexive,

asymmetric, transitive and partial. The fact that holds in a level holds irrespective of the level from which

that fact is considered. In addition, it is assumed that no inconsistency holds at any level. Finally, a trivial

“outermost level” exists which represents the level of logical truths.

Translation rules connect the truth from more concrete to more abstract levels. For example, the notion

of counts as is defined as follows: A counts as B if and only if A at level i determines the truth of B at a

level j, where i < j, i.e., i is strictly less abstract than j. As di↵erent translation rules have contradictory

consequents, the translation rules are assumed to be defeasbile. Deciding among conflicting defaults could

be resolved in number of ways, for instance, by specificity.

In related work, Vázquez-Salceda and Dignum [162] introduce HARMONIA, a multi-level framework for

modeling electronic organizations. This framework consists of four levels of abstraction, that can represent

from the most abstract levels of normative systems to final implementation of rules and policies that can be

used by agents.

Abstract norms are represented by the language ANorms, a denotic logic that is temporal, relativized

and conditional (i.e., the obligation to reach a state or perform an action may be conditional on some state
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of a↵airs holding, moreover, it is meant for a certain agent role and should be fulfilled before a certain point

in time).

To enable checking norms and acting on possible violations, the abstract norms need to be translated

into concrete norms, which pertain to actions that are described in terms of the ontology of the organization.

These norms are described in CNorms, which is the same language as ANorms, with the di↵erence that it

uses di↵erent predicates. The authors define a function I : ANorms ! CNorms which is a mapping from

abstract norms to concrete ones, and indicates how an abstract norm can be fulfilled by concrete norms.

This function is based on the “counts as” operator [79, 78]. Several types of abstract norms and the concrete

realizations are discussed; these include Abstract actions which can be implemented by di↵erent concrete

actions, and Temporal Abstractness where an implicit deadline for obligations is made more concrete.

Translating concrete norms to rules also involves a change of language. The authors follow the approach

of Mayer [114], that proposes a reduction from denotic logic to a Propositional Dynamic Logic. For example,

a formula like O(↵), which indicates ↵ is obligatory, is reduced to dynamic logic as O(↵) ⌘ [¬↵]V which

expresses that ↵ is obligatory if and only if not doing ↵ leads to a violation. In this way, norms are

translated into restrictions on behavior as well as triggers on unwanted behavior of agents interacting in the

organization. While an organization can not force agents to do an action, it can prevent the agent from

leaving before the action is done.
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2.5 Supervisory Control of Discrete Event Systems

A Discrete Event System (DES) is a discrete-state, event-driven system, that is, its state evolution depends

entirely on the occurrence of asynchronous discrete events over time [24]. An example of an event may

correspond to the completion of a task, the failure of a machine in a manufacturing system or the arrival of

a packet in a communication system. Such systems arise in a variety of areas including, computer operating

systems, databases, communication networks and manufacturing systems. A number of models for DES have

been proposed in the literature, such as automata [24], Petri nets [24] or process algebras [88]. The most

common properties to be verified that arise in the study of software implementations of control systems for

complex automated systems include safety (i.e., avoidance of illegal behavior), liveness (i.e., avoidance of

deadlock and livelock), and diagnosis (i.e., ability to detect occurrences of unobservable events) [24].

Supervisory Control of Discrete Event Systems (SCDES) [129, 130, 166, 24], sometimes referred to as the

Ramadge and Wonham (R&W) framework, provides a method for the synthesis of supervisors in discrete

event systems that minimally constrain the behavior of a plant to ensure that a given specification is fulfilled.

Ramadge and Wonham [130] represent a DES as an automaton with a set of states and a transition function.

It is not assumed that the state set is finite, or that states have a specific structure. This allows for the

possibility of counters and other infinite state devices. Here, we focus on finite-state representations of the

plant and the supervisor.

Section 2.5.1 presents a brief overview of supervisory control theory for systems modeled by deterministic

finite-state automata and subject to regular language specifications. Some extensions to the basic R&W

framework are discussed in Section 2.5.2. Finally, in Section 2.5.4 we look at some of the main approaches

in the area of reasoning about actions and change that are inspired by SCDES.

2.5.1 Controllability and Supervision

The plant G represents the “uncontrolled behavior” of the DES, whose behavior is assumed unsatisfactory

and must be modified by feedback control in order to achieve a set of specifications. The plant G is modeled

as a generator10 which is a tuple of the form: G = (Q,⌃, �, q0, Qm) where Q represents the finite set of

states, ⌃ is a finite set of events associated with G and � : Q⇥ ⌃ ! Q denotes a partial transition function.

If a transition �(q,�) is defined, then it is denoted by �(q,�)!. The initial state is represented by q0 and

Qm ✓ Q is the set of marked states, used to mark the termination of certain event sequences, for example,

those representing the completion of a task by the system. Let ⌃⇤ denote the set of all finite strings of

10In the accepting mode, the automaton representing a regular language checks if an input string is part of the language. In
the generating mode, the automaton produces the list of all the strings in the language. In general, only a proper subset of the
totality of events can occur at each state of a generator. A generator may simply be a recognizer from which the dump state
(if any) and all transitions to it have been dropped [166].
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elements of ⌃ that contains the empty string ✏. It is possible to extend � to ⌃⇤, defined inductively as:

�(q, ✏) = q and (8s 2 ⌃⇤)(8� 2 ⌃), �(q, s�) = �(�(q, s),�). Similarly, (8s 2 ⌃⇤), �(q, s)! if and only if 9q0

such that �(q, s) = q0.

The behavior of the plant G is characterized by language L(G), the prefix-closed language11 generated by

the plant, and the language Lm(G) defined to be the set of all sequences of events which lead to a marked

state, interpreted as completed tasks (or sequences of tasks) by the system that G models. More formally,

the closed behavior of G is defined as L(G) = {s 2 ⌃⇤ | �(q0, s)!} and the marked behavior of G is defined as

Lm(G) = {s 2 L(G) | �(q0, s) 2 Qm}. By definition, Lm(G) ✓ L(G).

To specify controllability of events, the R&W framework extends the basic automata by partitioning ⌃

into two disjoint subsets of controllable and uncontrollable events: ⌃ = ⌃c [̇ ⌃u. The set of controllable

events, ⌃c, are the events that can be prevented from happening, or disabled, by a controller; ⌃u represents

the set of uncontrollable events that remain enabled all the time. There are many reasons why an event

would be modeled as uncontrollable; for instance it is inherently unpreventable (e.g., a fault event), it models

a change of sensor readings not due to a command, or it is modeled as uncontrollable by choice, e.g., when

the event has high priority and thus should not be disabled [24].

Modifying the behavior of G is understood as restricting the behavior to a subset of L(G) which represent

the “legal” or “admissible” behavior of G. The restriction of system behavior is enforced by a supervisor,

that observes the events executed by G, and then disables some of the controllable events in order to satisfy

the specification. Formally, a supervisor is a function S : L(G) ! � where � = {� 2 2⌃ | � ◆ ⌃u} that maps

from the sequence of events generated so far to a set of “enabled” events that contains the uncontrollable

events in addition to a subset of controllable events that G can execute in its current state. G under the

supervision of S is denoted by S/G. The closed behavior generated by S/G is defined as the language

L(S/G) ✓ L(G) and described as the least set such that:

1. ✏ 2 L(S/G)

2. if [s 2 L(S/G),� 2 S(s) and s� 2 L(G)] then [s� 2 L(S/G)]

L(S/G) is prefix-closed by definition. S(s) refers to the control action at s. The empty string ✏ is always

in L(S/G) since it is always contained in L(G). When S is adjoined to G, then G is to start in its initial

state at which time its possible first transition will be constrained by the control action S(✏). The marked

behavior of S/G is Lm(S/G) = L(S/G) \ Lm(G). Thus the marked behavior of S/G consists exactly of the

11The prefix-closure L of language L is defined to be the set of all prefixes of strings in the language; more formally: if L ✓ ⌃⇤

then L = {s 2 ⌃⇤ | (9t 2 ⌃⇤) st 2 L}. If L = L, then L is called a closed (or prefix-closed) language.
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strings of Lm(G) that “survive” under supervision by S. The supervisor S is said to be non-blocking (for

G) if Lm(S/G) = L(S/G). Figure 2.1 shows the closed loop between the supervisor and the plant.

Supervisor S

Plant G

sS(s)

Figure 2.1: The Feedback Loop of Supervisory Control

Given a plant G, two questions that arise are 1) what sublanguages of L(G) qualify as L(S/G) for some

S? and 2) what are the sublanguages of Lm(G) that qualify as Lm(S/G) for some non-blocking S for G? A

key notion that enables answering these (and more) questions is the concept of controllability. A language

K ✓ ⌃⇤ is called controllable with respect to a system G if

8(s,�) s 2 K & � 2 ⌃u & s� 2 L(G) ) s� 2 K or more concisely, K⌃u \ L(G) ✓ K

In other words, if something cannot be prevented, it must be legal. It is clear that the empty language ;,

L(G) and ⌃⇤ are always controllable (with respect to G).

Given a plant G, with closed behavior L(G) and marked behavior Lm(G), two important results of the

R&W framework are as follows: 1) Let K ✓ L(G) be nonempty and closed. There exists a supervisory

control S for G such that L(S/G) = K if and only if K is controllable with respect to G; 2) Let K ✓ Lm(G),

K 6= ;. There exists a non-blocking supervisory control (NSC) S for G such that Lm(S/G) = K if and only

if K is controllable with respect to G and K is Lm(G)-closed [166].12

A slight generalization of the NSC, in which the supervisory action includes marking, as well as control,

is defined as follows. Let M ✓ Lm(G). A Marking Non-blocking Supervisory Control (MNSC) for the pair

(M,G), is a map S : L(G) ! �, defined exactly as above, with exception of the marked behavior of S/G

which is defined as Lm(S/G) = L(S/G) \M . Let K ✓ Lm(G), K 6= ;. There exists a MNSC S for (K,G)

such that Lm(S/G) = K if and only if K is controllable w.r.t G [166].

The above cases assume that the specification language is controllable with respect to G. But what if a

given specification language E ✓ ⌃⇤ is not controllable (with respect to G)? Then it is desirable to find a

controllable approximation to the given language, preferably the largest controllable language contained in

12A language L1, where L1 ✓ L2 ✓ ⌃⇤, is said to be L2-closed, if L1 = L1 \ L2. Thus L1 is L2-closed provided it contains
every one of its prefixes that belongs to L2.
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E. This language should preserve the restrictions imposed by E, while requiring the least amount of control.

It can thus be regarded as the “optimal” or “minimally restrictive” approximation to E.

For a given E ✓ ⌃⇤, it is always possible to define the set of its controllable sublanguages (with respect

to G), described as C(E) = {K ✓ E | K is controllable with respect to G}. C(E) is nonempty because the

empty language (;) is controllable, hence always belongs to this set. Moreover, C(E) is partially ordered

by inclusion and closed under arbitrary unions. In particular, it contains a unique supremal element, called

supC(E) = [{K | K 2 C(E)} [166, 130]. supC(E) is sometimes denoted as E"C . When E and L(G) are

regular languages, then so is E"C [24].

Let E ✓ ⌃⇤ be Lm(G)-marked13, and let K = supC(E \ Lm(G)). If K 6= ;, there exists a non-

blocking supervisory control (NSC) S for G such that Lm(S/G) = K. Moreover, let E ✓ ⌃⇤ and let

K = supC(E \ Lm(G)). If K 6= ; there exists a marking non-blocking supervisory control (MNSC) S for

(K,G) such that Lm(S/G) = K [166].

The abstract definition of a supervisory control as a map L(G) ! � does not in itself provide a concrete

representation for practical implementation. As a first step, it is possible to construct a trim automaton

EDES that represents the desired behavior E of the plant, such that Lm(EDES) = E and L(EDES) = E.

Given a specification language E (E = Lm(EDES) as defined above), an algorithm for the computation

of the supremal controllable sublanguage K = supC(E \Lm(G)) = E"C is presented by Wonham [166]. Let

Pwr(⌃⇤) denote the power set of ⌃⇤. A language operator, ⌦ : Pwr(⌃⇤) ! Pwr(⌃⇤), is defined according

to:

⌦(Z) = E \ Lm(G) \ sup{T ✓ ⌃⇤ | T = T , T⌃u \ L(G) ✓ Z}

It is shown that K is the largest fixpoint of ⌦. In case of regular languages, this fixpoint can be computed by

successive approximation. Let K0 = E \Lm(G), Kj+1 = ⌦(Kj) where (j = 1, 2, 3, ...). It can be shown that

K = limKj (j ! 1). If G and EDES have m and n states respectively, then this scheme converges after at

most mn iterations. As the computation of ⌦ is itself bounded by a polynomial in m and n, it means that

the computation of the supremal controllable sublanguage is of polynomial complexity in m and n [130].

In supervisory control, while disabled events are certainly prevented from occurring, enabled events are

not necessarily “forced” to occur. Also, the supervisor exerts “dynamic” feedback control on G, in the sense

13With L1, L2 ✓ ⌃⇤, L1 is said to be L2-marked if L1 ◆ L1 \ L2, namely any prefix of L1 that belongs to L2 must also
belong to L1, but L1 may have more elements. Two languages L1, L2 ✓ ⌃⇤ are non-conflicting if L1 \ L2 = L1 \ L2.
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that the decision about which events to disable may change whenever S observes the execution of a new

event by G.

2.5.2 Extensions to Supervisory Control of Discrete Event Systems

The basic R&W framework has been extended in number of directions. For example, non-determinism in

a discrete event system is often considered as the result of lack of information (e.g., partial observation or

unmodeled internal dynamics of a system). Non-deterministic plants e.g., [92], non-deterministic supervisors

e.g., [87] and non-deterministic specifications e.g., [174] have been studied.

When the plant is very complex or time-varying,14 it may not be possible to model the plant a priori

due to the large set of states or the lack of information on the possible system variations. In such cases,

after the occurrence of each event, the online limited-lookahead controller [25, 76, 159] uses a N-Step ahead

projection (a tree) of all the possible continuations of the executed prefix to make a control decision.

Another direction, mainly motivated by improving the understandability of the control logic and reducing

the computational e↵ort of the synthesis of a monolithic supervisor in complex and/or distributed systems

has resulted in more modular and hierarchical architectures. Such models focus on architectural decom-

position of the control structure, while aiming to achieve global optimality (maximal permissiveness) and

non-blockingness. Examples include decentralized, distributed, hierarchical and heterarchical architectures.

Decentralized supervisory control [134, 133] is concerned with systems where several “site supervisors” work

as a team to control a system that is inherently distributed, such as computer networks. Supervisors at each

site may see the e↵ect of di↵erent (possibly overlapping) sets of sensors and may control di↵erent (possibly

overlapping) sets of actuators. Distributed architectures [23, 171] aim to allocate external supervisory con-

trol action to individual plant components, as their internal control strategies. Hierarchical approaches to

supervision [173, 165, 123] break down the complexity in a vertical fashion, whereby controllers may operate

on di↵erent levels of logical or temporal abstraction. Finally, heterarchical architectures [96, 146, 148] are

inspired from hierarchical and decentralized approaches.

2.5.3 Hierarchical Supervisory Control of Discrete Event Systems

Hierarchical supervisory control of DES involves modeling a plant and its supervisor at an abstract level,

and using the control decisions of the abstract supervisor to guide the decisions of a supervisor of the original

plant. The basic model of hierarchical supervision initially proposed by Zhong and Wonham [172] has been

extended in a number of directions, for example, by incorporating partial observability [20] and hierarchical

control of decentralized plants [147].

14Dynamic Discrete Event Systems (DDES) [76, 77] are a class of time-varying systems composed of DES modules, where at
each time period, the system may consist of a composition of di↵erent set of modules.
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The hierarchical control of DES proposed by Zhong andWonham [172, 166] introduces a two-level hierarchy

consisting of a low-level plant Glo and controller Clo, along with a high-level plant Ghi and controller Chi.

These are coupled as illustrated in Figure 2.2.

Glo

GhiChi

Clo

InflohiComhilo

Conhi

Infhi

Inflo
Conlo

Figure 2.2: Two-Level Control Hierarchy [166]

Glo = (Q,⌃, �, q0, Qm) is the actual plant to be controlled in the real world by the “operator” Clo. The

initial assumption is that Qm = Q, therefore the relevant languages are prefix-closed.15 Ghi is an abstract

and simplified model of Glo used for decision-making by the “manager” Chi. Control channels are represented

by Conhi and Conlo and the information feedback channels are modeled by Infhi and Inflo. Glo uses the

bottom-up information channel Inflohi to “report” events to Ghi. More formally, given T , the event set of

the high-level system, the information channel (or abstraction mapping) Inflohi is modeled by using a causal

reporter map, ✓ : L(Glo) ! T ⇤, where s 2 L(Glo) and � 2 ⌃, such that:

✓(✏) = ✏ ,

✓(s�) =

8
><

>:

either ✓(s)

or ✓(s)⌧, some ⌧ 2 T

Informally, ✓ can be used to signal events that depend on the past history of the behavior of Glo; for

example, ✓ might produce an instance of symbol ⌧ 0 whenever Glo generates multiple of 5 of some distinguished

symbol �0. The causal reporter map ✓ is interpreted as “summarizing” every sequence of low-level events in

the form of a high-level event sequence (which is typically shorter than the low-level one). In this way, Ghi

generates a language equal to the image of the low-level language under ✓, i.e., L(Ghi) = ✓(L(Glo)). Hence,

the behavior of the high-level system is driven by the behavior of the low-level system.

In fact, it is possible to represent ✓ with Glo by a Moore generator16 having the output alphabet To =

T [ {⌧o}, where ⌧o /2 T is interpreted as the “silent output symbol”. The states of Glo that output events

15This assumption will be generalized towards end of this section to include marking and non-blockingness.

16Moore automata are a type of automata with (state) outputs. There is an output function that assigns an output to each
state, and this output is “emitted” by the automaton when it enters a state [24].
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other than ⌧o are referred to as “vocalized”. The following defines an output map from s 2 L(Glo) to a state

output: !̂ : L(Glo) ! To such that !̂(✏) = ⌧o , and if s� 2 L(Glo) then,

!̂(s�) =

8
><

>:

⌧o if ✓(s�) = ✓(s)

⌧ if ✓(s�) = ✓(s)⌧

In order to equip Ghi with a control structure, Zhong and Wonham [173] propose a technique that based

on the controllability of individual low-level events that form a sequence of events summarized by a high-

level event, partitions the high-level alphabet T into controllable (Tc) and uncontrollable (Tu) subsets.

Glo is considered to be output-control-consistent (OCC) when, for all ⌧ 2 T , it is unambiguous if ⌧ is

controllable or uncontrollable. ⌧ is considered uncontrollable if all the sequence of events in its refinements

are uncontrollable; otherwise it is considered controllable. If Glo is not OCC, an algorithm exists that refines

descriptions of Ghi and Glo, and extends T to partition it into controllable and uncontrollable events.

The high-level supervision is only virtual. In other words, Chi has no direct influence over Ghi. Based

on a high-level specification, the appropriate control decisions of Chi are communicated via the top-down

command channel Comhilo to the low-level supervisor Clo which in turn, interprets them as appropriate

control to be applied on Glo.

More formally, the high-level supervisory control is determined by a selection of high-level controllable

events to be disabled, on the basis of high-level past history; thus Chi is defined by a map �hi : L(Ghi)⇥T !

{0, 1} such that �hi(t, ⌧) = 1 for all t 2 L(Ghi) and ⌧ 2 Tu, i.e., all uncontrollable events are enabled, while

some controllable events ⌧ 2 Tc may be disabled. Given �hi, the high-level disabled-event map is defined

as �hi : L(Ghi) ! 2Tc according to: �hi(t) = {⌧ 2 Tc | �hi(t, ⌧) = 0}. In turn, the corresponding low-level

disabled-event map is described as �lo : L(Glo)⇥ L(Ghi) ! 2⌃c , according to

�lo(s, t) = {� 2 ⌃c | (9s0 2 ⌃⇤
u)s�s

0 2 L(Glo) & !̂(s�s0) 2 �hi(t) & (8s00)s00 < s0 ) !̂(s�s00) = ⌧o}

In the above, s00 < s0 refers to string s00 as a prefix of string s0. Informally, the low-level disabled map

designates those controllable events to be disabled that form the last controllable event in a series of events

that are summarized by each high-level event which is included in the high-level disabled map (thus achieving

maximal permissiveness). Since the hierarchical loop is closed through Inflohi, a string s 2 L(Glo) is mapped

to t = ✓(s) 2 L(Ghi). Then the control implemented by Clo, namely �lo(s,�) is to disable the event if it is

in the low-level disabled event map and allow it otherwise.

Given a non-empty, closed specification language Ehi ✓ L(Ghi), which is controllable with respect to the

high-level model structure, the (maximal) behavior in Glo is defined to be Elo = ✓�1(Ehi) ✓ L(Glo). Clearly,
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✓(Elo) = Ehi (since L(Ghi) = ✓(L(Glo))), and moreover, Elo is closed. Assume L(�lo, Glo) represents the

closed-loop language synthesized in Glo. A major result presented by Zhong and Wonham [173] states that

L(�lo, Glo) = E"C
lo . This result is referred to as low-level hierarchical consistency. Informally, it ensures that

the updated behavior of Ghi will always satisfy the high-level legal constraint ✓(L(�lo, Glo)) ✓ Ehi, and that

the “real” low-level behavior in Glo will be as large as possible according to this constraint.

In some cases, only a subset of the “expected” high-level specification may be achievable (hence the

inclusion in ✓((✓�1(Ehi))"C) ✓ Ehi will be proper). The reason is that a call by Chi for the disablement of

some high-level event ⌧ 2 Tc may require Clo (i.e., the control �lo) to disable paths in Glo that lead directly to

outputs other than ⌧ . If (✓((✓�1(Ehi))"C) = Ehi), for every closed and controllable language Ehi ✓ L(Ghi),

then the pair (Glo, Ghi) is hierarchically consistent. A su�cient condition for hierarchical consistency is that

of strict output-control consistency, which simply means that the system is output-control-consistent and the

low-level system allows for the enabling and disabling of every controllable high-level event independently.

Two results by Wong and Wonham [165] place the property of hierarchical consistency in clear perspective.

Given a Glo that is OCC, it is possible to define the Main Condition(MC) as: ✓C(L(Glo)) = C(L(Ghi)),

where C(L(Glo)) and C(L(Ghi)) represent the family of all controllable sublanguages of L(Glo) and L(Ghi)

respectively. MC states that not only ✓ preserves controllability, but also that every high-level controllable

language is the ✓-image of some (possibly more than one) low-level controllable language. This amounts to

equating executable tasks with controllable languages: every task that could be specified in the manager’s

abstracted (aggregated) model Ghi is executable in the operator’s (detailed) model Glo; thus, high-level

policies can always be carried out operationally.

Assume Ehi ✓ L(Ghi), a high-level legal specification (which may not be controllable), is proposed to the

operator by specification ✓�1(Ehi). The operator may then synthesize (✓�1(Ehi))"C ✓ L(Glo), which results

in (✓(✓�1(Ehi))"C) being implemented in Ghi. It is desired that this implemented sublanguage of L(Ghi) to

be the language E"C
hi that a manager would synthesize directly (if direct control were viable). This forms

the essence of hierarchical consistency, and the following result states that hierarchical consistency in this

strong sense is equivalent to MC.

MC , [(8Ehi)Ehi ✓ L(Ghi) ) ✓((✓�1(Ehi))
"C) = E"C

hi ]

If MC is slightly weakened, then the following related result can be proved, as a simpler version of the

condition of hierarchical consistency:

✓C(L(Glo)) ◆ C(L(Ghi)) , [(8Ehi)Ehi 2 C(L(Ghi)) ) ✓((✓�1(Ehi))
"C) = Ehi]
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Informally, the fact that the family of all controllable sublanguages of L(Ghi) is a subset of the ✓ image of the

family of all controllable sublanguages of L(Glo) is equivalent to the fact that for every controllable high-level

legal specification Ehi, the ✓ image of the supremal controllable sublanguage obtained from ✓�1(Ehi) in the

low-level, implements Ehi in the high-level plant.

The theory of hierarchical supervision has also been extended to include marking and non-blocking [166].

Let Lm(Glo) ✓ L(Glo) and Lm(Ghi) = ✓(Lm(Glo)) represent the marked behaviors of Glo and Ghi respec-

tively. GivenGlo that is OCC, and a specification language Ehi ✓ Lm(Ghi) forGhi, the marked behavior “vir-

tually” synthesized in Ghi is Khi = supC(Ehi). The specification which is “announced” to the low-level con-

troller is ✓�1(Ehi). In this way, the marked behavior synthesized in Glo is Klo = supC(Lm(Glo)\✓�1(Ehi)).

The desired property that should be satisfied is: ✓(Klo) = Khi. More formally, it is shown that

(8Ehi)Ehi ✓ Lm(Ghi) ) ✓(Klo) = Khi (HCm) i↵ ✓C(Lm(Glo)) = C(Lm(Ghi)) (MCm)

To satisfy main condition with marking (MCm), the causal reporter map ✓ is enhanced with a global

observer property; moreover, a type of local controllability in Glo is ensured.

Assume Lvoc = {s 2 L(Glo) | s = ✏ or s ends with a vocal state}. Extending the map with a global

observer property informally means that whenever ✓(s) can be extended to a string t 2 L(Ghi), the underlying

Lvoc string s can be extended (by string s0) to Lvoc string ss0 with the same image under ✓. In other words,

“the manager’s expectation can always be executed in Glo”, at least when starting from a Lvoc string.

To implement the local controllability in Glo, first it is assumed that the control decisions are delegated

to “agents”, e.g., Agent(s) for each s 2 Lvoc. The scope of Agent(s) is the local language Lvoc(s) which

links the vocal node at s to adjacent downstream vocal nodes (if any) in the reachability tree of L. Llo(s) is

defined as the prefix closure of Lvoc(s). In addition, the local reporter map ✓s : Llo(s) ! {✏} [ T is defined

that maps each s0 to ⌧ , if !̂(ss0) = ⌧ ; otherwise s0 is mapped to ✏. Furthermore, Clo(s) is defined as the

family of all controllable sublanguages of Llo(s).

The authors define Lhi(t) as (at most) one-step closed sublanguage that is postfix to t = ✓(s), as well

as Chi(t) as the controllable sublanguages of Lhi(t). The local controllability property of interest is that

Chi(t) = ✓s(Clo(s)). When this property holds it is said that Glo is locally output controllable at s; and if

it holds for all s 2 Lvoc, it is said that Glo is globally output controllable. It is shown that if ✓ is an Lvoc

observer, Glo is locally output controllable, and Lm = ✓�1(Mm)\Lvoc (i.e., the marked state of the low-level

system are only those vocalized states that map back to the marked states of the high level system), then

the main condition with marking is satisfied (✓C(Lm(Glo)) = C(Lm(Ghi))).
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2.5.4 Reasoning About Actions and Change and Supervisory Control of Discrete Event Sys-

tems

DeGiacomo et al. [35], inspired by the supervisory control of discrete event systems, proposed agent super-

vision, which is a framework of control and customization of agent behavior. This framework is based on

the situation calculus and ConGolog agent programming language. We provide a more detailed discussion of

this work in Section 3.3.

Aucher [7] reformulates some of the results of supervisory control in the areas of partial controllability,

partial observability and decentralized control in terms of model checking problems expressed in an epistemic

temporal logic. The epistemic temporal logic considered is CTL⇤KD
n [161], which has an asynchronous se-

mantics with perfect recall17 and branching time. An “environment” transition system is introduced that

is the combination of the transition system of the plant G and the transition system O representing the

specification language K. Then an interpreted system (I) associated to G and O is defined. Di↵erent condi-

tions for fully realizing a goal behavior under partial controllability, partial observation or decentralization

of supervisors are formulated in CTL⇤KD
n . Moreover, it is shown that in case of control with full realiza-

tion, for any supervisor S, any w 2  L(G), and any � 2 ⌃c, there is a formula F (�) of LCTL⇤KD

n

such that

� 2 S(w) if and only if I, w |= F (�). Representing supervisors in terms of model checking problems allows

lazily computing them online. This approach is only applicable on finite-state systems.

Felli et al. [58] relate the notion of a composition controller in the “Roman Model” approach to behavior

composition to that of a supervisor in SCDES. Given an available system of behaviors S = hB1, . . . , Bni

which is formed by joint execution of available (non-deterministic) behaviors Bi, i 2 {1, . . . , n}, and a de-

sired deterministic target behavior T , first a plant GS,T is built from S and T . Controlling GS,T consists

of controlling behavior delegations. A supervisor can enable or disable an available behavior to execute;

however, the supervisor cannot control the action requests or the evolution of the behavior selected (they

are modeled as uncontrollable events). A state in GS,T encodes a snapshot of the composition process: the

state of all available behaviors and the target as well as the current pending target request and current

behavior delegation. The states with no pending request or delegation are considered marked (final). The

plant transition function is defined in a way that the complete process for one target request and action

delegation involves three transitions in the plant: i) target action request, ii) behavior delegation, and iii)

available system evolution. In the initial state, and after each target request has been fulfilled, the plant is

in a state where no active request or no behavior delegation exist, and ready to process a new target request

17The asynchronous perfect recall semantics assumes that the system operates asynchronously, with agents aware of the
passing of time only when their observations change. However, agents remember the sequence of distinct observations they
have made [161].
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(i.e., a marked state). In case the chosen behavior is unable to execute the delegation from its current state,

then no transition is defined and the plant (non-marked) state is a dead-end.

The specification language KS,T is then defined as exactly the marked language of the composition plant,

that is Lm(GS,T ). In other words, the plant is controlled in a way so as to eventually be able to reach the

end of each request-delegation process. It is shown that the supervisors able to control the specification

KS,T in plant GS,T correspond one-to-one with the composition (solution) controllers for building target T

in available system S. The authors then propose a technique for extracting the controller generator (i.e.,

an implicit representation of all controllers) from the supervisor of the plant. This technique is based on

compressing the transitions in the generator which represents the behavior of the controlled system.

When no exact composition for a target T in a system S exists, the authors suggest adapting the

composition plant GS,T to look for Supremal Realizable Target Fragments (SRTFs) [169] for the special case

of deterministic available behaviors. An SRTF models a fragment of the target behavior that accommodates

an exact composition and is closets to the target module. Since it is not possible to realize all the target

traces, user’s requests and delegations are modeled as controllable events. In this way, the supervisor can

enable or disable requests to ensure as many as possible of the target traces are realized.
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3 Foundations

This chapter provides the necessary background and the theoretical foundation for this dissertation. In

Section 3.1 we provide an overview of Reiter’s version of the situation calculus [132]. The next section

focuses on ConGolog, one of the high-level programing languages defined over the situation calculus. Finally,

in Section 3.3, we present the agent supervision framework proposed by DLM [35].

3.1 The Situation Calculus

3.1.1 The Language

The Situation Calculus [110, 132] is a predicate logic language designed for representing and reasoning about

dynamically changing worlds. In this dissertation, we focus on Reiter’s version of situation calculus [132],

which is a sorted dialect of first order logic with equality (with some second order elements) LSitcalc. It

includes three disjoint sorts: action for actions, situation for situations and a catch-all sort object for

everything else depending on the domain of application.

Actions are assumed to be the cause of all changes in the world; they are represented as terms in the

logic. Function symbols of sort object 7! action are used for terms A(~x) which represent action types. For

instance, deliver(Shipment1,Warehouse1) could stand for the action of delivering the shipment Shipment1

to the warehouse Warehouse1. They are referred to as actions types since a single function symbol may

be instantiated with di↵erent parameters; for example deliver(Shipment2,Warehouse2). The lower case

letters a1, a2, . . . denote action variables, and ↵1, ↵2, . . . denote action terms. In this dissertation, we assume

there is a finite number of action types A.

A situation is a term in LSitcalc that represents a possible world history of the primitive actions performed

so far. The constant S0 denotes the initial situation where no actions have been performed yet. There is a

special function symbol do of sort (action, situation) 7! situation; do(a, s) represents the successor situation

resulting from performing action a in situation s. For instance, do(a3, do(a2, do(a1, S0))) is a situation term

denoting the sequence of actions [a1, a2, a3]. We write do([a1, a2, . . . , an�1, an], s) as an abbreviation for the

situation term do(an, do(an�1, . . . , do(a2, do(a1, s)) . . .)); for an action sequence ~a, we often write do(~a, s) for

do([~a], s). The binary relation @ is used to define precedence on situations; thus s1 @ s2 indicates s1 is a
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sub-history of s2.

Fluents are one of the main language elements of the situation calculus. These are predicates or functions

that are used to describe what holds in a situation; their value may vary from situation to situation as a result

of execution of actions based on domain-specific causal laws. By convention, the last argument of a fluent

is a situation. For example, At(Shipment1,Warehouse1, s) denotes that Shipment1 is at Warehouse1 in

situation s. A situation suppressed fluent (resp. formula) is a fluent (resp. formula) where all occurrences

of situation terms are deleted. If � is a situation suppressed formula then �[s] denotes the situation calculus

formula with the suppressed situation s restored.

3.1.2 Basic Action Theories

A basic action theory (BAT) is a logical theory in the situation calculus that includes descriptions of what

holds initially in the world, when actions can be performed, and how the world evolves under the e↵ects of

actions. More formally, a BAT D is the union of the following disjoint sets:

D = Dposs [Dssa [DS0 [Duna [ ⌃ (3.1)

Action Precondition Axioms Dposs Actions typically have preconditions, that is, conditions that need

to hold for the action to occur. In the situation calculus, a special predicate Poss(a, s) is used to state that

action a is executable in situation s. For each action A(~x), the axiomatizer provides an axiom of the form

(here and in the rest all free variables are assumed to be universally quantified from the outside):

Poss(A(~x), s) ⌘ ⇧A(~x, s) (3.2)

where ⇧A(~x, s) is a first order formula uniform in s with free variables among ~x, s. A formula of LSitcalc is

uniform in s if and only if it does not mention the predicates Poss or @, it does not quantify over variables of

sort situation, it does not mention equality on situations, and whenever it mentions a term of sort situation

in the situation argument position of a fluent, then that term is s. This results in the truth value of the

formula depending only on situation s. Consequently, whether A(~x) can be performed in a situation s

depends entirely on s. The abbreviation Executable(s) is used to denote that every action performed in

reaching situation s was possible in the situation in which it occurred.

As an example, suppose we have an action deliver(sID) that can be performed to deliver a shipment

with ID sID at its destination. This action has the following precondition axiom: Poss(deliver(sID), s) ⌘

9l.Dest(sID , l) ^ At(sID , l, s), where the non-fluent predicate Dest(sID , l) specifies the destination of the

shipment (location l) and the fluent At(sID , l, s) indicates the location of the shipment in situation s. Thus,
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action deliver(sID) is executable in situation s, if and only if, the destination of the shipment is location l,

and the shipment is at location l in situation s.

Successor State Axioms Dssa Actions typically also have e↵ects, that is, fluents that are changed as a

result of executing the action. In a BAT, for each predicate fluent F , a successor state axiom is defined in a

way that provides a solution to the frame problem; it has the following form:

F (~x, do(a, s)) ⌘ ⇧+
F (~x, a, s) _ [F (~x, s) ^ ¬⇧�

F (~x, a, s)] (3.3)

where ⇧+
F (~x, a, s) _ [F (~x, s) ^ ¬⇧�

F (~x, a, s)] is a formula uniform in s, all of whose free variables are among

a, s, ~x. ⇧+
F (~x, a, s) specifies all the conditions under which F (~x) becomes true when a is performed in s and

⇧�
F (~x, a, s) specifies all the conditions under which the fluent becomes false. It is assumed that action e↵ects

are deterministic, i.e., ¬9~x, a, s.⇧+
F (~x, a, s) ^ ⇧�

F (~x, a, s), thus, no action a satisfies the condition of making

the fluent F both true and false. It is further assumed that distinct actions have distinct names/arguments

(see axioms 3.6 and 3.7 below). Formula 3.3 completely characterizes the value of fluent F in the successor

state resulting from performing action a in situation s. Specifically, F is true after doing a if and only if

before doing a, ⇧+
F was true, or both F and ¬⇧�

F were true.

For instance, suppose the successor state axiom for the fluent At(sID , l, do(a, s)) is defined as

At(sID , l, do(a, s)) ⌘ 9l0.a = moveShipment(sID , l0, l) _

At(sID , l, s) ^ 8l0.a 6= moveShipment(sID , l, l0)

Thus, shipment sID is at location l after performing action a if and only if, either action a was the

moveShipment action which moved the shipment from a previous location l0 to location l, or, the ship-

ment was already at location l in situation s, and no moveShipment action was performed that would move

the shipment to a new location l0.

A similar solution is provided for functional fluents. Given a functional fluent f , let ⇧F (~x, y, a, s) be a

formula that characterizes all the conditions under which action a can cause f to change its value and take

the value y in situation do(a, s), that is:

f(~x, do(a, s)) = y ⌘ ⇧F (~x, y, a, s) _ [y = f(~x, s) ^ ¬9y0⇧F (~x, y
0, a, s)] (3.4)

where ⇧F (~x, y, a, s) _ [y = f(~x, s) ^ ¬9y0⇧F (~x, y0, a, s)] is a formula uniform in s, all of whose free variables

are among ~x, y, a, s. The above axiom states that fluent f has value y in situation do(a, s) if and only if

either action a caused f to take value y, or f had already value y in situation s and action a did not change

its value. It is assumed that f satisfies the following consistency property:
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¬(~x, y, y0, a, s).⇧F (~x, y, a, s) ^ ⇧F (~x, y
0, a, s) ^ y 6= y0 (3.5)

The above consistency property states that action a cannot cause f to take two di↵erent values.

Initial State Axioms DS0 Initial state axioms describe the initial state of the world (i.e., the one the

agent starts with, before any actions have been executed). DS0 is a set of first-order sentences uniform in

S0. Therefore, no sentence of DS0 quantifies over situations, mentions Poss, @ or the function symbol do.

DS0 may also contain sentences mentioning no situation term at all. Note that DS0 may be an incomplete

specification and may have many models. For example, suppose that we have the following initial state

axioms:

Warehouse1 6= Warehouse2,

8sID , w, w0.At(sID , w, S0) ^At(sID , w0, S0) � w = w0,

At(123,Warehouse1, S0) _At(123,Warehouse2, S0)

Thus, we have two distinct warehouses Warehouse1 and Warehouse2. Any shipment with ID sID can only

be located at a single location (i.e., warehouse) in the initial situation. Moreover, shipment 123 may be at

Warehouse1 or Warehouse2 in the initial state. In some models of the theory, At(123,Warehouse1, S0)

holds, while in other models At(123,Warehouse2, S0) is true.

Unique Name Axioms for Actions Duna These axioms ensure every action function is one-to-one; the

only action terms that can be equal are two identical actions with equal arguments.

For any distinct action names A and B,

A(~x) 6= B(~y) (3.6)

Moreover, equal actions have equal arguments:

A(~x) = A(~y) � (x1 = y1) ^ . . . ^ (xn = yn) (3.7)

Foundational Axioms ⌃ The following four foundational axioms, denoted by ⌃, characterize situations

and the precedence relation @:

¬s @ S0 (3.8)

s @ do(a, s0) ⌘ s @ s0 _ s = s0 (3.9)
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do(a1, s1) = do(a2, s2) � a1 = a2 ^ s1 = s2 (3.10)

(8P ).P (S0) ^ (8a, s)[P (s) � P (do(a, s))] � (8s)P (s) (3.11)

Axiom 3.8 states that S0 has no preceding situations, thus, it is the initial situation; axiom 3.9 defines the

precedence relation @ i.e., ordering relation among situations; 3.10 is the unique names axiom for situations;

and finally, axiom 3.11 states that for any property P , in order to show that 8s.P (s), it is su�cient to show

that P (S0) holds, and inductively, for any situation s, if P (s) holds then for any action a, P (do(a, s)) holds.

It is a second-order induction axiom which has the e↵ect of limiting the sort situation to the smallest set

containing the initial situation S0, and closed under the application of the function do to an action and a

situation. Axioms 3.10 and 3.11 together imply that two situations will be the same if and only if they result

from the same sequence of actions applied to the initial situation. Moreover, the domain of situations can

be viewed as a tree whose root is S0, and for each action a, do(a, s) represents a child of s. As a result, for

each situation s there is a unique finite sequence of actions ~a such that s = do(~a, S0).

Executable Situations and the Precedence Relation. When executability of situations is taken into

consideration, it is possible to define , a new precedence relation on situations that requires executability

[131]. It is defined as:

s1  s2
.
= (s1 = s2 _ (s1 @ s2 ^ 8a, s.(s1 @ do(a, s) v s2 � Poss(a, s)))

where s v s0 is an abbreviation for s = s0 _ s @ s0.

Relative Satisfiability Theorem. The property 3.5 leads to the Relative Satisfiability Theorem [132]

which states that a BAT D is satisfiable if and only if Duna [DS0 is. This result ensures that provided the

initial knowledge base together with the unique names axioms for actions are satisfiable, then unsatisfiability

cannot be introduced by augmenting these with the foundational axioms for the situation calculus, together

with action precondition and successor state axioms.

Additional constraints on BAT In this dissertation, we use a variation of the basic action theory

described above which has more constraints imposed on it. It is defined as follows:

D = Dposs [Dssa [DS0 [ ⌃ [Dca [Dcoa (3.12)

Here, ⌃, Dposs, Dssa and DS0 are defined as above. In the following we describe Dca and Dcoa in more detail.
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Unique Name Axioms for Actions and Domain Closure on Action Types Dca The unique name

axioms for actions is similar to Duna. The domain closure axiom states that there are only the finitely many

action types A1( ~x1), . . . , An( ~xn):

8a.[9 ~x1.a = A1( ~x1) _ . . . _ 9 ~xn.a = An( ~xn)] (3.13)

This constraint eliminates the need to deal with existential quantification over action variables since we

can replace it with quantification over objects for the finite action types.

Unique Name Axioms and Domain Closure for Object Constants Dcoa Similar to Levesque and

Lakemeyer [102], we assume the application domain is considered to be isomorphic to the set of standard

object names N = {#0,#1,#2, . . .}. One of the main consequences of this assumption is that quantification

can be considered substitutionally ; for instance, 9x.P (x) is true just in case P (n) is true for some standard

name n.

In [102] it is shown that one can an add infinite set of unique name axioms and an inference rule

to get a complete axiomatization. Alternatively, one can axiomatize this constraint by providing axioms

similar to second order arithmetic; in this alternative way we have a new function symbol succ and #0 and

#1
.
= succ(#0), #2

.
= succ(succ(#0)), etc., and we have the following second order axioms:

8x.succ(x) 6= #0

8x, y.succ(x) = succ(y) � x = y

8P.[P (#0) ^ 8x(P (x) � P (succ(x)))] � 8x.P (x)

(3.14)

We assume that Dcoa is such an axiomatization. Note that the BAT may not use the function symbol

succ explicitly only #0, #1, . . . and quantification over objects.

3.1.3 Reasoning Tasks

Given an action theory containing facts representing a specific domain, there are various reasoning tasks

that can be considered. The main one is called the projection task, which, given a sequence of actions and

some initial situation, determines if a condition would hold if those actions were performed starting in that

initial situation. More formally, given a basic action theory D, a sequence of ground action terms ~a, and a

formula �[s] that is uniform in s, the projection task determines whether or not

D |= �(do(~a, S0)) (3.15)

Solutions to the projection include regression [132] and progression [132].
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The legality task determines whether a sequence of actions can in fact be performed starting in some initial

state, in other words, whether a sequence of actions leads to an executable situation. More formally, given

a basic action theory D, a sequence of ground actions terms ~a, the legality task determines whether or not

D |= Executable(do(~a, S0)) (3.16)

The planning task determines whether given a goal formula, it is possible to find a sequence of actions

such that it follows from the basic action theory that the goal formula will hold in the situation that results

from executing the actions in sequence starting in the initial state, and moreover, each action’s preconditions

are satisfied. More formally, given a basic action theory D, and a situation-suppressed goal formula �, the

planning task is to find a ground action sequence ~a such that

D |= Executable(do(~a, S0)) ^ �(do(~a, S0)). (3.17)

3.2 High-Level Programs

The situation calculus deals with specification and reasoning about (sequences of) primitive actions. Complex

actions, that is, actions that have other actions as components including usual programming constructs

such as conditionals, iteration, or recursive procedures are not considered. The most well known high-

level programming language based on the situation calculus that allows representing and reasoning about

complex actions (in addition to primitive actions) is Golog [103]. In Golog, the agent’s knowledge of the domain

dynamics (basic action theory), is specified declaratively. Then, a specification of the behavior of the agent

in the domain (i.e., domain processes) is described procedurally by using complex actions. Such complex

actions (i.e., programs) are formed from primitive actions or other complex actions using constructs like

sequence, conditional, tests, iteration, non-deterministic branch, and non-deterministic choice of arguments.

As a result of its logical foundations, Golog is able to accommodate incomplete information, either due to

the fact that the initial state of the system is not completely specified (and hence this incomplete theory can

result in several models), or because the non-deterministic constructs allow the program to evolve in any

number of ways.

Several extensions of Golog exist, including Concurrent Golog (ConGolog) [33] which augments Golog with

concurrency and interrupts, IndiGolog [34] which provides means for interleaving planning, sensing, and exe-

cution, and Decision-Theoretic Golog (DT-Golog) [19] that extends Golog to deal with quantified uncertainty

(modeled probabilistically) in state specifications and action outcomes, and general reward functions. In the

next section we look at the ConGolog agent programming language in more detail.
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3.2.1 ConGolog

ConGolog [33] extends Golog with concurrent processes with possibly di↵erent priorities, high-level interrupts,

and arbitrary exogenous actions. In this dissertation we concentrate on a fragment of ConGolog that includes

the following constructs:

� ::= nil | ↵ | '? | �1; �2 | �1|�2 | ⇡x.� | �⇤ | �1k�2 | atomic(�) | �1& �2 | set(E) | ⌃s(�) (3.18)

In the above, nil is a special program, called the empty program, that indicates the fact that nothing remains

to be performed. An action term is represented by ↵, which possibly has parameters. A situation-suppressed

formula, i.e., a formula with all situation arguments in fluents suppressed, is denoted by '; also sometimes

the situation argument is replaced by a placeholder now which represents the current situation. The formula

obtained from ' by restoring the situation argument s into all fluents in ' is represented by '[s]. E is a

set of ground action sequences. �1 and �2 represent complex actions (i.e., programs). The test action '?

determines if condition ' holds. The sequence of program �1 followed by program �2 is denoted by �1; �2.

Program �1|�2 allows for the non-deterministic choice between programs �1 and �2, while ⇡x.� executes

program � for some non-deterministic choice of a legal binding for variable x (observe that such a choice is,

in general, unbounded). �⇤ performs � zero or more times. Program �1k�2 expresses the concurrent execution

(interpreted as interleaving) of programs �1 and �2, while atomic(�) performs � as an atomic unit, without

allowing any interleaved actions [41]. The intersection/synchronous concurrent execution of programs �1

and �2 is denoted by �1& �2 [35]. The set(E) construct is an infinitary non-deterministic branch; it takes

an arbitrary set of sequences of actions E and turns it into a program [35]. Finally, the search operator

⌃s(�) is used to specify that lookahead is performed over the (non-deterministic) program � to ensure that

non-deterministic choices are resolved in a way that ensures its successful completion [34].

In ConGolog [33], as concurrency is taken into account, a single-step transition semantics for programs is de-

fined. This semantics is axiomatized through two predicates Trans(�, s, �0, s0) and Final(�, s). Trans(�, s, �0, s0)

holds if one step of program � in situation s may lead to situation s0 with �0 remaining to be executed; in

other words, Trans represents a transition relation between configurations (i.e., pairs formed by a program

and a situation) (�, s) and (�0, s0). Final(�, s) holds if program � may legally terminate in situation s.

Using the reflexive transitive closure of Trans denoted by Trans⇤, it is possible to define the abbreviation

Do(�, s, s0)
def
=9�0.Trans⇤(�, s, �0, s0) ^ Final(�0, s0). The abbreviation Do(�, s, s0) denotes that the program �,

starting execution in s may legally terminate in situation s0. As complex actions may be non-deterministic,

that is, they may have several di↵erent executions terminating in di↵erent situations, there may be several

such s0.
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The axioms for Trans and Final for the constructs in 3.18 (excluding atomic(), & and set) are shown

below:

Trans(nil, s, �0, s0) ⌘ False

Trans(↵, s, �0, s0) ⌘ s0 = do(↵, s) ^ Poss(↵, s) ^ �0 = True?

Trans('?, s, �0, s0) ⌘ False

Trans(�1; �2, s, �0, s0) ⌘ Trans(�1, s, �01, s
0) ^ �0 = �01; �2 _ Final(�1, s) ^ Trans(�2, s, �0, s0)

Trans(if ' then �1 else �2, s, �0, s0) ⌘ '[s] ^ Trans(�1, s, �0, s0) _ ¬'[s] ^ Trans(�2, s, �0, s0)

Trans(while ' do �, s, �0, s0) ⌘ '[s] ^ Trans(�, s, �00, s0) ^ �0 = �00; (while ' do �)

Trans(�1 | �2, s, �0, s0) ⌘ Trans(�1, s, �0, s0) _ Trans(�2, s, �0, s0)

Trans(⇡x.�, s, �0, s0) ⌘ 9x.Trans(�, s, �0, s0)

Trans(�⇤, s, �0, s0) ⌘ Trans(�, s, �00, s0) ^ �0 = �00; �⇤

Trans(�1k�2, s, �0, s0) ⌘ Trans(�1, s, �01, s
0) ^ �0 = �01k�2 _ Trans(�2, s, �02, s

0) ^ �0 = �1k�02
Trans(⌃s(�), s,⌃s(�0), s0) ⌘ Trans(�, s, �0, s0) ^ 9s00.Do(�0, s0, s00)

Final(nil, s) ⌘ True

Final(↵, s) ⌘ False

Final('?, s) ⌘ '[s]

Final(�1; �2, s) ⌘ Final(�1, s) ^ Final(�2, s)

Final(if ' then �1 else �2, s) ⌘ '[s] ^ Final(�1, s) _ ¬'[s] ^ Final(�2, s)

Final(while ' do �, s) ⌘ '[s] ^ Final(�, s0) _ ¬'[s]

Final(�1 | �2, s) ⌘ Final(�1, s) _ Final(�2, s)

Final(⇡x.�, s) ⌘ 9x.Final(�, s)

Final(�⇤, s) ⌘ True

Final(�1k�2, s) ⌘ Final(�1, s) ^ Final(�2, s)

Final(⌃s(�), s) ⌘ Final(�, s)

The axioms for Trans and Final for the first 10 constructs above are as in [138]; these are the ones introduced

in [33] except that following [29], the test construct '? does not yield any transition, but is final when satisfied.

Therefore, it is a synchronous version of the original test construct (interleaving is not allowed).

Details of the axioms above are provided in [33, 138, 34]. As an example, we look at the Trans and

Final for the sequence construct: for Trans(�1; �2, s, �0, s0) we have that (�1; �2, s) can evolve to (�01; �2, s
0),

provided that (�1, s) can evolve to (�01, s
0); alternatively, if (�1, s) is a final configuration and (�2, s) can

evolve to (�02, s
0), it can also evolve to (�02, s

0). For Final(�1; �2, s) we have that (�1; �2, s) can be considered

completed if both (�1, s) and (�2, s) are final.

Also, as in [138], it is required that in programs of the form ⇡x.�, the variable x occurs in some non-
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variable action term in �; cases where x occurs only in tests or as an action itself are not allowed. As a result,

⇡x.� acts as a construct for making non-deterministic choices of action parameters (possibly constrained by

tests). Given the above semantics, it is possible to define the conditional and while loop constructs in terms

of other constructs: if ' then �1 else �2
.
= ['?; �1] | [¬'?; �2] and while ' do �

.
= ['?; �]⇤;¬'?.

The definitions of Trans and Final for the atomic(�) construct are provided in Appendix B. We discuss

the axioms of Trans and Final for the constructs �1& �2 and set(E) in sections 3.2.2 and 3.3 respectively.

Here and in the rest, we use C to denote the axioms defining the ConGolog programming language.

3.2.2 Situation Determined Programs

In situation-determined (SD) programs [35], non-determinism is restricted so that the remaining program

is a function of the action performed. More formally, a ConGolog program � is situation-determined in a

situation s if for every sequence of actions, the remaining program is uniquely determined by the resulting

situation, i.e.,

SituationDetermined(�, s)
.
= 8s0, �0, �00.Trans⇤(�, s, �0, s0) ^ Trans⇤(�, s, �00, s0) � �0 = �00 (3.19)

For instance, the ConGolog program a; (b | c) (assuming the actions involved are always executable) is

situation-determined in situation S0. There is a unique remaining program (b | c) in situation do(a, S0)

(and in the same way, for the other reachable situations). However, the program (a; b) | (a; c) is not

situation-determined in situation S0, since after performing action a, and given only the situation do(a, S0),

it is impossible to determine what the remaining program is (it could be b or c). Any ConGolog program

can be made situation-determined by adding decision actions to non-deterministic choices [38]. For exam-

ple, the above program (a; b)|(a; c) can be made situation determined by adding distinct decision actions

(option1; a; b)|(option2; a; c).

In situation-determined programs, a run of a program starting in a given situation can be considered as

simply a sequence of actions, as the starting program, starting situation, and actions performed, functionally

determine all the intermediate remaining programs that are gone through during the execution. Thus it is

possible to view a program in a situation as specifying a language formed by all the sequences of actions that

are runs of the program in the situation.18 In this way, language theoretic notions such as union, intersection,

and di↵erence/complementation can be defined in terms of operations on the corresponding programs. The

18Note that in many cases not only the language will be infinite, but the alphabet on which the language is defined will
be infinite, since it is formed by all action instances obtained by substituting values from the (possibly infinite) domain for
parameters in the action types.
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non-deterministic branch construct can be viewed as a union operator; and the intersection and di↵erence

of programs �1 and �2 can be defined as follows:19

Trans(�1 & �2, s, �0, do(a, s)) ⌘ Trans(�1, s, �01, do(a, s)) ^ Trans(�2, s, �02, do(a, s)) ^ �0 = �01 & �02

Trans(�1 � �2, s, �0, do(a, s)) ⌘ Trans(�1, s, �01, do(a, s)) ^ Trans(�2, s, �02, do(a, s)) ^ �0 = �01 � �02 _

Trans(�1, s, �01, do(a, s)) ^ ¬Trans(�2, s, �02, do(a, s)) ^ �0 = �01

Final(�1 & �2, s) ⌘ Final(�1, s) ^ Final(�2, s)

Final(�1 � �2, s) ⌘ Final(�1, s) ^ ¬Final(�2, s)

In this context, it is possible to distinguish di↵erent types of runs for programs executing o✏ine (where

the agent does not acquire new knowledge during a run): the set RR
o✏

(�, s) of partial runs (0 or more steps)

of a program � in a situation s is defined as the sequences of actions that can be produced by executing �

from s:20

RR
o✏

(�, s) = {~a | 9�0.Trans⇤(�, s, �0, do(~a, s))} (3.20)

where ~a is a sequence of actions; similarly, it is possible to define complete runs:

CR
o✏

(�, s) = {~a | 9�0.Trans⇤(�, s, �0, do(~a, s)) ^ Final(�0, do(~a, s))} (3.21)

i.e., runs that end in a Final configuration, and good runs

GR
o✏

(�, s) = {~a | 9�0,~b.Trans⇤(�, s, �0, do(~a~b, s)) ^ Final(�0, do(~a~b, s))} (3.22)

i.e., partial runs that can be extended to a complete run.21

3.3 Agent Supervision

Agent supervision [35], proposed by De Giacomo, Lespérance and Muise (DLM), is a form of control /

customization of the agent’s behavior that ensures conformance to specifications while preserving the agent’s

autonomy. This framework is inspired by supervisory control of discrete event systems (SCDES) [166, 24],

and is based on the situation calculus and situation-determined ConGolog. DLM’s account of agent supervision

is based on o✏ine executions where an agent does not acquire new knowledge during a run.

19In sections 3.2.2 and 3.3 we change the notation slightly from [35] to promote clarity.

20The set notation is used for readability; it is possible to introduce RR
o✏

as a defined predicate [35].

21Note that quantification over sequence of actions (e.g., ~b) is used for readability; it is possible to reformulate quantification
over sequences of actions as quantification over situations in the situation calculus.
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In this framework, the agent’s possible behaviors are represented by a (non-deterministic) situation-

determined ConGolog program �i relative to a BAT D. The supervision specification is represented by another

situation-determined ConGolog program �s.22 In case it is possible to control all the actions of the agent,

then it is straightforward to specify the result of supervision as the intersection /synchronous concurrent

execution of the agent and the specification processes (�i & �s). Note that unless �i & �s is non-blocking

(i.e., every partial run is a good run: RR
o✏

(�, s) = GR
o✏

(�, s), or in other words, the execution can always

be extended to a final state), it may become stuck in dead-end configurations; thus, it is assumed that the

search construct ⌃s [45] is used in this case (⌃s(�i & �s)) which does lookahead to ensure that only good

runs are considered.

However in general, some of agent’s actions may be uncontrollable. These are often the result of inter-

action of an agent with external resources, or may represent aspects of agent’s behavior that must remain

autonomous and cannot be controlled directly. This notion is modeled by the special fluent Au(a, s) that

means action a is uncontrollable in situation s.

DLM define the controllability of a supervision specification �s with respect to the agent program �i in

situation s as:23

Controllable(�s, �i, s)
.
=

8~aau.9~b.Do(�s, s, do([~a,~b], s)) ^Au(au, do(~a, s)) �

(9~b.Do(�i, s, do([~a, au,~b], s)) � 9~b.Do(�s, s, do([~a, au,~b], s))),

(3.23)

i.e., if we postfix an action sequence ~a that is good o✏ine run for �s (i.e., such that 9~b.Do(�s, s, do([~a,~b], s))

holds) with an uncontrollable action au which is good for �i, then au must also be good for �s.

Then, DLM define the o✏ine maximally permissive supervisor (o✏ine MPS) mps
o✏

(�i, �s, s) of the agent

behavior �i which fulfills the supervision specification �s as:

mps
o✏

(�i, �s, s) = set(
[

E2E
E) where

E = {E | 8~a 2 E � Do(�i & �s, s, do(~a, s))

and set(E) is controllable wrt �i in s}

(3.24)

i.e., the o✏ine MPS is the union of all sets of action sequences that are complete o✏ine runs of both �i and

�s (i.e., such that Do(�i & �s, s, do(~a, s))) that are controllable for �i in situation s.

22In some cases, a declarative specification language would be preferable, e.g., linear temporal logic (LTL). Fritz and McIlraith
[61] show how an extended version of LTL interpreted over a finite horizon can be compiled into ConGolog.

23In Section 6.1, we show that we can easily re-write this definition of controllability to avoid quantification over action
sequences.
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The above definition uses the set(E) construct introduced by DLM, which is a sort of infinitary non-

deterministic branch; it takes an arbitrary set of sequences of actions E and turns it into a program. Its

semantics are defined as follows:

Trans(set(E), s, �0, s0) ⌘ 9a,~a.a~a 2 E ^ Poss(a, s) ^

s0 = do(a, s) ^ �0 = set({~a | a~a 2 E ^ Poss(a, s)})

Final(set(E), s) ⌘ ✏ 2 E

where ✏ is the empty sequence of actions. Therefore set(E) can be executed to produce any of the sequences

of actions in E.24

DLM show that their notion of o✏ine MPS, mps
o✏

(�i, �s, s), has a number of important properties;

it always exists and is unique, it is controllable with respect to the agent behavior �i in s, and it is the

largest set of o✏ine complete runs of �i that is controllable with respect to �i in s and satisfy the supervision

specification �s in s, i.e., is maximally permissive:

Theorem 3.1 ([35]) For the maximally permissive supervisor mps
o✏

(�i, �s, s) the following properties hold:

1. mps
o✏

(�i, �s, s) always exists and is unique;

2. mps
o✏

(�i, �s, s) is controllable with respect to �i in s;

3. For every possible controllable supervision specification �̂s for �i in s such that CR
o✏

(�i & �̂s, s) ✓

CR
o✏

(�i & �s, s), we have that CR
o✏

(�i & �̂s, s) ✓ CR
o✏

(�i & mps
o✏

(�i, �s, s), s).

The infinitary program construct set(E) is mostly of theoretical interest, thus the above definition of

mps
o✏

(�i, �s, s) remains essentially mathematical. For practical purposes, a new construct (&A
u

) for execu-

tion of programs under maximally permissive supervision is introduced by DLM. The construct (&A
u

) is a

special version of intersection that takes into account the fact that some actions are uncontrollable, and is

characterized through Trans and Final as follows:

Trans(�i &A
u

�s, s, �0, do(a, s)) ⌘

Trans(�i, s, �0i, do(a, s)) ^ Trans(�s, s, �0s, do(a, s)) ^ �0 = �0i &A
u

�0s and

if ¬Au(a, s), then

for all ~au such that Au( ~au, do(a, s))

if 9�00i .Trans
⇤(⌃s(�i), s, �00i , do(a ~au, s)),

then 9�00s .Trans⇤(⌃s(�s), s, �00s , do(a ~au, s))

24Obviously there are certain sets that can be expressed directly in ConGolog, e.g., when E is finite. However in the general
case, the object domain may be infinite, and set(E) may not be representable as a finitary ConGolog program.
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where Au( ~au, s), denotes that action sequence ~au is uncontrollable in situation s, and is inductively defined

on the length of ~au. Essentially, an action a by the agent is not allowed if it can be followed by some sequence

of uncontrollable actions that violates the specification. Final for this new construct is defined as follows:

Final(�i &A
u

�s, s) ⌘ Final(�i, s) ^ Final(�s, s)

i.e., �i &A
u

�s is final when both �i and �s are final. The &A
u

construct captures exactly the maximally

permissive supervisor, and it is shown that:

Theorem 3.2 ([35]) CR
o✏

(�i &A
u

�s, s) = CR
o✏

(�i & mps
o✏

(�i, �s, s), s).

Note that whilemps
o✏

(�i, �s, s) is always non-blocking, �i &A
u

�s may not be. Hence, in general lookahead

search must be used over the program �i &A
u

�s to find complete executions of &A
u

. Therefore, ⌃s(�i &A
u

�s)

is used.

In agent supervision, similarly to SCDES, the specification is separated from the system’s behavior. This

model supports system evolvability, especially in domains where user requirements and/or systems change

frequently. In addition, it may be feasible to use such supervisors with existing (legacy) systems, provided

minor changes (e.g., adding control points and observation capabilities) to such systems allows them to be

controlled by the supervisor. Moreover, the supervising agent minimally restricts the behavior of the system

agent, thus leaving it as much autonomy as possible to choose an action for execution among the set of

allowed actions.

The agent supervision framework generalizes the SCDES in a number of ways. First, due to its first-

order logic foundations, it enables a clear and formal characterization of the problem, copes with incomplete

information, and can handle infinite states. Moreover, this approach allows techniques of reasoning about

actions to be used, which enhances the process of decision making. Another noteworthy advantage of this

framework is that it enables users to provide the system model and the specifications in a high-level expressive

language. Finally, to provide greater flexibility in modeling systems, whether a primitive action is considered

controllable is assumed to be situation-dependent.
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4 Online Agent Supervision

The original DLM account of agent supervision assumes that the agent does not acquire new knowledge

about her environment while executing. This means that all reasoning is done using the same knowledge

base, and that only o✏ine executions are considered.

In this chapter,25 we study how we can apply the DLM framework in the case where the agent may

acquire new knowledge while executing, for example through sensing. This means that the knowledge base

that the agent uses in her reasoning needs to be updated during the execution. For instance, consider a

travel planner agent that needs to book a seat on a certain flight. Only after querying the airline web service

o↵ering that flight will the agent know if there are seats available on the flight.

Technically, this requires switching from o✏ine executions to online executions [39, 140], which, di↵erently

from o✏ine executions, can only be defined meta-theoretically (unless one adds a knowledge operator/fluent

[145]) since at every time point the knowledge base used by the agent to deliberate about the next action is

di↵erent.

Based on online executions, we formalize the notion of online maximally permissive supervisor and show

its existence and uniqueness, as in the simpler case of DLM. Moreover, we meta-theoretically define a program

construct (i.e., supervision operator) for online supervised execution that given the agent and specification,

executes them to obtain only runs allowed by the maximally permissive supervisor, showing its soundness

and completeness. We also define a new lookahead search construct that ensures the agent can successfully

complete the execution (i.e., ensures nonblockingness).

4.1 A Travel Planning Example

As a motivating example, we consider the task of planning a trip, which may involve booking a hotel and/or

flight. Imagine we have a very generic travel agent whose behavior is defined by the ConGolog program

�travelP lanner below, which we will later customize based on a client’s requirements:

25The results of this chapter have already appeared in [14], [12], and [13].
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�travelP lanner(cID, oC, dC, bD, eD) =

(�qryHtl(cID, dC, bD, eD) | �qryAir(cID, oC, dC, bD, eD) |

�pickHtl(cID, dC, bD, eD) | �pickAir(cID, oC, dC, bD, eD))⇤;

if 9htlID SelHtl(cID, htlID) _ 9airID SelAir(cID, airID)

then [

displaySelectedProposals(cID);

⇡htlID, airID.[clntResponse(cID, htlID, airID);

if htlID 6= NULL then bookHtl(cID, htlID);

if airID 6= NULL then bookAir(cID, airID)]

] else

reportFailure(cID)

endIf

The argument cID stands for the client session ID, oC for the origin city, dC for destination city, and finally

bD and eD represent the begin and end dates of the trip respectively. These are assumed to be known at

the outset of the program. The program begins by querying 0 or more hotel and/or airline web services in

any order, to check if they can fulfill the given request. The querying is done by two subprograms �qryHtl

and �qryAir, with the former defined as follows:

�qryHtl(cID, dC, bD, eD) =

(⇡htlID.[¬QrdHtlWS(cID, htlID, dC, bD, eD)?;

qryHtlWS(cID, htlID, dC, bD, eD);

⇡hC, stat.replyHtlWS(cID, htlID, hC, stat)]

This program can query any hotel web service (htlID), as long as it has not been queried before. The web

service’s reply to the query is represented by the exogenous action replyHtlWS, where the parameters hC

and stat return the cost and status of the web service (OK if it is able to fulfill the request and NotAvail

otherwise) respectively. The fluent RpldHtl(cID, htlID, dC, bD, eD, hC, stat, s) stores the reply from the

hotel web service after it is received. The procedure �qryAir is defined similarly and the fluent RpldAir

stores the reply from the airline web service.

As it is querying hotel and/or airline web services, �travelP lanner also executes the subprograms �pickHtl

and �pickAir to select 0 or more hotel and/or airline web service IDs, among those that replied positively, in

any order. The procedure �pickHtl is defined as follows:
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�pickHtl(cID, oC, dC, bD, eD) =

((⇡htlD, hC.[RpldHtl(cID, htlID, dC, bD, eD, hC,OK)?;

selectHtl(cID, htlID)])

�pickAir is defined similarly. The fluents SelHtl(cID, htlID, s) and SelAir(cID, airID, s) become true for

the selected hotels and airlines after actions selectHtl(cID, htlID) and selectAir(cID, airID) respectively.

If some hotels and/or airlines are selected, the program then presents them to user by executing the action

displaySelectedProposals(cID) after which the fluents ProposedHtl(cID, htlID, s) and ProposedAir(cID,

airID, s) become true for those hotels and airlines. Subsequently, the client’s response, represented by the

exogenous action clntResponse(cID, htlID, airID) is obtained, where htlID and airID may contain the

chosen hotel and airline or NULL. Finally, the program will book the hotel and/or airline chosen by the

client, if any. The fluents BookedHtl(cID, htlID, s) and/or BookedAir(cID, htlID, s) become true for the

hotel and/or airline booked for the client. The program may also simply report failure without selecting any

hotels and airlines.

In addition to a client’s basic requirements such as begin and end date of the trip, the client may have

further constraints and preferences. For instance, he may not want to fly with a certain airline, or he may

want the travel planner to propose at least two hotels, if possible. He may also have budget constraints.

Such constraints and preferences can be represented by another ConGolog program. Then, supervision can

be utilized to personalize the travel planner program based on the given specification. For example, suppose

that the client wants a hotel but not HtlX. We can represent this constraint by the following supervision

specification:

�client1(cID, oC, dC, bD, eD) =

[(⇡a.a)⇤;

9htlID. ProposedHtl(cID, htlID) _

8htlID.IsHtl(htlID, dc) ^ htlID 6= HtlX �

RpldHtl(cID, htlID, dC, bD, eD, hC,NotAvail)?;

(⇡a.a)⇤] &

⇡a.(a;¬BookedHtl(cID,HtlX)?)⇤

This specification is satisfied if eventually (i.e., after some sequence of actions) a hotel has been proposed

or all hotels other than HtlX replied that no room is available, and HtlX is never booked. In the above,

IsHtl is a relation that holds for all hotels in the destination city.

What executions can we get if we perform supervision on the generic travel planner agent with this

specification? Suppose for simplicity that there are only three hotel web services (HtlX, HtlY , and HtlZ)

and no airline web services. The supervision does not enforce any specific order in which these hotel web
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services are queried. Assuming the program queries HtlY first and it is not able to fulfill the request, then

HtlZ must be queried. The program can only report failure if neither of HtlY and HtlZ have available

rooms. In case HtlY is able to fulfill the request, then HtlZ may be queried. In either case, HtlX may

be queried as well. Once HtlY and/or HtlZ indicated availability, the travel planner must then select and

present at least one of them to the client. After obtaining the client’s response, the program must book the

client’s chosen hotel, if any. Supervision must ensure that HtlX is not selected and proposed to the client.

If it is, it might be chosen by the client, meaning that the agent must book it, which clearly violates the

supervision specification. At the same time, supervision must leave as much freedom for the program as

possible, so for example, the program can still query HtlX and need not query HtlZ in case HtlY has a

room available. What supervision produces will become clearer after we have given the formal definitions in

Section 4.3. We will return to our example there.

4.2 Agents Executing Online

In our account of agent supervision, we want to accommodate agents that can acquire new knowledge about

their environment during execution, for example by sensing, and where their knowledge base is updated with

this new knowledge. Thus we consider an agent’s online executions, where, as she executes the program, at

each time point, she makes decisions on what to do next based on what her current knowledge is.

4.2.1 Sensing and Exogenous Actions

A crucial aspect of online executions is that the agent can take advantage of sensing. Similarly to the

approach of [99] (see Section 2.3), we model sensing as an ordinary action which queries a sensor, followed

by the reporting of a sensor result, in the form of an exogenous action.

Specifically, to sense whether fluent P holds within a program, we use a macro:

SenseP
.
= QryIfP ; (repV alP (1) | repV alP (0)),

where QryIfP is an ordinary action that is always executable and is used to query (i.e., sense) if P holds and

repV alP (x) is an exogenous action with no e↵ect that informs the agent if P holds through its precondition

axiom, which is of the form:

Poss(repV alP (x), s) ⌘ P (s) ^ x = 1 _ ¬P (s) ^ x = 0.

Thus, we can understand that SenseP reports value 1 through the execution of repV alP (1) if P holds, and

0 through the execution of repV alP (0) otherwise.

For example, consider the following agent program:
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�i = SenseP ; [P?;A] | [¬P?;B]

and assume the agent does not know if P holds initially. So initially we have D [ C |= Trans(�i, S0, �0, S1)

where S1 = do(QryIfP , S0) and �0 = nil; (repV alP (1) | repV alP (0))); [P?;A] | [¬P?;B]. At S1, the agent

knows either of the exogenous actions repV alP (0) or repV alP (1) could occur, but does not know which.

After the occurrence of one of these actions, the agent learns whether P holds. For example, if repV alP (1)

occurs, the agent’s knowledge base is now updated to D [ C [ {Poss(repV alP (1), S1)} (where C denotes

the axioms defining the ConGolog programming language). With this updated knowledge, she knows which

action to do next:

D [ C [ Poss(repV alP (1), S1) |=

Trans(nil; [P?;A] | [¬P?;B], do(repV alP (1), S1), nil, do([repV alP (1), A], S1)).

Notice that with this way of doing sensing, we essentially store the sensing results in the situation (which

includes all actions executed so far including the exogenous actions used for sensing). In particular the

current KB after having performed the sequence of actions ~a is:

D [ C [ {Executable(do(~a, S0))}.

Note that this approach also handles the agent’s acquiring knowledge from an arbitrary exogenous action.

4.2.2 Online Executions

Agent online configurations and transitions. We denote an agent by �, which stands for a pair hD, �ii,

where �i is the initial program of the agent expressed in ConGolog and D is a BAT that represents the agent’s

initial knowledge (which may be incomplete). We assume that we have a finite set of primitive action types

A, which is the disjoint union of a set of ordinary primitive action types Ao and exogenous primitive action

types Ae.

An agent configuration is modeled as a pair h�,~ai, where � is the remaining program and ~a is the current

history, i.e, the sequence of actions performed so far starting from S0. The initial configuration ci is h�i, ✏i,

where ✏ is the empty sequence of actions.

The online transition relation between agent configurations is (a meta-theoretic) binary relation between

configurations defined as follows:
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h�,~ai !A(~n) h�0,~aA(~n)i

if and only if

either A 2 Ao, ~n 2 N k and

D [ C [ {Executable(do(~a, S0))} |= Trans(�, do(~a, S0), �0, do(A(~n), do(~a, S0)))

or A 2 Ae, ~n 2 N k and

D [ C [ {Executable(do(~a, S0)), T rans(�, do(~a, S0), �0, do(A(~n), do(~a, S0)))} is satisfiable.

Here, h�,~ai !A(~n) h�0,~aA(~n)i means that configuration h�,~ai can make a single-step online transition to

configuration h�0,~aA(~n)i by performing action A(~n). If A(~n) is an ordinary action, the agent must know

that the action is executable and know what the remaining program is afterwards. If A(~n) is an exogenous

action, the agent need only think that the action may be possible with �0 being the remaining program, i.e.,

it must be consistent with what she knows that the action is executable and �0 is the remaining program.

As part of the transition, the theory is (implicitly) updated in that the new exogenous action A(~n) is added

to the action sequence, and Executable(do([~a,A(~n)], S0)) will be added to the theory when it is queried in

later transitions, thus incorporating the fact that Poss(A(~n), do(~a, S0)) is now known to hold.

The (meta-theoretic) relation c !⇤
~a c0 is the reflexive-transitive closure of c !A(~n) c0 and denotes that

online configuration c0 can be reached from the online configuration c by performing a sequence of online

transitions involving the sequence of actions ~a.

We also define a (meta-theoretic) predicate cX meaning that the online configuration c is known to be

final:

h�,~aiX if and only if

D [ C [ {Executable(do(~a, S0))} |= Final(�, do(~a, S0)).

Online situation determined agents. Here, we are interested in programs that are situation-determined

(SD), i.e., given a program, a situation and an action, we want the remaining program to be determined.

However this is not su�cient when considering online executions. We want to ensure that the agent always

knows what the remaining program is after any sequence of actions. We say that an agent is online situation-

determined (online SD) if for any sequence of actions that the agent can perform online, the resulting agent

configuration is unique. Formally, an agent � = hD, �ii with initial configuration ci = h�i, ✏i is online SD if

and only if for all sequences of actions ~a, if ci !⇤
~a c0 and ci !⇤

~a c00 then c0 = c00.

We say that an agent � = hD, �ii always knows the remaining program after an exogenous action if and

only if
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for all action sequences ~a,A 2 Ae, ~n 2 N k

if D [ C [ {Executable(do(~a, S0)), T rans(�, do(~a, S0), �0, do([~a,A(~n)], S0))} is satisfiable,

then there exists a program �0 such that

D [ C [ {Executable(do([~a,A(~n)], S0))} |= Trans(�, do(~a, S0), �0, do([~a,A(~n)], S0)).

Essentially, it states that whenever the agent considers it possible that an exogenous action may occur, then

she knows what the remaining program is afterwards if it does occur.

We can show that (for proofs of our results in this chapter, see Appendix A.1):

Theorem 4.1 For any agent � = hD, �ii, if �i is known to be SD in D, i.e., D[C |= SituationDetermined(�i,

S0), and if � always knows the remaining program after an exogenous action, then � is online SD.

Being online SD is an important property. It means that for any sequence of actions that the agent can

perform in an online execution, there is a unique resulting agent configuration, i.e., agent belief state and

remaining program. From now on, we assume that the agent is online SD.

Online Runs. For an agent � that is online SD, online executions can be succinctly represented by

runs formed by the corresponding sequence of actions. The set RR(�) of (partial) runs of an online SD

agent � with starting configuration ci is the sequences of actions that can be produced by executing ci

from S0: RR(�) = {~a | 9c.ci !⇤
~a c}. A run is complete if it reaches a final configuration. Formally

we define the set CR(�) of complete runs as: CR(�) = {~a | 9c.ci !⇤
~a c ^ cX}. Finally we say that a

run is good if it can be extended to a complete run. Formally we define the set GR(�) of good runs as:

GR(�) = {~a | 9c, c0, ~a0.ci !⇤
~a c ^ c !⇤

~a0 c
0 ^ c0X}.

4.3 Online Agent Supervision

4.3.1 Motivation

Agent supervision aims at restricting an agent’s behavior to ensure that it conforms to a supervision spec-

ification while leaving it as much autonomy as possible. DLM’s account of agent supervision is based on

o✏ine executions and does not accommodate agents that acquire new knowledge during a run.

To see why the notion of o✏ine MPS is inadequate in the context of online execution, let’s look at the

following example:

Example 4.1 Suppose that we have an agent that does not know whether P holds initially, i.e., D 6|= P (S0)

and D 6|= ¬P (S0). Suppose that the agent’s initial program is:
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�i4 = [P?; ((A; (C | U)) | (B;D))] | [¬P?; ((A;D) | (B; (C | U)))]

where all actions are ordinary, always executable, and controllable except for U , which is always uncontrol-

lable. Suppose that the supervision specification is:

�s4 = (⇡a.a 6= U?; a)⇤

i.e., any action except U can be performed. It is easy to show that the o✏ine MPS obtained using DLM’s

definition is di↵erent depending on whether P holds or not:

D [ C |= (P (S0) � mps
o✏

(�i4, �
s
4, S0) = set({[B,D]})) ^

(¬P (S0) � mps
o✏

(�i4, �
s
4, S0) = set({[A,D]}))

where mps
o✏

is defined as in Section 3.3. For models of the theory where P holds, the o✏ine MPS is

set({B,D}), as the set of complete o✏ine runs of �s4 in S0 is {[B,D], [A,C]} and set({[A,C]}) is not

controllable with respect to �i4 in S0. For models where P does not hold, the o✏ine MPS is set({A,D}),

since the set of complete o✏ine runs of �s4 in S0 is {[A,D], [B,C]} and set({[B,C]}) is not controllable with

respect to �i4 in S0. Since it is not known if P holds, it seems that a correct supervisor should neither allow

A nor B.

As the above example illustrates, we have an o✏ine MPS for each model of the theory. Instead, we want a

single online MPS that works for all models and includes sensing information when acquired. The di↵erence

between o✏ine MPS and online MPS is analogous to the di↵erence between classical plans and conditional

plans that include sensing in the planning literature [120, 121].

4.3.2 Online Maximally Permissive Supervisor

In our account of supervision, we want to deal with agents that may acquire knowledge through sensing and

exogenous actions as they operate and make decisions based on what they know, and we model these as

online SD agents. Let’s see how we can formalize supervision for such agents. Assume that we have an online

SD agent � = hD, �ii whose behavior we want to supervise. Let’s also suppose that we have a supervision

specification �s of what behaviors we want to allow in the supervised system, where �s is a SD ConGolog

program relative to the BAT D of the agent. In fact, we assume that the system hD, �si is also online SD.

We say that a specification �s is online controllable with respect to online SD agent � = hD, �ii i↵:
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8~aau.~a 2 GR(hD, �si) and

D [ {Executable(do(~a, S0))} 6|= ¬Au(au, do(~a, S0)) implies

if ~aau 2 GR(�) then ~aau 2 GR(hD, �si).

i.e., if we postfix a good online run ~a for hD, �si with an action au that is not known to be controllable

which is good for � (and so ~a must be good for � as well), then au must also be good for hD, �si. (Note that

~aau 2 GR(�) and ~aau 2 GR(hD, �si) together imply that ~aau 2 GR(hD, �i& �si).) This definition is quite

similar to DLM’s. But it di↵ers in that it applies to online runs as opposed to o✏ine runs. Moreover it treats

actions that are not known to be controllable as uncontrollable, thus ensuring that �s is controllable in all

possible models/worlds compatible with what the agent knows. Note that like DLM, we focus on good runs

of the program, assuming that the agent will not perform actions that don’t lead to a final configuration of �i.

The supervisor only ensures that given this assumption, the program always conforms to the specification.

We define the online maximally permissive supervisor mps
onl

(�s,�) of the online SD agent � = hD, �ii

which fulfills the supervision specification �s:

mps
onl

(�s,�) = set(
S

E2E E) where

E = {E | E ✓ CR(hD, �i & �si) and set(E) is online controllable with respect to �}

i.e., the online MPS is the union of all sets of action sequences that are complete online runs of both �i and

�s that are online controllable for the agent �. Again, our definition is similar to DLM’s, but applies to

online runs, and relies on online (as opposed to o✏ine) controllability. We can show that:

Theorem 4.2 For the online maximally permissive supervisor mps
onl

(�s,�) of the online SD agent � =

hD, �ii which fulfills the supervision specification �s, where hD, �si is also online SD, the following properties

hold:

1. mps
onl

(�s,�) always exists and is unique;

2. hD,mps
onl

(�s,�)i is online SD;

3. mps
onl

(�s,�) is online controllable with respect to �;

4. for every possible online controllable supervision specification �̂s for � such that CR(hD, �i&�̂si) ✓

CR(hD, �i&�si), we have that CR(hD, �i&�̂si) ✓ CR(hD,mps
onl

(�s,�)i), i.e., mps
onl

is maximally

permissive;

5. RR(hD,mps
onl

(�s,�)i) = GR(hD,mps
onl

(�s,�)i), i.e., mps
onl

(�s,�) is non-blocking.
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Example 4.2 If we return to the agent of Example 4.1, who does not know whether P holds initially, it is

easy to show that our definition of online MPS yields the correct result, i.e. mps
onl

(�s4, hD, �i4i) = set({✏}).

Example 4.3 Supervision can also depend on the information that the agent acquires as it executes. Again,

suppose that we have an agent that does not know whether P holds initially. Suppose also that the agent’s

initial program is �i5 = SenseP ; �i4. We can show that:

D [ C |= (P (S0) � mps
o✏

(�i5, �
s
4, S0) =

set({[QryIfP , repV alP (1), B,D]})) ^

(¬P (S0) � mps
o✏

(�i5, �
s
4, S0) =

set({[QryIfP , repV alP (0), A,D]}))

Again, we have di↵erent o✏ine MPSs depending on whether P holds. But since the exogenous report makes

the truth value of P known after the first action, we get one online MPS for this agent as follows:

mps
onl

(�s4, hD, �i5i) = set({[QryIfP , repV alP (1), B,D], [QryIfP , repV alP (0), A,D]})

Because the agent queries if P holds, the supervisor has enough information to decide the maximal set

of runs from then on in each case. So if the reported value of P is true, then the online supervisor should

eliminate the complete run [A,C] as it is not controllable, and if P does not hold, the run [B,C] should be

eliminated for the same reason.

As well, an action’s controllability or whether it satisfies the specification may depend on a condition

whose truth only becomes known during the execution. Such cases cannot be handled by DLM’s original

o✏ine account but our online supervision account does handle them correctly.

4.3.3 Online Supervision Operator

We can also introduce a meta-theoretic version of a synchronous concurrency operator �i&onl

A
u

�s that captures

the maximally permissive execution of an agent hD, �ii under online supervision for specification �s. Without

loss of generality, we assume that both �i and �s start with a common controllable action (if not, it is trivial

to add a dummy action in front of both so as to fulfill the requirement). We define �i&onl

A
u

�s by extending

the online transition relation as follows:
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h�i&onl

A
u

�s,~ai !a h�i0&onl

A
u

�s
0
,~aai

if and only if

h�i,~ai !a h�i0 ,~aai and h�s,~ai !a h�s0 ,~aai and

if D [ {Executable(do(~a, S0))} |= ¬Au(a, do(~a, S0))

then for all ~au s.t. D [ {Executable(do(~aa~au, S0)),

Au(~au, do(~aa, S0))} is satisfiable,

if ~aa ~au 2 GR(hD, [~a; �i]i), then ~aa ~au 2 GR(hD, [~a; �s]i).

where Au( ~au, s), means that action sequence ~au is uncontrollable in situation s, and is inductively defined

on the length of ~au as the smallest predicate such that: (i) Au(✏, s) ⌘ true; (ii) Au(au ~au, s) ⌘ Au(au, s) ^

Au( ~au, do(au, s)). Thus, the online maximally permissive supervised execution of �i for the specification �s

is allowed to perform action a in situation do(~a, S0) if a is allowed by both �i and �s and moreover, if a is

known to be controllable, then for every sequence of actions ~au not known to be controllable, if ~au may be

performed by �i right after a on one of its complete runs, then it must also be allowed by �s (on one of its

complete runs). Essentially, a controllable action a by the agent must be forbidden if it can be followed by

some sequence of actions not known to be controllable that violates the specification.

The final configurations are extended as follows:

(h�i&onl

A
u

�s,~ai)X if and only if (h�i,~ai)X and (h�s,~ai)X

We can show that firstly, if both the agent and supervision specification programs are online SD, then so is

the program obtained using the online supervision operator, and moreover, this program is controllable with

respect to to the agent program:

Theorem 4.3

1. If hD, �si and hD, �ii are online SD, then so is hD, �i&onl

A
u

�si.

2. �i &onl

A
u

�s is online controllable with respect to hD, �ii.

Moreover, the complete runs of the program obtained using the online supervision operator are exactly

the same the complete runs generated under synchronous concurrency of the agent and mps
onl

(�s,�):

Theorem 4.4

CR(hD, �i &onl

A
u

�si) = CR(hD, �i & mps
onl

(�s,�)i).

While �i &onl

A
u

�s and mps
onl

(�s,�) have the same complete runs, it is not the case that they have the

same set of partial runs. In fact in general, RR(hD, �i &onl

A
u

�si) 6= GR(hD, �i &onl

A
u

�si), i.e., the program

70



obtained using the online supervision operator is not necessarily non-blocking. This is in contrast with

mps
onl

(�s,�), which is guaranteed to be non-blocking (Theorem 4.2).

Example 4.4 Suppose we have the agent program:

�i6 = (A | [B;C; (U1 | U2;D)])

where all actions except U1 and U2 are ordinary and controllable. Moreover, assume the supervision speci-

fication is:

�s6 = (⇡a.a 6= D?; a)⇤

i.e., any action except D can be performed. The online MPS for this agent is simply set({A}), since

CR(hD, �s6i) = {A, [B,C,U1]} and set({[B,C,U1]}) is not controllable with respect to �i6. However, under

online supervised execution, the agent may execute the action B. We have h�i6&onl

A
u

�s6, ✏i !B h�06&onl

A
u

�s6, Bi

where �06 is what remains from �i6 after executing B. The resulting program is not final in do(B,S0), yet

there is no transition from this state, as the action C could be followed by the uncontrollable action U2 and

it is not possible to ensure successful completion of the program, as the action D is not allowed. Thus, one

must do lookahead search over online executions of �i6 &onl

A
u

�s6 to obtain good/complete runs. We propose

such a search/lookahead construct next.

4.3.4 Search Over a Controllable Program

When we have a specification/program �s that is controllable with respect to an agent hD, �ii (like for

instance, �i &onl

A
u

�s), for any choice of uncontrollable action that is on a good run of �i, it is always possible

to find a way to continue executing �s until the program successfully completes. We can define a search

construct26 that is applicable to these cases. It makes an arbitrary choice of action that is on a good run of

�i when the action is not known to be controllable, while still only performing actions that are on a good

run of �s otherwise. We call this construct weak online search ⌃w
onl

(�s, �i) and define it (meta-theoretically)

as follows:27

26 In IndiGolog a simple type of search is provided that only allows a transition if the remaining program can be executed to
reach a final state in all the o✏ine executions [39]. However, this search does not deal with sensing and online executions.

27Since �i can include exogenous actions, in general, executions of the program could actually perform exogenous actions
that are not on a good run of �i. However, here we are interested in the case where the exogenous actions are mainly sensor
reports and external requests (rather than the actions of an adversary). Handling adversarial non-determinism in �i is left for
future work.
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h⌃w
onl

(�s, �i),~ai !a h⌃w
onl

(�s
0
, �i

0
),~aai

if and only if

h�s,~ai !a h�s0 ,~aai and h�i,~ai !a h�i0 ,~aai and

if D [ {Executable(~a, S0)} |= ¬Au(a, do(~a, S0))

then ~aa 2 GR(hD, [~aa; �s
0
]i)

else ~aa 2 GR(hD, [~aa; �i
0
]i)

The final configurations are extended as follows:

(h⌃w
onl

(�s, �i),~ai)X i↵ (h�s,~ai)X and (h�i,~ai)X

It is easy to show that:

Theorem 4.5 If hD, �si and hD, �ii are online SD, than so is hD,⌃w
onl

(�s, �i)i.

Now, we can show that the weak online search construct has many nice properties when the program is

controllable:

Theorem 4.6 Suppose that we have an agent hD, �ii, and a supervision specification �s which are online

SD. Suppose also that �s is online controllable with respect to hD, �ii, and that CR(hD, �si) ✓ CR(hD, �ii).

Then we have that:

1. CR(hD,⌃w
onl

(�s, �i)i) = CR(hD, �si), i.e., the complete runs of ⌃w
onl

(�s, �i) are the complete runs of �s.

2. If CR(hD, �si) 6= ;, then RR(hD,⌃w
onl

(�s, �i)i) = GR(hD, �si), i.e., the partial runs of ⌃w
onl

(�s, �i) are

the good runs of �s.

3. If CR(hD, �si) 6= ;, then RR(hD,⌃w
onl

(�s, �i)i) = GR(hD,⌃w
onl

(�s, �i)i), i.e., partial runs must be good

runs, and the resulting program is “non blocking”.

It is also easy to show that none of these properties hold for arbitrary non-controllable programs.

Now we can show that if we apply this weak lookahead search to �i &onl

A
u

�s, we obtain a program that

has the same partial runs as mps
onl

(�s,�) and is thus non-blocking:

Theorem 4.7

RR(hD,⌃w
onl

(�i &onl

A
u

�s, �i)i) = RR(hD, �i & mps
onl

(�s,�)i).

If we apply the weak online search construct over �i6 &onl

A
u

�s6 in Example 4.4, we no longer have

an online transition involving action B; the only possible online transition is h⌃w
onl

(�i6&
onl

A
u

�s6, �
i
6), ✏i !A

h⌃w
onl

(nil &onl

A
u

�s6, nil), Ai where action A is performed, after which we have (h⌃w
onl

(nil &onl

A
u

�s6, nil), Ai)X.
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4.3.5 Travel Planning Example Revisited

Let’s return to the travel planning example of Section 4.1. There we presented a generic travel planning

agent/process �travelP lanner and a simple customization supervision specification �client1 where the client

requires at least one hotel to be proposed provided one has a room available and that hotel HtlX is never

booked. What is the online MPS based on this supervision specification? Essentially, the supervised process

cannot report failure unless it has queried all hotels at the destination other than HtlX and none has a room

available; if some such hotel has a room available, then one such hotel must be selected; moreover, HtlX

cannot be selected because if it is selected, then it must be proposed, and then the client may choose it and

then it must be booked, thus violating the supervision specification.

The resulting online MPS can be obtained by inserting the following program in the �travelP lanner process

right after the lines for querying/selecting airlines and/or hotels:

¬SelHtl(cID,HtlX) ^

(9htlID. ProposedHtl(cID, htlID) _

8htlID.IsHtl(htlID, dc) ^ htlID 6= HtlX �

RpldHtl(cID, htlID, dC, bD, eD, hC,NotAvail)?;

Observe that the intersection of the process and supervision specification �travelP lanner & �client1 does not

give the right result in this case. In particular, it allows the agent to select HtlX and so it is not controllable

for �travelP lanner, since if HtlX is selected, then it must be proposed, and then the client may choose it, in

which case it it must be booked and the supervision specification process will not terminate successfully.

Now let’s look at a second example of customization. Suppose the client has a given budget (B) and

does not want the total cost of hotels (hC) and flights (aC) proposed to him to be over this budget. One

could represent this specification as follows:

�client2(cID, oC, dC, bD, eD) =

⇡a.(a;¬9 htlID.ProposedHtl(cID, htlID) ^

RpldHtl(cID, htlID, dC, bD, eD, hC,OK) ^

8airID.ProposedAir(cID, airID) ^

RpldAir(cID, airID, oC, dC, bD, eD, aC,OK) �

hC + aC > B?)⇤

i.e., the process should never have proposed a hotel such that with every proposed flight the total cost of hotel

and flight exceeds the budget (normally, this would be combined with other constraints). Intuitively, the

online MPS for this specification is such that the agent can do anything it wants, as long as it never selects

any flight, or if it does select a flight, then it does not select a hotel unless it knows of an available flight such

that the combined hotel and flight cost is within budget and then such a flight must be selected before the
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selected proposals are displayed. Note that the agent may choose to simply report failure or avoid selecting

any hotel. Again, the intersection of the agent process and supervision specification is not controllable with

respect to the former, and is not the MPS. If a flight has been selected and a hotel is selected without the

agent knowing of an available flight such that the combined hotel and flight cost is within budget, then the

responses of airline websites about flight availability and cost, which are uncontrollable, may not yield such

a flight, and the process may have no way of satisfying the constraint and completing successfully.

In a similar way, it is possible to perform configuration of the generic travel planner process for a travel

service provider. For example, suppose we have a service provider for business executives that only o↵ers

4 or 5 star hotels which are located in a downtown area. We can define a supervision specification for this

configuration task as follows:

�bzProfileConfig(cID, oC, dC, bD, eD) =

⇡a.(a; [¬9htlID.QrdHtlWS(cID, htlID, dC, bD, eD)^

¬BzHtlProfile(CID, htlID))]?)⇤

where BzHtlProfile(cID, htlID) =

[HtlRating(htlID, 4) _HtlRating(htlID, 5)] ^

HtlArea(htlID,Downtown)

Personalization of the travel planner process for a client can be done simultaneously with configuration

for the service provider. In this case, the supervision specification will be the intersection of the service

provider’s configuration specification with the the client’s personalization specification.

4.4 Discussion

In this chapter, building upon DLM’s proposal [35] and earlier work on supervisory control of discrete event

systems [129, 166, 24], we have developed an account of supervision for agents that execute online and can

acquire new information through sensing and exogenous actions as they operate.

In the area of web service composition, a highly influential approach by McIlraith and Son [113] involves

customizing a generic ConGolog process based on the user’s constraints and preferences. The customer’s

constraints with respect to an action a are captured by the fluent Desirable(a, s); this is in contrast to our

approach where the specification is separate from the agent program, providing flexibility and evolvability

of the system. Fritz and McIlraith [61] represent customer’s requirements as LTL constraints complied

into ConGolog and evaluated over a finite horizon. These approaches do not consider uncontrollable actions;

moreover, they both assume a middle ground between o✏ine and online execution that depends on reasonable

persistence of sensed information, which in many cases, does not hold.
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In “Roman Model” approach to behavior composition, Sardina and DeGiacomo [138] synthesize a con-

troller that orchestrates the concurrent execution of library of available (non-deterministic) ConGolog pro-

grams to realize a target program not in the library. However, they assume complete information on the

initial situation, and their controller is not maximally permissive. In related work, Yadav et al. [169] consider

optimal realization of the target behavior (in the presence of uncontrollable exogenous events) when its full

realization is not possible. This work does not synthesize a supervisor and uses a controller. Also, it does not

assume the controllability of events to be dynamic. De Giacomo et al. [44] however, synthesize a controller

generator that represents all possible compositions of the target behavior and may adapt reactively based

on runtime feedback. In a more recent work Felli et al. [58] relate the notion of a composition controller in

the “Roman Model” approach to behavior composition to that of a supervisor in SCDES. Di↵erently from

our framework which uses a rich first order language, these three approaches model behaviors/services as

(non-deterministic) finite state transition systems.

In the area on norm enforcement, the approach by Alechina et al. [2] regulates multiagent systems

using regimented norms. A transition system describes the behavior of a (multi-) agent system and a guard

function (characterized by LTL formulae with past operators) can enable/disable options that (could) violate

norms after a system history (possibly using bounded lookahead). This work does not consider uncontrollable

events, and is not based on expressive first order logic language. Gabaldon [65] investigates expressing and

enforcing norms in the Golog programming language. Norms are encoded as additional preconditions of

actions. In related work on control knowledge, Gabaldon [64] provides a procedure for compiling search

control knowledge in non-Markovian action theories in the situation calculus. Control knowledge is added to

precondition axioms of actions. Adding constraints as preconditions of actions in the latter two approaches,

can not provide the flexibility and system evolvability that our framework can provide, as the supervision

specification is encoded separately from agent behavior. Moreover, these two approaches do not consider

uncontrollable actions and online executions.

Aucher [7] reformulates the results of supervisory control theory in terms of model checking problems

in an epistemic temporal logic. Our work di↵ers from this approach in that due to its first-order logic

foundations, it can handle infinite object domains and infinite states. It also enables users to express the

system model and the specifications in a high-level expressive language.

In the literature on supervisory control theory, non-determinism is often considered as the result of lack

of information (e.g., partial observation or unmodeled internal dynamics of a system). Non-deterministic

plants (e.g., [92]), non-deterministic supervisors (e.g., [87]) and non-deterministic specifications (e.g., [174])

have been studied. However, lack of information in our framework stems from incomplete knowledge in the

initial state; and as the agent executes her program, she may learn new information. Our approach also

di↵ers from limited-lookahead controller [25, 76, 159] which uses a N-Step ahead projection (a tree) of all the
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possible continuations of the executed prefix to make a control decision to handle cases where there is lack

of information on the possible system variations. In our framework the modeler has knowledge on possible

system variations, and we use a search construct to ensure non-blocking executions.
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5 Abstracting O✏ine Agent Behavior

Abstraction is a pervasive activity in our commonsense reasoning, as it helps solving the task at hand by

identifying a simpler version of the task which eliminates the less important aspects of the problem [137].

For instance, when shipping items from a warehouse to a customer, we initially tend to think in terms of

more abstract actions such as sending the shipment by air or via land. Then, at a more refined level, we

consider more concrete actions such as the specific paths that the shipment can take to reach the customer.

Such a hierarchical structure in reasoning seems essential in managing the complexity of many everyday

tasks.

In this chapter,28 we develop a general framework for abstraction of o✏ine agent behavior based on the

situation calculus [110, 132] and the ConGolog [33] agent programming language. We assume that one has

a high-level/abstract action theory, a low-level/concrete action theory, and a refinement mapping between

the two. The mapping associates each high-level primitive action to a (possibly non-deterministic) ConGolog

program defined over the low-level action theory that “implements it”. Moreover, it maps each high-level

fluent to a state formula in the low-level language that characterizes the concrete conditions under which it

holds.

In this setting, we define a notion of a high-level theory being a sound abstraction of a low-level theory

under a given refinement mapping. The formalization involves the existence of a suitable bisimulation relation

[116, 117] between models of the low-level and high-level theories. With a sound abstraction, whenever the

high-level theory entails that a sequence of actions is executable and achieves a certain condition, then the

low level must also entail that there exists an executable refinement of the sequence such that the “translated”

condition holds afterwards. Moreover, whenever the low level thinks that a refinement of a high-level action

(perhaps involving exogenous actions) could occur (i.e., its executability is satisfiable), then the high level

does also. Thus, sound abstractions can be used to perform e↵ectively several forms of reasoning about

action, such as planning, agent monitoring, and generating high-level explanations of low-level behavior. We

also provide a proof-theoretic characterization that gives us the basis for automatically verifying that we

have a sound abstraction.

28The results of this chapter have already appeared in [15] and [11].
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In addition, we define a dual notion of complete abstraction where whenever the low-level theory entails

that some refinement of a sequence of high-level actions is executable and achieves a “translated” high-level

condition, then the high level also entails that the action sequence is executable and the condition holds

afterwards. Moreover, whenever the high level thinks that an action can occur (i.e., its executability is

satisfiable), then there exists a refinement of the action that the low level thinks can happen as well.

Finally, we identify a set of basic action theory constraints that ensure that for any low-level action

sequence, there is a unique high-level action sequence that it refines. This allows us to track/monitor what

the low-level agent is doing and describe it in abstract terms (i.e., provide high-level explanations) e.g., to a

client or manager.

5.1 Refinement Mappings

Suppose that we have a basic action theory Dl and another basic action theory Dh. We would like to

characterize whether Dh is a reasonable abstraction of Dl. Here, we consider Dl as representing the low-level

(LL) (or concrete) action theory/agent and Dh the high-level (HL) (or abstract) action theory/agent. We

assume that D
h

(resp. D
l

) involves a finite set of primitive action types A
h

(resp. A
l

) and a finite set

of primitive fluent predicates F
h

(resp. F
l

). For simplicity, we assume that D
h

and D
l

, share no domain

specific symbols except for the set of standard names for objects N . Moreover, for simplicity, and without

loss of generality, we assume that there are no functions that return objects; object terms are only constants

or variables. We also assume that there are no non-fluent predicates.

We want to relate expressions in the language of Dh and expressions in the language of Dl. We say that

a function m is a refinement mapping from Dh to Dl if and only if:

1. for every high-level primitive action type A in A
h

, m(A(~x)) = �A(~x), where �A(~x) is a ConGolog program

over the low-level theory Dl whose only free variables are ~x, the parameters of the high-level action

type; intuitively, �A(~x) represents how the high-level action A(~x) can be implemented at the low level;

since we use programs to specify the action sequences the agent may perform, we require that �A(~x)

be situation-determined, i.e., the remaining program is always uniquely determined by the situation

[35];

2. for every high-level primitive fluent F (~x) (situation-suppressed) in F
h

, m(F (~x)) = �F (~x), where �F (~x)

is a situation-suppressed formula over the language of D
l

, and the only free variables are ~x, the object

parameters of the high-level fluent; intuitively �F (~x) represents the low-level condition under which

F (~x) holds in a situation.

Note that we can map a fluent in the high-level theory to a fluent in the low-level theory, i.e., m(Fh(~x)) =

Fl(~x), which e↵ectively amounts to having the low-level fluent be present in the high-level theory. Similarly,
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one can include low-level actions in the high-level theory.

Example 5.1 For our running example, we use a simple logistics domain. There is a shipment with ID

123 that is initially at a warehouse (W ), and needs to be delivered to a cafe (Cf ), along a network of roads

shown in Figure 5.1 (warehouse and cafe images are from freedesignfile.com).

a b

Route B

Route C

Route A

L1
L2

e

d

c

f g

hL4

L3

Figure 5.1: Transport Logistics Example

High-Level BAT Deg
h At the high level, we abstract over navigation and delivery procedure details.

We have actions that represent choices of major routes (takeRoute(sID , r, o, d)) and delivering a shipment

(deliver(sID)). We have the following fluents: AtHL(sID , l, s) which indicates the shipment with ID sID is

at location l at situation s, CnRouteHL(r, o, d, s) which states route r connects location o to d at situation

s, Priority(sID , s) that indicates shipment sID is of type priority at s, DestHL(sID , l, s) that designates

the destination of the shipment sID to be location l at s, and Delivered(sID , s) which indicates shipment

sID has been delivered at s.

Deg
h includes the following precondition axioms (throughout, we assume that free variables are universally

quantified from the outside):

Poss(takeRoute(sID , r, o, d), s) ⌘ o 6= d ^AtHL(sID , o, s)

^ CnRouteHL(r, o, d, s) ^ (r = RtB � ¬Priority(sID , s))

Poss(deliver(sID), s) ⌘ 9l.DestHL(sID , l, s) ^AtHL(sID , l, s)

The action takeRoute(sID , r, o, d) can be performed to take shipment with ID sID from origin location o

to destination location d via route r (see Figure 5.1), and is executable when the shipment is initially at o

and route r connects o to d; moreover, priority shipments cannot be sent by route RtB (note that we refer

to route X in Figure 5.1 as RtX). Action deliver(sID) can be performed to deliver shipment sID and is

executable when sID is at its destination.

The high-level BAT also includes the following successor state axioms:

AtHL(sID , l, do(a, s)) ⌘ 9l0, r.a = takeRoute(sID , r, l0, l) _

AtHL(sID , l, s) ^ 8l0, r.a 6= takeRoute(sID , r, l, l0)

Delivered(sID , do(a, s)) ⌘ a = deliver(sID) _Delivered(sID , s)
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For the other fluents, we have successor state axioms specifying that they are una↵ected by any action.

Deg
h also contains the following initial state axioms:

DestHL(123,Cf , S0), AtHL(123,W, S0),

CnRouteHL(RtA,W,L2, S0), CnRouteHL(RtB , L2,Cf , S0), CnRouteHL(RtC , L2,Cf , S0)

Note that it is not known whether 123 is a priority shipment.

Low Level BAT Deg
l At the low level, we model navigation and delivery in a more detailed way. The

agent has a more detailed map with more locations and roads between them. He also takes road closures

into account. Performing delivery involves unloading the shipment and getting a signature. We have the

following fluents: CnRoad(t, o, d, s) which states road t connects location o to d at situation s, Closed(t, s)

that indicates road t is closed at s, Express(sID , s) which states shipment sID is of type express at s,

BadWeather(s) which indicates we have bad weather at s, Unloaded(sID , s) that states shipment sID

is unloaded at s, and Signed(sID , s) which indicates shipment sID has been signed for at s. The fluent

AtLL(sID , l, s) is defined similarly to AtHL(sID , l, s). Fluents CnRouteLL(r, o, d, s) and DestLL(sID , l, s) in

the low-level theory are defined similarly to CnRouteHL(r, o, d, s) and DestHL(sID , l, s) respectively.

The low-level BAT Deg
l includes the following action precondition axioms:

Poss(takeRoad(sID , t, o, d), s) ⌘ o 6= d ^

AtLL(sID , o, s) ^ CnRoad(t, o, d, s) ^ ¬Closed(t, s) ^

(d = L3 � ¬(BadWeather(s) _ Express(sID , s)))

Poss(unload(sID), s) ⌘ 9l.DestLL(sID , l, s) ^AtLL(sID , l, s)

Poss(getSignature(sID), s) ⌘ Unloaded(sID , s)

Thus, the action takeRoad(sID , t, o, d), where the agent takes shipment sID from origin location o to desti-

nation d via road t, is executable provided that t connects o to d, sID is at o, and t is not closed; moreover,

a road to L3 cannot be taken if the weather is bad or sID is an express shipment as it would likely violate

quality of service requirements. The action unload(sID) can be performed to unload the shipment sID and

is possible when the shipment has reached its destination. Finally, after the shipment is unloaded the action

getSignature(sID) can be performed.

The low-level BAT includes the following successor state axioms:

Unloaded(sID , do(a, s)) ⌘ a = unload(sID) _ Unloaded(sID , s)

Signed(sID , do(a, s)) ⌘ a = getSignature(sID) _ Signed(sID , s)
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The sucessor state axiom for AtLL is like the one for AtHL with takeRoute replaced by takeRoad. For the

other fluents, we have successor state axioms specifying that they are una↵ected by any actions. Note that

we could easily include exogenous actions for road closures and change in weather, new shipment orders, etc.

Deg
l also contains the following initial state axioms:

¬BadWeather(S0), Closed(r, S0) ⌘ r = Rde,

Express(123, S0), DestLL(123,Cf , S0), AtLL(123,W, S0)

together with a complete specification of CnRoad and CnRouteLL. We refer to road x in Figure 5.1 as Rdx.

Refinement Mapping meg We specify the relationship between the high-level and low-level BATs through

the following refinement mapping meg:

meg(takeRoute(sID , r, o, d)) =

(r = RtA ^ CnRouteLL(RtA, o, d))?;

⇡t.takeRoad(sID , t, o, L1);⇡t0.takeRoad(sID , t0, L1, d) |

(r = RtB ^ CnRouteLL(RtB , o, d))?;

⇡t.takeRoad(sID , t, o, L3);⇡t0.takeRoad(sID , t0, L3, d) |

(r = RtC ^ CnRouteLL(RtC , o, d))?;

⇡t.takeRoad(sID , t, o, L4);⇡t0.takeRoad(sID , t0, L4, d)

meg(deliver(sID)) = unload(sID); getSignature(sID)

meg(Priority(sID)) = BadWeather _ Express(sID)

meg(Delivered(sID)) = Unloaded(sID) ^ Signed(sID)

meg(AtHL(sID , loc)) = AtLL(sID , loc)

meg(CnRouteHL(r, o, d)) = CnRouteLL(r, o, d)

meg(DestHL(sID , l)) = DestLL(sID , l)

Thus, taking route RtA involves first taking a road from the origin o to L1 and then taking another road

from L1 to the destination d. For the other two routes, the refinement mapping is similar except a di↵erent

intermediate location must be reached. Note that we could easily write programs to specify refinements for

more complex routes, e.g., that take a sequence of roads from o to d going through intermediate locations

belonging to a given set. We refine the high-level fluent Priority(sID) to the condition where either the

weather is bad or the shipment is express.
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5.2 m-Bisimulation

To relate high-level and low-level models/theories, we resort to a suitable notion of bisimulation. Let Mh be

a model of the high-level BAT Dh, Ml a model of the low-level BAT Dl [ C, and m a refinement mapping

from Dh to Dl.

We first define a local condition for the bisimulation. We say that situation sh in Mh is m-isomorphic to

situation sl in Ml, written sh ⇠M
h

,M
l

m sl, if and only if

Mh, v[s/sh] |= F (~x, s) i↵ Ml, v[s/sl] |= m(F (~x))[s] for every high-level primitive fluent F (~x) in

F
h

and every variable assignment v (v[x/e] stands for the assignment that is like v except that

x is mapped to e).

A relation B ✓ �M
h

S ⇥ �M
l

S (where �M
S stands for the situation domain of M) is an m-bisimulation

relation between Mh and Ml if hsh, sli 2 B implies that:

1. sh ⇠M
h

,M
l

m sl, i.e., sh in Mh is m-isomorphic to situation sl in Ml;

2. for every high-level primitive action type A in A
h

, if there exists s0h such that Mh, v[s/sh, s0/s0h] |=

Poss(A(~x), s) ^ s0 = do(A(~x), s), then there exists s0l such that Ml, v[s/sl, s0/s0l] |= Do(m(A(~x)), s, s0)

and hs0h, s0li 2 B;

3. for every high-level primitive action type A in A
h

, if there exists s0l such that Ml, v[s/sl, s0/s0l] |=

Do(m(A(~x)), s, s0), then there exists s0h such that Mh, v[s/sh, s0/s0h] |= Poss(A(~x), s)^s0 = do(A(~x), s)

and hs0h, s0li 2 B.

We say that Mh is bisimilar to Ml relative to refinement mapping m, written Mh ⇠m Ml, if and only if

there exists an m-bisimulation relation B between Mh and Ml such that hSM
h

0 , SM
l

0 i 2 B.

Given these definitions, we immediately get the following results. First, we can show that m-isomorphic

situations satisfy the same high-level situation-suppressed formulas (for proofs of our results in this chapter,

see Appendix A.2):

Lemma 5.1 If sh ⇠M
h

,M
l

m sl, then for any high-level situation-suppressed formula �, we have that:

Mh, v[s/sh] |= �[s] if and only if Ml, v[s/sl] |= m(�)[s].

Note that m(�) stands for the result of substituting every fluent F (~x) in situation-suppressed formula � by

m(F (~x)).

Moreover, it is straightforward to show that in m-bisimilar models, the same sequences of high-level

actions are executable, and that in the resulting situations, the same high-level situation-suppressed formulas

hold:
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Theorem 5.2 If Mh ⇠m Ml, then for any sequence of ground high-level actions ~↵ and any high-level

situation-suppressed formula �, we have that

Ml |= 9s0Do(m(~↵), S0, s0) ^m(�)[s0] if and only if Mh |= Executable(do(~↵, S0)) ^ �[do(~↵, S0)].

Note that m(↵1, . . . ,↵n)
.
= m(↵1); . . . ;m(↵n) for n � 1 and m(✏)

.
= nil.

5.3 Sound Abstraction

To ensure that the high-level theory is consistent with the low-level theory and mapping m, we require that

for every model of the low-level theory, there is an m-bisimilar structure that is a model of the high-level

theory.

We say that Dh is a sound abstraction of Dl relative to refinement mapping m if and only if, for all

models Ml of Dl [ C, there exists a model Mh of Dh such that Mh ⇠m Ml.

Example 5.2 Returning to Example 5.1, it is straightforward to show that it involves a high-level theory

Deg
h that is a sound abstraction of the low-level theory Deg

l relative to the mapping meg. We discuss how we

prove this later.

Sound abstractions have many interesting and useful properties. First, from the definition of sound

abstraction and Theorem 5.2, we immediately get the following result:

Corollary 5.3 Suppose that Dh is a sound abstraction of Dl relative to mapping m. Then for any se-

quence of ground high-level actions ~↵ and for any high-level situation-suppressed formula �, if Dl [ C [

{9s.Do(m(~↵), S0, s) ^ m(�)[s]} is satisfiable, then Dh [ {Executable(do(~↵, S0)) ^ �[do(~↵, S0)]} is also sat-

isfiable. In particular, if Dl [ C [ {9s.Do(m(~↵), S0, s)} is satisfiable, then Dh [ {Executable(do(~↵, S0))} is

also satisfiable.

Thus if the low-level agent/theory thinks that a refinement of ~↵ (perhaps involving exogenous actions) may

occur (with m(�) holding afterwards), the high-level agent/theory also thinks that ~↵ may occur (with �

holding afterwards). If such a refinement actually occurs it will thus be consistent with the high-level theory.

We can also show that if the high-level theory entails that some sequence of high-level actions ~↵ is

executable, and that in the resulting situation, a situation-suppressed formula � holds, then the low-level

theory must also entail that some refinement of ~↵ is executable and that in the resulting situation m(�)

holds:

Theorem 5.4 Suppose that Dh is a sound abstraction of Dl relative to mapping m. Then for any ground

high-level action sequence ~↵ and for any high-level situation-suppressed formula �, if Dh |= Executable(do(~↵,

S0)) ^ �[do(~↵, S0)], then Dl [ C |= 9s.Do(m(~↵), S0, s) ^m(�)[s].
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We can immediately relate the above result to planning. In the situation calculus, the planning problem

is usually defined as follows [132]:

Given a BAT D, and a situation-suppressed goal formula �, find a ground action sequence ~a such

that D |= Executable(do(~a, S0)) ^ �[do(~a, S0)].

Thus, Theorem 5.4 means that if we can find a plan ~↵ to achieve a goal � at the high level, i.e., Dh |=

Executable(do(~↵, S0)) ^ �[do(~↵, S0)], then it follows that there exists a refinement of ~↵ that achieves � at

the low level, i.e., Dl[C |= 9s.Do(m(~↵), S0, s)^m(�)[s]. However, note that the refinement could in general

be di↵erent from model to model. But if, in addition, we have complete information at the low level, i.e.,

a single model for Dl, then, since we have standard names for objects and actions, we can always obtain a

plan to achieve the goal � by finding a refinement in this way, i.e., there exists a ground low-level action

sequence ~a such that Dl [ C |= Do(m(~↵), S0, do(~a, s)) ^ m(�)[do(~a, s)]. The search space of refinements of

~↵ would typically be much smaller than the space of all low-level action sequences, thus yielding important

e�ciency benefits.

We can also show that if Dh is a sound abstraction of Dl with respect to a mapping, then the di↵erent

sequences of low-level actions that are refinements of a given high-level primitive action sequence all have

the same e↵ects on the high-level fluents, and more generally on high-level situation-suppressed formulas,

i.e., from the high-level perspective they are deterministic:

Corollary 5.5 If Dh is a sound abstraction of Dl relative to mapping m, then for any sequence of ground

high-level actions ~↵ and for any high-level situation-suppressed formula �, we have that

Dl [ C |= 8s8s0.Do(m(~↵), S0, s) ^Do(m(~↵), S0, s0) � (m(�)[s] ⌘ m(�)[s0])

An immediate consequence of the above is the following:

Corollary 5.6 If Dh is a sound abstraction of Dl relative to mapping m, then for any sequence of ground

high-level actions ~↵ and for any high-level situation-suppressed formula �, we have that

Dl [ C |= (9s.Do(m(~↵), S0, s) ^m(�)[s]) � (8s.Do(m(~↵), S0, s) � m(�)[s])

It is also easy to show that if some refinement of the sequence of high-level actions ~↵� is executable, then

there exists a refinement of � that is executable after executing any refinement of ~↵:

Theorem 5.7 If Dh is a sound abstraction of Dl relative to mapping m, then for any sequence of ground

high-level actions ~↵ and for any ground high-level action �, we have that

Dl [ C |= 9s.Do(m(~↵�), S0, s) � (8s.Do(m(~↵), S0, s) � 9s0.Do(m(�), s, s0))

84



Notice that this applies to all prefixes of ~↵, so using Corollary 5.6 as well, we immediately get that:

Corollary 5.8 Suppose that Dh is a sound abstraction of Dl relative to mapping m. Then for any ground

high-level action sequence ↵1, . . . ,↵n, and for any high-level situation-suppressed formula �, then we have

that:

Dl [ C |= (9s.Do(m(↵1, . . . ,↵n), S0, s) ^m(�)[s]) �

((8s.Do(m(↵1, . . . ,↵n), S0, s) � m(�)[s]) ^ (9s.Do(m(↵1), S0, s)) ^
V

2in(8s.Do(m(↵1, . . . ,↵i�1), S0, s) � 9s0.Do(m(↵i), s, s0)))

These results mean that if a ground high-level action sequence achieves a high-level condition �, we can

choose refinements of the actions in the sequence independently and be certain to obtain a refinement of the

complete sequence that achieves �. We can exploit this result in planning to gain even more e�ciency. If we

can find a plan ↵1, . . . ,↵n to achieve a goal � at the high level, then there exists a refinement of ↵1, . . . ,↵n

that achieves m(�) at the low level, and we can obtain it by finding refinements of the high-level actions

↵i for i : 1  i  n one by one, without ever having to backtrack. The search space would typically be

exponentially smaller in the length of the high-level plan n. If we have complete information at the low level,

then we can always obtain a refined plan to achieve m(�) in this way.

Example 5.3 Returning to our running example, we can show that the action sequence ~↵ = [takeRoute(123,

RtA,W,L2), takeRoute(123, RtC , L2, Cf ), deliver(123)] is a valid high-level plan to achieve the goal �g =

Delivered(123) of having delivered shipment 123, i.e., Deg
h |= Executable(do(~↵, S0)) ^ �g[do(~↵, S0)]. Since

Deg
h is a sound abstraction of the low-level theory Deg

l relative to the mapping meg, we know that we can find

a refinement of the high-level plan ~↵ that achieves the refinement of the goal meg(�g) = Unloaded(123) ^

Signed(123). In fact, we can show that Deg
l [C |= Do(meg(~↵), S0, do(~a~b~c, S0))^meg(�g)[do(~a~b~c, S0)] for ~a =

[takeRoad(123, Rda,W,L1), takeRoad(123, Rdb, L1, L2)], ~b = [takeRoad(123, Rdf , L2, L4), takeRoad(123,

Rdg, L4,Cf )], and ~c = [unload(123), getSignature(123)].

Now, let us define some low-level programs that characterize the refinements of high-level action/action

sequences:29

any1hlref
.
= {⇡~x.m(Ai(~x)) | Ai 2 Ah}, i.e., do any high-level primitive action,

anyseqhlref
.
= any1hlref⇤ i.e., do any sequence of high-level actions.

29These programs correctly characterize the complete runs of the agent executing the refinements of high-level actions/action
sequences at the low level. However, note that any1hlref is not situation-determined, as refinements of high-level actions
may share prefixes. In Chapter 6, as we also need to consider partial runs of the agent executing such programs, we define
a new setp() construct to obtain situation-determined programs that characterize the refinements of high-level action/action
sequences.
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How does one verify that one has a sound abstraction? The following yields a straightforward method for

this:

Theorem 5.9 Dh is a sound abstraction of Dl relative to mapping m if and only if

(a) Dl
S0

[Dl
ca [Dl

coa |= m(�), for all � 2 Dh
S0
,

(b) Dl [ C |= 8s.Do(anyseqhlref,S
0

, s) �
V

A
i

2Ah

8~x.(m(�Poss
A

i

(~x))[s] ⌘ 9s0Do(m(Ai(~x)), s, s0)),

(c) Dl [ C |= 8s.Do(anyseqhlref, S0, s) �
V

A
i

2Ah

8~x, s0.(Do(m(Ai(~x)), s, s0) �
V

F
i

2Fh

8~y(m(�ssaF
i

,A
i

(~y, ~x))[s] ⌘ m(Fi(~y))[s0])),

where �Poss
A

i

(~x) is the right hand side (RHS) of the precondition axiom for action Ai(~x), and �ssaF
i

,A
i

(~y, ~x)

is the RHS of the successor state axiom for Fi instantiated with action Ai(~x) where action terms have been

eliminated using Dh
ca.

The above essentially gives us a “proof theoretic” characterization of sound abstraction, in the sense that it

allows us to show that we have a sound abstraction by proving that a number of properties are entailed by

the low-level theory. Conditions (a), (b), and (c) are all properties of programs that standard verification

techniques can deal with. The theorem also means that if Dh is a sound abstraction of Dl with respect to m,

then Dl must entail the mapped high-level successor state axioms and entail that the mapped conditions for

a high-level action to be executable (from the precondition axioms of Dh) correctly capture the executability

conditions of their refinements (these conditions must hold after any sequence of refinements of high-level

actions, i.e., in any situation s where Do(anyseqhlref, S0, s) holds).

Example 5.4 Returning to our running example, it is straightforward to show that it involves a high-level

theory Deg
h that is a sound abstraction of the low-level theory Deg

l relative to the mapping meg. DS0
l entails

the “translation” of all the facts about the high-level fluents CnRouteHL, DestHL and AtHL that are in DS0
h .

Moreover, Deg
l entails that the mapping of the preconditions of the high-level actions deliver and takeRoute

correctly capture the executability conditions of their refinements. Deg
l also entails the mapped high-level

successor state axiom for fluent AtHL and action takeRoute and similarly for Delivered and action deliver

(other actions have no e↵ects). Thus, Deg
h is a sound abstraction of Deg

l relative to meg.

5.4 Complete Abstraction

When we have a sound abstraction Dh of a low-level theory Dl with respect to a mapping m, the high-level

theory Dh’s conclusions are always sound with respect to the more refined theory Dl, but Dh may have
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less information than Dl regarding high-level actions and conditions. Dh may consider it possible that a

high-level action sequence is executable (and achieves a goal) when Dl knows it is not. The low-level theory

may know/entail that a refinement of a high-level action sequence achieves a goal without the high level

knowing/entailing it. We can define a stronger notion of abstraction that ensures that the high-level theory

knows everything that the low-level theory knows about high-level actions and conditions.

We say that Dh is a complete abstraction of Dl relative to refinement mapping m if and only if, for all

models Mh of Dh, there exists a model Ml of Dl [ C such that Ml ⇠m Mh.

From the definition of complete abstraction and Theorem 5.2, we immediately get the following converses

of Corollary 5.3 and Theorem 5.4:

Corollary 5.10 Suppose that Dh is a complete abstraction of Dl relative to m. Then for any sequence of

ground high-level actions ~↵ and for any high-level situation-suppressed formula �, if Dh[{Executable(do(~↵,

S0)) ^ �[do(~↵, S0)]} is satisfiable, then Dl [ C [ {9s.Do(m(~↵), S0, s) ^m(�)[s]} is satisfiable. In particular,

if Dh [ {Executable(do(~↵, S0))} is satisfiable, Dl [ C [ {9s.Do(m(~↵), S0, s)} is satisfiable.

Theorem 5.11 Suppose that Dh is a complete abstraction of Dl relative to mapping m. Then for any ground

high-level action sequence ~↵ and any high-level situation-suppressed formula �, if Dl[C |= 9s.Do(m(~↵), S0, s)^

m(�)[s], then Dh |= Executable(do(~↵, S0)) ^ �[do(~↵, S0)].

Thus when we have a high-level theory Dh that is a complete abstraction of a low-level theory Dl with

respect to a mapping m, if Dl knows/entails that some refinement of a high-level action sequence ~↵ achieves

a high-level goal �, then Dh knows/entails that ~↵ achieves �, i.e., we can find all high-level plans to achieve

high-level goals using Dh.

Note that with complete abstraction alone, we don’t get Corollary 5.5, as Dl [ C may have models that

are not m-bisimilar to any model of Dh and where di↵erent refinements of a high-level action yield di↵erent

truth-values for m(F ), for some high-level fluent F .

We also say that Dh is a sound and complete abstraction of Dl relative to refinement mapping m if and

only if Dh is both a sound and a complete abstraction of Dl relative to m.

Example 5.5 Returning to our running example, the high-level theory does not know whether shipment 123

is high priority, i.e., Deg
h 6|= Priority(123)[S0] and Deg

h 6|= ¬Priority(123)[S0], but the low-level theory knows

that it is, i.e., Deg
l |= meg(Priority(123))[S0]. Thus Deg

h has a model where ¬Priority(123)[S0] holds that is

not meg-bisimilar to any model of Deg
l , and thus Deg

h is a sound abstraction of Deg
l with respect to meg, but

not a complete abstraction. For instance, the high-level theory considers it possible that the shipment can be

delivered by taking route A and then route B, i.e., Deg
h [{Executable(do(~↵, S0))^�g[do(~↵, S0)]} is satisfiable

for ~↵ = [takeRoute(123, RtA,W,L2), takeRoute(123, RtB , L2,Cf ), deliver(123)] and �g = Delivered(123).
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But the low-level theory knows that ~↵ cannot be refined to an executable low-level plan, i.e., Deg
l [ C |=

¬9s.Do(meg(~↵), S0, s). If we add Priority(123)[S0] and a complete specification of CnRouteHL to Deg
h , then

it becomes a sound and complete abstraction of Deg
l with respect to meg. The plan ~↵ is now ruled out as

Deg
h [ {Priority(123, S0)} [ {Executable(do(~↵, S0))} is not satisfiable.

The following results characterize complete abstractions:

Theorem 5.12 If Dh is a sound abstraction of Dl relative to mapping m, then Dh is also a complete

abstraction of Dl with respect to mapping m if and only if for every model Mh of Dh
S0

[ Dh
ca [ Dh

coa, there

exists a model Ml of Dl
S0

[Dl
ca [Dl

coa such that SM
h

0 ⇠M
h

,M
l

m SM
l

0 .

Theorem 5.13 Dh is a complete abstraction of Dl relative to mapping m i↵ for every model Mh of Dh,

there exists a model Ml of Dl [ C such that SM
h

0 ⇠M
h

,M
l

m SM
l

0 and

M
l

|= 8s.Do(anyseqhlref,S
0

, s) �
V

A
i

2Ah

8~x.(m(�Poss
A

i

(~x))[s] ⌘ 9s0Do(m(Ai(~x)), s, s0))

and Ml |= 8s.Do(anyseqhlref, S0, s) �
V

A
i

2Ah

8~x, s0.(Do(m(Ai(~x)), s, s0) �
V

F
i

2Fh

8~y(m(�ssaF
i

,A
i

(~y, ~x))[s] ⌘ m(Fi(~y))[s0])),

where �Poss
A

i

(~x) and �ssaF
i

,A
i

(~y, ~x) are as in Theorem 5.9.

5.5 Monitoring and Explanation

A refinement mapping m from a high-level action theory Dh to a low-level action theory Dl tells us what

are the refinements of high-level actions into executions of low-level programs. In some application con-

texts, one is interested in tracking/monitoring what the low-level agent is doing and describing it in ab-

stract terms, e.g., to a client or manager. If we have a ground low-level situation term Sl such that

Dl [ {Executable(Sl)} is satisfiable, and Dl [ {Do(m(~↵), S0, Sl)} is satisfiable, then the ground high-level

action sequence ~↵ is a possible way of describing in abstract terms what has occurred in getting to situation

Sl. If Dh [ {Executable(do(~↵, S0))} is also satisfiable (it must be if Dh is a sound abstraction of Dl with

respect to m), then one can also answer high-level queries about what may hold in the resulting situation, i.e.,

whether Dh [ {Executable(do(~↵, S0)) ^ �(do(~↵, S0))} is satisfiable, and what must hold in such a resulting

situation, i.e., whether Dh [ {Executable(do(~↵, S0))} |= �(do(~↵, S0)). One can also answer queries about

what high-level action � might occur next, i.e., whether Dh [ {Executable(do(~↵�, S0))} is satisfiable.

In general, there may be several distinct ground high-level action sequences ~↵ that match a ground low-

level situation term Sl; even if we have complete information and a single model Ml of Dl [ C, there may

be several distinct ~↵’s such that Ml |= Do(m(~↵), S0, Sl). For example, suppose that we have two high level
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actions A and B with m(A) = (C | D) and m(B) = (D | E). Then the low-level situation do(D,S0) is a

refinement of both A and B (assuming all actions are always executable).

In many contexts, this would be counterintuitive and we would like to be able to map a sequence of

low-level actions performed by the low-level agent back into a unique abstract high-level action sequence it

refines, i.e., we would like to define an inverse mapping function m�1. Let’s see how we can do this. First,

we introduce the abbreviation lpm(s, s0), meaning that s0 is a largest prefix of s that can be produced by

executing a sequence of high-level actions:

lpm(s, s0)
.
= Do(anyseqhlref, S0, s0) ^ s0  s ^

8s00.(s0 < s00  s � ¬Do(anyseqhlref, S0, s00))

We can show that the relation lpm(s, s0) is actually a total function:

Theorem 5.14 For any refinement mapping m from Dh to Dl, we have that:

1. Dl [ C |= 8s.9s0.lpm(s, s0),

2. Dl [ C |= 8s8s18s2.lpm(s, s1) ^ lpm(s, s2) � s1 = s2.

Given this result, we can introduce the notation lpm(s) = s0 to stand for lpm(s, s0).

To be able to map a low-level action sequence back to a unique high-level action sequence that produced

it, we need the following assumptions:

Assumption 5.1 For any distinct ground high-level action terms ↵ and ↵0 we have that:

(a) Dl [ C |= 8s, s0Do(m(↵), s, s0) � ¬9�.T rans⇤(m(↵0), s, �, s0)

(b) Dl [ C |= 8s, s0Do(m(↵), s, s0) � ¬9a9�.T rans⇤(m(↵), s, �, do(a, s0))

(c) Dl [ C |= 8s, s0Do(m(↵), s, s0) � s < s0

Part (a) ensures that di↵erent high-level primitive actions have disjoint sets of refinements; (b) ensures that

once a refinement of a high-level primitive action is complete, it cannot be extended further; and (c) ensures

that a refinement of a high-level primitive action will produce at least one low-level action. Together, these

three conditions ensure that if we have a low-level action sequence that can be produced by executing some

high-level action sequence, there is a unique high-level action sequence that can produce it:

Theorem 5.15 Suppose that we have a refinement mapping m from Dh to Dl and that Assumption 5.1

holds. Let Ml be a model of Dl [ C. Then for any ground situation terms Ss and Se such that Ml |=

Do(anyseqhlref, Ss, Se), there exists a unique ground high-level action sequence ~↵ such that Ml |= Do(m(~↵),

Ss, Se).
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Since in any model Ml of Dl [ C, for any ground situation term S, there is a unique largest prefix of S that

can be produced by executing a sequence of high-level actions, S0 = lpm(S), and for any such S0, there is a

unique ground high-level action sequence ~↵ that can produce it, we can view ~↵ as the value of the inverse

mapping m�1 for S in Ml. For this, let us introduce the following notation:

m�1
M

l

(S) = ~↵
.
= Ml |= 9s0.lpm(S) = s0 ^Do(m(~↵), S0, s0)

where m is a refinement mapping from Dh to Dl and Assumption 5.1 holds, Ml is a model of Dl [ C, S is a

ground low-level situation term, and ~↵ is a ground high-level action sequence.

Assumption 5.1 however does not ensure that any low-level situation S can in fact be generated by

executing a refinement of some high-level action sequence; if it cannot, then the inverse mapping will not

return a complete matching high-level action sequence (e.g., we might have m�1
M

l

(S) = ✏). We can introduce

an additional assumption that rules such cases out:30

Assumption 5.2

Dl [ C |= 8s.Executable(s) � 9�.T rans⇤(anyseqhlref, S0, �, s)

With this additional assumption, we can show that for any executable low-level situation s, what remains

after the largest prefix that can be produced by executing a sequence of high-level actions, i.e., the actions

in the interval between s0 and s where lpm(s, s0), can be generated by some (not yet complete) refinement

of a high-level primitive action:

Theorem 5.16 If m is a refinement mapping from Dh to Dl and Assumption 5.2 holds, then we have that:

Dl [ C |= 8s, s0.Executable(s) ^ lpm(s, s0) � 9�.T rans⇤any1hlref, s0, �, s)

Example 5.6 Going back to Example 5.1, assume that we have complete information at the low level and

a single model Ml of Deg
l , and suppose that the sequence of (executable) low-level actions

~a = [takeRoad(123, Rda,W,L1), takeRoad(123, Rdb, L1, L2)] has occurred. The inverse mapping allows us

to conclude that the high-level action ↵ = takeRoute(123, RtA,W,L2) has occurred, since m�1
M

l

(do(~a, S0)) =

↵.31 Since Dh |= AtHL(123, L2, do(↵, S0)), we can also conclude that shipment 123 is now at location

30One might prefer a weaker version of Assumption 5.2. For instance, one could write a program specifying the low level
agent’s possible behaviors and require that situations reachable by executing this program can be generated by executing a
refinement of some high-level action sequence. We discuss the use of programs to specify possible agent behaviors in the next
section.

31If we do not have complete information at the low level, m�1
M

(~a) may be di↵erent for di↵erent models M of D
l

. To do
high level tracking/monitoring in such cases, we need to consider all the possible mappings or impose additional restrictions to
ensure that there is a unique mapping. We leave this problem for future work.
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L2. As well, since Dh [ {Poss(takeRoute(123, RtB , L2,Cf ), do(↵, S0))} is satisfiable, we can conclude that

high-level action takeRoute(123, RtB , L2,Cf ) might occur next. Analogously, we can also conclude that

high-level action takeRoute(123, RtC , L2,Cf ) might occur next.

5.6 Discussion

In this chapter, we proposed a general framework for agent abstraction based on the situation calculus and

ConGolog. For simplicity, we focused on a single layer of abstraction, but the framework supports extending

the hierarchy to more levels. Our approach can also support the use of ConGolog programs to specify the

possible behaviors of the agent at both the high and low level, as we can follow [37] and “compile” the

program into the BAT D to get a new BAT D0 whose executable situations are exactly those that can be

reached by executing the program.

In AI, Giunchiglia and Walsh [74] formalize abstraction as syntactic mappings between formulas of a

concrete and a more abstract representation. Their notion of TD and TI abstractions seems similar to our

notions of sound and complete abstractions respectively; however, while they focus on only syntactic aspect

of abstractions that does not explicitly capture the underlying justification that lead to the abstraction, we

consider bisimilar models of the theory. Nayak and Levy [122] present a semantic theory of abstraction.

Their notion of MI and the strongest MI abstractions seems similar to our notions of sound and sound

& complete abstraction. In contrast to our approach, no separate discussion on complete abstractions is

provided. Moreover, no verification method is suggested; and the resolution-based procedure for constructing

the strongest MI abstraction includes a number of simplifying assumptions, such as the abstract language

not including equality. Both of the the above approaches formalize abstraction of static logical theories,

while our work focuses on abstraction of dynamic domains.

In planning, several notions of abstraction have been investigated. One approach is precondition elimina-

tion abstraction, first introduced in context of ABSTRIPS [135]. This work does not consider abstraction of

actions. Another approach proposes Hierarchical Task Networks (HTNs) (e.g., [57]), which abstract over a

set of (non-primitive) tasks. Encodings of HTNs in ConGolog with enhanced features like exogenous actions

and online executions have also been studied by Gabaldon [63]. In contrast to our approach, [63] uses a single

BAT; also it does not provide abstraction for fluents. Planning with macro operators (e.g., [89]), is another

approach to abstraction which represents meta-actions built from a sequence of action steps. McIlraith

and Fadel [112] and Baier and McIlraith [10] investigate planning with complex actions (a form of macro

actions) specified as Golog [103] programs. Di↵erently from our approach, [112, 10] compile the abstracted

actions into a new BAT that contains both the original and abstracted actions. Also, they only deal with

deterministic complex actions and do not provide abstraction for fluents. Moreover, our approach provides
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a refinement mapping (similar to that of Global-As-View in data integration [97]) between an abstract BAT

and a concrete BAT. Aguas et al. [1] proposed hierarchical finite state controllers for generalized planning.

This work di↵ers from our approach in that it is focused on providing a solution for a problem class that

can be used to solve any particular instance of the class; also the framework is not based on first order logic.

Another important di↵erence between our work and the approaches focused on abstraction in planning is

that they focus on improving the e�ciency of planning, while our work provides a generic framework which

can have applications in many areas.
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6 Hierarchical Agent Supervision

As agent-based systems are becoming increasingly important in modeling and implementing complex software

systems, an agent’s behavior in such systems as well as her interactions with the environment tend to

become more involved. Due to complexity of the behavior logic, designing and enforcing specifications for

control/customization of agent’s behavior can be di�cult. To facilitate supervision, it is possible to consider

hierarchical models where a high level abstracts over low-level behavior details.

In this chapter, building on the notion of abstraction in situation calculus action theories presented in

Chapter 5 and inspired by the hierarchical supervisory control of discrete event systems [166] and the DLM

framework for agent supervision, we study hierarchical agent supervision in the context of the situation

calculus and the ConGolog agent programming language. As in Chapter 5, we assume that we have a low-

level basic action theory and also a high-level basic action theory that abstracts over it. High-level fluents

correspond to a state formula at the low level and high-level actions are associated with a ConGolog program

that implements the action at the low level. Some of the actions at the low-level (and high-level) are

uncontrollable, i.e., their occurrence cannot be prevented by the supervisor. Moreover, we assume that the

behavior of the agent at the low level can be monitored at the high level, i.e., any complete low-level run

of the agent must be a refinement of a sequence of high-level actions. We also assume that the constraints

on the agent’s behavior to be enforced by the supervisor are represented by a high-level ConGolog program,

which specifies the behaviors that are acceptable/desirable. Our task is to synthesize a maximally permissive

supervisor (MPS) for the low-level agent and supervision specification, which we can translate into a low-

level program. We show that we can actually do this synthesis task by exploiting the high-level model, first

obtaining a MPS at the high-level, and then refining its actions locally while remaining maximally permissive.

Moreover, we show that this can be done incrementally, without precomputing the local refinements.

To allow this, we first identify the constraints required to ensure that controllability of individual actions

at the high-level accurately reflects the controllability of their refinements. Then we show that these con-

straints are in fact su�cient to ensure that any controllable set of runs at the high level has a controllable

refinement that corresponds to it and vice versa. In particular, this applies to the MPS for any supervision

specification represented by a high-level ConGolog program: the low-level MPS for the mapped specification is

a refinement of the high-level MPS for the specification. Moreover we show that we can obtain the low-level
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MPS incrementally using the high-level MPS as a guide.

6.1 Preliminaries

6.1.1 Notation

New Notation for Controllability. Notice that the definition of controllability in Section 3.3 can be

re-written to avoid quantification over action sequences as follows:

Controllable(�s, �i, s)
.
=

8s0, au.(9s00.Do(�s, s, s00) ^ s  s0  s00) ^Au(au, s0) ^

(9s00.Do(�i, s, s00) ^ s < do(au, s0)  s00) � (9s00.Do(�s, s, s00) ^ s < do(au, s0)  s00)

i.e., if we take an action sequence ~a that is a prefix of a complete run of �s and append to it an uncontrollable

action au such that ~aau is a prefix of a complete run of �i, then ~aau must also be a prefix of a complete

run of �s. Note that the new notation has exactly the same meaning as that of (3.23). We will also write

ControllableM (�s, �i, s) as an abbreviation for M |= Controllable(�s, �i, s), where M is a model (of the

BAT).

m-Refinement. We say that a (ground low-level action sequence) ~a is an m-refinement of an executable

(ground high-level action sequence) ~↵ (wrt m-bisimilar models Mh ⇠m Ml) if and only if Mh |= Executable(

do(~↵, S0)) and Ml |= Do(m(~↵), S0, do(~a, S0)).

Extending the Inverse Mapping to Sets of Action Sequences. In Section 5.5, we introduced a

notion of inverse mapping that maps a sequence of low-level actions back into a unique abstraction high-

level action sequence it refines. We can extend this notation to apply to any set of action sequences El as

well, i.e., m�1
M

l

(El, sl) = Eh if and only if Eh = {~↵ | ~a 2 El and Ml |= Do(m(~↵), sl, do(~a, sl))}.

6.1.2 The setp(P ) Construct and the Monitorable Agents

In this chapter, we consider a low-level agent that only executes low-level action sequences that refine some

high-level action sequences. One option is to re-use the low-level programs any1hlref and anyseqhlref

characterized in Section 5.3. The low-level program any1hlref allows the refinements of any high-level

primitive action to be executed; however, observe that even if the program associated to each high-level action

m(Ai(~x)) is situation-determined (SD), the non-deterministic branch of all of these, |A
i

2A
h

⇡~x.m(Ai(~x)),

may not be SD if executions of di↵erent high-level actions may share prefixes. For example, if we have two

high-level actions A and B, with m(A) = a1; a2 and m(B) = a1; a3, then we get (a1; a2) | (a1; a3), which is
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not SD. After performing the first transition, we are left with either a2 or a3 remaining, and we only have

one choice for the next action.

Note however that once we have finished executing at the low level a sequence ~a that is a refinement of

some high-level action, i.e., have that Do(any1hlref, sl, do(~a, sl)), by Assumption 5.1, there is a unique

high-level action ↵ that the sequence ~a refines, i.e., such that Do(m(↵), sl, do(~a, sl)). This justifies using a

new program construct setp(P ) that executes a set of programs P non-deterministically without committing

to which element of P is being executed unless it has to. The transition semantics of this construct is as

follows:

Trans(setp(P ), s, �0, s0) ⌘

9�.9�00.� 2 P ^ Trans(�, s, �00, s0) ^

�0 = setp({�00 | 9�.� 2 P ^ Trans(�, s, �00, s0)})

Final(setp(P ), s) ⌘ 9�.� 2 P ^ Final(�, s)

Note that setp(P ) is always SD. For the example above, setp({(a1; a2) | (a1; a3)}) can make a transition to

setp({a2, a3}), which can then execute either a2 or a3.

Monitorable Agents. We assume that the low-level agent only executes low-level action sequences that

refine some high-level action sequences, so that the agent is monitorable. At the high level, we consider that

the agent may do any sequence of executable actions. We define the following high-level programs to capture

this notion:

anyOne
.
= |A

i

2A
h

⇡~x.Ai(~x), do any HL primitive action,

any
.
= anyOne⇤, i.e., do any sequence of HL actions.

This corresponds at the low level to executing refinements of high-level actions/action sequences, which we

represent by the following low-level programs:

oneMonit
.
= setp({⇡~x.m(Ai(~x)) | Ai 2 Ah}),

i.e., do any refinement of any HL primitive action,

monit
.
= oneMonit⇤,

i.e., do any sequence of refinements of HL actions.

The agent being monitorable means that its possible runs/behaviors are those of monit, i.e., the space of

possible behaviors of the agent is CRM
l

(monit, S0), where Ml is a model of the low-level BAT and C.32 If we

32Assumption 5.2 requires that any low-level situation can in fact be generated by a (partial) execution of a refinement of some
high-level action sequence. Monitorable agents on the other hand, refer to an agent whose behavior is described by the monit
program which only executes refinements of high-level actions. Thus, all executable situations reached by monit satisfy the
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have bisimilar models, the converse follows, i.e., any executable high-level action sequence has an executable

refinement at the low-level.

6.2 A Logistics Running Example

For our running example, we use a simple logistics domain. There is a shipment with ID 123 that is initially

at a warehouse (W ), and needs to be delivered to a Cafe (Cf ), along a network of roads shown in Figure 6.1.

i

a

Route B

Route C

Route A
L1 L2

dc
L3

Route D

b1
b2

Figure 6.1: Transport Logistics Example

High-Level BAT Deg
h At the high level, we abstract over navigation, delivery procedure details and

potential causes of delay. We have actions that represent choices of major routes, delivering a shipment and

possible delay. It typically takes longer for a shipment to be sent on route A followed by B compared to

taking route C followed by D; on the other hand, route D may sometimes be closed for various reasons,

causing a delay in the trip. Shipments may be high-priority or not, represented by a fluent Priority(sID , s).

Moreover, the fluent DestHL specifies the destination of the shipment and the fluent AtHL indicates its

current location.

Deg
h includes the following precondition axioms (throughout, we assume that free variables are universally

quantified from the outside):

Poss(takeRoute(sID , r, o, d), s) ⌘ o 6= d ^AtHL(sID , o, s) ^ CnRouteHL(r, o, d, s)

Poss(deliver(sID), s) ⌘ 9l.DestHL(sID , l, s) ^AtHL(sID , l, s)

Poss(delay(sID), s) ⌘ AtHL(sID , L3, s)

The action takeRoute(sID , r, o, d) can be performed to take shipment with ID sID from origin location o to

destination location d via route r (see Figure 6.1), and is executable when the shipment is initially at o and

route r connects o to d; note that we refer to route X in Figure 6.1 as RtX . Action deliver(sID) can be

performed to deliver shipment sID and is executable when sID is at its destination. Both of these actions

condition of Assumption 5.2, however, there could be some situations which are not reachable by monit, i.e., not the result of a
(partial) execution of a high-level action sequence. It is mainly a modeling choice: Assumption 5.2 constraints the basic action
theory, while monitorable agents restrict the agent behavior of interest to the part of the situation tree that is monitorable.
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are assumed to be controllable. Action delay(sID) is an exogenous and uncontrollable action that may occur

when the shipment is at location L3.

The high-level BAT also includes the following SSAs:

AtHL(sID , l, do(a, s)) ⌘ 9l0, r.a = takeRoute(sID , r, l0, l) _

AtHL(sID , l, s) ^ 8l0, r.a 6= takeRoute(sID , r, l, l0)

Delivered(sID , do(a, s)) ⌘ a = deliver(sID) _Delivered(sID , s)

Delayed(sID , do(a, s)) ⌘ a = delay(sID) _Delayed(sID , s)

For the other fluents, we have SSAs specifying that they are una↵ected by any action.

Deg
h also contains the following initial state axioms:

Priority(sID , S0) ⌘ sID = 123,

DestHL(sID , l, S0) ⌘ sID = 123 ^ l = Cf ,

AtHL(sID , l, S0) ⌘ sID = 123 ^ l = W,

Au
h(a, S0) ⌘ 9sID .a = delay(sID),

CnRouteHL(r, ls, le, S0) ⌘

[(r = RtA ^ ls = W ^ le = L2) _ (r = RtB ^ ls = L2 ^ le = Cf ) _

(r = RtC ^ ls = W ^ le = L3) _ (r = RtD ^ ls = L3 ^ le = Cf )]

Low Level BAT Deg
l At the low level, we model navigation, delivery and causes of delay in a more detailed

way. The agent has a more detailed map with more locations and roads between them. For instance, route

A is refined to road i followed by road a, and route B is refined to either road b1 or b2 (see Figure 6.1).

Performing delivery involves unloading the shipment and getting a signature. Two causes of delay are

considered to be due to bad weather or road maintenance. The agent also takes into account that some

roads can only be used at night time by trucks carrying a shipment. This condition is indicated by the fluent

NT (sID , s). Moreover, Priority shipments are refined to two types of express shipments: Express Same

Day (Exp1) or Express 2 Days (Exp2).

The low-level BAT Deg
l includes the following action precondition axioms:

Poss(takeRoad(sID , t, o, d), s) ⌘ o 6= d ^AtLL(sID , o, s) ^

CnRoad(t, o, d, s) ^ (t = Rdb2 � NT (sID , s))

Poss(unload(sID), s) ⌘ 9l.DestLL(sID , l, s) ^AtLL(sID , l, s)

Poss(getSignature(sID), s) ⌘ Unloaded(sID , s)

Poss(delayBD(sID), s) ⌘ AtLL(sID , L3, s)

Poss(delayRM(sID), s) ⌘ AtLL(sID , L3, s)
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The action takeRoad(sID , t, o, d), where the agent takes shipment sID from origin location o to destination d

via road t, is executable provided that t connects o to d, sID is at o; moreover, road Rdb2 can only be used if

shipment is sent during nighttime (note that we refer to road x in Figure 6.1 as Rdx). The action unload can

be performed when the shipment has reached its destination; after unloading the shipment, getSignature can

be performed. Actions takeRoad, unload and getSignature are assumed to be controllable actions. We have

two exogenous actions representing delays that may occur when the agent is at location L3: delayBD(sID)

due to bad weather and delayRM(sID) due to road maintenance. These are the only uncontrollable actions.

The low-level BAT includes the following SSAs:

Unloaded(sID , do(a, s)) ⌘ a = unload(sID) _ Unloaded(sID , s)

Signed(sID , do(a, s)) ⌘ a = getSignature(sID) _ Signed(sID , s)

DelayedBD(sID , do(a, s)) ⌘ a = delayBD(sID) _DelayedBD(sID , s)

DelayedRM(sID , do(a, s)) ⌘ a = delayRM(sID) _DelayedRM(sID , s)

The SSA for AtLL is like the one for AtHL with takeRoute replaced by takeRoad. For the other fluents, we

have SSAs specifying that they are una↵ected by any actions.

Deg
l also contains the following initial state axioms:

¬Exp1(sID , S0),

Exp2(sID , S0) ⌘ sID = 123,

DestLL(sID , l, S0) ⌘ sID = 123 ^ l = Cf ,

AtLL(sID , l, S0) ⌘ sID = 123 ^ l = W,

NT (sID , S0) ⌘ sID = 123,

Au
l (a, S0) ⌘ 9sID(a = delayBW (sID) _ a = delayRM(sID))

together with a complete specification of CnRoad and CnRouteLL.

Refinement Mapping meg We specify the relationship between the high-level and low-level BATs through

the following refinement mapping meg:
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meg(takeRoute(sID , r, o, d)) =

(r = RtA ^ CnRouteLL(RtA, o, d))?;

⇡t.takeRoad(sID , t, o, L1); takeRoad(sID , Rda, L1, d) |

(r = RtB ^ CnRouteLL(RtB , o, d))?;

⇡t.takeRoad(sID , t, L2, d) |

(r = RtC ^ CnRouteLL(RtC , o, d))?;

⇡t.takeRoad(sID , t, o, L1); takeRoad(sID , Rdc, L1, d) |

(r = RtD ^ CnRouteLL(RtD, o, d))?;

⇡t.takeRoad(sID , t, L3, d);

meg(deliver(sID)) = unload(sID); getSignature(sID)

meg(delay(sID)) = delayBW (sID) | delayRM(sID)

meg(Priority(sID)) = Exp1(sID) _ Exp2(sID)

meg(Delivered(sID)) = Unloaded(sID) ^ Signed(sID)

meg(Delayed(sID)) = DelayedBW (sID) _DelayedRM(sID)

meg(AtHL(sID , loc)) = AtLL(sID , loc)

meg(CnRouteHL(r, o, d)) = CnRouteLL(r, o, d)

meg(DestHL(sID , l)) = DestLL(sID , l)

Thus, taking route RtA involves first taking a road from the origin o to L1 and then taking another road

from L1 to the destination d. Taking RtC is refined in a similar way. For other two routes, the refinement

does not include taking a road to an intermediate location. The action delay is refined to a non-deterministic

choice of either delayBW or delayRM . We refine the high-level fluent Priority(sID) to the condition where

either the shipment is of type Exp1 or Exp2.

6.3 Hierarchical Agent Supervision

We would like to use abstraction for supervision. We assume that supervision specification is given as a

high-level program, which is quite natural.

Example 6.1 Referring back to our running example, we may have a supervision specification �hSpec that

says that any shipment that has been ordered, in our case just 123, must eventually be delivered, and if it

is a Priority shipment, it should never be delayed:

V
sID2ShpOrd[⇡a.a; (Priority(sID)) � ¬Delayed(sID))?]⇤;Delivered(sID)?
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To facilitate supervision, we would like to be able to first obtain a supervisor for the high-level agent,

and then use it to obtain a supervisor for the low-level agent.

Ensuring that HL and LL Controllability Match for Atomic Actions. To be able to use the high-

level model to characterize controllable sets of low-level runs of the agent, including the MPS for a given

specification, we must first ensure that the formalization of the controllability of individual actions at the

high level (in terms of the Au predicate) accurately reflects the controllability of the actions’ implementations

at the low level. It is easy to show the following (for proofs of our results in this chapter, see Appendix A.3):

Lemma 6.1

Dh |= Controllable(set(ES),anyOne, s) ⌘

8au.Au
h(au, s) ^ Poss(au, s) � Do(set(ES), s, do(au, s))

i.e., at the high level, any set of executable atomic actions ES is controllable with respect to the set of all

atomic actions the agent may execute in situation s provided that ES includes all the executable uncontrol-

lable actions in s. Indeed, we assume that the supervisor can block any set of controllable high-level actions

while leaving the other actions unconstrained.

However, it is easy to construct examples where the low level cannot enforce such supervision specifica-

tions. Suppose that we have the high-level actions ↵, �, and �, all of which are executable in S0, with the

following mapping:

m(↵) = a;u1 m(�) = a;u2 m(�) = b.

We assume that low-level actions a and b are always controllable and executable and u1 and u2 are always

uncontrollable and executable. At the low level, {m(↵),m(�)} is controllable but {m(↵)} is not; we cannot

block � without blocking ↵ as well and vice versa. The high-level model cannot represent this kind of

example by classifying individual actions as controllable or not (using Au
h(ah, s)).

To enable us to exploit the high-level model of the agent to perform supervision of the low-level agent,

we need to ensure that the specification of controllable and uncontrollable actions (i.e., Au
h(a, s)) in the

high-level model is consistent with the controllability of the associated programs at the low-level. We do this

by assuming that the agent models satisfy the following:

Assumption 6.1 (Local Controllability) If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵

(with respect to Mh ⇠m Ml) and Mh |= C, then

(a) for any set of ground high-level actions Eh,

Mh |= Controllable(set(Eh),anyOne, do(~↵, S0))

if and only if
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there exists a set of ground low-level action sequences El such that

Ml |= Controllable(set(El),oneMonit, do(~a, S0)) and m�1
M

l

(El, do(~a, S0)) = Eh;

(b) Ml |= Controllable(set({✏}),monit, do(~a, S0))

if and only if

Mh |= Controllable(set({✏}),any, do(~↵, S0)).

Intuitively, part (a) ensures that if we have a controllable set of atomic actions at the high level, we can

always find a set of refinements of exactly these actions that is controllable at the low level; moreover, if we

have an uncontrollable set of atomic actions at the high level, there is no set of refinements of exactly these

actions that is controllable at the low level, i.e., the set really is uncontrollable. Additionally part (b) ensures

that if the supervisor can direct the agent to stop at the low level, i.e., the set of runs {✏} is controllable at

the low level with respect to an agent that executes sequences of 0 or more refinements of high-level actions,

and thus there is no refinement of a high-level action that starts with an uncontrollable low-level action,

then the supervisor can also direct the agent to stop at the high level, i.e., {✏} is also controllable at the

high level, and no uncontrollable action is executable there as well, and vice versa (in fact, the latter follows

from part (a)).

Example 6.2 Referring back to our running example, suppose that at the low level, the agent has ex-

ecuted ~a = takeRoad(sID , Rdi, o, d); takeRoad(sID , Rdc, o, d) which corresponds to the high-level ~↵ =

takeRoute(sID , RtC , o, d). At the high level, the set of all executable actions is Ah = {takeRoute(sID , RtD,

o, d), delay(sID)} and the only controllable subsets are Ah, {delay(sID)} and ;. At the low level, the control-

lable subsets are {takeRoad(sID , Rdd, o, d), delayBW (sID), delayRM(sID)}, {delayBW (sID), delayRM(

sID)}, and ;, which correspond to the high-level ones. set({✏}) is not controllable at either levels. So the

local controllability assumption is satisfied.

Hierarchical Controllability of High-Level Specifications. The local controllability assumption (part

(a)) ensures that the controllability of atomic actions at the high level accurately represents the controllability

of their refinements. Can we generalize this to show that if we have a controllable set of runs Eh at the high

level, we can always refine it and obtain a set El of runs which are refinements for the runs in Eh and that

is controllable at the low level? Indeed we have been able to show that we can, when the high-level action

sequences in Eh have a bounded length, as the following result shows:

Theorem 6.2 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1

and 6.1 (part(a) �) hold, then

for any set of ground high-level action sequences of bounded length Eh such that Mh |= Controllable(set(Eh),

101



any, do(~↵, S0)), there exists a set of ground low-level action sequences El such that El ✓ CRM
l

(monit, do(~a, S0))

and

Ml |= Controllable(set(El),monit, do(~a, S0)) and m�1
M

l

(El, do(~a, S0)) = Eh.

Note that a set of action sequences E has bounded length if there exists K 2 N such that for all ~a 2 E,

|~a|  K. Our proof is by induction on the length of the longest action sequence in Eh. We leave the

unbounded case for future work.

We can also show a similar result in the concrete to abstract direction, i.e., if we have a controllable set

of refinements of high-level action sequences El, the corresponding set of high-level runs m�1
M

l

(El, do(~a, S0))

must also be controllable at the high level:

Theorem 6.3 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1

and 6.1 (part(a) ⇢ and part (b)) hold, then

for any set of ground low-level action sequences El such that El ✓ CRM
l

(monit, do(~a, S0)) m
�1
M

l

(El, do(~a, S0))

has bounded length,

if Ml |= Controllable(set(El),monit, do(~a, S0)),

then Mh |= Controllable(set(m�1
M

l

(El, do(~a, S0))), any, do(~↵, S0)).

An immediate consequence of the above is that any set of high-level action sequences that is uncontrollable

(with respect to (any in do(~↵, S0)) has no refinement set that is controllable (with respect to monit in

do(~a, S0)), as if there was such a set, then Eh would have to be controllable by Theorem 6.3.

As we will see, we can use the above results to show that if we have a supervision specification represented

by a high-level SD program �hSpec, the MPS for the specification at the high level is in fact the abstract version

of the MPS for it at the low level. To state this notion precisely however, we need a way of mapping the

high-level supervision specification program �hSpec, which is SD, into a low-level program whose runs are the

refinements of �hSpec.

To support this, we extend the mapping m to a mapping mp that maps any SD high-level program �h

to a SD low-level program that implements it:

mp(�h)
.
= setp({�h[A(~t)/atomic(m(A(~t))) for all A 2 A, and F (~t)/m(F (~t)) for all F 2 F ]}).

Note that when we replace a high-level action A(~t) by the low-level program implementing it, m(A(~t)), we

enclose the latter in the atomic() construct to prevent it from being interleaved with refinements of other

high-level actions, as we want any low-level execution of the agent to be a sequence of refinements of high-

level actions. We also use the setp() construct to avoid committing to a particular high-level action that is

being refined until we have to.
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We can then use mp to map an arbitrary supervision specification represented by a high-level SD program

�hSpec to the SD low-level program that implements it mp(�hSpec).

Example 6.3 Going back to our running example, applying mp to the high-level specification �hSpec given

earlier yields the following low-level specification:

mp(�hSpec) = �lSpec =

&
sID2ShpOrd[⇡a.a; ((Exp1(sID) _ Exp2(sID)) �

¬(DelayedBD(sID) _DelayedRM(sID)))?]⇤; (Unloaded(sID) ^ Signed(sID))?

Now we are ready to state our result: the high-level MPS for the supervision specification represented

by a high-level SD program �hSpec is the abstract version of the MPS for the mapped specification at the low

level, i.e., formally:

Theorem 6.4 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1

and 6.1 hold, then for any supervision specification represented by a high-level situation-determined program

�hSpec,

m�1
M

l

(CRM
l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)), do(~a, S0)), do(~a, S0)) =

CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)).

provided that the sets of action sequences on both sides of this equation have bounded length.

Example 6.4 Referring back to our running example, the complete runs of the high-level MPS and low-level

MPS are as follows:

CRM
h

(mps
o✏

(any, �hSpec, S0), S0) =

{takeRoute(sID , RtA, o, d); takeRoute(sID , RtB , o, d); deliver(sID)}

CRM
l

(mps
o✏

(monit,mp(�hSpec), S0), S0) =

{[takeRoad(sID , Rdi, o, d); takeRoad(sID , Rda, o, d);

takeRoad(sID , Rdb1, o, d);unload(sID); getSignature(sID)],

[takeRoad(sID , Rdi, o, d); takeRoad(sID , Rda, o, d);

takeRoad(sID , Rdb2, o, d);unload(sID); getSignature(sID)]}

It is easy to confirm that the result of Theorem 6.4 holds.
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6.4 Hierarchically Synthesized MPS

Let’s assume that we have precomputed the high-level MPS for some high-level specification in some high-

level situation, which for convenience we equivalently represent as a set of high level action sequences Emps
h .

We can define a low-level program mpsi(E
mps
h ) that refines this high-level MPS Emps

h into the corresponding

low-level MPS (note that now represents the current situation):

mpsi(E
mps
h ) = ✏ 2 Emps

h ? |

(mps
o✏

(oneMonit,mp(firsts(E
mps
h )), now);

mpsi(rests(E
mps
h , last(m�1

M
l

(now))))),

where

last(~�) = � if ~� = ~↵0� and undefined if ~� = ✏,

firsts(E) = {↵0 | ↵0~� 2 E for some ~�}, and

rests(E,�) = {~� | �~� 2 E}.

We can show that the resulting hierarchically synthesized MPS, mpsi(E
mps
h ), is correct in that it has

exactly the same set of complete runs as that of the low-level MPS mps
o✏

(monit,mp(�hSpec), do(~a, S0))

obtained by mapping the supervision specification �hSpec to the low level:

Theorem 6.5 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1

and 6.1 hold, then for any supervision specification represented by a high-level situation-determined program

�hSpec where CRM
h

(�hSpec, do(~↵, S0)) and m�1(CRM
l

(mpsi(E
mps
h ), do(~a, S0)) have bounded length,

CRM
l

(mpsi(E
mps
h ), do(~a, S0)) = CRM

l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)), do(~a, S0))

where Emps
h = CRM

h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)).

It should be clear that the hierarchically synthesized MPS mpsi(E
mps
h ) will generally be much easier to

compute than the low-level MPS mps
o✏

(monit,mp(�hSpec), do(~a, S0)). To get the latter, one has to search

the whole space of all refinements of all high-level action sequences. To get the former, one only needs to

repeatedly search for the local MPS of the set of refinements of high-level atomic actions that are allowed

by the high-level MPS at each step; the search horizon is much shorter, a single high-level action. One

does need to precompute the high-level MPS mps
o✏

(any, �hSpec, do(~↵, S0)), but the search space for it would

typically be much smaller than for the low-level MPS. One may also compute mpsi(E
mps
h ) incrementally.

The fact that we have the high-level MPS as a guide ensures that we can do this without losing maximal

permissiveness. Note that mpsi(E
mps
h ) is a sequence of set(E), so it is always SD, like the low-level MPS,

thus ensuring that they can always perform the same transitions.
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Example 6.5 Referring back to our running example, it is clear that initially, mps
o✏

(monit,mp(�hSpec), S0)

needs to consider both action sequences [takeRoad(sID , Rdi, o, d); takeRoad(sID , Rda, o, d)] and

[takeRoad(sID , Rdi, o, d); takeRoad(sID , Rdc, o, d)]. After the latter, the uncontrollable actions delayRM or

delayBW may happen next, which would violate the specification given that shipment 123 is of type Exp2.

So it will only include the former as a prefix in the resulting MPS. mpsi(E
mps
h ) on the other hand, only needs

to consider refinements of takeRoute(sID , RtA, o, d), i.e., takeRoad(sID , Rdi, o, d); takeRoad(sID , Rda, o, d).

The high-level MPS mps
o✏

(any, �hSpec, S0) has already determined that taking route C should not be al-

lowed, as it may be followed by the uncontrollable action delay, which is ruled out by the specification since

the shipment 123 is of type Priority.

Observe that, so far, we have assumed that we have complete information about the situation in which

the agent runs in both the high-level and low-level models. But, this assumption is not essential. If the

high-level MPS for the given supervision specification is the same in all models of the high-level action theory

(i.e., it is similar to a conformant plan) and we have a sound abstraction, then we can still use this high-

level MPS to obtain a correct hierarchically synthesized MPS for each low-level model as shown above. Of

course, if we have incomplete information at the low level too, then there is no guarantee that the resulting

low-level MPS will be the same for every model of the low-level action theory. However, one typically has

more information at the low level than at the high level, so this case is not that unusual. More generally,

an agent with incomplete information may also acquire new information online, as it executes. In this case,

a more complex notion of online supervision/MPS is required [12]. Extending our hierarchical approach to

this case is left for future work.

6.5 Discussion

In this chapter, we developed an account for hierarchical supervision where given a high-level MPS based on

an abstract specification, we synthesize a MPS for the low-level agent based on the refined specification. For

simplicity, we focused on a single layer of abstraction, but the framework supports extending the hierarchy

to more levels. Our approach can be extended to use ConGolog programs (in addition to the action theory) to

specify the possible behaviors of the agent at both the high and low level; one way to do this is to “compile”

the program into the BAT D to get a new BAT D0 whose executable situations are exactly those that can

be reached by executing the program, as in [37].

Our approach is inspired by the hierarchical supervisory control of discrete event systems [172, 165, 166]

(see Section 2.5.3), but the foundations of our work is di↵erent. Wonham [166] models the low-level and

high-level plants as types of automata. An aggregation map from the low-level plant to the high-level plant is

defined that summarizes strings of low-level events to a high-level event. The controllability of the high-level
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events are defined based on controllability of their refinements. Also, to ensure non-blocking supervision, a

type of local controllability in the low-level plant is provided; moreover, the map is enhanced with a “global

observer property”, that ensures the strings of events in the low-level language can always be extended as

their abstractions are in the high-level model. This approach does not consider low-level constraints that

could be imposed on the low-level plant.

Our framework however, is based on a rich first-order logic language. In addition to actions (which

abstract over programs), our high-level theory includes fluents (which abstract over formulas). Moreover, we

use a refinement mapping that associates each high-level primitive action to a (possibly non-deterministic)

ConGolog program defined over the low-level action theory that “implements” it and maps each high-level

fluent to a state formula in the low-level language that “characterizes the concrete conditions” under which

it holds. We use a notion of bisimulation to relate the models of the high-level and low-level theories. Our

notion of local controllability is similar to that of [166]; moreover, as we show in Theorem 6.2 and Theorem

6.3, we are able to achieve the main condition with marking (MCm). Finally, through preconditions for

actions, we are able to enforce local constraints on the low-level agent.

Based on the “Roman Model” approach to behavior composition in AI, Sardina and DeGiacomo [138]

synthesize a controller that orchestrates the concurrent execution of library of available (non-deterministic)

ConGolog programs to realize a target program not in the library. However, their controller is not maximally

permissive. In related work, Yadav et al. [169], consider optimal realization of the target behavior (in the

presence of uncontrollable exogenous events) when its full realization is not possible. This work does not

synthesize a supervisor and uses a controller. Also, it does not assume the controllability of events to be

dynamic. De Giacomo et al. [44] however, synthesize a controller generator that represents all possible

compositions of the target behavior and may adapt reactively based on runtime feedback. In more recent

work, Felli et al. [58] relate the notion of a composition controller in the “Roman Model” approach to

behavior composition to that of a supervisor in SCDES. Di↵erently from our framework which uses a rich

first order language, these three approaches model behaviors/services as (non-deterministic) finite state

transition systems.

In the area on norm enforcement, the approach by Alechina et al. [2] regulates multiagent systems using

regimented norms. A transition system describes the behavior of a (multi-) agent system and a guard function

(characterized by LTL formulae with past operators) can enable/disable options that (could) violate norms

after a system history (possibly using bounded lookahead). Unlike our approach, this work does not consider

uncontrollable events, and is not based on expressive first order logic language. Gabaldon [65] investigates

expressing and enforcing norms in the Golog programming language. Norms are encoded as additional

preconditions of actions. In work on imposing control knowledge in planning, Gabaldon [64] provides a

procedure for compiling search control knowledge in nonMarkovian action theories in the situation calculus.
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Control knowledge is added to precondition axioms of actions. While this approach focuses on improving

the e�ciency of planning, our work provides a generic framework which can have applications in many areas.

Moreover, adding constraints as preconditions of actions in the latter two approaches, can not provide the

flexibility and system evolvability that our framework can provide, as the supervision specification is encoded

separately from agent behavior. Also, these two approaches do not consider uncontrollable actions.

Aucher [7] reformulates the results of supervisory control theory in terms of model checking problems

in an epistemic temporal logic. Our work di↵ers from this approach in that due to its first-order logic

foundations, it can handle infinite object domains and infinite states. It also enables users to express the

system model and the specifications in a high-level expressive language. None of the above approaches

consider abstraction.

In planning, several notions of abstraction have been investigated. These include precondition elimination

abstraction, first introduced in the context of ABSTRIPS [135]; Hierarchical Task Networks (HTNs) (e.g.,

[57]), which abstract over a set of (non-primitive) tasks; and macro operators (e.g., [89]), which represent

meta-actions built from a sequence of action steps. Encodings of HTNs in ConGolog [63] with enhanced

features like exogenous actions have also been studied. McIlraith and Fadel [112] instead, investigate planning

with complex actions (a form of macro actions) specified as Golog programs. While these approaches focus

on improving the e�ciency of planning, our work provides a generic framework which can have applications

in many areas. Moreover, the former uses a single BAT, and the latter compile the abstracted actions into

a new BAT that contains both the original and abstracted actions. Also, they only deal with deterministic

complex actions and do not provide abstraction for fluents.

Grossi and Dignum [79] use a KD45 multi modal logic corresponding to a propositional logic of contexts

to model norms at di↵erent levels of abstractions. In related work, Salceda and Dignum [162] propose a

method to refine abstract norms specified in the institutional regulations to concrete norms and eventually

into rules and procedures represented by a PDL [114] such that the agents operating within the organization

can be rewarded/punished based on existing norms. Our framework however, is based on an expressive first

order logic language.
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7 Abstracting Online Agent Behavior

To facilitate reasoning about agents that have complex behavior, we have developed a general framework

for agent abstraction in Chapter 5. This framework focused on abstraction of agent behavior in o✏ine

executions. In this chapter, we study how we can apply this framework in the case where the agent may

acquire new knowledge while executing, for example through sensing. As in Chapter 5, we assume that

one has a high-level/abstract action theory, a low-level/concrete action theory, and a refinement mapping

between the two. Consider for instance a travel planner agent that needs to book a seat on a certain flight.

The high-level theory could abstract over details of the booking procedure, while the low-level theory could

consider the detailed procedure, such as selecting flights and making payments. Similarly, the existence of

upgrades from economy to business class may be abstracted into a single category of upgrade at the high

level, while at the low level, di↵erent types of upgrades, such as existence of air miles rewards or promotions

can be considered. The agent may not know ahead of time whether such upgrades are available; she will

only learn about the existence of an upgrade after querying a web service at execution time. Therefore, we

must consider agent’s online executions [39, 140]. As discussed in Chapter 4, such online executions can only

be defined meta-theoretically (unless one adds a knowledge operator/fluent [145]) since at every time point,

the knowledge base used by the agent to deliberate about the next action may be di↵erent.

Abstraction is useful in reasoning about an agent that executes online in similar contexts as those con-

sidered when an agent executes o✏ine. Examples of applications of abstraction of online agent behavior

include hierarchical contingent planning, agent monitoring, providing high-level explanations, and online

hierarchical agent supervision.

To formalize a notion of sound abstraction in online executions, we first identify a su�cient property

for sound abstraction to persist along an online execution. We then show results extending basic properties

of sound abstractions to online executions. We adapt definitions of strategies and ability to perform a

task/achieve a goal to our model of online execution. Based on this, we show that under some reasonable

conditions, if we have sound abstraction and the agent has a conditional plan/strategy for accomplishing a

task or achieving a goal at the high level, then we can refine it into a low-level strategy piecewise, and the

resulting low-level strategy is guaranteed to achieve the refinement of the goal.
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7.1 A Travel Planning Example

For our running example, we consider a travel planner agent, that can book a seat on a certain flight for a

customer with client ID “C1”. We assume the agent communicates with a single web service to gather the

required information and make bookings. We further assume that the agent can always book an economy

seat (Ec) on a flight; however, to book a business seat (Bz), the customer must be eligible for some kind

of upgrade from economy class. The agent initially does not know whether the customer is eligible for an

upgrade. For simplicity, we ignore the dates of the trip and assume seats are always available at the beginning

of the process.

The high-level BAT Deg
h . At the high level, we abstract over details of the booking procedure. The

agent first queries the web service to learn whether an upgrade is available for a customer. This is followed

by a reply from the web service, indicating whether or not the upgrade is available, after which, the agent

can make a booking.

Deg
h includes the following action precondition axioms (throughout, we assume that free variables are

universally quantified from the outside):

Poss(qryUpg(c), s) ⌘ ¬QrdUpg(c, s) ^ ¬9c0.(QrdUpg(c0) ^ ¬RcvdRep(c0))

Poss(repUpg(c, x), s) ⌘ ¬RcvdRep(c, s) ^QrdUpg(c, s) ^

(Upg(c, s) ^ x = 1 _ ¬Upg(c, s) ^ x = 0)

Poss(book(c, cls, f), s) ⌘ ¬Booked(c, cls, f, s) ^ ((cls = Bz) � Upg(c, s)) ^

¬9c0.(QrdUpg(c0) ^ ¬RcvdRep(c0))

The fluent Upg(c, s) holds when an upgrade for customer c is possible. qryUpg(c) is an ordinary action that

is used to query if Upg(c, s) holds, and is executable for any customer c, unless the web service has already

been queried whether Upg(c, s) holds for that customer (indicated by ¬QrdUpg(c, s) in the precondition).

Also, it should not be the case that the existence of an upgrade for a customer c0 has been queried, but no

reply from the web service has been received (indicated by the fluent RcvdRep(c0)). repUpg(c, x) is an exoge-

nous action that informs the agent whether Upg(c, s) holds through its precondition axiom: repUpg(c, 1) is

executed if Upg(c, s) holds, and otherwise, repUpg(c, 0) is executed. After the action repUpg(c, x) has been

executed, the fluent RcvdRep(c, s) is set to indicate that the reply from web service has been received. Thus,

¬RcvdRep(c, s) in the preconditions specifies that no reply has been received yet. The fluent QrdUpg(c, s) in

the precondition indicates that action qryUpg(c) has already been performed. book(c, cls, f) is an ordinary

action that can be performed to book a business or economy class seat (indicated by the cls argument) on a

flight f for customer with client id c and is executable if the ticket has not been booked already; moreover,

for booking Bz seats, an upgrade must be available. Also, it should not be the case that the existence of an
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upgrade for a customer c0 has been queried, but no reply from the web service has been received.

The high-level BAT also includes the following successor state axioms:

QrdUpg(c, do(a, s)) ⌘ a = qryUpg(c) _QrdUpg(c, s)

RcvdRep(c, do(a, s)) ⌘ a = repUpg(c, x) _RcvdRep(c, s)

Booked(c, cls, f, do(a, s)) ⌘ a = book(c, cls, f) _Booked(c, cls, f, s)

QrdUpg for customer c holds in a situation resulting from performing action a in situation s if and only

if the action a was qryUpg(c), or QrdUpg was already true in situation s. The successor state axioms for

RcvdRep and Booked are defined similarly. For Upg, we have a successor state axiom specifying that it is

una↵ected by any action.

Deg
h also contains the following initial state axioms:

¬QrdUpg(C1, S0),

¬RcvdRep(C1, S0),

8cls, f.¬Booked(C1, cls, f, S0)

Note that in the initial state, it is not known whether Upg(C1, S0) holds.

The low-level BAT Deg
l . At the concrete level, we consider the process of booking a ticket in more

details. Here, two types of upgrades exit: using air miles rewards and using a promotion. Hence, querying

and getting replies about the availability of an upgrade involve more specific querying and receiving replies

about existence of promotions as well as air miles rewards availability. Moreover, performing a booking

involves first selecting a flight and then making a payment.

In formalizing the low-level theory, we want to ensure that all low-level executions are refinements of high-

level action sequences, we need to assume a number of preconditions for each action. For instance, qryUpg(c)

is refined by qryAM(c); qryPr(c), thus qryPr(c) must only be executable when qryAM(c) has just been done

and no other actions can be allowed in between those. Similarly for the sequences repAM(c, x); repPr(c, x)

refining repUpg(c, x) and selectF lt(c, cls, f); pay(c, cls, f) refining book(c, cls, f) (we will define the refine-

ment mapping meg later in this section).

Deg
l includes the following action precondition axioms:
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Poss(qryAM(c), s) ⌘ ¬QrdAM(c, s) ^

¬9c0, f 0, cls0.(Querying(c0) _Replying(c0) _Booking(c0, cls0, f 0)) ^

¬9c0.(QrdAM(c0) ^QrdPr(c0) ^ ¬(RcvdRepAM(c0) ^RcvdRepPr(c0)))

Poss(qryPr(c), s) ⌘ ¬QrdPr(c, s) ^QrdAM(c, s) ^

¬9c0.(QrdAM(c0) ^QrdPr(c0) ^ ¬(RcvdRepAM(c0) ^RcvdRepPr(c0)))

Poss(repAM(c, x), s) ⌘ ¬RcvdRepAM(c, s) ^QrdAM(c, s) ^QrdPr(c, s) ^

(AirMiles(c, s) ^ x = 1 _ ¬AirMiles(c, s) ^ x = 0) ^

¬9c0, f 0, cls0.(Querying(c0) _Replying(c0) _Booking(c0, cls0, f 0))

Poss(repPr(c, x), s) ⌘ ¬RcvdRepPr(c, s) ^RcvdRepAM(c, s) ^QrdAM(c, s) ^QrdPr(c, s) ^

(Promotion(c, s) ^ x = 1 _ ¬Promotion(c, s) ^ x = 0)

Poss(selectF lt(c, cls, f), s) ⌘ ¬Selected(c, cls, f, s) ^

((cls = Bz) � AirMiles(c, s) _ Promotion(c, s)) ^

¬9c0, f 0, cls0.(Querying(c0) _Replying(c0) _Booking(c0, cls0, f 0)) ^

¬9c0.(QrdAM(c0) ^QrdPr(c0) ^ ¬(RcvdRepAM(c0) ^RcvdRepPr(c0)))

Poss(pay(c, cls, f), s) ⌘ ¬Paid(c, cls, f, s) ^ Selected(c, cls, f, s) ^

¬9c0.(QrdAM(c0) ^QrdPr(c0) ^ ¬(RcvdRepAM(c0) ^RcvdRepPr(c0)))

AirMiles(c, s) and Promotion(c, s) are fluents that indicate respectively whether using air miles rewards

and using a promotion are possible for customer c. qryAM(c) and qryPr(c) are ordinary actions that are

used to query whether AirMiles(c, s) and Promotion(c, s) hold respectively. qryAM(c) is executable for

any customer c, unless it has already been queried whether AirMiles(c, s) holds for that customer (indicated

by ¬QrdAM(c, s) in the precondition). Moreover, the agent can only perform qryAM(c), if the process of

querying a web service about upgrades, receiving a reply or booking a ticket for any customer c0, indicated by

abbreviationsQuerying(c0)
.
= QrdAM(c0)^¬QrdPr(c0), Replying(c0)

.
= RcvdRepAM(c0)^¬RcvdRepPr(c0)

and Booking(c0, cls, f)
.
= Selected(c0, cls, f) ^ ¬Paid(c0, cls, f) respectively, have not been already initiated

(we provide an overview of these fluents below). Moreover, it should not be the case that the existence

of air miles rewards and promotions have already been queried for a customer, but the replies from the

web service are still pending. The action qryPr(c) is executable for a customer c if it has not already

been queried whether a promotion exists for c (i.e., Promotion(c, s) holds) and qryAM(c) has already been

performed for c. Similar to above, there should not be any customer c0 for whom the existence of air

miles rewards or promotions have been queried, and no replies from the web service have been received.

repAM(c, x) (resp. repPr(c, x)) is an exogenous action that informs the agent whether AirMiles(c, s)

(resp. Promotion(c, s)) holds through its precondition axiom: repAM(c, 1) is executed if AirMiles(c, s)

holds, and otherwise, repAM(c, 0) is executed (and similarly for repPr(c, x)). After the action repAM(c, x)
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(resp. repPr(c, x)) has been executed, the fluent RcvdRepAM(c, s) (resp. RcvdRepPr(c, s)) is set to

indicate that the reply from web service regarding existence of air miles (resp. promotion) has been received.

Thus, ¬RcvdRepAM(c, s) (resp. ¬RcvdRepPr(c, s)) in the precondition indicates that a reply has not been

received yet. The fluents QrdAM(c, s) and QrdPr(c, s) in the precondition of repAM(c, x) and repPr(c, x)

indicate that the actions qryAM(c) and qryPr(c) have already been performed. Moreover, the action

repAM(c, x) can only be executed if the process of querying a web service about upgrades, receiving a

reply or booking a ticket for any customer has not been already initiated. selectF lt(c, cls, f) is an ordinary

action that selects a seat on a flight f and is executable when a seat on that flight has not been selected for

that customer before; and, RcvdRepPr(c, s) has been received (which also indicates that RcvdRepAM(c, s)

has been received too, since it is the precondition of qryPr(c)). Moreover, for booking Bz seats, either the

customer should have su�cient air miles or a promotion exists. Also, the agent can perform selectF lt(c, cls, f)

if the process of querying a web service about upgrades, receiving a reply or booking a ticket for any customer

has not been already initiated. Finally, it should not be the case that for any customer c0 the web services

has been queried about air miles rewards and promotions, but no replies from the web service have been

received yet. After the seat/flight is selected, payments can be made by using the ordinary action pay, unless

the fees have already been paid (specified by ¬Paid(c, cls, f, s) in the precondition).

The low-level BAT also includes the following successor state axioms:

QrdAM(c, do(a, s)) ⌘ a = qryAM(c) _QrdAM(c, s)

QrdPr(c, do(a, s)) ⌘ a = qryPr(c) _QrdPr(c, s)

RcvdRepAM(c, do(a, s)) ⌘ a = repAM(c) _RcvdRepAM(c, s)

RcvdRepPr(c, do(a, s)) ⌘ a = repPr(c) _RcvdRepPr(c, s)

Selected(c, cls, f, do(a, s)) ⌘ a = selectF lt(c, cls, f) _ Selected(c, cls, f, s)

Paid(c, cls, f, do(a, s)) ⌘ a = pay(c, cls, f) _ Paid(c, cls, f, s)

For fluents AirMiles(c, s) and Promotion(c, s), we have successor state axioms specifying that they are

una↵ected by any action.

Deg
l also contains the following initial state axioms:

¬QrdAM(C1, S0),

¬QrdPr(C1, S0),

¬RcvdRepAM(C1, S0),

¬RcvdRepPr(C1, S0),

8cls, f.¬Selected(C1, cls, f, S0),

8cls, f.¬Paid(C1, cls, f, S0)

Note that it is not known whether Promotion(C1, S0) or AirMiles(C1, S0) hold.
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Refinement Mapping meg. We specify the relationship between the high-level and low-level BATs

through the following refinement mapping meg:

meg(qryUpg(c)) = qryAM(c); qryPr(c)

meg(repUpg(c, x)) =

(x = 0)?;

(repAM(c, 0); repPr(c, 0))

(x = 1)?;

(repAM(c, 0); repPr(c, 1) |

repAM(c, 1); repPr(c, 0) |

repAM(c, 1); repPr(c, 1))

meg(book(c, cls, f)) = selectF lt(c, cls, f); pay(c, cls, f)

meg(Upg(c)) = AirMiles(c) _ Promotion(c)

meg(QrdUpg(c)) = QrdAM(c) ^QrdPr(c)

meg(RcvdRep(c)) = RcvdRepAM(c) ^RcvdRepPr(c)

meg(Booked(c, cls, f)) = Selected(c, cls, f) ^ Paid(c, cls, f)

Thus qryUpg(c) is refined to first performing qryAM(c) followed by qryPr(c).33 Performing action repUpg(c,

0) involves sequence of actions repAM(c, 0); repPr(c, 0), while performing repUpg(c, 1) is refined as a

non-deterministic choice of sequences of actions repAM(c, 0); repPr(c, 1) or repAM(c, 1); repPr(c, 0) or

repAM(c, 1); repPr(c, 1). Upg(c) is mapped into the availability of upgrade through AirMiles(c) or a

Promotion(c). The refinements of other fluents and actions are straightforward.

By using Theorem 5.9, we can confirm that for the initial theories, Deg
h is a sound abstraction of Deg

l

relative to refinement mapping meg. DS0
l entails the “translation” of all the facts about the high-level fluents

QrdUpg, RcvdRep and Booked that are in DS0
h . Moreover, Deg

l entails that the mapping of the preconditions

of the high-level actions qryUpg, repUpg, and book correctly capture the executability conditions of their

refinements. Deg
l also entails the mapped high-level successor state axiom for fluent QrdUpg and action

qryUpg, for fluent RcvdRep and action repUpg, and for fluent Booked and action book; the other high-level

actions don’t a↵ect these fluents. Upg has a successor state axiom that is not a↵ected by any actions. Thus,

Deg
h is a sound abstraction of Deg

l relative to meg.

In the above example the programs refining high-level actions are quite simple. But note that refinements

of high-level actions may contain sensing actions that acquire knowledge that remains “local” to the low-level

33Note that in the refinement of qryUpg(c), the qryAM(c) and qryPr(c) actions could be done concurrently; we prescribe a
specific sequencing to keep the example simple.
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theory, such that the high-level agent does not need to know about them. For instance, one could extend the

example so that in the concrete theory the action book is refined as: m(book(c, cls, f)) = selectF lt(c, cls, f);

[CC(c, s)?; payCC(c, cls, f) | ¬CC(c, s)?; payDB(c, cls, f)], where payCC and payDB are ordinary actions

that specify payments for the ticket fees by credit and debit card respectively. The fluent CC(c, s) indicates

customer’s preference for paying by credit card. Thus, informally, the action book is refined in the concrete

theory by first selecting the flight, and then, based on the customer’s preference, paying by credit card or

debit card. As in the initial theory it may not be known whether CC(c, s) holds for customer c, the low-level

agent can use sensing to learn this information. Sensing for this fluent can be defined similarly to other

fluents such as AirMiles(c, s). The knowledge acquired however, remains local to the low level, and is not

represented by any high-level fluents.

7.2 Sound Abstraction in Online Executions

How can we use abstraction in agents that execute online and acquire new information during a run? The

agent’s knowledge base/theory is updated when it acquires new information. The first question is whether

a sound abstraction remains so when that happens.

First, note that the updated theory D [ {Executable(~a, S0)} after the agent has executed the ground

action sequence ~a is not strictly speaking a BAT. However, it is easy to show that Executable(~a, S0) is

equivalent given the BAT to a regressable formula  ~a, which can be obtained by expanding the definition

of Executable and replacing all the Poss atoms in the result by the right-hand side of the relevant action

precondition axiom. If we obtain the regression of this formula, i.e., R( ~a), then D [ {R( ~a)} is a BAT.

We have that D |= Executable(~a, S0) ⌘  ~a and thus by the regression theorem (Theorem 4.5.5 in [132])

D |= Executable(~a, S0) ⌘ R( ~a). So we can apply the notion of sound abstraction to such updated theories

by assuming that we regress the update formula, which we will do from now on.

Now let’s get back to our question of whether a sound abstraction remains so after an action is executed

online and the theory is updated. Consider the following example.

Example 7.1 Suppose that we have a high-level exogenous action ah which is executable if and only if Ph

holds. The refinements of Ph and ah are defined as m(Ph) = Pl and m(ah) = Pl?; al respectively, where al

is a low-level exogenous action. Moreover, assume that at the low level, action al is always executable, i.e.,

Poss(al) ⌘ True. Initially, it is unknown whether Ph holds at the high level and similarly for Pl at the low

level. It is easy to check that the high-level theory Dh is a sound abstraction of the low-level theory Dl with

respect to the mapping m. However, if ah and its refinement al occur and the theories are updated, then

Dh [ {Poss(ah, S0)} is no longer a sound abstraction of Dl [ {Poss(al, S0)} with respect to m. In situation

do(ah, S0), the high-level agent has learned that Ph holds, as Poss(ah, S0) has been added to the theory.
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However, at the low level, adding Poss(al, S0) has no e↵ect and in situation do(al, S0), it is still unknown

whether Pl holds. The updated low-level theory has a model where ¬Pl holds, which has no bisimilar model

in the updated high-level theory.

Thus a sound abstraction does not always remain so when we update the theories after an action is

executed online. For the sound abstraction to persist, we need to ensure that the low-level theory acquires

as much information as the high-level theory. For the above example, we must ensure that the low level

learns that m(Ph), i.e., Pl, holds. When a high-level action occurs, the high level learns that this action was

executable. If the low level also learns that it has in fact just executed a refinement of this high-level action,

then we can be certain that it has acquired as much information as the high level. We can generalize this

condition to action sequences and prove that it is a su�cient condition for the sound abstraction to persist

(for proofs of our results in this chapter, see Appendix A.4):

Theorem 7.1 (Persistence of Sound Abstractions) If Dh is a sound abstraction of Dl relative to refinement

mapping m and Dl [ C [ {Executable(do(~a, S0))} |= Do(m(~↵), S0, do(~a, S0)) holds, then Dh [ {Executable(

do(~↵, S0))} is a sound abstraction of Dl [ {Executable(do(~a, S0))} relative to m.

In the above, the condition Dl [ C [ {Executable(do(~a, S0))} |= Do(m(~↵), S0, do(S0,~a)) ensures that after

execution of a sequence of actions ~↵ by the high-level agent/BAT and its refinement ~a by the low-level

agent/BAT, the low level knows that it has just executed a refinement of ~↵ and has learned as much

information as the high level, and thus, we still have a sound abstraction.

The su�cient condition identified above to guarantee that we continue to have a sound abstraction, i.e.,

essentially that the low-level agent is aware of the high-level actions it executes, does not seem overly di�cult

to satisfy in practice. For instance, it is easy to modify the program associated to the high-level action ah

to satisfy the condition: one can define m(ah) = Pl?; confirmP
l

; al, where confirmP
l

is a new exogenous

action that has Pl as precondition and no e↵ects; this new action ensures that the agent executing m(ah)

learns that m(Ph), i.e., Pl, holds. Generally, it seems that we must ensure that whenever a test succeeds

in an execution of a refinement of a high-level action, the low-level agent knows (i.e., the updated theory

entails) afterwards that the test condition holds. One way to satisfy the condition would be to map high-level

actions into “self-su�cient programs” in the sense of [113].

Example 7.2 We can show that along all online executions of refinements of high-level actions from the

running example the su�cient condition holds, and the updated high-level theory remains a sound abstrac-

tion of the updated low-level theory. That is, for all ground high-level action sequences ~↵ and all ground

low-level action sequences ~a such that h~↵, ✏i !⇤
~↵ h�h, ~↵i and h�h, ~↵iX for some �h and hm(~↵), ✏i !⇤

~a h�l,~ai

and h�l,~aiX for some �l, our running example satisfies the condition Deg
l [ C [ {Executable(do(~a, S0))} |=
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Do(m(~↵), S0, do(S0,~a)) and thus the high-level theory Deg
h remains a sound abstraction of the low-level

theory Deg
l relative to the mapping meg as the agent acquires new knowledge. To show this, it is su�-

cient to show that for all ground low-level action sequences ~a and ~b, and all high-level actions � such that

Deg
l [ C [ {Executable(do(~a, S0)) ^ Do(m(�), do(~a, S0), do(~a~b, S0))} is satisfiable, we have that Deg

l [ C [

{Executable(do(~a~b, S0))} |= Do(m(�), do(~a, S0), do(~a~b, S0)).

For the high-level action book(c, cls, f), this condition trivially holds since it is refined as the sequence of

low-level actions selectF lt(c, cls, f); pay(c, cls, f). The same holds for high-level action qryUpg(c), as it is

mapped to the sequence of actions qryAM(c); qryPr(c). For the high-level action repUpg(c, x), we have that

x must be either 0 or 1 by the precondition axiom. When x = 0, there is one possible refinement which is

repAM(C1, 0); repPr(C1, 0), otherwise, there are three possible refinements: repAM(C1, 1); repPr(C1, 0),

repAM(C1, 0); repPr(C1, 1) and repAM(C1, 1); repPr(C1, 1). In each case, the low-level agent knows she

has performed refinement of the associated high-level action.

We can use our condition for the persistence of sound abstraction to extend the results of Chapter 5 on

sound abstractions to use the knowledge acquired in an online execution. We can show that if the high-level

agent executes action sequence ~↵ online and the low-level agent is aware that ~a is a refinement of ~↵, and if

the high level agent then knows it can execute another action sequence ~� to achieve �, then the low-level

agent also knows after executing ~a online that there exists a refinement ~b of ~� that achieves m(�):

Theorem 7.2 Suppose that Dh is a sound abstraction of Dl relative to mapping m, Dl [C [ {Do(m(~↵), S0,

do(~a, S0))} is satisfiable, and Dl [ C [ {Executable(do(~a, S0))} |= Do(m(~↵), S0, do(S0,~a)) for some ground

high-level action sequence ~↵ and ground low-level action sequence ~a. Then we have that for any ground

high-level action sequence ~� and high-level situation-suppressed formula �, if

Dh [ {Executable(do(~↵, S0))} |= Executable(do(~↵~�, S0)) ^ �[do(~↵~�, S0)],

then

Dl [ C [ {Executable(do(~a, S0))} |= 9s.Do(m(~�), do(~a, S0), s) ^m(�)[s].

A special case of the above is when ~� is the empty action sequence. Then under the theorem’s conditions,

we have that if the high-level agent knows that � holds after executing ~↵ online, then the low-level agent

knows that m(�) holds after executing refinement ~a of ~↵ online.

Example 7.3 Returning to our running example, suppose the action sequence ~↵ = [qryUpg(C1), repUpg(C1,

1)] has been executed at the high level, and that action sequence ~a = [qryAM(C1), qryPr(C1), repAM(C1, 1),
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repPr(C1, 0)] has been performed at the low level. We have that Deg
h is a sound abstraction of Deg

l rel-

ative to mapping meg, and Deg
l [ C [ {Executable(do(~a, S0))} |= Do(m(~↵), S0, do(~a, S0)). Thus, since

at the high level Deg
h [ {Executable(do(~↵, S0))} |= Upg(C1, do(~↵, S0)) and that it is known that action

book(C1, Bz, f) is possible for any flight f , at the low level we have that Deg
l [C[{Executable(do(~a, S0))} |=

AirMiles(C1, do(~a, S0)) _ Promotion(C1, do(~a, S0)) (i.e., m(Upg(C1)[do(~a, S0)]) and it is also known that

the sequence of actions ~b = selectF lt(C1, Bz, f); pay(C1, Bz, f) is executable for f . Furthermore, since after

executing the action book(C1, Bz, f) at the high level the goal Booked(C1, Bz, f) is achieved, at the low

level, after performing the action sequence ~b, the refinement of the goal Booked(C1, Bz, f) is achieved (i.e.,

Selected(C1, Bz, f) ^ Paid(C1, Bz, f)).

Another important property of sound abstractions is that if the low-level agent/BAT thinks that a re-

finement of ~↵ may occur (with m(�) holding afterwards), the high-level agent/BAT also thinks that ~↵ may

occur (with � holding afterwards); if such a refinement actually occurs it will thus be consistent with the

high-level theory:

Proposition 7.3 Suppose that Dh is a sound abstraction of Dl relative to mapping m, Dl[C[{Executable(

do(~a, S0))} is satisfiable, and Dl [ C [ {Executable(do(~a, S0))} |= Do(m(~↵), S0, do(S0,~a)) for some ground

high-level action sequence ~↵ and ground low-level action sequence ~a. Then we have that for any ground high-

level action sequence ~� and any high-level situation-suppressed formula �, if Dl[C [{Executable(do(~a, S0))

^ 9s.Do(m(~�), do(~a, S0), s) ^m(�)[s]} is satisfiable, then Dh [ {Executable(do(~↵~�, S0)) ^ �[do(~↵~�, S0)]} is

also satisfiable.

The above proposition follows immediately from Corollary 5.3.

Example 7.4 Referring back to our running example, suppose the sequence of actions ~a = [qryAM(C1),

qryPr(C1)] has occurred at the low level, and the action sequence ~↵ = qryUpg(C1) has been executed at

the high level. We have that Deg
h is a sound abstraction of Deg

l relative to mapping meg and Deg
l [ C [

{Executable(do(~a, S0))} |= Do(m(~↵), S0, do(~a, S0)). Thus since at the low level both Deg
l [C[{Executable(

do(~a, S0))^ (AirMiles(C1, do(~a, S0))_Promotion(C1, do(~a, S0)))} and Deg
l [C [ {Executable(do(~a, S0))^

¬(AirMiles(C1, do(~a, S0)) _ Promotion(C1, do(~a, S0)))} are satisfiable, then at the high level, both Deg
h [

{Executable(do(~↵, S0))^(Upg(C1, do(~↵, S0))} and Deg
h [{Executable(do(~↵, S0))^¬(Upg(C1, do(~↵, S0))} are

satisfiable. Similarly, since bothDeg
l [C[{Executable(do(~a~b1, S0))} where ~b1 = [repAM(C1, 1); repPr(C1, 0)]

and Deg
l [C [ {Executable(do(~a~b2, S0))} where ~b2 = [repAM(C1, 0); repPr(C1, 0)] are satisfiable at the low

level, bothDeg
h [{Executable(do(~↵, S0))^Poss(repUpg(C1, 1), do(~↵, S0))} andDeg

h [{Executable(do(~↵, S0))^

Poss(repUpg(C1, 0), do(~↵, S0))} are satisfiable at the high level.
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Observe that online executability works di↵erently with respect to abstraction compared to o✏ine exe-

cutability, making it more di�cult to reason about the executability of a sequence of actions at one level

compared to the other. For instance, while an execution of a refinement of a high-level action may be pos-

sible in the concrete theory, the execution of the high-level action may not be possible in the corresponding

situation in the abstract theory. Consider the following example:

Example 7.5 Suppose that Dh is a sound abstraction of Dl relative to mapping m. Assume that at the high

level, we have an ordinary action ↵ that is executable when Ph holds, i.e., Poss(↵, s) ⌘ Ph(s), and that at

the high level, both Dh[{Ph(S0)} and Dh[{¬Ph(S0)} are satisfiable. Thus we have that Dh 6|= Poss(↵, S0).

Suppose that we have the mapping: m(Ph) = Pl and m(↵) = a, and that at the low level, the ordinary

action a is executable when Pl holds, i.e., Poss(a, s) ⌘ Pl(s), and furthermore it is known that Pl(S0) holds.

Therefore, Dl |= Poss(a, S0) and Dl |= 9s.Do(m(↵), S0, s). Thus while at the low level executing action a is

possible, at the high level there is no online transition that involves ↵.

Moreover, while it may be possible to execute a high-level action online in the abstract theory, there may

be no online execution of any of its refinements in the corresponding situation in the concrete theory, as the

following example shows:

Example 7.6 Suppose that Dh is a sound abstraction of Dl relative to mapping m. Assume that at the

high level, we have an exogenous action ↵ that is executable when Ph holds, i.e., Poss(↵, s) ⌘ Ph(s), and

that at the high level, both Dh [ {Ph(S0)} and Dh [ {¬Ph(S0)} are satisfiable. At the high level, we have

an online execution of ↵ since Dh [ Poss(↵, S0) is satisfiable. Suppose that we have the following mapping:

m(Ph) = Pl, and m(↵) = a, and that at the low level, a is an exogenous action that is executable when Pl

holds, i.e., Poss(a, s) ⌘ Pl(s), and furthermore it is known that ¬Pl holds. Thus while at the high level

an online execution involving ↵ exists, at the low level there is no online execution of a i.e., m(↵) since

Dl |= ¬Poss(a, S0) and Dl |= ¬9s.Do(m(↵), S0, s).

Another issue is that even if there is an online execution at the high level with a refinement that is online

executable at the low level which achieves a goal or performs a task, if such an execution contains exogenous

actions, the agent has no control over which exogenous actions are performed. Thus the agent may not be

able to ensure that the goal is achieved or the task is performed. Consider the following example:

Example 7.7 In our running example, at the high level, we have the online execution of action sequence

~↵ = qryUpg(C1); repUpg(C1, 1); book(C1, Bz, F1) that achieves the goal Booked(C1, Bz, F1) in the initial

configuration, i.e., booking a business seat for customer C1 on flight F1. At the low level, there is an online ex-

ecution of action sequence ~a = qryAM(C1); qryPr(C1); repAM(C1, 1); repPr(C1, 0); selectF lt(C1, Bz, F1);
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pay(C1, Bz, F1) that is a refinement of ~↵ and achieves the refinement of the goal, i.e., Selected(C1, Bz, F1)^

Paid(C1, Bz, F1). Since in both of these executions, there are configurations where other exogenous actions

are possible (e.g., repUpg(C1, 0) at do(qryUpg(C1), S0)) the agent has no way of ensuring that the envi-

ronment will execute an action that leads to the goal; for instance, if the environment chooses to execute

repUpg(C1, 0) at do(qryUpg(C1), S0), i.e., that an upgrade is not available, there is no way to ensure a

business ticket is booked for customer C1.

Thus, the fact that some online execution at the high level has a refinement at the low level that is

executable and achieves a goal is not su�cient for the agent to be able to ensure a goal. She needs to have

a strategy that ensures achieving the goal no matter how the environment behaves. To address this issue, in

the next section we develop an account of strategies, agent ability and contingent planning.

7.3 Contingent Planning

Ability refers to the agent having or being able to acquire the necessary knowledge to achieve a goal or

perform a task. An agent is able to perform a task/achieve a goal if she can always choose an action that

leads to successful completion of the task/achievement of the goal no matter how the environment behaves.

To be able to perform a task/achieve a goal, the agent needs to have a strategy that she can follow to

successfully complete the task/achieve the goal, where the strategy specifies how the agent should continue

to act after the environment performs some action in response to what has occurred so far. Note that we

assume environment actions are fully observable. Ability is similar to the concept of conditional or contingent

planning [121, 66], where agents operating online in dynamic and incompletely known environments need to

construct plans/strategies that prescribe di↵erent behaviors depending on new information acquired (e.g.,

as a result of sensing) to ensure they achieve their goals/execute their tasks.

In formalizing ability and strategies, we need a number of assumptions. The first assumption is that it is

known that in any situation that can be reached, either all the executable actions are exogenous or all the

executable actions are agent’s actions, i.e., the agent and the environment act only when it is their turn:

Assumption 7.1 (Turn Taking) For D 2 {Dh,Dl}, we have that

D |= 8s.¬[(
W

A2Ae

9~x.Poss(A(~x), s)) ^ (
W

A2Ao

9~x.Poss(A(~x), s))]

where Ao (resp. Ae) represents the ordinary (resp. exogenous) set of action types.

Note that if at some point in the process, the environment (resp. agent) may or may not perform an

action, then we can model the case where it does not by having it execute a “no-op” exogenous (resp.
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ordinary) action, whose only e↵ect is to advance the program to a configuration where it is the agent’s (resp.

environment’s) turn to act.

Example 7.8 Going back to our running example, to clearly indicate when it is agent’s turn to act and

when it is the environment’s, we can define the following condition on situations at the abstract level:

EnvTurnHL(s)
.
= 9c.(QrdUpg(c) ^ ¬RcvdRep(c))[s]. It is easy to show that ordinary actions can only be

performed when this condition is false, and exogenous action can only be performed when this condition is

true:

Deg
h |= Poss(qryUpg(c), s) � ¬EnvTurnHL(s)

Deg
h |= Poss(book(c, cls, f), s) � ¬EnvTurnHL(s)

Deg
h |= Poss(repUpg(c, x), s) � EnvTurnHL(s)

We can define a similar condition on low-level situations: EnvTurnLL(s)
.
= 9c.(QrdAM(c)^QrdPr(c))^

¬(RcvdRepAM(c) ^RcvdRepPr(c))[s]. Again we can show that ordinary actions are only executable when

this condition is false, and exogenous actions are executable only if this condition is true:

Deg
l |= Poss(qryAM(c), s) � ¬EnvTurnLL(s)

Deg
l |= Poss(qryPr(c), s) � ¬EnvTurnLL(s)

Deg
l |= Poss(select(c, cls, f), s) � ¬EnvTurnLL(s)

Deg
l |= Poss(pay(c, cls, f), s) � ¬EnvTurnLL(s)

Deg
l |= Poss(repAM(c, x), s) � EnvTurnLL(s)

Deg
l |= Poss(repPr(c, x), s) � EnvTurnLL(s)

Here, we will restrict our attention to bounded-length strategies.34 Let us discuss how we can represent

such strategies. We define (bounded) strategies � as a restricted form of program using the following BNF

rule:

� ::= nil | [↵o; �] | set(PES)

where PES is a non-empty set of programs of the form [�e
i ; �i].

In the above, nil is a special program, called the empty program, that denotes the fact that nothing remains

to be performed. ↵o ranges over ordinary primitive action terms, �e
i ranges over exogenous primitive action

terms, and �i over strategies where i 2 {1, 2, . . .}. Thus nil is the strategy that does nothing, [↵o; �] represents

the strategy where the agent does action ↵o and then follows strategy �, and set([�e
1 ; �1], [�

e
2 ; �2], . . .) with

distinct actions �e
1 and �e

2 represent the strategy where exogenous action �e
1 may occur after which �1 is

34For more general types of tasks that require unbounded strategies, it is possible to use approaches similar to [139, 141].
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followed, exogenous action �e
2 may occur after which �2 is followed, etc. There may be a finite or countably

infinite set of such pairs (�e
i ; �i).

Informally, an agent is able/knows how to execute a task/program � in a situation do(~a, S0) if whenever

it is her turn to act, she is able to choose some action that she knows to be executable and is allowed by her

program, such that no matter what exogenous actions occur (as allowed by the program), she can continue

this process with what remains of the program and eventually reach a configuration where she knows that

she can legally terminate.

We formalize AbleBy(�,~a, �) meaning that the agent is able to successfully perform a task represented

by an online situation-determined program � in an environment that behaves as specified by � in situation

do(~a, S0) by executing the strategy �. Formally, similarly to [99], let AbleBy(�,~a, �) be the smallest relation

R(�,~a, �) such that:

(A) for all pairs (�,~a), if (h�,~ai)X, then R(�,~a, nil);

(B) for all �,~a, if there exists a, �0 such that a 2 Ao and h�,~ai !a h�0,~aai and R(�0,~aa, �),

then R(�,~a, [a; �]);

(C) for all �,~a, if there exists a, �0 such that a 2 Ae and h�,~ai !a h�0,~aai

and for all a, �0 there exists � such that h�,~ai !a h�0,~aai and R(�0,~aa, �)

then R(�,~a, set(E))

where E = {[a; �] | 9�0 such that h�,~ai !a h�0,~aai and R(�0,~aa, �)}

Thus, for all � and ~a we have that: (A) if � is final in situation do(~a, S0), then the agent is able to execute �

in situation do(~a, S0) by performing the empty strategy (nil); (B) if there is an ordinary action a which is

online executable at situation do(~a, S0) and thus the agent can make a transition to configuration h�0,~aai for

some remaining program �0 where the agent is able to execute �0 in situation do(~aa, S0) by following strategy

�, then a is prefixed to the existing strategy � and the agent is able to execute � in situation do(~a, S0)

by following strategy ([a; �]); (C) if there is an exogenous action a which is online executable at situation

do(~a, S0) and thus the agent can make a transition to configuration h�0,~aai for some remaining program

�0, and for all such a and �0 there exists a strategy � such that the agent is able to execute �0 in situation

do(~aa, S0) by following strategy �, then at situation do(~a, S0), the agent is able to execute � in situation

do(~a, S0) by following strategy set(E), where E includes a sub-strategy [a; �] for each exogenous action a

that may occur and � is the strategy to follow after a occurs.

AbleBy provides a way that we can ensure the agent’s task can be successfully completed. Note that the

task may be simply achieving a given goal eventually by performing any sequence of actions. This can be

represented by the program Achieve(�)
.
= (⇡a.a)⇤;�?.
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Example 7.9 Going back to our running example, suppose that the high-level agent has to perform the

task specified by the online situation-determined program �h1 = Achieve(�h1), where �h1 = (Upg(C1) ^

Booked(C1, Bz, F1)) _ (¬Upg(C1) ^Booked(C1, Ec, F1)). This task requires the agent to book a business

seat for customer C1 on flight F1 if an upgrade is available and otherwise to book an economy seat. The

high-level agent is able to achieve this task by executing the following strategy:

�h1 = qryUpg(C1); set((repUpg(C1, 1); book(C1, Bz, F1);nil), (repUpg(C1, 0); book(C1, Eco, F1);nil))

Thus we have AbleBy(�h1 , ✏, �h1).

Referring back to Example 7.7, the task of achieving the goal of booking a business seat on flight F1

for customer C1 is specified by the online situation-determined program �h0 = Achieve(�h0), where �h0 =

Booked(C1, Bz, F1). In this case, there is no strategy � such that AbleBy(�h0 , ✏, �) since no upgrade may

be available, i.e., Dh [ {¬Upg(C1, S0)} is satisfiable.

Note that for AbleBy(�,~a, �) to hold, the agent’s strategy � need only ensure that the task � can be

successfully completed when the environment chooses to perform (any) exogenous actions that are allowed

by �. That is, � can restrict what the environment may do, as well as set objectives for the agent. Of

course, we may define � so that it leaves the environment completely unconstrained, i.e, so that it satisfies

the following:

EnvUnconstrained(�, s)
.
=

V
A2Ae

8s0, �0, ~x.Trans⇤(�, s, �0, s0) ^ Poss(A(~x), s0) � 9�00.T rans⇤(�, s, �00, do(A(~x, s0))

7.4 Hierarchical Contingent Planning

The notion of strategy formalized in the previous section can be used by both the high-level and low-level

agents to ensure successful execution of the program at each level.

If we have a strategy at the high level that ensures performing a task or achieving a goal, are there

conditions under which we can obtain a strategy at the low level that is a refinement of the high-level

strategy and can ensure performing refinement of the high-level task or achieving refinement of the high-

level goal? What are the assumptions that we need?

7.4.1 Assumptions

First, it is reasonable to assume that Assumption 5.2 holds. Without this assumption, at the concrete level,

there is nothing preventing the environment from performing an action that is not part of any refinement

of any high-level action when it is its turn. Thus, if we have a strategy at the high level that achieves a
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goal/performs a task, it becomes irrelevant and it is impossible to realize this strategy at the low level; in

this way, we can’t use reasoning at the high level to guide the reasoning at the low level.

Example 7.10 Referring to our running example, the preconditions of each action impose a certain order

in which the sequence of low-level actions can be executed that matches refinements of high-level actions;

moreover, the preconditions ensure that once the first action in the sequence of actions that refine a high-

level action has been performed, no action that is not part of the refinement of the high-level action can be

interleaved. Thus, Assumption 5.2 is satisfied.

Secondly, we need to avoid cases where a transition exists at the high level, while the low level blocks, as

no transition of a refinement of a high level action is executable.35 Hence, we assume that after any sequence

of refinements of high-level actions, i.e., in any situation s such that Do(anyseqhlref, S0, s), a refinement

of either an ordinary action or an exogenous action can successfully be executed:

Assumption 7.2 (Non-Blocking)

Dl [ C |= 8s.Do(anyseqhlref, S0, s) �
W

A
i

2Ao

hl

9~x 9s0.Do(m(Ai(~x)), s, s0) _
W

A
i

2Ae

hl

9~x 9s0.Do(m(Ai(~x)), s, s0)

where Ao
hl (resp. Ae

hl) represents the high-level ordinary (resp. exogenous) set of action types.

Example 7.11 Going back to our running example, we can show that Assumption 7.2 holds for all situations

s such thatDo(anyseqhlref, S0, s). For example, at S0, at the abstract level, no actions have been executed

so far and thus, based on the initial theory, the fluent ¬QrdUpg(C1, S0) holds and ¬EnvTurnHL(S0) is

satisfied; thus action qryUpg(C1) can be executed. Since Deg
h is a sound abstraction of Deg

l with respect to

mapping meg, then at the corresponding situation at the low level, ¬m(QrdUpg(C1, S0)), which refines to

¬QrdAM(C1, S0) ^ ¬QrdPr(C1, S0) also holds, and moreover, ¬EnvTurnLL(S0) holds. In addition, the

precondition of action qryAM(C1) ensures that the process of execution of a refinement of any high-level

action could not have already started. After preforming the qryAM(C1), the fluent QrdAM(C1, S0) holds,

and thus, the preconditions of the ordinary action qryPr(C1) are also satisfied. Thus, the concrete agent

can execute a refinement of the action qryUpg(C1), which is qryAM(C1); qryPr(C1). After performing

qryUpg(C1) at the high level, it is environment’s turn to act, and a similar argument holds as in the

previous case. Once either of the actions repUpg(C1, 1) or repUpg(C1, 0) have been executed at the high

level, it is agent’s turn to act, and she can either book a flight for customer C1 or perform the action

35Instead, we could assume the high-level theory is both a sound and complete abstraction of the low-level theory with respect
to a mapping. However, this approach seems more restrictive; moreover, it would require showing that completeness is preserved
as we execute the high-level strategy. We will investigate this approach in future work.

123



qryUpg(c) for another customer. Again by a similar argument, a refinements of any of these actions can be

executed at the concrete level.

We also need to rule out cases where the agent blocks because she does not know whether it is her turn

to execute an action. Therefore, we assume that in any situation, both the high-level and low-level agents

know whether it is their turn or the environment’s turn; in other words, in any situation, it is known that

only exogenous actions or only ordinary actions are executable:

Assumption 7.3 (Always Known Whose Turn It Is) For D 2 {Dh,Dl} and for all ground sequences

~a such that h(⇡a.a)⇤, ✏i !⇤
~a h�,~ai and h�,~aiX for some �, we have that

either

D [ C [ {Executable(do(~a, S0)) |=
W

Ao2A 9~x.Poss(A(~x), s)

or

D [ C [ {Executable(do(~a, S0)) |=
W

Ae2A 9~x.Poss(A(~x), s)

Example 7.12 In our running example, at the abstract level at S0, based on the fact that ¬QrdUpg(C1) is

known in the initial situation, and that EnvTurnHL(S0) holds, the agent knows that it can perform a step on-

line and execute qryUpg(C1). After performing this action, we have that Deg
h [{Executable(do(qryUpg(C1),

S0))} |= QrdUpg(C1)^¬RcvdRep(C1), thus the agent knows that EnvTurnHL(do(qryUpg(C1), S0)) holds

and that it is environment’s turn to act. Similarly, after execution repUpg(C1, 1), we have that Deg
h [

{Executable(do([qryUpg(C1), repUpg(C1, 1)], S0))} |= QrdUpg(C1) ^ RcvdRep(C1) ^ ¬Booked(C1, cls, f)

(and similarly after execution of repUpg(C1, 0) by the environment) which indicates that the agent knows

that it is her turn to preform an action online. We can provide a similar argument for the low level. Thus,

Assumption 7.3 is satisfied for both the high-level and low-level theories.

We also need another assumption to ensure that the high-level theory remains a sound abstraction of the

low-level theory with respect to a mapping, as a refinement of a high-level action is executed and the agent

may obtain new knowledge. Therefore, we assume that along all online executions, whenever a refinement

of a high-level action has been executed, the low-level agent knows that it has executed it:

Assumption 7.4 (Awareness of Executed HL Actions) For all ground high-level action sequences ~↵

and all ground low-level action sequences ~a such that hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX for some �l, we have

that for any ground high-level action � and any ground low-level action sequence ~b, if hm(�),~ai !⇤
~b
h�0l,~a~bi

and h�0l,~a~biX for some �0l, then Dl [ C [ {Executable(do(~a~b, S0))} |= Do(m(�), do(~a, S0), do(~a~b, S0)).

As discussed in Example 7.2 our running example satisfies the above assumption.
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We also need to ensure that if it is known that there exists a refinement of an ordinary high-level action

� that is executable at the low level then the agent has a strategy to successfully execute a refinement of �,

no matter what the environment does. Let us look at an example:

Example 7.13 Suppose that we have three high-level ordinary actions: ah and ch which are always ex-

ecutable, and bh which is executable in a situation after ah has been performed, indicated by fluent

PerformedAh; thus we have Poss(bh, s) ⌘ PerformedAh(s). Assume that after performing bh, the

fluent Goalh holds and only then. The refinements of the high-level actions and fluents are defined as:

m(ah) = al; e1, m(bh) = bl, m(ch) = al; e2, m(PerformedAh) = PeformedAlE1, and m(Goalh) = Goall.

At the concrete level, al is an ordinary action that is always executable, e1 and e2 are exogenous actions

that are executable in a situation after al has been performed, indicated by the fluent PeformedAl, and bl

is an ordinary action that is executable in the situation after e1 has been performed. Goall becomes true

after the sequence of actions al; e1; bl and only then.

The high-level task is represented by �h2 = Achieve(Goalh), and we have that AbleBy(�h2 , ✏, �h2), where

�h2 = ah; bh. However, there is no strategy �l2 such that the agent could achieve Goall, as after execution

of al by the agent, the environment may perform e2.

Hence, we assume that in every configuration, the low-level agent has a strategy to execute any ordinary

high-level action such that it has some executable refinement:

Assumption 7.5 (Ability to Execute Ordinary HL Actions) For all ground high-level action sequences

~↵ and all ground low-level action sequences ~a such that hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX for some �l, we have

that for any ground high-level action � 2 Ao, if Dl[C[{Executable(do(~a, S0))} |= 9s.Do(m(�), do(~a, S0), s),

then there exists a low-level strategy �l such that AbleBy(m(�),~a, �l).

Example 7.14 Referring to our running example, for the ordinary high-level action qryUpg(c), for any

ground low-level action sequences ~a where Dl[C[{Executable(do(~a, S0))} |= 9s.Do(m(qryUpg(c)), do(~a, S0),

s), there exists a low-level strategy �l such thatAbleBy(m(qryUpg(c)),~a, �l), where �l = qryAM(c); qryPr(c),

and both qryAM(c) and qryPr(c) are ordinary actions which can be executed by the agent. Similarly for

the ordinary high-level action book(c, cls, f), there exists a low-level strategy �l such that AbleBy(m(book(c,

cls, f)),~a, �l), where �l = select(c, cls, f); pay(c, cls, f).

We further need to ensure that when a refinement of a high-level exogenous action is possibly executable,

it should be the case that no matter what the agent or the environment do at the concrete level, a refinement

of that exogenous action will eventually be successfully executed. To do this, similar to [98], we define a

predicate NecTerminates(�,~a)
.
= R(�,~a) where R(�,~a) is the least relation such that:
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(A) for all pairs (�,~a),

if h�,~aiX and there does not exist a, �0 such that h�,~ai !a h�0,~aai,

then R(�,~a);

(B) for all pairs (�,~a),

if there exists a, �0 such that h�,~ai !a h�0,~aai and for all a, �0 such that h�,~ai !a h�0,~aai, R(�0,~aa),

then R(�,~a).

Note that NecTerminates is somewhat similar to the operator AF� in branching time logic CTL⇤ [27],

meaning on all paths eventually �.

Now let us define a low-level program that characterizes the refinements of high-level exogenous actions:

anyoneexohl
.
= setp({⇡~x.m(Ai(~x)) | Ai 2 Ae

h}),

i.e., do any exogenous high-level primitive action,

where setp() is the “delayed commitment” non-deterministic branch construct that ensures the resulting

program of refinements of high-level exogenous actions is situation-determined (see Section 6.1.2).

Given the above definitions, we assume that along any online execution, if executability of a refinement of

a high-level exogenous action is satisfiable at the low level, then the agent eventually completes the execution

of a refinement of some high-level action at the low level:

Assumption 7.6 (Exogenous HL Actions Never Block) For all ground high-level action sequences ~↵

and all ground low-level action sequences ~a such that hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX for some �l, we have

that if there exists a high-level action � 2 Ae such that Dl [ C [ {Executable(do(~a, S0)) ^ 9s.Do(m(�),

do(~a, S0), s} is satisfiable, then we have that NecTerminates(anyoneexohl,~a).

Example 7.15 Going back to our running example, the exogenous high-level action repUpg(c, 0) is re-

fined to sequence of exogenous low-level actions repAM(c, 0); repPr(c, 0). Based on the preconditions

for these actions, they can be performed when it is environment’s turn and no other action can be in-

terleaved with their execution. Similar argument holds for the exogenous high-level action repUpg(c, 1).

Thus, for the exogenous high-level action repUpg(c, x), for any ground low-level action sequences ~a where

Dl [ C [ {Executable(do(~a, S0)) ^ 9s.Do(m(repUpg(c, x)), do(~a, S0), s} is satisfiable, then we have that

NecTerminates(anyoneexohl,~a).

7.4.2 Results

Now assume that Dh[{Executable(do(~↵, S0))} is a sound abstraction of Dl[{Executable(do(~a, S0))} relative

to mapping m. We can show that if the high-level agent knows that she can execute an ordinary action �,
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then there exists a strategy �b at the low level by which the concrete agent can ensure to successfully execute

a refinement of �:

Theorem 7.4 Suppose that Dh [ {Executable(do(~↵, S0))} is a sound abstraction of Dl [ {Executable(do(~a,

S0))} relative to mapping m and Assumptions 7.1 and 7.5 hold. Then for all ground high-level action

sequences ~↵ and all ground low-level action sequences ~a such that h~↵, ✏i !⇤
~↵ h�0h, ~↵i for some �0h and

h�0h, ~↵iX and hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX for some �l and for any ground high-level action � 2 Ao,

if Dh [ {Executable(do(~↵, S0))} |= Poss(�, do(~↵, S0)), then there exists a low-level strategy �l such that

AbleBy(m(�),~a, �l).

This result follows immediately from Theorem 7.2 and Assumption 7.5: when we have a sound abstraction,

if an action is known to be executable at the high level, then at low level it is entailed that some refinement

of it is executable by Theorem 7.2, and thus we can use Assumption 7.5 to get the result.

Moreover, if Dh [ {Executable(do(~↵, S0))} is a sound abstraction of Dl [ {Executable(do(~a, S0))} relative

to mapping m, we can show that if executability of any exogenous action � is satisfiable at the high level,

then at the low level, successful execution of a refinement of � is also satisfiable:

Theorem 7.5 Suppose that Dh [ {Executable(do(~↵, S0))} is a sound abstraction of Dl [ {Executable(do(~a,

S0))} relative to mapping m and Assumptions 7.1, 7.2, 7.3, and 7.6 hold. Then for all ground high-level

action sequences ~↵ and all ground low-level action sequences ~a such that h~↵, ✏i !⇤
~↵ h�0h, ~↵i for some �0h

and h�0h, ~↵iX and hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX for some �l if there exists a ground high-level action

� 2 Ae such that Dh [ {Executable(do(~↵, S0)) ^ Poss(�, do(~↵, S0))} is satisfiable, then NecTerminates(

anyoneexohl,~a).

Now assume that Dh [ {Executable(do(~↵, S0))} is a sound abstraction of Dl [ {Executable(do(~a, S0))}

relative to mapping m. We can show that if the high-level agent has a strategy �h to successfully execute

a task represented by �h, then there exists a low-level strategy �l such that the low-level agent can ensure

successful execution of the refinement of �h by using strategy �l, a refinement of �h:

Theorem 7.6 Suppose that Dh is a sound abstraction of Dl relative to mapping m and Assumptions 5.2,

7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 hold. Then for all ground high-level action sequences ~↵ and all ground low-

level action sequences ~a such that h~↵, ✏i !⇤
~↵ h�0h, ~↵i for some �0h and h�0h, ~↵iX and hm(~↵), ✏i !⇤

~a h�l,~ai and

h�l,~aiX for some �l and for any online situation-determined high-level program �h and high-level strategy �h,

if AbleBy(�h, ~↵, �h), then there exists a low-level strategy �l such that AbleBy(mp(�h),~a, �l).

Note that here, we use the extended mapping mp defined in Section 6.3 to map the high-level strategy �h

to a low-level program that represents its refinements.
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Under similar conditions as above, it also follows that if it is known at the high level that after successful

execution of �h, a situation-suppressed formula � holds, and that �h is a strategy that can ensure �h success-

fully terminates, then there exists a low-level strategy �l such that the low-level agent can ensure successful

execution of the refinement of �h by using strategy �l, after which the refinement of � holds:

Corollary 7.7 Suppose that Dh is a sound abstraction of Dl relative to mapping m and Assumptions 5.2,

7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 hold. Then for all ground high-level action sequences ~↵ and all ground low-level

action sequences ~a such that h~↵, ✏i !⇤
~↵ h�0h, ~↵i for some �0h and h�0h, ~↵iX and hm(~↵), ✏i !⇤

~a h�l,~ai and h�l,~aiX

for some �l and for any high-level online situation determined program �h, for any high-level strategy �h, and

any situation-suppressed formula �, if Dh |= Do(�h, do(~↵, S0), s0) � �[s0] and AbleBy(�h, ~↵, �h) then there

exists �l such that AbleBy(mp(�h),~a, �l) and AbleBy(mp(�h);m(�)?,~a, �l).

Example 7.16 Referring to our running example, as discussed in Example 7.9, our agent has the high-level

strategy �h1 by which she can execute the task �h1 and achieve the goal �h1. Based on Corollary 7.7, there

exists a low-level strategy �l1 by which the low-level agent is able to accomplish a refinement of the goal

m(�h1); in fact we can take

�l1 = qryAM(C1); qryPr(C1); set(

(repAM(C1, 1); repPr(C1, 1); selectF lt(C1, Bz, F1); pay(C1, Bz, F1);nil),

(repAM(C1, 1); repPr(C1, 0); selectF lt(C1, Bz, F1); pay(C1, Bz, F1);nil),

(repAM(C1, 0); repPr(C1, 1); selectF lt(C1, Bz, F1); pay(C1, Bz, F1);nil),

(repAM(C1, 0); repPr(C1, 0); selectF lt(C1, Eco, F1); pay(C1, Eco, F1);nil))

7.5 Discussion

In this chapter, we identified a su�cient property for a sound abstraction to persist along an online execution.

We also showed results extending basic properties of sound abstractions to online executions (Theorem 7.2

and Proposition 7.3). We then adapted definitions of strategies and ability to perform a task/achieve a goal

to our model of online execution. Based on this, we showed that under some reasonable assumptions, if

we have a sound abstraction and the agent has a strategy by which she is able to perform a task/achieve

a goal at the high level, then one can refine it into a low-level strategy by which the agent is able to

perform/achieve the refinement of the task/goal. For simplicity, we focused on a single layer of abstraction,

but the framework supports extending the hierarchy to more levels. Our approach can also support the use

of ConGolog programs to specify the possible behaviors of the agent at both the high and low level, as we can
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follow [37] and “compile” the program into the BAT D to get a new BAT D0 whose executable situations

are exactly those that can be reached by executing the program.

In AI, Giunchiglia and Walsh [74] formalize abstraction as syntactic mappings between formulas of a

concrete and a more abstract representation, while Nayak and Levy [122] present a semantic theory of

abstraction. As discussed in Chapter 5, these approaches formalize abstraction of static logical theories,

while our work focuses on abstraction of dynamic domains, where the theory may be updated as new

knowledge becomes available during execution.

Several approaches have studied planning under incomplete information and sensing. These include PKS

[126], a knowledge-based planner based on a generalization of STRIPS; planning based on model checking

[26]; and a dynamic programming method for computing belief-based policies and a heuristic search method

for computing history-based policies proposed by Ge↵ner and Bonet [66]. These approaches do not consider

abstraction.

Several notions of planning with abstraction have also been investigated. One approach is precondition

elimination abstraction, first introduced in context of ABSTRIPS [135]. This work supports plans with

information gathering operators by providing abstraction over the preconditions and e↵ects of the operators,

although some of the e↵ects may have to be described in terms of uninstantiated parameters. This approach

does not consider abstraction of actions. Another approach proposes Hierarchical Task Networks (HTNs)

(e.g., [57]), which abstract over a set of (non-primitive) tasks. Encodings of HTNs in ConGolog with enhanced

features like exogenous actions and online executions have also been studied by Gabaldon [63]. In contrast

to our approach, [63] uses a single BAT; also it does not provide abstraction for fluents. Another approach

is planning with macro operators (e.g., [89]), which represent meta-actions built from a sequence of action

steps. McIlraith and Fadel [112] and Baier and McIlraith [10] investigate planning with complex actions

(a form of macro actions) specified as Golog [103] programs. Baier and McIlraith [10] propose an o✏ine

execution semantics for Golog programs with sensing. Di↵erently from our approach, [112, 10] compile the

abstracted actions into a new BAT that contains both the original and abstracted actions. Also, they only

deal with deterministic complex actions and do not provide abstraction for fluents. Moreover, our approach

provides a refinement mapping between an abstract BAT and a concrete BAT.

Finally, Aguas et al. [1] propose hierarchical finite state controllers for generalized planning that can solve

a range of similar planning problems. Hu and Levesque [86] propose representing generalized plan as a FSA

plan [85] with its semantics defined in the situation calculus. Incomplete knowledge about the initial state is

assumed, and the solution found can be used to solve multiple planning instances in the domain. Generalized

planning is essentially di↵erent from our approach in that it focuses on abstracting over a solution for several

instances, while we provide an abstraction for the problem first, and then use the solution found at the high

level as guide for finding a solution at the low level. Another important di↵erence between our work and

129



the approaches focused on abstraction in planning is that they focus on improving the e�ciency of planning,

while our work provides a generic framework which can have applications in many areas.
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8 Conclusion and Future Research

In this dissertation, we formalized frameworks for online agent supervision, hierarchical agent supervision,

as well as general frameworks for abstraction of o✏ine and online agent behavior. Although we approached

the work on abstraction of o✏ine and online agent behavior from the point of view of agent supervision,

they have many applications beyond this area (e.g., monitoring, hierarchical planning, etc.). Our framework

was based on the situation calculus [110, 132], a rich first-order logic language designed for representing and

reasoning about dynamically changing worlds and the situation-determined variant of the ConGolog agent

programming language [35]. While we studied these problems from a mainly theoretical perspective, we

believe that our approach can support a range of practical tools (see Section 8.2 for a discussion). Control

and customization of systems is appealing to various research communities, e.g., customization of software

systems, behavior composition, and IoT, and the formalisms and techniques developed in this dissertation

are amendable to such problems.

The next section provides an overview of our contributions. We conclude with some directions for future

research in Section 8.2.

8.1 Summary of Contributions

The main contributions of this dissertation are as follows:

Online Agent Supervision. An agent executing online can acquire knowledge during a run, and at

each time point she must make decisions on what to do next based on what her current knowledge is.

We would like to be able to supervise such agents. To address this challenge, we first defined a notion of

online situation-determined agent which ensures that for any sequence of actions that the agent can perform

online, the resulting agent configuration (i.e., belief state and remaining program) is unique (Section 4.2.2).

We then formalized the online maximally permissive supervisor (online MPS) and showed its existence and

uniqueness (Section 4.3.2). Moreover, we meta-theoretically defined a program construct (i.e., supervision

operator) for online supervised execution that given the agent and specification, executes them to obtain only

runs allowed by the online maximally permissive supervisor, and we showed its soundness and completeness
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(Section 4.3.3). To ensure the agent under the supervision operator construct considers only runs that can

be successfully completed (i.e., ensure non-blockingness), we also defined a new lookahead search construct

(Section 4.3.4). In the area of reasoning about knowledge and change, there is little work that considers

customizing/controlling the behavior of an agent in presence of uncontrollable actions while leaving it as

much autonomy as possible (e.g., [169, 44]). Similarly, in the literature on supervisory control of discrete

event systems, there has been little focus on supervising online systems (e.g., [25, 76]). Our work, unlike

these approaches, is based on an expressive first order logic framework.

Abstraction of O✏ine Agent Behavior. To facilitate reasoning about agents that exhibit complex

behaviors, as well as to provide a high-level description of their behavior, we developed a general abstraction

framework for agent behavior in o✏ine executions. We formalized a notion of a high-level basic action theory

being a sound abstraction of a low-level basic action theory under a given refinement mapping. This notion

was based on a suitable notion of bisimulation between models of the high-level and low-level theories. We

also provided a proof theoretic characterization that gives us the basis for automatically verifying that we

have a sound abstraction (Section 5.3). In addition, we defined a dual notion of complete abstraction (Section

5.4). Moreover, we discussed how sound abstractions can be used to provide e�ciency in planning. We also

identified a set of constraints that ensure that for any low-level action sequence, there is a unique high-level

action sequence that it refines. We discussed how this would be useful for providing high-level explanations

of agent behavior and monitoring (Section 5.5). In first-order settings, most previous work on abstraction

in dynamic domains has focused on specific applications such as hierarchical planning. Moreover, general

frameworks for abstraction based on first-order logic have focused on static domains. Our approach on the

other hand, provides a general abstraction framework in dynamic domains.

Hierarchical Agent Supervision. This work was motivated by use of hierarchies to make supervising

complex agents more manageable, as due to the complexity of the behavior logic, designing and enforcing

specifications for control/customization of agent’s behavior can be di�cult. We identified the constraints

required to ensure that controllability of individual actions at the high level accurately reflected the control-

lability of their refinements. Then we showed that these constraints were in fact su�cient to ensure that any

controllable set of runs at the high level had a controllable refinement that implements it and vice versa (Sec-

tion 6.3). We also defined a new program construct that executes a set of programs P non-deterministically

without committing to which element of P being executed unless it had to (Section 6.1.2). With the help of

this construct and the constraints identified above we showed that the low-level MPS for the mapped specifi-

cation was a refinement of the high-level maximally permissive supervisor for the specification (Section 6.3).

Moreover, we showed that we could obtain the low-level MPS incrementally by using the high-level MPS

as a guide and refining its actions locally while remaining maximally permissive. We then showed that the
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resulting hierarchically synthesized MPS had exactly the same runs as that of the low-level MPS obtained

by mapping the supervision specification to the low level. We also argued that the hierarchically synthesized

MPS would generally be much easier to compute compared to the low-level MPS obtained from the refined

specification (Section 6.4). In the area of reasoning about actions and change, typical approaches that use

abstraction are focused on specific applications, such as planning, and/or are not based on an expressive first

order logic. Our approach was inspired by work in hierarchical supervisory control of discrete event systems

[166]. The foundations of our work is di↵erent however: the framework was based on a rich first-order logic

language; we used a notion of bisimulation to relate the models of the high-level and low-level theories; our

high-level theory included fluents (which abstract over formulas) in addition to actions (that abstract over

programs); and through preconditions for actions, we were able to enforce local constraints on the low-level

agent.

Abstraction of Online Agent Behavior. To facilitate reasoning about agents with complex behaviors

that may acquire new knowledge during a run, we developed a framework for abstraction of agent behavior

in online executions. We identified a condition that ensured a high-level basic action theory remained a

sound abstraction of a low-level basic action theory with respect to a refinement mapping as the agent

acquired new knowledge (Section 7.2). We also formalized a model of contingent planning over agent’s

online executions that ensured that a strategy exists for the agent to only perform actions that could be

extended to a successfully terminating execution of the program, no matter how the environment behaved

(Section 7.3). We then showed that under some reasonable conditions, if we have sound abstraction and the

agent has a conditional plan/strategy for accomplishing a task or achieving a goal at the high level, then we

can refine it into a low-level strategy piecewise, and the resulting low-level strategy is guaranteed to achieve

the refinement of the goal (Section 7.4). We also discussed how this approach could provide e�ciency in

contingent planning. While there has been previous work on contingent planning and hierarchical planning,

there is little work that looks at both.

8.2 Further Research

There are a number of future directions for the work presented in this dissertation. We discuss some of

them next. However, one may single out the topic of online hierarchical supervision of agents that was

not addressed in this dissertation. This would be a very natural extension of our work that combines the

results of online agent supervision and online abstraction of agent behavior with results of hierarchical agent

supervision.

An important research direction for future work is developing methods and tools for solving interesting

cases of the synthesis and verification problems for the notions formalized in this dissertation, i.e., synthesiz-
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ing the most permissive supervisor, verifying that a BAT is a sound abstraction of another BAT with respect

to a mapping, verifying that m-bisimilar models satisfy the local controllability assumption, synthesizing

conditional plans using our abstraction framework, etc.

For verifying properties of basic action theories and ConGolog programs in the general infinite-states case,

one can try to exploit general first-order and higher-order logic theorem proving techniques and tools; for

instance, one could build upon Shapiro’s work [150] that uses the PVS theorem proving system [124] to verify

properties of situation calculus theories and ConGolog programs. In the case where the object domain is finite,

then model checking techniques [9] could be adapted to perform the verification and synthesis problems that

we are interested in. Another interesting case is when we have bounded basic action theories [36]. These

are action theories where it is entailed that in all situations, the number of object tuples that belong to the

extension of any fluent is bounded, although the object domain remains infinite and an infinite run may

involve an infinite number of objects. It was shown that verifying µ-calculus properties over such theories

is decidable (by showing that one can construct an abstract transition system that is bisimilar to infinite

transition system that models infinite objects). Although no tools yet have been built to support verification

in this setting, it could provide an exciting foundation for solving the problems that formalized. Finally, it

would be interesting to identify cases where we can obtain decidability/complexity results for the problems

formalized in this thesis. Related work in this area includes [30, 80].

For each of the main problems addressed in this dissertation, here are some topics for further research:

Online Agent Supervision

• Implementing frameworks and developing practical tools is an important topic for future work. If the

object domain is finite then an implementation can be readily obtained by adapting discrete event

system synthesis techniques [129]. On the other hand, if the object domain is infinite, one can look at

bounded theories for implementation.

• Another direction for future research is to examine how we can relax the assumption that the supervisor

and supervised agent share the same belief state.

Abstraction of O✏ine Agent Behavior

• In future work, one could investigate methodologies for designing abstract agents/theories and refine-

ment mappings with respect to given objectives, as well as automated synthesis techniques to support

such methodologies.

• One could also explore how using di↵erent types of mappings and basic action theories from various

sources that yield sound/complete abstractions can support system evolvability.
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• Investigating abstraction of domain entities is another possible direction for further research.

• One could also explore how agent abstraction can be used in verification of (partial) correctness of

agent theories or programs; related work in this area includes application of predicate abstraction in

verification of partial correctness of Golog programs [118] and infinite-state multi-agent systems [17].

Hierarchical Agent Supervision

• Similar to online agent supervision, one direction for future research is implementing frameworks and

developing practical tools by adapting discrete event system synthesis techniques or methods based on

bounded action theories.

• An interesting future direction would be to explore how “compatible” low-level specifications (i.e.,

those that do not cause the system to block due to inconsistencies with high-level specifications) on

the concrete agent behavior can also be handled as we synthesize the low-level MPS.

• Moreover, one could investigate an account of hierarchical supervision for agents that execute online

and can acquire new information (e.g., through sensing) as they operate.

• Another direction for future research is investigating how the local controllability condition can be

verified.

• Furthermore, one could explore supervision of complex multi-agent systems, where di↵erent supervisors

control individual agents/teams of agents forming various architectures, while ensuring that the entire

system satisfies its specifications.

Abstraction of Online Agent Behavior

• A possible extension is to investigate conditions for persistence of complete abstractions in online

executions, as well as the constraints that allow us to use hierarchical contingent planning in such

settings.

• One could also explore how to verify whether the assumptions that are required for the case of hierar-

chical contingent planning that we developed hold.

• Similar to abstraction of o✏ine agent behavior, some other further research in the online execution

setting include investigating methodologies for designing abstract agents and refinement mappings with

respect to given objectives in addition to automated synthesis techniques that support this, exploring

how agent abstraction can be used in verification, and investigating abstraction of terms.
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A Proofs

A.1 Online Agent Supervision

A.1.1 Some Results about the set Construct

In this section, we start by showing some results about the set construct that are used in proofs of the main
results in Online Supervision.

Proposition A.1 If hset(E),~ai !a c and hset(E),~ai !a c0, then c = c0.

Proof If a is not an exogenous action, then it must be known in do(~a, S0) that a is executable and there must
be some action sequence in E that starts with a. The unique new configuration c is then hset(E0),~aai with
E0 = {~b | a~b 2 E}. If a is an exogenous action, then it must be consistent in do(~a, S0) that a is executable
and some action sequence in E must start with a; the unique new configuration c is just as in the previous
case.

Then Corollary A.2 trivially follows. This corollary is used in proof of Theorem 4.2.

Corollary A.2 Any agent hD, �ii with the initial program �i = set(E) is online situation determined.

The result of Lemma A.3 is used in proof of Theorem 4.2:

Lemma A.3 If ~a 2 RR(hD, set(E)i), then there exists ~b such that ~a~b 2 E.

Proof (Sketch) By induction on the length of ~a.

The result of Lemma A.4 is used in proof of Lemma A.5:

Lemma A.4 If h�i, ✏i !⇤
~a c, then hset(E [ {~a~b}), ✏i !⇤

~a hset(E0 [ {~b}),~ai.

Proof (Sketch) By induction on the length of ~a, noticing that the antecedent implies that the agent actions
are known to be executable and the exogenous actions are thought to be possibly executable, and so the
transitions exist.

The result of Lemma A.5 is used in proof of Theorem 4.2:

Lemma A.5

If ~a 2 RR(hD, �ii) and ~a 2 E, then ~a 2 CR(hD, set(E)i).

Proof Assume that the antecedent. Since ~a 2 RR(hD, �ii), there exists c such that h�i, ✏i) !⇤
~a c. Since

~a 2 E, it then follows by Lemma A.4 that hset(E), ✏i !⇤
~a hset(E0),~ai with ✏ 2 E0. Thus Final(hset(E0),~ai),

and therefore ~a 2 CR(hD, set(E)i).
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A.1.2 Online Situation-Determined Agents Proofs

Theorem 4.1 For any agent � = hD, �ii, if �i is known to be SD in D, i.e., D[C |= SituationDetermined(�i,
S0), and if � always knows the remaining program after an exogenous action, then � is online SD.

Proof By induction on the length of the action (and online transition) sequence. If the sequence is empty,
the result trivially follows. Assume that the result holds for all action sequences of length k (IH). Suppose
that ci !⇤

~aa h�1,~aai and ci !⇤
~aa h�2,~aai and �1 6= �2 with ~aa of length k + 1. It follows by the definition

of online execution and the IH that ci !⇤
~a h�,~ai and h�,~ai !a h�1,~aai and h�,~ai !a h�2,~aai and �1 6= �2.

If action a is not exogenous, then by the definition of online transition D [ C [ {Executable(do(~a, S0))} |=
Trans(�, a, �0, do(~a, S0)) (where �0 is unique), which contradicts �1 6= �2. If action a is exogenous, then both
�1 and �2 are satisfiable as remaining programs. In each case, Poss(a, do(~a, S0)) is also satisfiable.

Since � always knows the remaining program after an exogenous action, we have that
D[ C [ {Executable(do(~aa, S0))} |= Trans(�, a, �0, do(~a, S0)) (where �0 is unique), which contradicts �1 6= �2.

A.1.3 Online MPS Proofs

Theorem 4.2 For the online maximally permissive supervisor mps
onl

(�s,�) of the online SD agent � =
hD, �ii which fulfills the supervision specification �s, where hD, �si is also online SD, the following properties
hold:

1. mps
onl

(�s,�) always exists and is unique;

2. hD,mps
onl

(�s,�)i is online SD;

3. mps
onl

(�s,�) is online controllable with respect to �;

4. for every possible online controllable supervision specification �̂s for � such that CR(hD, �i&�̂si) ✓
CR(hD, �i&�si), we have that CR(hD, �i&�̂si) ✓ CR(hD,mps

onl

(�s,�)i), i.e., mps
onl

is maximally
permissive;

5. RR(hD,mps
onl

(�s,�)i) = GR(hD,mps
onl

(�s,�)i), i.e., mps
onl

(�s,�) is non-blocking.

Proof

Claim 1. The online MPS exists as set(;) satisfies the conditions to be included in mpsonl(�
s,�). Uniqueness

follows from the existence of a supremal element.

Claim 2. Trivially follows from Corollary A.2.

Claim 3. It su�ces to show that for all ~a and au such that ~a 2 GR(hD,mpsonl(�
s,�)i) and

D [ {Executable(do(~a, S0))} 6|= ¬Au(au, do(~a, S0)), we have that if ~aau 2 GR(�) then
~aau 2 GR(hD,mpsonl(�

s,�)i). Indeed, if ~a 2 GR(hD,mpsonl(�
s,�)i) then there is an online controllable

supervision specification set(E) such that ~a 2 GR(hD, set(E)i). set(E) being online controllable wrt �, if
~aau 2 GR(�) then ~aau 2 GR(hD, set(E)i), but then ~aau 2 GR(hD,mpsonl(�

s,�)i).
Claim 4. This follows immediately from the definition of mpsonl(�

s,�), by noticing that CR(hD, �i&�̂si) =
CR(hD, �i&set(E�̂s)i), and observing thatmpsonl(�

s,�) is essentially the union of such controllable set(E�̂s).

Claim 5. Suppose that ~a 2 RR(hD,mpsonl(�s,�)i). By the definition of mpsonl, mpsonl(�s,�) = set(E)

where E ✓ CR(hD, �i & �si). Since ~a 2 RR(hD, set(E)i), by Lemma A.3 there exists ~b such that ~a~b 2 E.

Since ~a~b 2 CR(hD, �i & �si), by Lemma A.5, we have that ~a~b 2 CR(hD, set(E)i). It then follows by the
definition of GR that ~a 2 GR(hD,mpsonl(�s,�)i).
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A.1.4 Supervision Operator Proofs

Theorem 4.3

1. If hD, �si and hD, �ii are online SD, then so is hD, �i&onl

A
u

�si.

2. �i &onl

A
u

�s is online controllable with respect to hD, �ii.

Proof

Claim 1. By induction on the length of the action (and online transition) sequence. If the sequence is empty,
the result trivially follows. Assume that the result holds for all action sequences ~a of length k (IH). We need
to show that the result holds for all action sequences ~aa of length k + 1.

Assume h�i&onl
Au�

s,~ai !a c0 where c0 = h�i0&onl
Au�

s0 ,~aai. Due to the way online transition is defined for
&onl

Au , configuration c0 can only be reached if we have both h�i,~ai !a h�i0 ,~aai and h�s,~ai !a h�s0 ,~aai.
Since both hD, �si and hD, �ii are online SD, they both evolve to a unique configuration. The new

configuration of hD, �i&onl
Au�

si (i.e., c0) is obtained from these two, so it must be unique if it exists.

Claim 2. We have to show that for all ~a and au, ~a 2 GR(hD, �i &onl
A

u

�si) and D [ Executable(do(~a, S0)) 6|=
¬Au(au, do(~a, S0)) implies if ~aau 2 GR(�) then ~aau 2 GR(hD, �i &onl

A
u

�si).
Since, wlog we assume that hD, �ii and hD, �si started with a common controllable action, we can write

~a = ~a0ac ~au, where D [ {Executable(do(~a0, S0))} |= ¬Au(ac, do(~a0, S0)) and D [ {Executable(do(~a0ac, S0)),
Au( ~au, do(~a0ac, S0))} is satisfiable. Let h�i0 , ~a0i and h�s0 , ~a0i denote the configurations reached by h�i, ✏i and
h�s, ✏i after performing ~a0 respectively; in other words: h�i, ✏i !⇤

~a0 h�i0 , ~a0i and h�s, ✏i !⇤
~a0 h�s0 , ~a0i By the

fact that ~a0ac ~au 2 GR(hD, �i &onl
A

u

�si), we know that there is a configuration such that h�i0 &onl
A

u

�s
0
, ~a0i !ac

h�i00 &onl
A

u

�s
00
, ~a0aci But then by the definition of the online transition relation (!) we have that for all

~bu such that D [ {Executable(do(~a0ac, S0)), Au( ~bu, do(~a0ac, S0))} is satisfiable, if ~a0ac ~bu 2 GR(hD, �ii) then
~a0ac ~bu 2 GR(hD, �si). In particular this holds for ~bu = ~auau. Hence we have that if ~aau 2 GR(�) then ~aau 2
GR(hD, �i &onl

A
u

�si).

Theorem 4.4

CR(hD, �i &onl

A
u

�si) = CR(hD, �i & mps
onl

(�s,�)i).

Proof We start by showing: CR(hD, �i &onl
A

u

�si) ✓ CR(hD, �i & mpsonl(�s,�)i). By Theorem 4.3 claim 2
we have that hD, �i &onl

A
u

�si is online controllable for hD, �ii. Considering that hD, �i & mpsonl(�s,�)i is the
largest online controllable supervisor for hD, �ii, and that RR(hD, �i & (�i &onl

A
u

�s)i) = RR(hD, �i &onl
A

u

�si),
we get the thesis.

Next we prove: CR(hD, �i & mpsonl(�s,�)i) ✓ CR(hD, �i &onl
A

u

�si). Suppose not. Then there exist a
complete run ~a such that ~a 2 CR(hD, �i & mpsonl(�s,�)i) but ~a 62 CR(hD, �i &onl

A
u

�si). As an aside, notice

that if ~a 2 CR(hD, �i) then ~a 2 GR(hD, �i), and for all prefixes ~a0 such that ~a0~b = ~a, we have ~a0 2 GR(hD, �i).
Hence, let ~a0 = ~a00a such that ~a00 2 GR(hD, �i &onl

A
u

�si), ~a00a 2 GR(hD, �i & mpsonl(�s,�)i), but ~a00a 62
GR(hD, �i &onl

A
u

�si), and let h�i, ✏i !⇤
~a00 h�i

00
, ~a00i and h�s, ✏i !⇤

~a00 h�s
00
, ~a00i. Since ~a00a 62 GR(hD, �i &onl

A
u

�si),
it must be the case that there is no configuration c such that h�i00 &onl

A
u

�s
00
, ~a00i !a c. Since, ~a00a 2

GR(hD, �i & mpsonl(�s,�)i), it follows that both h�i00 , ~a00i !a h�i000 , ~a00ai and h�s00 , ~a00i !a h�s000 , ~a00ai. But

then it must be the case that D [ {Executable(do( ~a00, S0))} |= ¬Au(a, do( ~a00, S0)), and there exists ~bu

such that D [ {Executable(do( ~a00a, S0)), Au(~bu, do( ~a00a, S0))} is satisfiable and ~a00a~bu 2 GR(hD, �ii) but
~a00a~bu 62 GR(hD, �si).

Notice that ~bu 6= ✏, since we have that ~a00a 2 GR(hD , �si). So ~bu = ~cubu ~du with ~a00a ~cu 2 GR(hD , �si)
but ~a00a ~cubu 62 GR(hD , �si). Now ~a0 2 GR(hD, �i & mpsonl(�s,�)i) and D [ {Executable(do( ~a00a, S0)),
Au( ~cubu, do( ~a00a, S0))} is satisfiable, we have that ~a0 ~cubu 2 GR(hD, �i & mpsonl(�s,�)i); this holds since,
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mpsonl(�
s,�) is controllable for �, and we have that, if ~a0 ~cubu 2 GR(hD, �ii) then ~a0 ~cubu 2 GR(hD,mpsonl(�

s,
�)i). This, by the definition of mpsonl(�

s,�), implies ~a0 ~cubu 2 GR(hD, �i & �si). Hence, we can conclude
that ~a0 ~cubu 2 GR(hD, �si), getting a contradiction.

Theorem 4.5 If hD, �si and hD, �ii are online SD, than so is hD,⌃w
onl

(�s, �i)i.

Proof If hD, �si and hD, �ii are online SD, than so is hD,⌃w
onl

(�s, �i)i. By induction on the length of the
action (and online transition) sequence. It can be shown in a similar way to Theorem 4.3 claim 1.

Theorem 4.6 Suppose that we have an agent hD, �ii, and a supervision specification �s which are online
SD. Suppose also that �s is online controllable with respect to hD, �ii, and that CR(hD, �si) ✓ CR(hD, �ii).
Then we have that:

1. CR(hD,⌃w
onl

(�s, �i)i) = CR(hD, �si), i.e., the complete runs of ⌃w
onl

(�s, �i) are the complete runs of �s.

2. If CR(hD, �si) 6= ;, then RR(hD,⌃w
onl

(�s, �i)i) = GR(hD, �si), i.e., the partial runs of ⌃w
onl

(�s, �i) are
the good runs of �s.

3. If CR(hD, �si) 6= ;, then RR(hD,⌃w
onl

(�s, �i)i) = GR(hD,⌃w
onl

(�s, �i)i), i.e., partial runs must be good
runs, and the resulting program is “non blocking”.

Proof
Claim 1. (✓) Suppose that ~a 2 CR(hD,⌃w

ol(�
s, �i)i). By the definition of online transition for ⌃w

ol, it is
easy to show that h�s, ✏i !⇤

~a h�s0 ,~ai for some �s
0
. By the definition of Final for ⌃w

ol, we must have that

Final(h�s0 ,~ai). Thus ~a 2 CR(hD, �si).
(◆) Suppose that ~a 2 CR(hD, �si). Since CR(hD, �si) ✓ CR(hD, �ii), we also have that ~a 2 CR(hD, �ii).

Clearly, every prefix of ~a is in GR(hD, �si) and GR(hD, �ii). By the definition of online transition for ⌃w
onl,

it is easy to show that h⌃w
onl(�

s, �i), ✏i !⇤
~a h⌃w

onl(�
s0 , �i

0
),~ai for some �s

0
and �i

0
. By the definition of Final

for ⌃w
onl, we must have that Final(h⌃w

onl(�
s0 , �i

0
),~ai). Thus ~a 2 CR(hD,⌃w

onl(�
s, �i)i).

Claim 2. (✓) By contradiction. Suppose that ~a 2 RR(hD,⌃w
onl(�

s, �i)i) but ~a 62 GR(hD, �si). Then

there exists ~b, a, and ~c such that ~a = ~ba~c and ~b 2 GR(hD, �si) and ~ba 62 GR(hD, �si) (note that since
CR(hD, �si) 6= ;, we have that ✏ 2 GR(hD, �si)). If a is not an exogenous action, then by the definition

of online transition for ⌃w
onl,

~ba 62 RR(hD,⌃w
onl(�

s, �i)i), and thus ~a 62 RR(hD,⌃w
onl(�

s, �i)i), contradiction.
Suppose that a is an exogenous action. Since �s is controllable wrt hD, �ii, if ~ba 2 GR(hD, �ii), then
~ba 2 GR(hD, �si), contradiction.

(◆) Suppose that ~a 2 GR(hD, �si). Then there exists ~b such that ~a~b 2 CR(hD, �si). Since CR(hD, �si) ✓
CR(hD, �ii), we also have that ~a~b 2 CR(hD, �ii). Clearly, every prefix of ~a~b is in GR(hD, �si) and GR(hD, �ii).
Thus by the definition of online transition for ⌃w

onl, it is easy to show that ~a 2 RR(hD,⌃w
onl(�

s, �i)i).
Claim 3. (✓) Suppose that ~a 2 RR(hD,⌃w

onl(�
s, �i)i). By Claim 2, ~a 2 GR(hD, �si). Then by the defini-

tion of GR, there exists ~b such that ~a~b 2 CR(hD, �si). By Claim 1, it follows that ~a~b 2 CR(hD,⌃w
onl(�

s, �i)i).
Thus ~a 2 GR(hD,⌃w

onl(�
s, �i)i).

(◆) Follows trivially from the definitions of RR and GR.

Theorem 4.7
RR(hD,⌃w

onl

(�i &onl

A
u

�s, �i)i) = RR(hD, �i & mps
onl

(�s,�)i).

Proof By Theorem 4.3 Claim 2 we have that hD, �i &onl
A

u

�si is online controllable for hD, �ii. By The-
orem 4.4, CR(hD, �i &onl

A
u

�si) ✓ CR(hD, �i & mpsonl(�s,�)i). Thus by the definition of &, it is easy
to show that CR(hD, �i &onl

A
u

�si) ✓ CR(hD, �ii). Therefore by Theorem 4.6 Claim 2, we have that
RR(hD,⌃w

onl(�
i &onl

A
u

�s, �i)i) = GR(hD, �i &onl
A

u

�si).
Theorem 4.4 says that CR(hD, �i &onl

A
u

�si) = CR(hD, �i & mpsonl(�s,�)i), and since a set of complete
runs has a unique set of prefixes, it follows that GR(hD, �i &onl

A
u

�si) = GR(hD, �i & mpsonl(�s,�)i). Thus
RR(hD,⌃w

onl(�
i &onl

A
u

�s)i) = GR(hD, �i & mpsonl(�s,�)i).
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It remains to show that GR(hD, �i & mpsonl(�s,�)i) = RR(hD, �i & mpsonl(�s,�)i). By the defini-
tion of mpsonl, CR(hD,mpsonl(�s,�)i) ✓ CR(hD, �i & �si). Thus by the definition of &, it is easy to
show that CR(hD,mpsonl(�s,�)i) ✓ CR(hD, �ii). Then by the definition of GR and CR, it follows that
GR(hD,mpsonl(�s,�)i) ✓ GR(hD, �ii). Thus by the definition of &, it is easy to show that GR(hD, �i &
mpsonl(�s,�)i) = GR(hD, mpsonl(�s,�)i). By Theorem 4.2, we have that GR(hD,mpsonl(�s,�)i) = RR(hD,
mpsonl(�s,�)i). Since GR(hD,mpsonl(�s,�)i) ✓ GR(hD, �ii), it follows that RR(hD,mpsonl(�s,�)i) ✓
GR(hD, �ii). Therefore by the definition of &, it is easy to show that RR(hD, �i & mpsonl(�s,�)i) =
RR(hD,mpsonl(�s,�)i). Thus, RR(hD, �i & mpsonl(�s, �)i) = GR(hD, �i & mpsonl(�s,�)i).
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A.2 Abstracting O✏ine Agent Behavior

A.2.1 m-Bisimulation

Lemma 5.1 If sh ⇠M
h

,M
l

m sl, then for any high-level situation-suppressed formula �, we have that:

Mh, v[s/sh] |= �[s] if and only if Ml, v[s/sl] |= m(�)[s].

Proof By induction of the structure of �.

Theorem 5.2 If Mh ⇠m Ml, then for any sequence of ground high-level actions ~↵ and any high-level
situation-suppressed formula �, we have that

Ml |= 9s0Do(m(~↵), S0, s0) ^m(�)[s0] if and only if Mh |= Executable(do(~↵, S0)) ^ �[do(~↵, S0)].

Proof By induction of the length of ~↵, using Lemma 5.1.

A.2.2 Sound Abstraction

Theorem 5.4 Suppose that Dh is a sound abstraction of Dl relative to mapping m. Then for any ground
high-level action sequence ~↵ and for any high-level situation-suppressed formula �, if Dh |= Executable(do(~↵,
S0)) ^ �[do(~↵, S0)], then Dl [ C |= 9s.Do(m(~↵), S0, s) ^m(�)[s].

Proof Assume that Dh is a sound abstraction of Dl wrt m and that Dh |= Executable(do(~↵, S0)) ^
�[do(~↵, S0)]. Take an arbitrary model Ml of Dl [ C. Since Dh is a sound abstraction of Dl wrt m, there
exists a model Mh of Dh such that Mh ⇠m Ml. Since Dh |= Executable(do(~↵, S0)) ^ �[do(~↵, S0)], we have
that Mh |= Executable(do(~↵, S0)) ^ �[do(~↵, S0)]. Since Mh ⇠m Ml, there exist an m-bisimulation relation
B between Mh and Ml such that hSM

h

0 , SM
l

0 i 2 B. It is easy to show by induction on the length of ~↵ that
there exists a situation S such that Ml, v[s/S] |= Do(m(~↵), S0, s) and that hdo(~↵, S0)Mh , Si 2 B. From the
latter and the fact that Mh |= �[do(~↵, S0)], it follows by Lemma 5.1 that Ml, v[s/S] |= m(�)[s]. Ml was an
arbitrarily chosen model of Dl [ C and thus it follows that Dl [ C |= 9s.Do(m(~↵), S0, s) ^m(�)[s].

Corollary 5.5 If Dh is a sound abstraction of Dl relative to mapping m, then for any sequence of ground
high-level actions ~↵ and for any high-level situation-suppressed formula �, we have that

Dl [ C |= 8s8s0.Do(m(~↵), S0, s) ^Do(m(~↵), S0, s0) � (m(�)[s] ⌘ m(�)[s0])

Proof By contradiction. Suppose that there exist Ml and v such that Ml, v |= Dl [ C [ {Do(m(~↵), S0, s) ^
Do(m(~↵), S0, s0) ^ m(�)[s] ^ ¬m(�)[s0]}. Since Dh is a sound abstraction of Dl relative to mapping m, by
Corollary 5.3 Dh [ {Executable(do(~↵, S0)) ^ �[do(~↵, S0)] ^ ¬�[do(~↵, S0)]} is satisfiable, a contradiction.

Theorem 5.7 If Dh is a sound abstraction of Dl relative to mapping m, then for any sequence of ground
high-level actions ~↵ and for any ground high-level action �, we have that

Dl [ C |= 9s.Do(m(~↵�), S0, s) � (8s.Do(m(~↵), S0, s) � 9s0.Do(m(�), s, s0))

Proof Take an arbitrary model Ml of Dl [C and valuation v and assume that Ml, v |= 9s.Do(m(~↵�), S0, s).
It follows that there exists sl such that Ml, v[s/sl] |= Do(m(~↵), S0, s) ^ 9s0.Do(m(�), s, s0). Since Dh is a
sound abstraction of Dl wrt m, there exists a model Mh of Dh such that Mh ⇠m Ml. Thus there exists
an m-bisimulation relation B between Mh and Ml such that hSM

h

0 , SM
l

0 i 2 B. Then, it is easy to show by
induction on the length of ~↵ that since Ml, v[s/sl] |= Do(m(~↵), S0, s) ^ 9s0.Do(m(�), s, s0), we must have
that Mh |= Executable(do(~↵, S0)) ^ Poss(�, do(~↵, S0)). Take an arbitrary situation s0l and suppose that
Ml, v[s/s0l] |= Do(m(~↵), S0, s). Then it follows by induction on the length of ~↵ that hsh, s0li 2 B. Since
Mh |= Poss(�, do(~↵, S0)), we must also have that Ml, v[s/s0l] |= 9s0.Do(m(�), s, s0). Since s0l was chosen
arbitrarily, it follows that Ml, v |= 8s.Do(m(~↵), S0, s) � 9s0.Do(m(�), s, s0).
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To prove Theorem 5.9 (and Theorem 5.13), we start by defining lemmas A.6 and A.7.

Lemma A.6 If Mh |= Dh for some high level theory Dh and Ml |= Dl [ C for some low level theory Dl and
Mh ⇠m Ml for some mapping m, then

(a) M

l

|= 8sDo(anyseqhlref,S
0

, s) �V
A

i

2Ah

8~x.(m(�Poss

A

i

(~x))[s] ⌘ 9s0Do(m(A
i

(~x)), s, s0)),

(b) M
l

|= 8sDo(anyseqhlref, S0, s) �V
A

i

2Ah

8~x, s0.(Do(m(A
i

(~x)), s, s0) �V
F

i

2Fh

8~y(m(�ssa

F

i

,A

i

(~y, ~x))[s] ⌘ m(F
i

(~y))[s0])),

where �Poss
A

i

(~x) is the right hand side of the precondition axiom for action Ai(~x), and �ssaF
i

,A
i

(~y, ~x) is the right
hand side of the successor state axiom for Fi instantiated with action Ai(~x) where action terms have been
eliminated using Dh

ca.

Proof By contradiction. Assume that Mh is a model of a high level theory Dh and Ml is a model of a low
level theory Dl and C and Mh ⇠m Ml. Suppose that condition (a) does not hold. Then there exists a ground
high level action sequence ~↵, a ground low level situation term S, and a ground high level action Ai(~x) such
that Ml |= Do(m(~↵), S0, S) and either (*) Ml |= m(�Poss

A
i

(~x))[S] and Ml 6|= 9s0.Do(m(Ai(~x)), S, s0) or (**)
Ml 6|= m(�Poss

A
i

(~x))[S] and Ml |= 9s0.Do(m(Ai(~x)), S, s0). In case (*), by Theorem 5.2, since Mh ⇠m Ml, it
follows that Mh |= Executable(do(~↵, S0)) ^ �Poss

A
i

(~x)[do(~↵, S0)]. Since Mh |= Dh
Poss, we must also have that

Mh |= Poss(Ai(~x), do(~↵, S0)), and thus that Mh |= Executable(do([~↵, Ai(~x)], S0)). Thus by Theorem 5.2,
Ml |= Do(m(~↵), S0, S)^9s0Do(m(Ai(~x)), S, s0), which contradicts (*). Case (**) can be shown to to lead to
a contradiction by a similar argument.

Now suppose that condition (b) does not hold. Then there exists a ground high level action sequence
~↵, a ground high level action Ai(~x), and ground low-level situation terms S and S0 such that Ml |=
Do(m(~↵), S0, S) ^ Do(m(Ai(~x)), S, S0) and either (*) Ml |= m(�ssaF

i

,A
i

(~y, ~x))[S] and Ml 6|= m(Fi(~y))[S0] or
(**) Ml 6|= m(�ssaF

i

,A
i

(~y, ~x))[S] and Ml |= m(Fi(~y))[S0]. In case (*), by Theorem 5.2, since Mh ⇠m Ml, it fol-

lows that Mh |= Executable(do(~↵, S0)) ^ �ssaF
i

,A
i

(~y, ~x)[do(~↵, S0)] ^ Poss(Ai(~x), do(~↵, S0)). Since Mh |= Dh
ssa,

we must also have that Mh |= Fi(~y)[do([~↵, Ai(~x)], S0)]. Thus by Theorem 5.2, Ml |= Do(m(~↵), S0, S) ^
Do(m(Ai(~x)), S, S0) ^m(Fi(~y))[S0], which contradicts (*). Case (**) can be shown to to lead to a contra-
diction by a similar argument.

The above lemma implies that if Dh is a sound abstraction of Dl wrt m, then Dl must entail the mapped high
level successor state axioms and entail that the mapped conditions for a high level action to be executable
(from the precondition axioms of Dh) correctly capture the executability conditions of their refinements.

Lemma A.7 Suppose that Mh |= Dh for some high level theory Dh and Ml |= Dl [ C for some low level
theory Dl and m is a mapping between the two theories. Then if

(a) SM
h

0 ⇠M
h

,M
l

m SM
l

0 ,

(b) M
l

|= 8sDo(anyseqhlref,S
0

, s) �V
A

i

2Ah

8~x.(m(�Poss
A

i

(~x))[s] ⌘ 9s0Do(m(Ai(~x)), s, s0))

and (c) Ml |= 8sDo(anyseqhlref, S0, s) �V
A

i

2Ah

8~x, s0.(Do(m(Ai(~x)), s, s0) �V
F

i

2Fh

8~y(m(�ssaF
i

,A
i

(~y, ~x))[s] ⌘ m(Fi(~y))[s0])),

then Mh ⇠m Ml,
where �Poss

A
i

(~x) is the right hand side of the precondition axiom for action Ai(~x), and �ssaF
i

,A
i

(~y, ~x) is the right
hand side of the successor state axiom for Fi instantiated with action Ai(~x) where action terms have been
eliminated using Dh

ca.

Proof Assume that the antecedent. Let us show that Mh ⇠m Ml. Let B be the relation over �M
h

S ⇥ �M
l

S
such that

142



hsh, sli 2 B
if and only if

there exists a ground high level action sequence ~↵ such that
Ml, v[s/sl] |= Do(m(~↵), S0, s) and sh = do(~↵, S0)Mh .

Let us show that B is an m-bisimulation relation between Mh and Ml. We need to show that if hsh, sli 2 B,
then it satisfies the three conditions in the definition of m-bisimulation. We prove this by induction n, the
number of actions in sh.
Base case n = 0: We have already shown that SM

h

0 ⇠M
h

,M
l

m SM
l

0 , so condition 1 holds. By Lemma 5.1, it
follows that Mh, v[s/sh] |= �Poss

A (~x)[s] if and only if Ml, v[s/sl] |= m(�Poss
A (~x))[s] for any high-level primitive

action type A 2 A
h

. Thus by the action precondition axiom for A, Mh, v[s/sh] |= Poss(A(~x), s) if and only
if Ml, v[s/sl] |= m(�Poss

A (~x))[s]. By condition (b), we have that Ml, v[s/sl] |= m(�Poss
A (~x))[s] if and only if

Ml, v[s/sl] |= 9s0.Do(m(A(~x)), s, s0). Thus Mh, v[s/sh] |= Poss(A(~x), s) if and only if there exists s0l such
that Ml, v[s/sl, s0/s0l] |= Do(m(A(~x)), s, s0). By the way B is defined, hdo([~↵, A(~x)], S0)Mh

,v, s0li 2 B if and
only if Ml, v[s/sl, s0/s0l] |= Do(m(A(~x)), sl, s0l). Thus conditions (2) and (3) hold for hsh, sli.
Induction step: Assume that if hsh, sli 2 B and the number of actions in sh is no greater than n, then
hsh, sli satisfies the three conditions in the definition of m-bisimulation. We have to show that this must also
hold for any hsh, sli 2 B where sh contains n + 1 actions. First we show that condition 1 in the definition
of m-bisimulation holds. If hsh, sli 2 B and sh contains n + 1 actions, then due to the way B is defined,
there exists a ground high level action sequence ~↵ of length n and a ground high level action A(~c) such
that sh = do(A(~c), do(~↵, S0))Mh , s0h = do(~↵, S0)Mh , Ml, v[s/s0l] |= Do(m(~↵), S0, s), and hs0h, s0li 2 B. s0h
contains n actions so by the induction hypothesis, hs0h, s0li satisfies the three conditions in the definition of
m-bisimulation, in particular s0h ⇠M

h

,M
l

m s0l. By Lemma 5.1, it follows that Mh, v[s/s0h] |= �ssaF,A(~y,~c)[s] if
and only if Ml, v[s/s0l] |= m(�ssaF,A(~y,~c))[s] for any high-level fluent F 2 F

h

. Thus by the successor state
axiom for F , Mh, v[s/s0h] |= F (~y, do(A(~c), s)) if and only if Ml, v[s/s0l] |= m(�ssaF,A(~y,~c))[s]. By condition (c),
we have that Ml, v[s/s0l] |= m(�ssaF,A(~y,~c))[s] if and only if Ml, v[s/sl] |= m(F (~y))[s]. Thus Mh, v[s/s0h] |=
F (~y, do(A(~c), s)) if and only if Ml, v[s/sl] |= m(F (~y))[s]. Therefore, sh ⇠M

h

,M
l

m sl, i.e., condition 1 in the
definition of m-bisimulation holds.
We can show that hsh, sli, where sh contains n + 1 actions, satisfies conditions 2 and 3 in the definition of
m-bisimulation, by exactly the same argument as in the base case.

With these lemmas in hand, we can prove our main result:
Theorem 5.9 Dh is a sound abstraction of Dl relative to mapping m if and only if

(a) Dl
S0

[Dl
ca [Dl

coa |= m(�), for all � 2 Dh
S0
,

(b) Dl [ C |= 8s.Do(anyseqhlref,S
0

, s) �V
A

i

2Ah

8~x.(m(�Poss
A

i

(~x))[s] ⌘ 9s0Do(m(Ai(~x)), s, s0)),

(c) Dl [ C |= 8s.Do(anyseqhlref, S0, s) �V
A

i

2Ah

8~x, s0.(Do(m(Ai(~x)), s, s0) �V
F

i

2Fh

8~y(m(�ssaF
i

,A
i

(~y, ~x))[s] ⌘ m(Fi(~y))[s0])),

Proof
()) By contradiction. Assume that Dh is a sound abstraction of Dl wrt m. Suppose that condition (a)

does not hold, i.e., there exists � 2 Dh
S0

such that Dl
S0

[Dl
ca [Dl

coa 6|= m(�). Thus there exists a model M 0
l

of Dl
S0

[ Dl
ca [ Dl

coa such that M 0
l 6|= m(�), and this model can be extended to a model Ml of Dl [ C such

that Ml 6|= m(�). Since Dh is a sound abstraction of Dl wrt m, there exists a model Mh of Dh such that
Mh ⇠m Ml. By Theorem 5.2, it follows that Mh 6|= �. Thus Dh 6|= Dh

S0
, contradiction.

Now suppose that condition (b) does not hold. Then there exists a model Ml of Dl [ C such that Ml falsifies
condition (b). Since Dh is a sound abstraction of Dl wrt m, there exists a model Mh of Dh such that
Mh ⇠m Ml. But then by Lemma A.6, Ml must satisfy condition (b), contradiction.
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We can prove that condition (c) must hold using Lemma A.6 by the same argument as for condition (b).

(() Assume that conditions (a), (b), and (c) hold. Take a model Ml of Dl [ C. Let Mh be a model of the
high level language such that

(i) Mh has the same object domain as Ml and interprets all object terms like Ml,

(ii) Mh |= Dh
ca,

(iii) Mh |= ⌃,

(iv) Mh, v |= F (~x, do(~↵, S0)) if and only if Ml, v |= 9s.Do(m(~↵), S0, s) ^m(F (~x))[s] for all fluents F 2 Fh

and all ground high-level action sequences ~↵.

(v) Mh |= Poss(A(~x), do(~↵, S0)) if and only if Ml |= 9s.Do(m(~↵), S0, s) ^ 9s0Do(m(A(~x)), s, s0)

It follows immediately that Mh |= ⌃[Dh
ca [Dh

coa. By condition (iv) above, we have that SM
h

0 ⇠M
h

,M
l

m SM
l

0 .
Thus by condition (a) and Lemma 5.1, we have that Mh |= Dh

S0
. By condition (b) of the Theorem and

conditions (iv) and (v) above, Mh |= Dh
Poss. By condition (c) of the Theorem and condition (iv) above,

Mh |= Dh
ssa. Thus Mh |= Dh.

Now Mh and Ml satisfy all the conditions for applying Lemma A.7, by which it follows that Mh ⇠m Ml.

Theorem A.8 Deg
h is a sound abstraction of Deg

l wrt meg.

Proof We prove this using Theorem 5.9.
(a) It is easy to see that Dl

S0
[ Dl

ca [ Dl
coa |= m(�), for all � 2 Dh

S0
assuming that Dl

S0
entails all the facts

about CnRouteLL that Dh
S0

contains.
(b) For the deliver high level action, we need to show that:

Dl [ C |= Do(anyseqhlref, S0, s) �
8sID .(m(9l.DestHL(sID , l, s) ^AtHL(sID , l, s)) ⌘ 9s0Do(m(deliver(sID)), s, s0)),

i.e.,

Dl [ C |= Do(anyseqhlref, S0, s) �
8sID .(9l.DestLL(sID , l, s) ^AtLL(sID , l, s) ⌘ 9s0Do([unload(sID); getSignature(sID)], s, s0)).

It is easy to check that the latter holds as 9l.DestLL(sID , l, s) ^ AtLL(sID , l, s) is the precondition of
unload(sID) and unload(sID) ensures that the precondition of getSignature(sID).

For the takeRoute action, we need to show that:

Dl [ C |= Do(anyseqhlref, S0, s) � 8sID , r, o, d.
(m(o 6= d ^AtHL(sID , o, s) ^ CnRouteHL(r, o, d, s) ^ (r = RtB � ¬Priority(sID , s)))
⌘ 9s0Do(m(takeRoute(sID , r, o, d)), s, s0),

i.e.,
Dl [ C |= Do(anyseqhlref, S0, s) � 8sID , r, o, d.

o 6= d ^AtLL(sID , o, s) ^ CnRouteLL(r, o, d, s) ^
(r = RtB � ¬(BadWeather(s) _ Express(sID , s)))
⌘ 9s0Do(m(takeRoute(sID , r, o, d)), s, s0).

It is easy to show that the latter holds as the left hand side of the ⌘ is equivalent tom(takeRoute(sID , r, o, d))
being executable in s. First, we can see that the left hand side of the ⌘ is equivalent to the precon-
ditions of first takeRoad action in m(takeRoute(sID , r, o, d)), noting that in the case where r = RtB ,
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takeRoute(sID , r, o, d) is mapped into takeRoad to destination L3. Moreover, the preconditions of the sec-
ond takeRoad action in m(takeRoute(sID , r, o, d)) must hold given that the first takeRoad has occured and
that there is some road that is not closed to go to d. The latter can be shown by induction on situations.
(c) For the high level action deliver we must show that:

Dl [ C |= Do(anyseqhlref, S0, s) �
8sID , s0.(Do(m(deliver(sID)), s, s0) �V

F
i

2Fh

8~y(m(�ssaF
i

,deliver(~y, sID))[s] ⌘ m(Fi(~y))[s0])).

For the high level fluent Delivered, we must show that

Dl [ C |= Do(anyseqhlref, S0, s) �
8sID , s0.(Do(m(deliver(sID)), s, s0) �
8sID 0(sID = sID 0 ⌘ Unloaded(sID , s0) ^ Signed(sID , s0)).

This is easily shown given that meg(deliver(sID)) = unload(sID); getSignature(sID), using that succes-
sor state axioms for Unloaded and Signed. For the other high level fluents, the result follows easily as
meg(deliver(sID)) does not a↵ect their refinements.
For the action takeRoute we must show that:

Dl [ C |= Do(anyseqhlref, S0, s) �
8sID , r, o, d, s0.(Do(m(takeRoute(sID , r, o, d)), s, s0) �V

F
i

2Fh

8~y(m(�ssaF
i

,takeRoute(~y, sID , r, o, d))[s]
⌘ m(Fi(~y))[s0])).

For the high level fluent AtHL, we must show that

Dl [ C |= Do(anyseqhlref, S0, s) �
8sID , r, o, d, s0.(Do(m(takeRoute(sID , r, o, d)), s, s0) �
8sID 0, l.(AtLL(sID 0, l, s0)) ⌘
(sID 0 = sID ^ l = d) _
AtLL(sID , l, s) ^ ¬(sID 0 = sID ^ o = l)).

This is easily shown given how takeRoute is refined by meg, using that successor state axioms for AtLL.
For the other high level fluents, the result follows easily as meg(takeRoute(sID , r, o, d)) does not a↵ect their
refinements.

A.2.3 Complete Abstraction

Theorem 5.11 Suppose that Dh is a complete abstraction of Dl relative to mapping m. Then for any ground
high-level action sequence ~↵ and any high-level situation-suppressed formula �, ifDl[C |= 9s.Do(m(~↵), S0, s)^
m(�)[s], then Dh |= Executable(do(~↵, S0)) ^ �[do(~↵, S0)].

Proof Assume that Dh is a complete abstraction of Dl wrt m and that Dl[C |= 9s.Do(m(~↵), S0, s)^m(�)[s].
Take an arbitrary model Mh of Dh. Since Dh is a complete abstraction of Dl wrt m, there exists a model
Ml of Dl [ C such that Mh ⇠m Ml. Since Dl [ C |= 9s.Do(m(~↵), S0, s) ^m(�)[s], we have that for any v,
there exists a situation S such that Ml, v[s/S] |= Do(m(~↵), S0, s)^m(�)[s]. Since Mh ⇠m Ml, there exist an
m-bisimulation relation B between Mh and Ml such that hSM

h

0 , SM
l

0 i 2 B. It is easy to show by induction
on the length of ~↵ that Mh |= Executable(do(~↵, S0)) and that hdo(~↵, S0)Mh , Si 2 B. From the latter and the
fact that Ml, v[s/S] |= m(�)[s], it follows by Lemma 5.1 that Mh, v |= �[do(~↵, S0)]. Mh was an arbitrarily
chosen model of Dh and v was arbitrary, and thus it follows that Dh |= Executable(do(~↵, S0))^�[do(~↵, S0)].
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Theorem 5.12 If Dh is a sound abstraction of Dl relative to mapping m, then Dh is also a complete ab-
straction of Dl with respect to mapping m if and only if for every model Mh of Dh

S0
[Dh

ca[Dh
coa, there exists

a model Ml of Dl
S0

[Dl
ca [Dl

coa such that SM
h

0 ⇠M
h

,M
l

m SM
l

0 .

Proof Assume that Dh is a sound abstraction of Dl wrt mapping m.
()) Suppose that Dh is a complete abstraction of Dl wrt mapping m. Take an arbitrary model of Mh of
Dh

S0
[Dh

ca[Dh
coa. Clearly, Mh can be extended to satisfy all of Dh (justified by Reiter’s relative satisfiability

theorem for basic action theories [132]). Since Dh is a complete abstraction of Dl wrt m, by definition,
there exists a model Ml of Dl [ C such that Ml ⇠m Mh. It follows by the definition of m-bisimulation that
SM

h

0 ⇠M
h

,M
l

m SM
l

0 .
(() Suppose that for every model Mh of Dh

S0
[Dh

ca[Dh
coa, there exists a model Ml of Dl

S0
[Dl

ca[Dl
coa such

that SM
h

0 ⇠M
h

,M
l

m SM
l

0 . Take an arbitrary model Mh of Dh. Since Mh is also a model of Dh
S0

[Dh
ca [Dh

coa,

then there exists a model Ml of Dl
S0

[Dl
ca[Dl

coa such that SM
h

0 ⇠M
h

,M
l

m SM
l

0 . Clearly, Ml can be extended to
satisfy all of Dl (justified by Reiter’s relative satisfiability theorem for basic action theories [132]). Moreover,
Ml can be extended to satisfy C (by the results in [33]). Since Dh is also a sound abstraction of Dl wrt m,
by Theorem 5.9 it follows that
M

l

|= Do(anyseqhlref,S
0

, s) �V
A

i

2Ah

8~x.(m(�Poss
A

i

(~x))[s] ⌘ 9s0Do(m(Ai(~x)), s, s0))
and M

l

|= Do(anyseqhlref,S
0

, s) �V
A

i

2Ah

8~x, s0.(Do(m(Ai(~x)), s, s0) �V
F

i

2Fh

8~y(m(�ssaF
i

,A
i

(~y, ~x))[s] ⌘ m(Fi(~y))[s0])), where �Poss
A

i

(~x) is the right hand side of the precon-
dition axiom for action Ai(~x), and �ssaF

i

,A
i

(~y, ~x) is the right hand side of the successor state axiom for Fi

instantiated with action Ai(~x) where action terms have been eliminated using Dh
ca. Thus by Lemma A.7,

it follows that Mh ⇠m Ml. Thus Dh is a complete abstraction of Dl wrt m, by definition of complete
abstraction.

Theorem 5.13 Dh is a complete abstraction of Dl relative to mapping m i↵ for every model Mh of Dh,
there exists a model Ml of Dl [ C such that SM

h

0 ⇠M
h

,M
l

m SM
l

0 and
M

l

|= 8s.Do(anyseqhlref,S
0

, s) �V
A

i

2Ah

8~x.(m(�Poss
A

i

(~x))[s] ⌘ 9s0Do(m(Ai(~x)), s, s0))
and Ml |= 8s.Do(anyseqhlref, S0, s) �V

A
i

2Ah

8~x, s0.(Do(m(Ai(~x)), s, s0) �V
F

i

2Fh

8~y(m(�ssaF
i

,A
i

(~y, ~x))[s] ⌘ m(Fi(~y))[s0])),

where �Poss
A

i

(~x) and �ssaF
i

,A
i

(~y, ~x) are as in Theorem 5.9.

Proof
()) Suppose that Dh is a complete abstraction of Dl wrt mapping m. Take an arbitrary model of Mh

of Dh. Since Dh is a complete abstraction of Dl wrt m, by definition, there exists a model Ml of Dl [ C
such that Ml ⇠m Mh. It follows by the definition of m-bisimulation that SM

h

0 ⇠M
h

,M
l

m SM
l

0 . Furthermore,
by Lemma A.6, it follows that
M

l

|= 8sDo(anyseqhlref,S
0

, s) �V
A

i

2Ah

8~x.(m(�Poss
A

i

(~x))[s] ⌘ 9s0Do(m(Ai(~x)), s, s0))
and Ml |= 8sDo(anyseqhlref, S0, s) �V

A
i

2Ah

8~x, s0.(Do(m(Ai(~x)), s, s0) �V
F

i

2Fh

8~y(m(�ssaF
i

,A
i

(~y, ~x))[s] ⌘ m(Fi(~y))[s0])),

where �Poss
A

i

(~x) is the right hand side of the precondition axiom for action Ai(~x), and �ssaF
i

,A
i

(~y, ~x) is the right
hand side of the successor state axiom for Fi instantiated with action Ai(~x) where action terms have been
eliminated using Dh

ca.
(() The thesis follows immediately from Lemma A.7 and the definition of complete abstraction.
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A.2.4 Monitoring and Explanation

Theorem 5.14 For any refinement mapping m from Dh to Dl, we have that:

1. Dl [ C |= 8s.9s0.lpm(s, s0),

2. Dl [ C |= 8s8s18s2.lpm(s, s1) ^ lpm(s, s2) � s1 = s2.

Proof
(1) We have that Dl[C |= Do(anyseqhlref, S0, S0) since anyseqhlref is a nondeterministic iteration

that can execute 0 times. So even if there is no s00 such that S0 < s00  s ^Do(anyseqhlref, S0, s00), the
result holds.
(2) Take an arbitrary model Ml of Dl [ C and assume that Ml, v |= lpm(s, s1) ^ lpm(s, s2). We have that
Dl [ C |= lpm(s, s0) � s0  s. Moreover, we have a total ordering on situations s0 such that s0  s. If
Ml, v |= s1 < s2, then s1 can’t be the largest prefix of s that can be produced by executing a sequence
of high-level actions, and we can’t have Ml, v |= lpm(s, s1). Similarly if Ml, v |= s2 < s1, we can’t have
Ml, v |= lpm(s, s2). It follows that Ml, v |= s1 = s2.

Theorem 5.15 Suppose that we have a refinement mapping m from Dh to Dl and that Assumption
5.1 holds. Let Ml be a model of Dl [ C. Then for any ground situation terms Ss and Se such that
Ml |= Do(anyseqhlref, Ss, Se), there exists a unique ground high-level action sequence ~↵ such that
Ml |= Do(m(~↵), Ss, Se).

Proof Since, Ml |= Do(anyseqhlref, Ss, Se), there exists a n 2 N such that Ml |= Do(any1hln, S0, S).
Since we have standard names for objects, it follows that there exists a ground high-level action sequence
~↵ such that Ml |= Do(m(~↵), Ss, Se). Now let’s show by induction on the length of ~↵ that there is no
ground high-level action sequence ~↵0 6= ~↵ such that Ml |= Do(m(~↵0), Ss, Se). Base case ~↵ = ✏: Then
Ml |= Do(m(~↵), Ss, Se) implies Ml |= Ss = Se and there is no ~↵0 6= ✏ such that Ml |= Do(m(~↵0), Ss, Se),
since by Assumption 5.1(c) Dl [ C |= Do(m(�), s, s0) � s < s0 for any ground high-level action term �.
Induction step: Assume that the claim holds for any ~↵ of length k. Let’s show that it must hold for any ~↵
of length k + 1. Let ~↵ = �~�. There exists Si such that Do(m(�), Ss, Si) ^ Si  Se. By Assumption 5.1(a),
there is no �0 6= � and S0

i such that Do(m(�0), Ss, S0
i) ^ S0

i  Se. By Assumption 5.1(b), there is no S 0
i 6= Si

such that Do(m(�), S0, S0
i)^S0

i  S. Then by the induction hypothesis, there is no ground high-level action
sequence ~�0 6= ~� such that Ml |= Do(m(~�0), Si, Se).

Theorem 5.16 If m is a refinement mapping from Dh to Dl and Assumption 5.2 holds, then we have that:

Dl [ C |= 8s, s0.Executable(s) ^ lpm(s, s0) � 9�.T rans⇤any1hlref, s0, �, s)

Proof Take an arbitrary model Ml of Dl [ C and assume that Ml, v |= Executable(s) ^ lpm(s, s0). Since
Ml, v |= lpm(s, s0), we have that Ml, v |= Do(anyseqhlref, S0, s0) and thus that Ml, v |= Trans⇤(
anyseqhlref, S0, anyseqhlref, s0). Since Ml, v |= Executable(s), by Assumption 5.2 we have that
Ml, v |= 9�.T rans⇤(anyseqhlref, S0, �, s). Thus, it follows that Ml, v |= 9�.T rans⇤(any1hl , s0, �, s).
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A.3 Hierarchical Agent Supervision

A.3.1 Hierarchical Controllability of High-Level Specifications

Lemma 6.1
Dh |= Controllable(set(ES),anyOne, s) ⌘

8au.Au
h(au, s) ^ Poss(au, s) � Do(set(ES), s, do(au, s))

Proof
(�) By contradiction. Take an arbitrary model Mh of Dh, and assume the antecedent and the negation of
the consequent. This means there is an action au such that Mh |= Au

h(au, s) ^ Poss(au, s) and that Mh |=
¬Do(set(ES), s, do(au, s)). Since we have Mh |= Poss(au, s) this implies that au 2 CRM

h

(anyOne, s).
SinceMh |= ¬Do(set(ES), s, do(au, s)), this implies au /2 CRM

h

(set(ES), s). But since Controllable(set(ES),
anyOne, s), we must have au 2 CRM

h

(set(ES), s), contradiction.

(⇢) By contradiction. Take an arbitrary model Mh of Dh, and assume the antecedent and the negation
of the consequent. This means there is an action au such that Mh |= Au

h(au, s) ^ Poss(au, s) and au 2
CRM

h

(anyOne, s) but au /2 CRM
h

(set(ES), s). By the antecedent, we know that au 2 CRM
h

(set(ES), s),
contradiction.

To show that Theorem 6.2 holds, we first need the following lemma about building controllable sets of
runs out of controllable parts:

Lemma A.9 For any program �, any sequence of ground actions ~a, and any set of ground action sequences
E such that E ✓ CRM (�⇤, do(~a, S0)) and ✏ 62 E,

if M |= Controllable(set(E1), �, do(~a, S0)), where

E1 = {~b | ~b~c 2 E for some ~c and M |= Do(�, do(~a, S0), do(~a~b, S0))},

and for all ~b 2 E1, M |= Controllable(set(E
~b), �⇤, do(~a~b, S0)), where E

~b = {~c | ~b~c 2 E},

then M |= Controllable(set(E), �⇤, do(~a, S0)), and moreover,

if M |= Controllable(set({✏}), �⇤, do(~a, S0)),
then M |= Controllable(set(E [ {✏}), �⇤, do(~a, S0)).

Proof By contradiction. Assume the antecedent and the negation of consequent. The latter means
that there are ground low-level action sequences ~a0~e and ~a0au ~d such that ~a0~e 2 CRM (set(E), do(~a, S0)),

M |= Au(au, do(~a~a0, S0)), ~a0au ~d 2 CRM (�⇤, do(~a, S0)), and for all ground action sequences ~d0, ~a0au~d0 /2
CRM (set(E), do(~a, S0)). Then we have two cases. If M |= 9s0.Do(�, do(~a, S0), s0) ^ do(~a~a0, S0) < s0, then
M |= ¬Controllable(E1, �, do(~a, S0)), contradiction.
If on the other hand M |= ¬9s0.Do(�, do(~a, S0), s0) ^ do(~a~a0, S0) < s0, then there exists ground action se-

quences ~b and ~b0 such that ~a0 = ~b~b0, M |= Do(�, do(~a, S0), do(~a~b, S0)), and M |= 9s0.Do(�⇤, do(~a, S0), s0) ^
do(~a~b~b0, S0) < s0. This implies M |= ¬Controllable(E

~b, �⇤, do(~a~b, S0)), contradiction.
Now suppose that we also have that M |= Controllable(set({✏}), �⇤, do(~a, S0)). It follows that M |=
¬9au.Poss(au, do(~a, S0))^Au(au, do(~a, S0)). Thus we also have thatM |= Controllable(set(E[{✏}), �⇤, do(~a,
S0)).

Lemma A.10 For any sequence of ground low-level actions ~a, and any set of ground low-level action se-
quences El we have that if Ml |= Controllable(set(El),monit, do(~a, S0)) then Ml |= Controllable(set(E1

l ),

oneMonit, do(~a, S0)) where E1
l = {~b | ~b~c 2 El and Ml |= Do(oneMonit, do(~a, S0), do(~a~b, S0)), for some ~c}.
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Proof By contradiction. Assume the antecedent and the negation of the consequent. The latter means that
there is a sequence of actions ~b = ~b1bu ~b2 such that Au

l (bu, do(~a
~b1, S0)) and ~b 2 CRM

l

(oneMonit, do(~a, S0)),

and there is another sequence of actions ~c = ~b1c~c2 such that ~c 2 CRM
l

(set(E1
l ), do(~a, S0)) and ~b /2

CRM
l

(set(E1
l ), do(~a, S0)) (~b1 is the shared prefix).

By definition we have that E1
l is the prefix of El. This means there exists sequence of actions ~d and ~e such

that ~b~d 2 CRM
l

(monit, do(~a, S0)) and ~c~e 2 CRM
l

(set(El), do(~a, S0)) and ~b~d /2 CRM
l

(set(El), do(~a, S0)). By
antecedent we know that Ml |= Controllable(set(El),monit, do(~a, S0)), a contradiction.

Lemma A.11 For any sequence of ground high-level actions ~↵, and any set of ground high-level actions Eh

we have that if Mh |= C and Mh |= Controllable(set(Eh), any, do(~↵, S0)) then Mh |= Controllable(set(E1
h),

anyOne, do(~↵, S0)) where E1
h = {� | �~� 2 Eh}.

Proof By contradiction. Assume the antecedent and the negation of the consequent. The latter means that
there is an uncontrollable action �u such that �u 2 CRM

h

(anyOne, do(~↵, S0)), but �u /2 CRM
h

(set(E1
h),

do(~↵, S0)).
By definition we have that E1

h is the prefix of Eh. This means there exists sequence of actions ~� such
that �u~� 2 CRM

h

(any, do(~↵, S0)) and �u~� /2 CRM
h

(set(Eh), do(~↵, S0)) By antecedent we know that Mh |=
Controllable(set(Eh),any, do(~↵, S0)), a contradiction.

Theorem 6.2 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1
and 6.1 (part(a) �) hold, then

for any set of ground high-level action sequences of bounded length Eh such thatMh |= Controllable(set(Eh),
any, do(~↵, S0)), there exists a set of ground low-level action sequences El such that El ✓ CRM

l

(monit, do(~a,
S0)) and Ml |= Controllable(set(El),monit, do(~a, S0)) and m�1

M
l

(El, do(~a, S0)) = Eh.

Proof By induction on the length of the longest action sequence in Eh. Suppose that we have bisimilar
models Mh ⇠m Ml for an agent and that Assumptions 5.1 and 6.1 hold.
Base case: If Eh = ;, then we can choose El = ; as ; is always controllable. If Eh = {✏}, then by Assumption
6.1, we can choose El = {✏} and the result follows.
Inductive step: Assume that the thesis holds for all Eh such that max~�2E

h

|~�|  N . Take an arbitrary
set of ground high-level action sequences Eh such that max~�2E

h

|~�|  N + 1, and assume that Mh |=
Executable(do(~↵, S0)), Ml |= Do(m(~↵), S0, do(~a, S0)), and Mh |= Controllable(set(Eh),any, do(~↵, S0)).

Let E1
h = {� | �~� 2 Eh for some ~�} and let E�

h = {~� | �~� 2 Eh}. Clearly for all � 2 E1
h, Mh |=

Controllable(set(E�
h),any, do(~↵�, S0)) and max~�2E�

h

|~�|  N . Take a � 2 E1
h and an arbitrary ground

low-level action sequence ~c such that Ml |= Do(m(�), do(~a, S0), do(~a~c, S0)). By the induction hypothesis

there exists a set of ground low-level action sequences E�,~c
l such that Ml |= Controllable(set(E�,~c

l ),monit,

do(~a~c, S0)) and m�1
M

l

(E�,~c
l , do(~a~c, S0)) = E�

h . We can also show that Mh |= Controllable(set(E1
h),anyOne,

do(~↵, S0)) by Lemma A.11. By Assumption 6.1, there exists a set of ground low-level action sequences E1
l

such that Ml |= Controllable(set(E1
l ),oneMonit, (~a, S0)) and m�1

M
l

(E1
l , (~a, S0)) = E1

h. If ✏ 2 Eh, we have
that Ml |= Controllable(set({✏}),monit, do(~a, S0)). Let

El = {~c~b | ~c 2 E1
l and

Ml |= Do(m(�), do(~a, S0), do(~a~c, S0)) and
~b 2 E�,~c

l for some �} [Q

where Q = {✏} if ✏ 2 Eh and Q = ; otherwise. It follows by Lemma A.9 that Ml |= Controllable(set(El),
monit, do(~a, S0)).

Now let’s show that m�1
M

l

(El, do(~a, S0)) = Eh. First let’s show that Eh ✓ m�1
M

l

(El, do(~a, S0)). Take an

arbitrary ~�0 2 Eh. If ~�0 = ✏, then ✏ 2 El and m�1
M

l

(✏, (~a, S0)) = ✏. Otherwise ~�0 = �~�. We have that
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� 2 E1
h and m�1

M
l

(E1
l , do(~a, S0)) = E1

h, so there exists a ground low-level action sequence ~c 2 E1
l such that

m�1
M

l

(~c, do(~a, S0)) = �. We also have that m�1
M

l

(E�,~c
l , do(~a~c, S0)) = E�

h , so there exists ~b 2 E�,~c
l such that

m�1
M

l

(~b, do(~a~c, S0)) = ~�. We have that ~c~b 2 El, therefore �~� 2 m�1
M

l

(El, do(~a, S0)).

Finally, let’s show thatm�1
M

l

(El, do(~a, S0)) ✓ Eh. Take an arbitrary ~e 2 El. If ~e = ✏, thenm�1
M

l

(✏, (~a, S0)) =

✏ and ✏ 2 Eh. Otherwise, ~e = ~c~b where ~c 6= ✏, ~c 2 E1
l , and ~b 2 E�,~c

l for some � such that Ml |=
Do(m(�), do(~a, S0), do(~a~c, S0)). Then m�1

M
l

(~c, do(~a, S0)) 2 E1
h, since m�1

M
l

(E1
l , do(~a, S0)) = E1

h. Moreover we

have that m�1
M

l

(~b, (~a~c, S0)) 2 E�
h , since m�1

M
l

(E�,~c
l , do(~a~c, S0)) = E�

h . Thus m
�1
M

l

(~c~b, do(~a, S0)) 2 Eh.

Theorem 6.3 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1
and 6.1 (part(a) ⇢ and part (b)) hold, then

for any set of ground low-level action sequences El such that El ✓ CRM
l

(monit, do(~a, S0))m
�1
M

l

(El, do(~a, S0))
has bounded length,

if Ml |= Controllable(set(El),monit, do(~a, S0)),
then Mh |= Controllable(set(m�1

M
l

(El, do(~a, S0))), any, do(~↵, S0)).

Proof By induction on the length of the longest action sequence in m�1
M

l

(El, do(~a, S0)). Suppose that we
have bisimilar models Mh ⇠m Ml for an agent. Also suppose that Assumptions 5.1 and 6.1 hold.
Base case: If El = ;, then m�1

M
l

(El, do(~a, S0)) = ; and ; is always controllable. If El = {✏}, then

m�1
M

l

(El, do(~a, S0)) = {✏}, and by Assumption 6.1 the result holds.
Inductive step: Assume that the thesis holds for all El such that max~�2m�1

M

l

(E
l

,do(~a,S0))
|~�|  N . Take an

arbitrary set of ground high-level action sequences El such that max~�2m�1
M

l

(E
l

,do(~a,S0))
|~�|  N + 1, and

assume that Mh |= Executable(do(~↵, S0)), Ml |= Do(m(~↵), S0, do(~a, S0)), El ✓ CRM
l

(monit, do(~a, S0)),

and Ml |= Controllable(set(El),monit, do(~a, S0)). Let E1
l = {~b | ~b~c 2 El and Ml |= Do(oneMonit,

do(~a, S0), do(~a~b, S0)), for some ~c} and let E
~b
l = {~c | ~b~c 2 El and Ml |= Do(oneMonit, do(~a, S0), do(~a~b, S0))}.

Clearly for all ~b 2 E1
l , E

~b
l ✓ CRM

l

(monit, do(~a~b, S0)), Ml |= Controllable(set(E
~b
l ),monit, do(~a

~b, S0)), and

max~�2m�1
M

l

(E
~

b

l

,do(~a~b,S0))
|~�|  N . Thus by the induction hypothesis

Mh |= Controllable(set(m�1
M

l

(E
~b
l , do(~a

~b, S0)),any, do(m
�1
M

l

(do(~a~b, S0))).

We can also show that Ml |= Controllable(set(E1
l ),oneMonit, do(~a, S0)) by Lemma A.10. By Assumption

6.1, we must then also have thatMh |= Controllable(set(m�1
M

l

(E1
l , do(~a, S0))),anyOne, do(~↵, S0)). If ✏ 2 El,

we have that Mh |= Controllable(set({✏}), any, do(~↵, S0)). Let

Eh = {m�1
M

l

(~b, do(~a, S0))m
�1
M

l

(~c, do(~a~b, S0)) | ~b 2 E1
l and ~c 2 E

~b
l } [Q

where Q = {✏} if ✏ 2 El and Q = ; otherwise. It follows by Lemma A.9 that Mh |= Controllable(set(Eh),
any, do(~↵, S0)). Clearly Eh = m�1

M
l

(El, do(~a, S0)) and the result follows.

Here are some results about setp:

Lemma A.12 For any BAT D, D [ C |= 8s, P.SituationDetermined(setp(P ), s).

Proof (Sketch) By induction on the number of transitions, i.e., o✏ine executions from (setp(P ), s). Based
on definition of Trans for setp, whenever an action a is performed in any situation s, there is a unique
remaining program in the resulting situation. This clearly extends to any configurations reachable through
Trans⇤ from (setp(P ), s).
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Lemma A.13 For any BAT D,

D [ C |= Trans⇤(setp(P ), s, �, s0) ⌘
9�0, �00.�0 2 P ^ Trans⇤(�0, s, �00, s0) ^
� = setp({�00 | 9�0.�0 2 P ^ Trans⇤(�0, s, �00, s0)})

Proof (Sketch) By induction on number of transitions.

We introduce the abbreviation subm(�) which replaces any primitive action ↵ by m(↵) and any fluent
F (~x) by m(F )[~x]:

subm(nil)
.
= m(nil) = nil

subm(↵)
.
= atomic(m(↵))

subm('?)
.
= m(�)?

subm(�1; �2)
.
= subm(�1); subm(�2)

subm(�1 | �2)
.
= subm(�1) | subm(�2)

subm(⇡x.�)
.
= ⇡x.subm(�)

subm(�⇤)
.
= subm(�)⇤

subm(�1k�2)
.
= subm(�1)ksubm(�2)

subm(�1 & �2)
.
= subm(�1) & subm(�2)

It is easy to show by induction on the structure of � that subm(�) = �[A(~x)/atomic(m(A(~x))) for all A 2
A, and F (~x)/m(F (~x)) for all F 2 F ]}].

Lemma A.14 Suppose that we have bisimilar models Mh ⇠m Ml for an agent and that ~a is an m-refinement
of an executable ~↵, Mh |= C, and Assumption 5.1 holds. Then, for any high-level program �h, we have that

Ml |= Final(subm(�h), do(~a, S0)) i↵ Mh |= Final(�h, do(~↵, S0))

Proof By induction on the structure of �h.
Base cases: nil, ↵, �?.
Case �h = nil.
We have subm(nil) = m(nil) = nil. By the axioms for Final , we have that Mh |= Final(nil, do(~↵, S0)) ⌘
True, and also, Ml |= Final(nil, do(~a, S0)) ⌘ True. Thus the result holds.
Case �h = ↵.
By the axioms for Final , we have that Mh |= Final(↵, do(~↵, S0)) ⌘ False. By Assumption 5.1 part
(c) we know that m(↵) 6= nil and m(↵) 6= '?. From this and by the axioms for Final , we have that
Ml |= Final(atomic(m(↵)), do(~a, S0)) ⌘ False. Thus the result holds.
Case �h = '?.
By the axioms for Final , we have thatMh |= Final('?, do(~↵, S0)) ⌘ '[do(~↵, S0)] and thatMl |= Final(m(')?,
do(~a, S0)) ⌘ m(')[do(~a, S0)]. Since Mh ⇠m Ml, by Lemma 5.1, we have Mh |= '[do(~↵, S0)] i↵ Ml |=
m(')[do(~a, S0)]. Thus the result follows.

Induction step:
Case �h = �1; �2.

151



Assume the results hold for �1 and �2 (IH).

Ml |= Final(subm(�1; �2), do(~a, S0))
i↵
Ml |= Final((subm(�1); subm(�2)), do(~a, S0)) (By definition of subm)
i↵
Ml |= Final(subm(�1), do(~a, S0))) ^ Final(subm(�1), do(~a, S0)) (By Final axioms for ;)
i↵
Mh |= Final(�1, do(~↵, S0)) ^ Final(�2, do(~↵, S0)) (By IH)
i↵
Mh |= Final(�1; �2, do(~↵, S0)) (By Final axioms for ;)

Case �h = �1 | �2.
Assume the results hold for �1 and �2 (IH).

Ml |= Final(subm(�1 | �2), do(~a, S0))
i↵
Ml |= Final((subm(�1) | subm(�2)), do(~a, S0)) (By definition of subm)
i↵
Ml |= Final(subm(�1), do(~a, S0))) _ Final(subm(�1), do(~a, S0)) (By Final axioms for |)
i↵
Mh |= Final(�1, do(~↵, S0)) _ Final(�2, do(~↵, S0)) (By IH)
i↵
Mh |= Final(�1 | �2, do(~↵, S0)) (By Final axioms for |)

Case �h = ⇡x.�.
Assume the results hold for � (IH).

Ml |= Final(subm(⇡x.�), do(~a, S0))
i↵
Ml |= Final(⇡x.subm(�), do(~a, S0))
i↵
Ml |= 9x.F inal(subm(�), do(~a, S0))) (By Final axioms for ⇡x)
i↵
Mh |= 9x.F inal(�, do(~↵, S0)) (By IH)
i↵
Mh |= Final(⇡x.�, do(~↵, S0)) (By Final axioms for ⇡x)

Case �h = �⇤.
Assume the results hold for � (IH).

Ml |= Final(subm(�⇤), do(~a, S0))
i↵
Ml |= Final(subm(�)⇤, do(~a, S0))
i↵
Ml |= True (By Final axioms for ⇤)
i↵
Mh |= Final(�, do(~↵, S0)) (By IH)
i↵
Mh |= Final(�⇤, do(~↵, S0)) (By Final axioms for ⇤)

Case �h = �1k�2.
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Assume the results hold for �1 and �2 (IH).

Ml |= Final(subm(�1k�2), do(~a, S0))
i↵
Ml |= Final((subm(�1)ksubm(�2)), do(~a, S0)) (By definition of subm)
i↵
Ml |= Final(subm(�1), do(~a, S0))) ^ Final(subm(�1), do(~a, S0)) (By Final axioms for k)
i↵
Mh |= Final(�1, do(~↵, S0)) ^ Final(�2, do(~↵, S0)) (By IH)
i↵
Mh |= Final(�1k�2, do(~↵, S0)) (By Final axioms for k)

Case �h = �1 & �2.
Assume the results hold for �1 and �2 (IH).

Ml |= Final(subm(�1 & �2), do(~a, S0))
i↵
Ml |= Final((subm(�1) & subm(�2)), do(~a, S0)) (By definition of subm)
i↵
Ml |= Final(subm(�1), do(~a, S0))) ^ Final(subm(�1), do(~a, S0)) (By Final axioms for &)
i↵
Mh |= Final(�1, do(~↵, S0)) ^ Final(�2, do(~↵, S0)) (By IH)
i↵
Mh |= Final(�1 & �2, do(~↵, S0)) (By Final axioms for &)

Corollary A.15 Suppose that we have bisimilar models Mh ⇠m Ml for an agent, ~a is an m-refinement
of an executable ~↵, Mh |= C, and Assumption 5.1 holds. Then, for any high-level program �h such that
Mh |= SituationDetermined(�h, do(~↵, S0)), we have that

Ml |= Final(mp(�h), do(~a, S0)) i↵ Mh |= Final(�h, do(~↵, S0))

Proof

Ml |= Final(setp((subm(�h))), do(~a, S0))
i↵
Ml |= Final(subm(�h), do(~a, S0)) By axioms for setp()
i↵
Ml |= Final(�h, do(~a, S0)) By Lemma A.14

Here are some results about mp:

Lemma A.16 For any ConGolog programs �, �1 and �2:

1. C |= Do(�1; �2, s, s0) ⌘ 9s00.Do(�1, s, s00) ^Do(�2, s00, s0),

2. C |= Do(�1 | �2, s, s0) ⌘ Do(�1, s, s0) _Do(�2, s, s0),

3. C |= Do(�1 & �2, s, s0) ⌘ Do(�1, s, s0) ^Do(�2, s, s0),
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4. C |= Do(⇡x.�, s, s0) ⌘ 9x.Do(�, s, s0),

5. for every model M of C M |= Do(�⇤, s, s0) if and only if there exists s1, . . . , sn such that s = s1 and
s0 = sn and for all i = 1, . . . , n� 1, M |= Do(�, si, si+1).

Proof We provide a detailed proof for (1): Take an arbitrary model M of C. By Lemma B.1 of [33]
and the definition of Do, M |= Do(�a; �b, s, s0) holds if and only if there exists �1, s1, . . . , �n, sn such that
�1 = �a; �b, s1 = s, and sn = s0 and for all i = 1, . . . , n � 1, M |= Trans(�i, si, �i+1, si+1) and M |=
Final(�n, sn). By the C axioms, this holds if and only if there exists �1, s1, . . . , �n, sn such that �1 = �a,
s1 = s, and sn = s0 and for all i = 1, . . . , k � 1, M |= Trans(�i; �b, si, �i+1; �b, si+1), M |= Final(�k, sk),
M |= Trans(�k; �b, sk, �k+1, sk+1), and for all j = k + 1, . . . , n � 1, M |= Trans(�j , sj , �j+1, sj+1), and
M |= Final(�n, sn). This holds if and only if there exists �1, s1, . . . , �k, sk such that �1 = �a, and s = s1,
and for all i = 1, . . . , k � 1, M |= Trans(�i, si, �i+1; �b, si+1), and M |= Final(�k, sk), and there exists
�k+1, sk+1, . . . , �n, sn such that �k+1 = �b, sn = s0 and for all j = k, . . . , n�1, M |= Trans(�j , sj , �j+1, sj+1),
and M |= Final(�n, sn). By Lemma B.1 of [33] and the definition of Do, this holds if and only if M |=
9s00.Do(�a, s, s00) ^Do(�b, s00, s0).

The other cases can be proven in a similar way.

Let Golog

+ stand for the Golog language extended with the intersection construct &.
We can show that:

Lemma A.17 If Mh ⇠m Ml, ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumption 5.1 holds,
then for any high-level Golog + program �h such that Mh |= SituationDetermined(�h, do(~↵, S0)), any ground

high-level action sequence ~�, and any ground low-level action sequence ~b, if

Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)) and

Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0))

then
Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0))

Proof By induction of the structure of �h.
Base cases:
Case �h = �, where � is a primitive action:
Then mp(�h) = setp({atomic(m(�))}). We have that Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)), and thus Mh |=
~� = �. Then we have that Ml |= Do(m(�), do(~a, S0), do(~a~b, S0)). It follows by properties of setp and the C
axioms that Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)).
Case �h = �?:
Then mp(�h) = setp({m(�?)}). We have that Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)). It follows by the C
axioms that Mh |= �[do(~↵, S0)] ^ ~� = ✏. We have that Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0)) and thus

Ml |= ~b = ✏. Since Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, it follows by Theorem
5.2 that Ml |= m(�)[do(~a, S0)]. It then follows by the properties of setp and the C axioms that Ml |=
Do(mp(�h), do(~a, S0), do(~a~b, S0)).
Case �h = nil:
Then mp(�h) = setp({nil}). We have that Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)), and thus Mh |= ~� = ✏. We

have that Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0)) and thus Ml |= ~b = ✏. It follows that the claim holds by the
properties of setp and the C axioms.

Inductive step:
Assume that the claim holds for all the proper subprograms of �h (IH). Let’s show it must then hold for �h.
Case �h = �1; �2:
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Then mp(�h) = setp({subm(�1); subm(�2))}). Assume the antecedent. Then we have that

Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)) and

Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by Lemma A.16 that there exist ~� and ~�0 such that ~� = ~�~�0 and

Mh |= Do(�1, do(~↵, S0), do(~↵~�, S0)) ^
Do(�2, do(~↵~�, S0), do(~↵~�, S0))

It also follows by Lemma A.16 that there exist ~c and ~c0 such that ~b = ~c~c0 and

Ml |= Do(m(~�), do(~a, S0), do(~a~c, S0)) ^
Do(m(~�0), do(~a~c, S0), do(~a~b, S0))

Then by the IH, we have that

Ml |= Do(mp(�1), do(~a, S0), do(~a~c, S0)) ^
Do(mp(�2), do(~a~c, S0), do(~a~b, S0))

By properties of setp and by Lemma A.16, it follows that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0))

Case �h = �1 | �2:
Then mp(�h) = setp({subm(�1) | subm(�2))}). Assume the antecedent. Then we have that

Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)) and

Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by Lemma A.16 that

Mh |= Do(�1, do(~↵, S0), do(~↵~�, S0)) _
Do(�2, do(~↵, S0), do(~↵~�, S0))

Then by the IH, we have that

Ml |= Do(mp(�1), do(~a, S0), do(~a~b, S0)) _
Do(mp(�2), do(~a, S0), do(~a~b, S0))

By properties of setp and by Lemma A.16, it follows that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0))

Case �h = ⇡x.�1:
the proof is similar to that for �h = �1 | �2.
Case �h = �⇤1 :
Then mp(�h) = setp({subm(�1)⇤)}). Assume the antecedent. Then we have that

Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)) and

Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by Lemma A.16 that there exist ~�1, . . . , ~�n such that ~� = ~�1 . . . ~�n
0 and

Mh |=
V

i:1..n Do(�1, do(~↵ ~�1 . . . ~�i�1, S0), do(~↵ ~�1 . . . ~�i, S0))
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It also follows by Lemma A.16 that there exist ~c1, . . . , ~cn such that ~b = ~c1 . . . ~cn and

Ml |=
V

i:1..n Do(m(~�i), do(~a~c1 . . . ~ci�1, S0), do(~a~c1 . . . ~ci, S0))

Then by the IH, we have that

Ml |=
V

i:1..n Do(mp(�1), do(~a~c1 . . . ~ci�1, S0), do(~a~c1 . . . ~ci, S0))

By properties of setp and by Lemma A.16, it follows that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0))

Case �h = �1 & �2:
Then mp(�h) = setp({subm(�1) & subm(�2))}). Assume the antecedent. Then we have that

Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0)) and

Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by Lemma A.16 that

Mh |= Do(�1, do(~↵, S0), do(~↵~�, S0)) ^
Do(�2, do(~↵, S0), do(~↵~�, S0))

Then by the IH, we have that

Ml |= Do(mp(�1), do(~a, S0), do(~a~b, S0)) ^
Do(mp(�2), do(~a, S0), do(~a~b, S0))

By properties of setp and by Lemma A.16, it follows that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0))

We can also show that:

Lemma A.18 If Mh ⇠m Ml, ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumption 5.1 holds,
then for any high-level Golog + program �h such that Mh |= SituationDetermined(�h, do(~↵, S0)), any ground

high-level action sequence ~�, and any ground low-level action sequence ~b, if

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) ^
Do(m(~�), do(~a, S0), do(~a~b, S0))

then
Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0))

Proof By induction of the structure of �h.
Base cases:
Case �h = �, where � is a primitive action:
Then mp(�h) = setp({atomic(m(�))}). We have that Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) and Ml |=
Do(m(~�), do(~a, S0), do(~a~b, S0)), and thus Ml |= ~� = �. Since Mh ⇠m Ml and ~a is an m-refinement of an
executable ~↵, it follows by Theorem 5.2 that Mh |= Poss(�, do(~↵, S0)), and the claim then follows by the C
axioms.
Case �h = �?:
Then mp(�h) = setp({m(�?)}). We have that Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) and thus that Ml |=
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m(�)[do(~a, S0)]^~b = ✏. Since Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, it follows by Theorem

5.2 that Mh |= �[do(~↵, S0)]. We also have that Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0)), and thus Ml |= ~� = ✏.
Then the claim follows by the C axioms.
Case �h = nil:
Then mp(�h) = setp({nil}). We have that Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) and thus Ml |= ~b = ✏.

We also have that Ml |= Do(m(~�), do(~a, S0), do(~a~b, S0)), and thus Ml |= ~� = ✏. It follows that the claim
holds by the C axioms.

Inductive step:
Assume that the claim holds for all the proper subprograms of �h (IH). Let’s show it must then hold for �h.
Case �h = �1; �2:
Then mp(�h) = setp({subm(�1); subm(�2))}). Assume the antecedent. Then we have that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) ^
Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by properties of setp and Lemma A.16 that there exist ~c and ~c0 such that ~b = ~c~c0 and there exist
~� and ~�0 such that ~� = ~�~�0 and

Ml |= Do(mp(�1), do(~a, S0), do(~a~c, S0)) ^
Do(mp(�2), do(~a~c, S0), do(~a~b, S0)) ^
Do(m(~�), do(~a, S0), do(~a~c, S0)) ^
Do(m(~�0), do(~a~c, S0), do(~a~b, S0))

Then by the IH, we have that

Mh |= Do(�1, do(~↵, S0), do(~↵~�, S0)) ^
Do(�2, do(~↵~�0, S0), do(~↵~�, S0))

By Lemma A.16, it follows that

Mh |= Do(�h, do(~a, S0), do(~↵~�, S0))

Case �h = �1 | �2:
Then mp(�h) = setp({subm(�1) | subm(�2))}). Assume the antecedent. Then we have that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) ^
Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by properties of setp and Lemma A.16 that

Ml |= Do(mp(�1), do(~a, S0), do(~a~b, S0)) _
Do(mp(�2), do(~a, S0), do(~a~b, S0))

Then by the IH, we have that

Mh |= Do(�1, do(~↵, S0), do(~↵~�, S0)) _
Do(�2, do(~↵, S0), do(~↵~�, S0))

By properties of setp and by Lemma A.16, it follows that

Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0))

Case �h = ⇡x.�1:
the proof is similar to that for �h = �1 | �2.
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Case �h = �⇤1 :
Then mp(�h) = setp({subm(�1)⇤}). Assume the antecedent. Then we have that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) ^
Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by properties of setp and Lemma A.16 that there exist ~c1, . . . , ~cn and ~�1, . . . , ~�n such that ~b =
~c1 . . . ~cn and ~� = ~�1 . . . ~�n and

Ml |=
V

i:1..n Do(mp(�1), do(~a~c1 . . . ~ci�1, S0), do(~a~c1 . . . ~ci, S0)) ^V
i:1..n Do(m(~�i), do(~a~c1 . . . ~ci�1, S0), do(~a~c1 . . . ~ci, S0))

Then by the IH, we have that

Mh |=
V

i:1..n Do(�1, do(~↵ ~�1 . . . ~�i�1, S0), do(~↵ ~�1 . . . ~�i, S0))

By Lemma A.16, it follows that

Mh |= Do(�h, do(~↵, S0), do(~↵~�, S0))

Case �h = �1 & �2:
Then mp(�h) = setp({subm(�1) & subm(�2))}). Assume the antecedent. Then we have that

Ml |= Do(mp(�h), do(~a, S0), do(~a~b, S0)) ^
Do(m(~�), do(~a, S0), do(~a~b, S0))

It follows by properties of setp and Lemma A.16 that

Ml |= Do(mp(�1), do(~a, S0), do(~a~b, S0)) ^
Do(mp(�2), do(~a, S0), do(~a~b, S0))

Then by the IH, we have that

Mh |= Do(�1, do(~↵, S0), do(~↵~�, S0)) ^
Do(�2, do(~↵, S0), do(~↵~�, S0))

By properties of setp and by Lemma A.16, it follows that

Mh |= Do(�h, do(~↵, S0), do(~↵~b, S0))

Lemma A.19 Suppose that we have bisimilar models Mh ⇠m Ml for an agent, ~a is an m-refinement
of an executable ~↵, Mh |= C, and Assumption 5.1 holds. Then, for any high-level program �h such that
Mh |= SituationDetermined(�h, do(~↵, S0)), we have that

CRM
l

(mp(�h), do(~a, S0)) =

[~�2CR
M

h

(�
h

,do(~↵,S0))
CRM

l

(m(~�), do(~a, S0)).

Proof (For Golog

+ programs)
(✓) By Lemma A.18.
(◆) By Lemma A.17.
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Lemma A.20 Suppose that we have bisimilar models Mh ⇠m Ml for an agent, ~a is an m-refinement of an
executable ~↵, Mh |= C, and Assumption 5.1 holds. Then, for any high-level programs �h and �0h, such that
SituationDetermined(�h, do(~↵, S0)) and SituationDetermined( �0h, do(~↵, S0))

if CRM
h

(�h, do(~↵, S0)) ✓ CRM
h

(�0h, do(~↵, S0)), then CRM
l

(mp(�h), do(~a, S0)) ✓ CRM
l

(mp(�0h), do(~a, S0)).

Proof Follows from Lemma A.19.

Note also that since m�1
M

l

is a function, the following result follows trivially:

Lemma A.21 Suppose that we have bisimilar models Mh ⇠m Ml for an agent and that Assumption 5.1
holds. Then for any low-level action sequence ~a such that Ml |= Do(monit, S0, do(~a, S0)), it is the case that

for any sets of low-level action sequences El and E0
l,

if El ✓ E0
l, then m�1

M
l

(El, s) ✓ m�1
M

l

(E0
l , s).

Theorem 6.4 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1
and 6.1 hold, then for any supervision specification represented by a high-level situation-determined program
�hSpec,

m�1
M

l

(CRM
l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)), do(~a, S0)), do(~a, S0)) =
CRM

h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)).

provided that the sets of action sequences on both sides of this equation have bounded length.

Proof
(✓) Assume the antecedent. By Theorem 3.1 we have that

Ml |= Controllable(mps
o✏

(monit,mp(�hSpec), do(~a, S0)),monit, do(~a, S0)).

By the definition of mps, we have that

CRM
l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0))), do(~a, S0))) ✓ CRM
l

(monit, do(~a, S0)).

Let Emps
h =

m�1
M

l

(CRM
l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)), do(~a, S0)), do(~a, S0)).

By Theorem 6.3, we have that

Mh |= Controllable(set(Emps
h ),any, do(~a, S0)).

Also by the definition of mps,

CRM
l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)), do(~a, S0))
✓ CRM

l

(monit & mp(�hSpec), do(~a, S0)).

By Assumption 5.1, it follows that CRM
h

(Emps
h , do(~↵, S0)) ✓ CRM

h

(any & �hSpec, do(~↵, S0)) by Lemma

A.21. Then by Theorem 3.1, it follows that CRM
h

(Emps
h , do(~↵, S0)) ✓ CRM

h

(mps
o✏

((any, �hSpec, do(~↵, S0)),
do(~↵, S0)). Thus

m�1
M

l

(CRM
l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)),
do(~a, S0)), do(~a, S0)) ✓

CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)).

(◆) By Theorem 3.1 we have that

Mh |= Controllable(mps
o✏

(any, �hSpec, do(~↵, S0)),any, do(~↵, S0)).

Thus by Theorem 6.2, there exists a set of ground action sequences Emps
l such that
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• Ml |= Controllable(set(Emps
l ),monit, do(~a, S0)),

• m�1
M

l

(Emps
l , do(~a, S0)) =

CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)), and

• Emps
l ✓ CRM

l

(monit, do(~a, S0)).

By the definition of mps,

CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0))
✓ CRM

h

(any & �hSpec, do(~↵, S0)).

Thus
CRM

l

(set(Emps
l ), do(~a, S0))

✓ CRM
l

(monit & mp(�hSpec), do(~a, S0)).

by Lemma A.22. By Theorem 3.1 part 3 it follows that CRM
l

(set(Emps
l ), do(~a, S0)) ✓ CRM

l

(mps
o✏

(monit,
mp(�hSpec), do(~a, S0)), do(~a, S0))). Thus by Assumption 5.1, it follows that

CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)) ✓
m�1

M
l

(CRM
l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)), do(~a, S0)), do(~a, S0)).

Lemma A.22 Suppose that we have bisimilar models Mh ⇠m Ml for an agent, ~a is an m-refinement of an
executable ~↵, Mh |= C, and Assumptions 5.1 and 6.1 hold. Suppose further that for any high-level specification
�hspec such that Mh |= SituationDetermined(�h, do(~↵, S0)), we have that Emps

l ✓ CRM
l

(monit, do(~a, S0))

and that m�1
M

l

(Emps
l , do(~a, S0)) = CRM

h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)). Then, if CRM
h

(mps
o✏

(

any, �hSpec, do(~↵, S0)), do(~↵, S0)) ✓ CRM
h

(any & �hSpec, do(~↵, S0)), then CRM
l

(set(Emps
l ), do(~a, S0)) ✓

CRM
l

(monit & mp(�hSpec), do(~a, S0)).

Proof Take an arbitrary ~c 2 Emps
l . Since Emps

l ✓ CRM
l

(monit, do(~a, S0)), there exists ~� such that Ml |=
Do(m(~�), do(~a, S0), do(~a~c, S0)). From this, and since m�1

M
l

(Emps
l , do(~a, S0)) = CRM

h

(mps
o✏

(any, �hSpec,

do(~↵, S0)), do(~↵, S0)), and that CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)) ✓ CRM
h

(any & �hSpec, do(~↵,

S0)), we have that Mh |= Do(�hSpec, do(~↵, S0), do(~↵~�, S0)).

By Lemma A.19 CRM
l

(mp(�hSpec), do(~a, S0)) = [~�2CR
M

h

(�h
Spec

),do(~↵,S0))
CRM

l

(m(~�), do(~a, S0)). Thus ~c 2
CRM

l

(mp(�hSpec), do(~a, S0)).

A.3.2 Exploiting Abstraction in Obtaining the MPS

Lemma A.23 Suppose that we have bisimilar models Mh ⇠m Ml for an agent and that Assumption 5.1
holds. Then for any sequence of ground high-level actions ~↵ and any sequence of ground low-level actions ~a,
such that Mh |= Executable(do(~↵, S0)) and Ml |= Do(m(~↵), S0, do(~a, S0)), it is the case that

m�1
M

l

(CRM
l

(mpsi(Eh)), do(~a, S0)) ✓ Eh, provided m�1
M

l

(CRM
l

(mpsi(Eh)), do(~a, S0)) ✓ Eh is of bounded
length.

Proof By induction on the length of the longest action sequence in m�1
M

l

(CRM
l

(mpsi(Eh, do(~a, S0)))).

Base cases: If m�1
M

l

(CRM
l

(mpsi(Eh)), do(~a, S0)) = ;, the result trivially holds. If m�1
M

l

(CRM
l

(mpsi(Eh)),
do(~a, S0)) = {✏}, then it must be the case ✏ 2 Eh, as the second alternative of mpsi(Eh) starts with
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mps
o✏

(oneMonit, mp(firsts(Eh)), now), whose complete runs must also be compete runs of oneMonit
by the definition of mps, and thus none of them can be mapped to ✏ by m�1

M
l

in do(~a, S0).
Inductive Step: Assume that the thesis holds whenever max~�2m�1

M

l

(CR
M

l

(mps
i

(E
h

),do(~a,S0)))
|~�|  N . We must

show that it must also hold if max~�2m�1
M

l

(CR
M

l

(mps
i

(E
h

),do(~a,S0)))
|~�| = N+1 Assume the antecedent. Take an

arbitrary ~� 2 m�1
M

l

(CRM
l

(mpsi(Eh), do(~a, S0))). If ~� = ✏, then ~� 2 Eh by the same argument as in the anal-

ogous base case. Otherwise, it must be the case that there exist ~b and ~c such that m�1
M

l

(~b~c, do(~a, S0)) = ~�, ~b 2
CRM

l

(mps
o✏

(oneMonit,mp(firsts(Eh)), now), do(~a, S0)) and ~c 2 CRM
l

(mpsi(rests(Eh, last(m
�1
M

l

(now)))),

do(~a~b, S0)). By the definition of MPS, it follows that Do(oneMonit, do(~a, S0), do(~a~b, S0)). Thus there exist

� and ~�0 such that m�1
M

l

(~b, do(~a, S0)) = � and ~� = �~�0. By Assumption 5.1 we know that ~b maps to a unique

high-level action (�). Thus Ml |= Do(m(~↵�), S0, do(~a~b, S0)), as well as Mh |= Executable(do(~↵�, S0)) by
Theorem 5.2. Therefore we can apply the induction hypothesis to obtain thatm�1

M
l

(CRM
l

(mpsi(rests(Eh,�)),

do(~a~b, S0)), do(~a~b, S0)) ✓ rests(Eh,�). Thus ~�0 2 rests(Eh,�). It follows that ~� 2 Eh.

We can show that mpsi(Eh, do(~↵, S0)) is controllable:

Lemma A.24 Suppose that we have bisimilar models Mh ⇠m Ml for an agent, Mh |= C and that Assump-
tions 5.1 and 6.1 hold. Then for any sequence of ground high-level actions ~↵ and any sequence of ground low-
level actions ~a, such that Mh |= Executable(do(~↵, S0)) and Ml |= Do(m(~↵), S0, do(~a, S0)), it is the case that
Controllable(mpsi(E

mps
h ),monit, do(~a, S0)), where E

mps
h = CRM

h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)),
provided that m�1(CRM

l

(mpsi(E
mps
h ), do(~a, S0))) has bounded length.

Proof By induction on the length of longest action sequence in m�1(CRM
l

(mpsi(E
mps
h ), do(~a, S0))).

Base Cases: If CRM
l

(mpsi(E
mps
h ), do(~a, S0)) = ; the result trivially holds. If CRM

l

(mpsi(E
mps
h ), do(~a, S0))

= {✏}, then it must be the case ✏ 2 Emps
h , as the second alternative of mpsi(E

mps
h ) starts with mps

o✏

(
oneMonit,mp(firsts(E

mps
h )), now), whose complete runs must also be compete runs of oneMonit by the

definition of mps, and thus none of them can be mapped to ✏ by m�1
M

l

in do(~a, S0). Since ✏ 2 Emps
h , and

by Theorem 3.1 part 2, we have that Controllable(mps
o✏

(any, �hSpec, do(~↵, S0)), any, do(~↵, S0)), do(~↵, S0)),
this implies that Controllable({✏},any, do(~↵, S0))). Thus, by Assumption 6.1, we know that
Ml |= Controllable(set({✏}), monit, do(~a, S0)), and as a result Ml |= Controllable(mpsi(E

mps
h ),monit,

do(~a, S0)).

Inductive Step: Assume that the thesis holds for all runs such thatmax~�2m�1(CR
M

l

(mps
i

(Emps

h

),do(~a,S0)))|~�| 
N . We must show that this holds for N+1 all runs such that max~�2m�1(CR

M

l

(mps
i

(Emps

h

),do(~a,S0)))|~�|  N+1.

Assume the antecedent. Let E1
l = {~b | ~b 2 CRM

l

(mps
o✏

(oneMonit,mp(firsts(Eh)), do(~a, S0)),

do(~a, S0))}, and for each~b 2 E1
l let E

~b
l = {~c | ~c 2 CRM

l

(mpsi(rests(E
mps
h , last(m�1

M
l

(do(~a~b, S0))))), do(~a~b, S0))}.
By Assumption 5.1 we know that each ~b and ~c maps to a unique (sequence of) high-level action(s). By in-

duction hypothesis, we have that Ml |= Controllable(mpsi(rests(E
mps
h , last(m�1

M
l

(do(~a~b, S0))))), do(~a~b, S0)),

thus, Ml |= Controllable(set(E
~b
l ), monit, do(~a

~b, S0)). By Theorem 3.1, we have that Ml |= Controllable(

set(E1
l ),oneMonit, do(~a, S0)). Let El = {~b~c | ~b 2 E1

l and ~c 2 E
~b
l } [ Q where Q = {✏} if ✏ 2 Emps

h
and Q = ; otherwise. It follows by Lemma A.9 that Ml |= Controllable(set(El),monit, do(~a, S0)). Thus,
Ml |= Controllable(mpsi(E

mps
h ),monit, do(~a, S0)).

We can show that the hierarchically synthesized MPS mpsi(E
mps
h ) includes any controllable set of low-

level action sequences that satisfies high-level specification:

Lemma A.25 Suppose that we have bisimilar models Mh ⇠m Ml for an agent, Mh |= C and that Assump-
tions 5.1 and 6.1 hold. Then, for any sequence of ground high-level actions ~↵ and any sequence of ground
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low-level actions ~a such that Mh |= Executable(do(~↵, S0)) and Ml |= Do(m(~↵), S0, do(~a, S0)), it is the case
that

for any supervision specification represented by a high-level situation-determined program �hSpec and for any

set of ground low-level action sequences El such that El ✓ CRM
l

(mp(�hSpec), do(~a, S0)) ✓ CRM
l

(monit,
do(~a, S0)),

if Ml |= Controllable(set(El),monit, do(~a, S0)) and m�1
M

l

(El, do(~a, S0)) has bounded length, then El ✓
CRM

l

(mpsi(E
mps
h ), do(~a, S0))), where Emps

h = CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)).

Proof By induction on the length of the longest action sequence in m�1
M

l

(El, do(~a, S0)).
Base Cases: In the case where El = ;, the result trivially holds. In the case where El = {✏}, then
m�1

M
l

(El, do(~a, S0)) = {✏}. Since Ml |= Controllable(set(El),monit, do(~a, S0)), we also have that Mh |=
Controllable(set(✏),any, do(~↵, S0) by Theorem 6.3. Since El ✓ CRM

l

(mp(�hSpec), do(~a, S0)), we have that

Ml |= Final(mp(�hSpec), do(~a, S0)), and it follows that Mh |= Final(�hSpec, do(~↵, S0)) by Corollary A.15.

Therefore we have that ✏ 2 CRM
h

(�hSpec, do(~↵, S0)), as well as m
�1
M

l

(El, do(~a, S0)) ✓ CRM
h

(�hSpec, do(~↵, S0)).
Clearly, it is also the case that {✏} ✓ CRM

h

(any, do(~↵, S0)). It then follows by Theorem 3.1 part 3 that
m�1

M
l

(El, do(~a, S0)) ✓ Emps
h .

Induction Step: Assume that the result holds for any El such that max~b2m�1
M

l

(E
l

,do(~a,S0))
|~b| = K (IH). Let’s

show that it must hold for any El such that max~b2m�1
M

l

(E
l

,do(~a,S0))
|~b| = K + 1. Assume the antecedent. Let

Eh = m�1
M

l

(El, do(~a, S0)). By Theorem 6.3, we have that Mh |= Controllable(set(Eh),any, do(~↵, S0)).

We have that El ✓ CRM
l

(mp(�hSpec), do(~a, S0)). By Lemma A.19, we have that CRM
l

(mp(�hSpec), do(~a, S0))

= [~�2CR
M

h

(�h
Spec

),do(~↵,S0))
CRM

l

(m(~�), do(~a, S0)). Thus, by Assumption 5.1, we have that every ~b 2 CRM
l

(

mp(�hSpec), do(~a, S0)) maps to a unique ~� 2 CRM
h

(�hSpec, do(~↵, S0)). By Assumption 5.1, and the fact

that m�1
M

l

(El, do(~a, S0)) = Eh, it follows that Eh ✓ CRM
h

(�hSpec, do(~↵, S0)). Thus by Theorem 3.1 part

3, we have that Eh ✓ Emps
h . It follows trivially that firsts(Eh) ✓ firsts(Emps

h ). Let E1
l = {~b | ~b~c 2

El for some ~c and Ml |= Do(oneMonit, do(~a, S0), do(~a~b, S0))}.
Since m�1

M
l

(El, do(~a, S0)) = Eh we have that m�1
M

l

(E1
l , do(~a, S0)) = firsts(Eh). Thus we have m�1

M
l

(E1
l ,

do(~a, S0)) ✓ firsts(Emps
h ). By Lemma A.19, we have that CRM

l

(mp(firsts(Emps
h

), do(~a, S0)) =

[�2CR
M

h

(firsts(E
mps

h

,do(~↵,S0))CRM
l

(m(�), do(~a, S0)). By Assumption 5.1 we know that every ~b 2 E1
l , there

is a unique � such that m�1
M

l

(~b) = �. Thus ~b 2 [�2CR
M

h

(firsts(E
mps

h

,do(~↵,S0))CRM
l

(m(�), do(~a, S0)). Thus it

follows that E1
l ✓ CRM

l

(mp(firsts(Emps
h

)), do(~a, S0)).
Since Ml |= Controllable(set(El),monit, do(~a, S0)), we have that Ml |= Controllable(set(E1

l ),
oneMonit, do(~a, S0)) by Lemma A.10. By the definition of E1

l , we have that E
1
l ✓ CRM

l

(oneMonit, do(~a,
S0)). Thus by Theorem 3.1 part 3, we have that E1

l ✓ CRM
l

(mps(oneMonit,mp(firsts(Emps
h

)), do(~a, S0)),
do(~a, S0)).

We also have that for every ~b 2 E1
l , �~b and �~b such that Ml |= Do(m(�~b), do(~a, S0), do(~a~b, S0)) (~b maps to a

unique �~b by Assumption 5.1), Mh |= Trans(�hSpec, do(~↵, S0), �~b, do(~↵�~b, S0)), and E~b = {~c | ~b~c 2 El}:

1. Ml |= Controllable(set(E~b),monit, do(~a
~b, S0)), since Ml |= Controllable(set(El),monit, do(~a, S0)).

2. E~b ✓ CRM
l

(mp(�~b), do(~a
~b, S0) ✓ CRM

l

(monit, do(~a~b, S0)),
since El ✓ CRM

l

(mp(�hSpec), do(~a, S0)) ✓ CRM
l

(monit, do(~a, S0)).

3. rests(Emps
h ,�~b) =

CRM
h

(mps
o✏

(any, �~b, do(~↵�~b, S0)), do(~↵�~b, S0)), since Emps
h = CRM

h

(mps
o✏

(any, �hSpec, do(~↵, S0)),
do(~↵, S0)) by Lemma A.26.

Thus we can apply the induction hypothesis and get that E~b ✓ CRM
l

(mpsi(rests(Emps
h

,�~b)), do(~a
~b, S0)).
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It follows that El ✓ CRM
l

(mpsi(Emps
h

)), do(~a, S0))).
If ✏ 2 El, then m�1

M
l

(El, do(~a, S0)) = {✏}. Since Ml |= Controllable(set(El),monit, do(~a, S0)), we also
have thatMh |= Controllable(set(✏),any, do(~↵, S0) by Theorem 6.3, and ✏ 2 Eh. Thus ✏ 2 CRM

l

(mpsi(E
mps
h ),

do(~a, S0)) by a similar argument as the base case.

Lemma A.26 Suppose Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and As-
sumptions 5.1 and 6.1 hold. Suppose further that Emps

h = CRM
h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)),

El ✓ CRM
l

(mp(�hSpec), do(~a, S0)) ✓ CRM
l

(monit, do(~a, S0)), E1
l = {~b | ~b~c 2 El for some ~c and Ml |=

Do(oneMonit, do(~a, S0), do(~a~b, S0))}. Then for every ~b 2 E1
l , �~b and �~b such that Ml |= Do(m(�~b), do(~a,

S0), do(~a~b, S0)), Mh |= Trans(�hSpec, do(~↵, S0), �~b, do(~↵�~b, S0)), and E~b = {~c | ~b~c 2 El}, we have that
rests(Emps

h ,�~b) = CRM
h

(mps
o✏

(any, �~b, do(~↵�~b, S0)), do(~↵�~b, S0)).

Proof
(✓) Suppose E

�
~

b

h = {~� | �~b~� 2 Emps
h }. We have that E

�
~

b

h ✓ CRM
h

(�~b, do(~↵�~b, S0)) ✓ CRM
h

(any,
do(~↵�~b, S0)). Since E

mps
h is controllable wrt any, by Theorem 3.1, part 3, we have that Mh |= Controllable(

E
�
~

b

h ,any, do(~↵�~b, S0)). Thus E
�
~

b

h ✓ CRM
h

(mps
o✏

(any, �~b, do(~↵�~b, S0)), do(~↵�~b, S0)).
(◆) By contradiction. Assume the antecedent. Let E0

h = CR(mps
o✏

(any, �~b, do(~↵�~b, S0)), do(~↵�~b, S0)).
Assume that rests(Emps

h ,�~b) 6◆ E0
h. Let

Eh = {~� | ~� 2 Emps
h and ~� 6= �~b~�

0 for some ~�0} [ {�~b~�
00 | ~�00 2 E0

h}

Since Mh |= Controllable(set(Emps
h ),any, do(~↵, S0)) and Mh |= Controllable(mps

o✏

(any, �~b, do(~↵�~b, S0)),
any, do(~↵�~b, S0)), it is easy to show that Mh |= Controllable(set(Eh),any, do(~↵, S0)) (by an argument sim-
ilar to that used in Lemma A.9). It is also easy to show that Eh ✓ CRM

h

(�hSpec, do(~↵, S0)) ✓ CRM
h

(any,
do(~↵, S0)). Then by Theorem 3.1 part 3, it follows that Eh ✓ Emps

h . Thus rests(Emps
h

,�~b) ◆ E0
h, contra-

diction.

Theorem 6.5 If Mh ⇠m Ml and ~a is an m-refinement of an executable ~↵, Mh |= C, and Assumptions 5.1
and 6.1 hold, then for any supervision specification represented by a high-level situation-determined program
�hSpec where CRM

h

(�hSpec, do(~↵, S0)) and m�1(CRM
l

(mpsi(E
mps
h ), do(~a, S0)) have bounded length,

CRM
l

(mpsi(E
mps
h ), do(~a, S0)) = CRM

l

(mps
o✏

(monit,mp(�hSpec), do(~a, S0)), do(~a, S0))

where Emps
h = CRM

h

(mps
o✏

(any, �hSpec, do(~↵, S0)), do(~↵, S0)).

Proof
(✓) By Lemma A.24, we have that Controllable(mpsi(E

mps
h ),monit, do(~a, S0)). We then need to show

that CRM
l

(mpsi(E
mps
h ), do(~a, S0)) ✓ CRM

l

(mp(�Spec), do(~a, S0)) ✓ CRM
l

(monit, do(~a, S0)). We have that
Emps

h ✓ CRM
h

(�hSpec & any, do(~↵, S0)), and CRM
h

(�hSpec, do(~↵, S0)) ✓ CRM
h

(any, do(~↵, S0)).

By Assumption 5.1 we have that for each~b 2 CRM
l

(mpsi(E
mps
h ), do(~a, S0)), there is a unique ~� 2 m�1

M
l

(CRM
l

(

mpsi(E
mps
h )), do(~a, S0)). By Lemma A.23, we know that m�1

M
l

(CRM
l

(mpsi(E
mps
h )), do(~a, S0)) ✓ Emps

h . By

Lemma A.19, [~�2Emps

h

CRM
l

(m(~�), do(~a, S0)) = CRM
l

(mp(mps
o✏

(any, �hSpec, do(~↵, S0))), do(~a, S0)). Thus

for every ~b 2 CRM
l

(mpsi(E
mps
h ), do(~a, S0)), we have ~b 2 CRM

l

(m(~�), do(~a, S0)) where ~� 2 Emps
h . Therefore,

CRM
l

(mpsi(E
mps
h ), do(~a, S0)) ✓ CRM

l

(mp(mps
o✏

(any, �hSpec, do(~↵, S0))), do(~a, S0))

By Lemma A.20 we have that CRM
l

(mp(mps
o✏

(any, �hSpec, do(~↵, S0))), do(~a, S0)) ✓ CRM
l

(mp(�hSpec), do(~a,

S0)). Thus CRM
l

(mpsi(E
mps
h ), do(~a, S0)) ✓ CRM

l

(mp(�hSpec), do(~a, S0)). By definition of monit, Theorem

5.2, and Lemmas A.20 and A.19 we have that CRM
l

(mp(�hSpec), do(~a, S0)) ✓ CRM
l

(monit, do(~a, S0)). There-
fore, we have that CRM

l

(mpsi(E
mps
h ), do(~a, S0)) ✓ CRM

l

(monit, do(~a, S0)) The result follows by Theorem
3.1 part 3.
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(◆) By Lemma A.25, we have that mpsi(E
mps
h ) includes any controllable (wrt monit) set El such that

El ✓ CRM
l

(mp(�hSpec), do(~a, S0)) ✓ CRM
l

(monit, do(~a, S0)). The result follows by Theorem 3.1 part 3.
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A.4 Abstracting Online Agent Behavior

A.4.1 Sound Abstraction in Online Executions

Theorem 7.1 If Dh is a sound abstraction of Dl relative to refinement mapping m and Dl[C[{Executable(
do(~a, S0))} |= Do(m(~↵), S0, do(~a, S0)) holds, then Dh [ {Executable( do(~↵, S0))} is a sound abstraction of
Dl [ {Executable(do(~a, S0))} relative to m.

Proof Take an arbitrary model Ml of Dl [ C [ {Executable(do(~a, S0))}. We need to show that there is
a model of Dh [ {Executable(do(~↵, S0))} which is bisimilar to Ml. Since Dh is a sound abstraction of
Dl relative to mapping m, we know that there exists a model Mh of Dh such that Mh ⇠m Ml. By the
condition in the antecedent that Dl [ C [ {Executable(do(~a, S0))} |= Do(m(~↵), S0, do(S0,~a)), we know that
Ml |= Do(m(~↵), S0, do(S0,~a)). By Theorem 5.2 we have that Mh |= {Executable(do(~↵, S0))}, and thus
Mh |= Dh [ {Executable(do(~↵, S0))}.

Theorem 7.2 Suppose that Dh is a sound abstraction of Dl relative to mapping m, Dl [C [ {Do(m(~↵), S0,
do(~a, S0))} is satisfiable, and Dl [ C [ {Executable(do(~a, S0))} |= Do(m(~↵), S0, do(S0,~a)) for some ground
high-level action sequence ~↵ and ground low-level action sequence ~a. Then we have that for any ground
high-level action sequence ~� and high-level situation-suppressed formula �, if

Dh [ {Executable(do(~↵, S0))} |= Executable(do(~↵~�, S0)) ^ �[do(~↵~�, S0)],

then
Dl [ C [ {Executable(do(~a, S0))} |= 9s.Do(m(~�), do(~a, S0), s) ^m(�)[s].

Proof By Contradiction. Assume the antecedent holds and the consequent does not. Thus there is a model
Ml of Dl[C[{Executable(do(~a, S0))}, where ¬9s.Do(m(~�), do(~a, S0), s))^¬m(�)[s] is satisfiable. Since Dh

is a sound abstraction of Dl wrt m, and Dl[C[{Executable(do(~a, S0))} |= Do(m(~↵), S0, do(S0,~a)), then by
Theorem 7.1, we have thatDh[{Executable(do(~↵, S0))} is a sound abstraction ofDl[{Executable(do(~a, S0))}
relative to m. Thus by Theorem 5.2, there is a model Mh of Dh [ {Executable(do(~↵, S0))} that is bisimilar

to Ml and satisfies {¬Executable(do(~↵~�, S0))^¬�[do(~↵~�, S0)]. That means Dh[{Executable(do(~↵, S0))}[
{¬Executable(do(~↵~�, S0)) ^ ¬�[do(~↵~�, S0)]} is satisfiable. However, this contradicts the assumption that

Dh [ {Executable(do(~↵, S0))} |= Executable(do(~↵~�, S0)) ^ �[do(~↵~�, S0)].

A.4.2 Online Executions

Lemma A.27 If D is satisfiable, for all �i,�, ground action sequence ~a, if h�i, ✏i !⇤
~a h�,~ai and h�,~aiX then

D [ C [ {Trans⇤(�i, S0, �, do(~a, S0)) [ Final(�, do(~a, S0))} is satisfiable.

Proof By induction on the length of ~a.
Base Case: ~a = ✏. By definition, h�i, ✏iX if and only if D[ C |= Final(�i, S0). Thus, in online executions,

since a configuration is final if the agent knows that is final, and since D is satisfiable, thus, Final(�i, S0) is
satisfiable.

Induction Step: Assume the claim holds for any ~a where length of ~a = K. We need to show that the
claim holds for any ~a where length of ~a = K+1. Assume that the antecedent holds. Assume ~a = ~a0b. There
are two cases:

[Case 1] When b 2 Ao. By definition of online transition, the agent can only execute b if the theory
entails that an online transition involving action b exists. Since D is satisfiable, then there is at least one
model D where D [ C [ {Trans⇤(�i, S0, �, do(~ab, S0)) is satisfiable.

[Case 2] When b 2 Ae. By definition of online transition, the agent can only execute b if it is satisfiable
that an online transition involving action b exists. Thus, there is at least one model D where D [ C [
{Trans⇤(�i, S0, �, do(~ab, S0)) is satisfiable.
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In both cases 1 and 2, we have that by definition, h�,~aiX if and only if D[C |= Final(�, do(~a, S0)). Thus,
in online executions, since a configuration is final if the agent knows that is final, and since D is satisfiable,
thus, Final(�, do(~a, S0)) is satisfiable.

Lemma A.28 If m is a refinement mapping from Dh to Dl and for all ground high-level action sequence
~↵, ground low-level action sequence ~al, there exists �m such that hm(~↵), ✏i !⇤

~a
l

h�m, ~ali and h�m, ~aliX then
Dl [ C [ {Do(m(~↵), S0, do(~al, S0))} is satisfiable.

Proof Follows from Lemma A.27.

A.4.3 Hierarchical Contingent Planning

We now define the length of a strategy, and the abbreviation seq, which allows us to sequentially compose
strategies. These are used in the following results.

Length of a Strategy. Let us define the length of a strategy �, length(�), as follows:

(a) when � = nil, length(�) = 0.

(b) when � = ↵; �0, length(↵; �0) = 1 + length(�0).

(c) when � = set(H), where H = {↵1; �
0
1, . . . ;↵n

; �0
n

}, length(set(H)) = max(length(�0)), where �0 2 H

The seq Abbreviation. We also define an abbreviation that allows us to sequentially compose strategies.
seq(�, G), where � is a strategy and G is a set of pairs h~a, �~ai, stands for the strategy that extends any
branch of � that does ~a by �~a for all h~a, �~ai 2 G:

seq(�, G) = 8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

nil if � = nil and h✏, �✏i /2 G
�✏ if � = nil and h✏, �✏i 2 G

a; seq(�0, G0) if � = a; �0

where G0 = {h~b, �~bi | h~a, �~ai 2 G and ~a = a;~b and �~b = �~a}

set(H 0) if � = set(H)
where H 0 = {b; seq(�b, Gb) | b; �b 2 H and

Gb = {h~c, �~ci | h~a, �~ai 2 G and ~a = b;~c and �~c = �~a}}

Lemma A.29
Suppose that Assumption 7.1 holds. Then for any online situation-determined programs �1 and �2, ground
action sequence ~a, and strategy �1, if AbleBy(�1,~a, �1) and for all ~bi such that h�1,~ai !⇤

~b
i

h�1,i,~a~bii and

h�1,i,~a~biiX for some �1,i, there exists �~b
i

such that AbleBy(�2,~a~bi, �~b
i

), then AbleBy(�1; �2,~a, seq(�1, E)),

where E = {h~bi, �~b
i

i | h�1,~ai !⇤
~b
i

h�1,i,~a~bii and h�1,i,~a~biiX for some �1,i and AbleBy(�2,~a~bi, �~b
i

)}.

Proof By induction on length(�1).
Base Case, where length(�1) = 0: Then we have �1 = nil, and the antecendent implies that there exists

�✏ such that AbleBy(�2,~a, �✏). It follows that AbleBy(�1; �2,~a, seq(�1, �✏)).
Induction Step: Assume the claim holds for any �1 where length(�1)  K (IH). We need to show that

the claim holds for any �1 where length(�1) = K + 1. Assume that the antecedent holds. There are two
cases:

[Case 1]: where �1 = a; �01 and a 2 Ao. Since we have AbleBy(�1,~a, �1) it follows that there exists �01
such that h�1,~ai !a h�01,~aai and AbleBy(�01,~aa, �

0
1). From the antecedent, it follows that for all ~b0i such
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that h�01,~aai !⇤
~b0
i

h�1,i,~aa~b0ii and h�1,i,~aa~b0iiX for some �1,i, there exists �~b0
i

such that AbleBy(�2,~aa~b0i, �~b0
i

).

By the induction hypothesis (IH), we then have that AbleBy(�01; �2,~aa, seq(�
0
1, E

0))) where E0 = {h~b0i, �~b0
i

i |

h�1,~aai !⇤
~b0
i

h�1,i,~aa~b0ii and h�1,i,~a~biiX for some �1,i and AbleBy(�2,~aa~bi, �~b0
i

)}. Then by part (B) of the

definition of AbleBy, the result follows.
[Case 2]: where �1 = set(E) where E is a non-empty set of programs of the form ai; �01,i where ai 2 Ae

and �01,i is a strategy that follows ai. Since we have AbleBy(�1,~a, �1) it follows that there exists an exogenous
action a, a strategy �01 and program �01 such that h�1,~ai !a h�01,~aai and AbleBy(�01,~aa, �

0
1). Now take an

arbitrary ai and �01,i such that h�1,~ai !a
i

h�01,i,~aaii. By the definition of AbleBy, there exists a �01,i such

that AbleBy(�01,i,~aai, �
0
1,i). From the antecedent, it follows that for all ~b0i such that h�01,i,~aaii !⇤

~b0
i

h�001,i,~aai~b0ii

and h�001,i,~aa~b0iiX for some �001,i, there exists �~b0
i

such that AbleBy(�2,~aai~b0i, �~b0
i

). By the IH, we then have

that AbleBy(�01,i; �2,~aai, seq(�
0
1,i, E

0)) where E0 = {h~b0i, �~b0
i

i | h�01,i,~aaii !⇤
~b0
i

h�001,i,~aai~b0ii and h�001,i,~aai~biiX

for some �001,i and AbleBy(�2,~aai~bi, �~b0
i

)}. Then by part (C) of the definition of AbleBy, the result follows.

We can show that if NecTerminates(�,~a), then the length of any online execution from configuration
h�,~ai is bounded:

Lemma A.30 For any program � and any ground action sequence ~a, if NecTerminates(�,~a), then there

exists K 2 N such that for all �0,~b h�,~ai !⇤
~b
h�0,~a~bi, |~b|  K.

Proof Suppose we have an infinite length online execution from h�,~ai such that h�,~ai, h�1,~ab1i,h�2,~ab1b2i,
. . . . Then none of the configurations in it is such that there is no further online transitions from it, so it
is not in NecTerminates(�i,~abi) by part A of definition of NecTerminates. Also, no configuration in the
execution is in NecTerminates(�i,~abi) by part B of the definition as they all have a successor which is not
in NecTerminates. Thus ¬NecTerminates(�,~a).

Lemma A.31 Suppose that Assumption 7.1 holds. Then for any online situation-determined program �
and any ground action sequence ~a, if we have NecTerminates(�,~a), then there exists a strategy � such that
AbleBy(�,~a, �).

Proof By Lemma A.30 we know that length of online executions from h�,~ai is bounded. Thus, we can
prove this Lemma by induction on the maximum length of online executions starting in h�,~ai.

Base case: When the maximum length of online executions from h�,~ai is 0. Then we have h�,~aiX. Thus
we can choose � = nil such that we have AbleBy(�,~a, nil).

Induction Step: Assume that the claim holds for any h�,~ai with a maximum length of online executions
less than or equal to K (IH). We need to show that the claim holds for any h�,~ai with a maximum length
of online executions equal to K + 1. Assume that the antecedent holds.

Since the maximum length is � 1, there exists a and �0 such that such that h�,~ai !a h�0,~aai.
Case 1 a 2 Ao. By the definition of NecTerminates, we have that there exists a program �0 such that

h�,~ai !a h�0,~aai and that NecTerminates(�0,~aa). By (IH) we have there exists �0 such thatAbleBy(�0,~aa; �0).
Then by the definition of AbleBy part B, we have that AbleBy(�,~a, a; �).

Case 2 a 2 Ae. By the definition of NecTerminates, we have for all ai, �0i such that h�,~ai !a
i

h�0i,~aaii
we have that NecTerminates(�0i,~aai). By (IH) for all such ai, �0i there exists �i such that AbleBy(�0i,~aai; �

0
i).

By the definition of AbleBy part C, we have AbleBy(�,~a, �) where � = set(G), where G = {hai; �ii |
there exists �0i such that h�,~ai !a

i

h�0i,~aaii and AbleBy(�0i,~aai, �i)}.

Theorem 7.5 Suppose that Dh [ {Executable(do(~↵, S0))} is a sound abstraction of Dl [ {Executable(do(~a,
S0))} relative to mapping m and Assumptions 7.1, 7.2, 7.3, and 7.6 hold. Then for all ground high-level
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action sequences ~↵ and all ground low-level action sequences ~a such that h~↵, ✏i !⇤
~↵ h�0h, ~↵i for some �0h and

h�0h, ~↵iX and hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX for some �l if there exists a ground high-level action � 2 Ae such

that Dh[{Executable(do(~↵, S0))^Poss(�, do(~↵, S0))} is satisfiable, then NecTerminates(anyoneexohl,~a).

Proof Assume the antecedent. We have that there exists a ground high-level action � 2 Ae such that
Dh [ {Executable(do(~↵, S0)) ^ Poss(�, do(~↵, S0))} is satisfiable. From this, it follows by Assumptions 7.1
(Turn-Taking) and 7.3 (Always Known Whose Turn It Is) that there does not exist a high-level ordinary
action �0 2 Ao

h such that Dh [ {Executable(do(~↵, S0)) ^ Poss(�0, do(~↵, S0))} is satisfiable. Since we have
a sound abstraction, it then follows by Theorem 5.2 that there does not exist a high-level ordinary action
�0 2 Ao

h such that Dl [ C [ {Executable(do(~a, S0)) ^ 9s.Do(m(�0), do(~a, S0), s)} is satisfiable. From this,
it follows by Assumption 7.2 (Non-Blocking) that there exists an exogenous high-level action � 2 Ae

h such
that Dl [ C [ {Executable(do(~a, S0)) ^ 9s.Do(m(�), do(~a, S0), s)} is satisfiable. Thus by Assumption 7.6
(Exogenous HL Actions Never Block), we have that NecTerminates(anyoneexohl,~a), and furthermore by
Lemma A.31, we have that there exists a low-level strategy �1 such that AbleBy(anyoneexohl,~a, �1).

Theorem 7.6 Suppose that Dh is a sound abstraction of Dl relative to mapping m and Assumptions 5.2,
7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 hold. Then for all ground high-level action sequences ~↵ and all ground low-level
action sequences ~a such that h~↵, ✏i !⇤

~↵ h�0h, ~↵i for some �0h and h�0h, ~↵iX and hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX

for some �l and for any online situation-determined high-level program �h and high-level strategy �h, if
AbleBy(�h, ~↵, �h), then there exists a low-level strategy �l such that AbleBy(mp(�h),~a, �l).

Proof By induction on length(�h).
Base case: When length(�h) = 0, then �h = nil. Thus by part (A) of the definition of AbleBy, we have

that h�h, ~↵iX. We have that mp(�h) = mp(nil) = nil, which is always online “final”. Let �l = nil. Then by
part (A) in the definition of AbleBy, we have that AbleBy(mp(�h),~a, �l).

Induction Step: Assume that the claim holds for any �h where length(�h) = K. We need to show that
the claim holds for any �h of length K + 1. Assume that the antecedent holds. Then we have two cases.

Case 1: �h = �; �0h where � 2 Ao.
Since we have AbleBy(�h, ~↵, �h), it then follows that there exists �0h such that h�h, ~↵i !� h�0h, ~↵�i and
AbleBy(�0h, ~↵�, �

0
h). The former implies that Dh [ {Executable(do(~↵, S0))} |= Poss(�, do(~↵, S0)). It follows

by Assumption 7.4 and Theorem 7.2 that Dl [ C [ {Executable(do(~a, S0))} |= 9s.Do(m(�), do(~a, S0), s).
By Assumption 7.5, it then follows that there exists a strategy �� such that AbleBy(m(�),~a, ��). Take

an arbitrary ~b such that h�� ,~ai !⇤
~b

h�0� ,~a~bi and h�0� ,~a~biX for some �0� (there must exist such a ~b since

AbleBy(m(�),~a, ��)). Then by Assumption 7.4, we also have that Dl [ C [ {Executable(do(~a~b, S0))} |=
Do(m(�), do(~a, S0), do(~a~b, S0)). So AbleBy(�0h, ~↵�, �

0
h) and all the other conditions in the antecedent of the

induction hypothesis hold and we can apply it to get that there exists �b such that AbleBy(mp(�0h),~a
~b, �b).

By Lemma A.29 we then have AbleBy(m(�);mp(�0h),~a, seq(�� , G)) where G = {~b; �b | such that h�� ,~ai !⇤
~b

h�0� ,~a~bi and h�0� ,~a~biX for some �0� and AbleBy(mp(�0h),~a
~b, �b)}. Thus AbleBy(mp(�h),~a, seq(�� , G)) and

the thesis follows.
Case 2: �h = set(E) where E is a non-empty set of programs of the form [�e

i ; �i] where �
e
i 2 Ae and �i

is a strategy for all i.
Since we have AbleBy(�h, ~↵, �h), it then follows by the definition of AbleBy that there exists an exogenous
high-level action � 2 Ae

h, a high-level strategy �0h, and a high-level program �0h such that h�h, ~↵i !� h�0h, ~↵�i
and AbleBy(�0h, ~↵�, �

0
h). The former implies that Dh [ {Executable(do(~↵, S0)) ^ Poss(�, do(~↵, S0))} is sat-

isfiable.
From this, it follows by Assumption 7.1 (Turn-Taking) and 7.3 (Always Known Whose Turn It Is) that there
does not exist a high-level ordinary action �0 2 Ao

h such thatDh[{Executable(do(~↵, S0))^Poss(�0, do(~↵, S0))}
is satisfiable. Since we have a sound abstraction, it then follows by Proposition 7.3 that there does not exist
a high-level ordinary action �0 2 Ao

h such that Dl [ C [ {Executable(do(~a, S0))^ 9s.Do(m(�0), do(~a, S0), s)}
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is satisfiable.
From this, it follows by Assumption 7.2 (Non-Blocking) that there exists an exogenous high-level action
� 2 Ae

h such that Dl [ C [ {Executable(do(~a, S0)) ^ 9s.Do(m(�), do(~a, S0), s)} is satisfiable.
Thus by Assumption 7.6 (Exogenous HL Actions Never Block), we have that NecTerminates(anyoneexohl,~a),
and furthermore by Lemma A.31, we have that there exists a low-level strategy �1 such that AbleBy(
anyoneexohl,~a, �1).

Now take arbitrary �i and ~bi,j such that hm(�i),~ai !⇤
~b
i,j

h�l,~a~bi,ji and h�l,~a~bi,jiX for some �l.

Since there does not exist a high-level ordinary action �0 2 Ao
h such that Dl [ C [ {Executable(do(~a, S0)) ^

9s.Do(m(�0, do(~a, S0), s)} is satisfiable, it follows that �i 2 Ae
h.

Moreover by Assumption 5.2, we have that every online execution from do(~a, S0) starts with an execution of
a refinement of such a high-level action.
Since we have AbleBy(�h, ~↵, �h), it follows by the definition of AbleBy that there exists �i, �i, such that
h�i; �i, ~↵i !�

i

h�i, ~↵�ii.
By Assumption 7.4 (Awareness of Executed HL Actions), we have that Dh [ {Executable(do(~↵�i, S0))} is a

sound abstraction wrt m of Dl [ {Executable(do(~a~bi,j , S0))}.
All the other conditions in the antecedent of the induction hypothesis hold and we can apply it to get that
there exists a low-level strategy �i,j such that AbleBy(m(�i),~a~bi,j , �i.j).
Finally, by Lemma A.29, we then have AbleBy(mp(�h),~a, seq(�1, G)), where

G = {~bi,j ; �i,j | there exists �i such that
h�h, ~↵i !�

i

h�i, ~↵�ii
and hm(�i),~ai !⇤

~b
i,j

h�0,~a~bi,ji
and h�0,~a~bi,jiX for some �0

and h�1,~ai !⇤
~b
i,j

h�0,~a~bi,ji
and h�0,~a~bi,jiX for some �0

and AbleBy(m(�i),~a~bi,j , �i,j)}

and the thesis follows.

Lemma A.32 For any online situation-determined program �, any ground sequence of actions ~a, any strat-
egy �, and any situation suppressed formula �, if AbleBy(�,~a, �) and D [ C |= Do(�, do(~a, S0), s0) � �[s0],
then AbleBy(�;�?,~a, �).

Proof (Sketch) By induction on length of �.

Corollary 7.7 Suppose that Dh is a sound abstraction of Dl relative to mapping m and Assumptions 5.2,
7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 hold. Then for all ground high-level action sequences ~↵ and all ground low-level
action sequences ~a such that h~↵, ✏i !⇤

~↵ h�0h, ~↵i for some �0h and h�0h, ~↵iX and hm(~↵), ✏i !⇤
~a h�l,~ai and h�l,~aiX

for some �l and for any high-level online situation determined program �h, for any high-level strategy �h, and
any situation-suppressed formula �, if Dh |= Do(�h, do(~↵, S0), s0) � �[s0] and AbleBy(�h, ~↵, �h) then there
exists �l such that AbleBy(mp(�h),~a, �l) and AbleBy(mp(�h);m(�)?,~a, �l).

Proof We have AbleBy(�h, ~↵, �h) and Dh |= Do(�h, do(~↵, S0), s0) � �[s0]. By Lemma A.32 this implies
Dh |= Do(�h, do(~↵, S0), s0) � �[s0].

By Theorem 7.6, we have that AbleBy(mp(�h),~a, �l).
Now we need to show that Dl [ C |= Do(mp(�h), do(~a, S0), s0) � m(�)[s0]. Take some arbitrary model

Ml of Dl [ C. Since we have a sound abstraction, there exist a model Mh of Dh such that Mh ⇠m

Ml. By Lemma A.19 we know that CRM
l

(mp(�h), do(~a, S0)) = [~�2CR
M

h

(�
h

,do(~↵,S0))
CRM

l

(m(~�), do(~a, S0)).

Thus by Theorem 7.2, Dl [ C |= Do(mp(�h), do(~a, S0), s0) � m(�)[s0]. It follows by Lemma A.32 that
AbleBy(mp(�h);m(�)?,~a, �l).
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B Trans and Final for Mutual Exclusive Blocks

The atomic() construct corresponds to the atm() construct introduced in [41]. Trans and Final for atm()
are defined as:

Trans and Final as before except for the following.

• We introduce indivisible programs atm(�) and indivisible program in execution atmc(�):

Trans(atm(�), s, �0, s0) ⌘
9�.�0 = atmc(�) ^ Trans(�, s, �, s0)

Trans(atmc(�), s, �0, s0) ⌘
9�.�0 = atmc(�) ^ Trans(�, s, �, s0)

Final(atm(�), s) ⌘ Final(�, s)

Final(atmc(�), s) ⌘ Final(�, s)

• We define the property AtmOn(�, s) (by induction on � or by fixpoint in case of procedures) to say
that a subprogram in � in s is indivisible program in execution, i.e., has the form atmc(�) and is not
Final :

AtmOn(�, s) ⌘
9�.� = atmc(�) ^ ¬Final(atmc(�), s) _
9�1, �2.� = �1; �2 ^AtmOn(�1, s) _
9�1, �2.� = �1k�2 ^ (AtmOn(�1, s) _AtmOn(�2, s)) _
9�1, �2.� = �1ii�2 ^ (AtmOn(�1, s) _AtmOn(�1, s))

This definition reflects the fact that atmc(�) can be embedded only within three basic contexts, namely
atmc(�); �2, atmc(�)k�2 and atmc(�)ii�2. Indeed, ; , k, and ii, are the only constructs that ever get
inserted in the remaining program after a transition and these are the only places where there can
be an atmc (e.g., | and if get consumed by their transitions; iterations don’t get consumed, but are
inserted in the remaining program inside a ; or k).

• Then we redefine concurrency and prioterized concurrency:
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Trans(�1k�2, s, �0, s0) ⌘
9�.�0 = �k�2 ^ Trans(�1, s, �, s0) ^ ¬AtmOn(�2, s) _
9�.�0 = �1k� ^ Trans(�2, s, �, s0) ^ ¬AtmOn(�1, s)

Trans(�1ii�2, s, �0, s0) ⌘
9�.�0 = �ii�2 ^ Trans(�1, s, �, s0) ^ ¬AtmOn(�2, s) _
9�.�0 = �1ii� ^ Trans(�2, s, �, s0) ^ ¬AtmOn(�1, s) ^

¬9�, s0.Trans(�1, s, �, s0)

• Note that, with this characterization of Trans and Final , one should be able to prove that at most a
subprogram at the time can be an indivisible program in execution (i.e., at most one subprogram can
be of the form atmc(�)).

• Note also that this definition does not allow exogenous actions to be interleaved into the atomic block.
If we want to allow this, we need to define concurrency as follows:

Trans(�1k�2, s, �0, s0) ⌘
9�.�0 = �k�2 ^ Trans(�1, s, �, s0) ^
(¬AtmOn(�2, s) _ s0 = do(a, s) ^ Exo(a)) _

9�.�0 = �1k� ^ Trans(�2, s, �, s0) ^
(¬AtmOn(�1, s) _ s0 = do(a, s) ^ Exo(a))

Similarly for prioterized concurrency.
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[1] Javier Segovia Aguas, Sergio Jiménez Celorrio, and Anders Jonsson. Hierarchical finite state controllers
for generalized planning. In Proceedings of the 25th International Joint Conference on Artificial Intel-
ligence, pages 3235–3241, 2016.

[2] Natasha Alechina, Nils Bulling, Mehdi Dastani, and Brian Logan. Practical run-time norm enforcement
with bounded lookahead. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 443–451. ACM, 2015.

[3] Ronald Alford, Ugur Kuter, Dana S. Nau, Elnatan Reisner, and Robert P. Goldman. Maintaining focus:
Overcoming attention deficit disorder in contingent planning. In Proceedings of the 22nd International
Florida Artificial Intelligence Research Society Conference, 2009.

[4] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.
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