
Managing an Agent’s Changing Intentions Using ltl𝑓 Synthesis

Extended Abstract

Giuseppe De Giacomo
University of Oxford

University of Rome “La Sapienza”
Oxford - Rome, UK - Italy

giuseppe.degiacomo@cs.ox.ac.uk

Yves Lespérance
York University
Toronto, Canada

lesperan@eecs.yorku.ca

Gianmarco Parretti
University of Rome “La Sapienza”

Rome, Italy
parretti@diag.uniroma1.it

Fabio Patrizi
University of Rome “La Sapienza”

Rome, Italy
patrizi@diag.uniroma1.it

Renzo Schram
Utrecht University
Utrecht, Netherlands

renzoschram@gmail.com

ABSTRACT
Autonomous agents’ intentions (goals they are committed to) typi-
cally change as they operate. We develop a new model of intention
change for such agents. We assume that the agent operates in a
fully observable nondeterministic (fond) domain and uses Linear
Temporal Logic over finite traces (ltl𝑓) to represent intentions. We
exploit ltl𝑓 synthesis notions and techniques to generate strategies
for the agent to satisfy its intentions and to revise them when the
agent adopts new intentions or drops existing ones; this ensures
that the agent’s intentions always remain realizable. We propose
automata-based methods to efficiently manage ltl𝑓 intentions by
exploiting auxiliary data structures built during synthesis. We im-
plement a prototype and evaluate its effectiveness experimentally.

KEYWORDS
Intentions’ Management; Linear Temporal Logic on Finite Traces
(ltl𝑓); Reactive Synthesis; Maximally Permissive Strategies

ACM Reference Format:
Giuseppe De Giacomo, Yves Lespérance, Gianmarco Parretti, Fabio Patrizi,
and Renzo Schram. 2025. Managing an Agent’s Changing Intentions Using
ltl𝑓 Synthesis: Extended Abstract. In Proc. of the 24th International Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit,

Michigan, USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
Autonomous agents’ goals generally change as they operate. They
adopt new goals and drop existing ones as a result of interactions
with others and changes in their own motivations. In the standard
Belief-Desire-Intention (BDI) model of agency [2, 4, 10], one dis-
tinguishes between desires and intentions, i.e., the latter being the
desires that the agent is committed to. Intentions trigger planning
and lead to action. Intentions must also be consistent with each
other and with the agent’s beliefs. This essentially means that there
must exist a plan or strategy for the agent to satisfy all of them
given its beliefs. Also, if the agent wants to adopt a new intention,

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

it must drop current intentions that are inconsistent with it. In
principle, one could ensure that intentions remain jointly achiev-
able by checking the existence of a plan/strategy to achieve all of
them every time the agent’s beliefs change or a new intention is
adopted. But this seems infeasible in practice so various alternative
approaches have been developed.

The BDI model has inspired the mainstream approach to au-
tonomous agent system development, BDI agent programming
[1, 9]. It uses hand-crafted hierarchical plans that are reactively
executed to fulfill the agent’s intentions, which are achievement
goals. A plan to achieve a subgoal/intention is associated with a
guard/context condition that specifies when it may be selected.
These guards are evaluated against the agent’s beliefs, which are
assumed to be complete. The deliberation mechanism selects plans
whose guard is satisfied to try to realize the active intentions, adopts
them as new intentions, and proceeds to execute them, i.e., exe-
cute the actions and adopt the subgoals that they contain. The
rationale for this approach has been that planning is slow and the
environment may change often thus requiring much replanning.
However, the deliberation mechanism does not usually check that all

the adopted intentions and selected plans remain jointly acheivable.
In fact, it may not even have a specification of the actions’ effects
and domain dynamics. This means that the programmer must an-
ticipate all the contingencies that the agent may face and all the
possible interactions between plans, and there is no guarantee that
the agent will achieve its intentions.

More recently, how to do such deliberation has been formalized
as the intention progression problem and competitions for it have
been organized [3, 8]. The task is taken to be that of successfully
progressing a set of goal-plan trees (GPT) for the agent’s intentions,
i.e., selecting sub-plans/intentions and interleaving their executions
to avoid undesirable interactions. Techniques based onMonte-Carlo
tree search have shown promise [13, 14]. There has also been work
on handling early achievement of goals and plan failure in the
deliberation process [7, 11, 12]. However, such approaches that try
to find an interleaving of plans for individual reachability goals to
achieve all of them are incomplete and don’t generalize to arbitrary
temporally extended goals. So if we want to guarantee intentions’
joint achievability, it seems we are must fall back on replanning.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

In this paper, we develop an alternative approach to managing
intention change that builds on reactive synthesis for Linear Tem-

poral Logic on finite traces (ltl𝑓) [6, 16]. We propose an intention
management framework where we assume that the agent has a
dynamically changing set of intentions, which are specified by ar-
bitrary ltl𝑓 formulas. We also assume that the agent operates in a
fully observable nondeterministic (fond) domain, where the agent
does not fully control the outcomes of its actions. We use ltl𝑓
synthesis to check that all the agent’s intentions remain realizable,
i.e., jointly achievable no matter how the environment behaves,
and to generate strategies to achieve them. In fact, we generate
maximally permissive strategies [15], which leaves the agent as
much autonomy as possible (perhaps to satisfy some additional
preferences/softgoals); in principle, this is not much harder that
generating a single strategy. This means that the programmer only
has to specify the fond domain, the intentions that the agent should
adopt and drop, and which actions from the synthesized strategy
the agent should execute. It also ensures that the agent behaves
with a high degree of rationality. Our approach to intention man-
agement can be viewed as an advanced form of planning in which
the agent generates and executes a plan/strategy for satisfying its
current goals/intentions, but is also ready to revise the set of goals
and replan during execution.

We present a formal specification of rational intention change
and action, i.e., Rational Intention Management (rim), that exploits
ltl𝑓 synthesis notions. An agent’s intentions state is defined as a
triple 𝐼 = ⟨D, 𝑠, 𝐿⟩, where D is the domain the agent operates in, 𝑠
is the current domain state, and 𝐿 is the list of currently adopted
ltl𝑓 intentions. The agent’s intentions in 𝐿 = [𝜑1, · · · , 𝜑𝑛] are
sorted in decreasing order of priority so that 𝜑1 has the highest
priority and 𝜑𝑛 the lowest. At each time step, we must ensure that
the agent’s intentions list is realizable, i.e., there exists a winning
strategy that jointly achieves all the currently adopted intentions.

We define operations to query and update the agent’s inten-
tions state. Query operations retrieve information from the current
agent’s intentions state. Among such operations some allow the
agent to retrieve the actions available in its current intentions state.
We distinguish betweenwinning and progressing actions: the former
are those prescribed by winning strategies in the current agent’s
intentions state; the latter are actions prescribed by winning strate-
gies that achieve the joint intentions in the least number of steps
regardless of the environment’s response. The sets of winning and
progressing actions are respectively retrieved by the rim operations
𝐼 .𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠 () and 𝐼 .𝑔𝑒𝑡𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠 ().

Another key query operation is 𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙, 𝑘), which de-
cides whether adopting a new intention 𝜙 at priority index 𝑘 results
in a realizable list of intentions and, possibly, returns the list of
indexes of intentions to be dropped for 𝜙 to be adopted. In fact,
intentions’ priority plays a key role during adoption of a new inten-
tion. The agent can adopt the intention𝜙 at priority index𝑘 only if𝜙
is realizable jointly with all currently adopted higher priority inten-
tions, i.e.,

∧
𝑖<𝑘 𝜑𝑖 ∧ 𝜙 is realizable; if during adoption some lower

priority intention 𝜑 𝑗 (with 𝑗 ≥ 𝑘) becomes unrealizable, the agent
has to drop 𝜑 𝑗 . The formal specification of 𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙, 𝑘) cap-
tures this requirement. It returns:

• True if
∧

𝜑𝑖 ∈𝐿 𝜑𝑖 ∧ 𝜙 is realizable;
• False if

∧
𝑖<𝑘 𝜑𝑖 ∧ 𝜙 is unrealizable;

• 𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙,𝑘, 𝐿.𝑠𝑖𝑧𝑒 ()) , otherwise, where
𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙,𝑘, 𝑗) is defined as:
– 𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙,𝑘, 𝑗) = [1, · · · , 𝑘 − 1] if 𝑗 < 𝑘 ;
– Otherwise: 𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙,𝑘, 𝑗) =

𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙,𝑘, 𝑗 − 1) + [𝑗]
if (∧ℓ ∈𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜑,𝑘,𝑗−1) 𝜑ℓ) ∧ 𝜙 ∧ 𝜑 𝑗 is realizable

𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙,𝑘, 𝑗 − 1) otherwise
Update operations modify the agent’s intentions state and in-

clude 𝐼 .𝑑𝑟𝑜𝑝 (𝐿′), which drops intentions whose indexes appear
in 𝐿′, and 𝐼 .𝑎𝑑𝑜𝑝𝑡 (𝜙, 𝑘), which adopts an intention 𝜙 at prior-
ity index 𝑘 and whose formal specification is as follows: let R =

𝐼 .𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 (𝜙, 𝑘): (i) if R = True, it executes 𝐿.𝑖𝑛𝑠𝑒𝑟𝑡 (𝜙, 𝑘); else;
(ii) if R = False, it does nothing; else (iii) if R = RList, it exe-
cutes 𝐼 .𝑑𝑟𝑜𝑝 ([ℓ]) for every ℓ ∉ 𝐿′ and 𝐿.𝑖𝑛𝑠𝑒𝑟𝑡 (𝜙, 𝑘). We also have
𝐼 .𝑝𝑟𝑜𝑔(𝑎, 𝑠′), which progresses the agent’s intentions state to that
resulting from the execution of action 𝑎 and the successor domain
state 𝑠′ (nondeterministically chosen by the environment).

We developed an automata-based implementation of a Rational
Intention Management System (rims) that uses ltl𝑓 synthesis [5, 6]
of maximally permissive strategies [15] to implement the rim op-
erations. This implementation is based on the following result:
ltl𝑓 synthesis can be reduced to solving games over deterministic
finite automata (dfa) obtained from the fond domain and ltl𝑓
intentions [5, 6]. Since these games are exponential (resp. doubly-
exponential) in the domain’s (resp. intentions’) size, we devised a
data structure that stores the dfas of the currently adopted inten-
tions and the maximally permissive strategy that allows the agent
maximum autonomy while ensuring that it achieves all intentions.
Such a data structure is used to minimize the executions of com-
putationally expensive operations, e.g., the transformation of ltl𝑓
intentions into dfas, each of which costs 2exptime [6]. To improve
performance, we also devised a compositional game-resolution tech-
nique that uses the winning strategies for each individual intention.
The automata-based rims is implemented in a tool called rims4ltlf
that is available at https://github.com/GianmarcoDIAG/rims4ltlf.git.

We evaluated our approach empirically and showed that it can be
used to effectively implement agents that operate in non-trivial do-
mains and adopt numerous intentions over the course of a run (drop-
ping is similar but easier). The experiments show that rims4ltlf
scales better than a basic approach that synthesizes the maximally
permissive strategy for the conjunction of all intentions. In partic-
ular, the time required by rims4ltlf to adopt a new intention at
lowest priority is often one order of magnitude less than the time
required by the basic approach. This result suggests that rims4ltlf
benefits from using our compositional game-resolution technique
and is better than the basic approach for an agent that adopts (and
drops) intentions in an incremental/online manner.

ACKNOWLEDGMENTS
This work is supported in part by the ERC Advanced Grant White-
Mech (No. 834228), the PRIN project RIPER (No. 20203FFYLK), the
PNRR MUR project FAIR (No.PE0000013), the Sapienza MARLeN
Project, the UKRI AI Hub on Mathematical and Computational
Foundations of AI, the National Science and Engineering Research
Council of Canada, and York University. Gianmarco Parretti is sup-
ported by the Italian National Ph.D. on AI at “La Sapienza”.

https://github.com/GianmarcoDIAG/rims4ltlf.git

REFERENCES
[1] Rafael H. Bordini, Jomi F. Hübner, and Michael J. Wooldridge. 2007. Programming

Multi-Agent Systems in AgentSpeak Using Jason. Wiley.
[2] Michael E. Bratman. 1987. Intention, plans and practical reason. Harvard University

Press.
[3] Simon Castle-Green, Alexi Dewfall, and Brian Logan. 2020. The Intention Pro-

gression Competition. In EMAS@AAMAS.
[4] Philip R. Cohen and Hector J. Levesque. 1990. Intention is Choice with Commit-

ment. Artif. Intell. 42 (1990).
[5] Giuseppe De Giacomo and Sasha Rubin. 2018. Automata-Theoretic Foundations

of FOND Planning for LTLf and LDLf Goals. In IJCAI. 4729–4735.
[6] Giuseppe De Giacomo and Moshe Y. Vardi. 2015. Synthesis for LTL and LDL on

Finite Traces. In IJCAI.
[7] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.

Meyer. 2000. Agent Programming with Declarative Goals. In ATAL.
[8] Brian Logan, John Thangarajah, and Neil Yorke-Smith. 2017. Progressing Inten-

tion Progression: A Call for a Goal-Plan Tree Contest. In AAMAS.

[9] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language. In MAAMAW.

[10] Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents within a
BDI-Architecture. In KR.

[11] Birna van Riemsdijk, Mehdi Dastani, Frank Dignum, and John-Jules Ch. Meyer.
2004. Dynamics of Declarative Goals in Agent Programming. In DALT.

[12] Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. 2002.
Declarative & Procedural Goals in Intelligent Agent Systems. In KR.

[13] Yuan Yao and Brian Logan. 2016. Action-Level Intention Selection for BDI Agents.
In AAMAS.

[14] Yuan Yao, Brian Logan, and John Thangarajah. 2014. SP-MCTS-based Intention
Scheduling for BDI Agents. In ECAI.

[15] Shufang Zhu and Giuseppe De Giacomo. 2022. Synthesis of Maximally Permissive
Strategies for LTL𝑓 Specifications. In IJCAI.

[16] Shufang Zhu, Lucas M. Tabajara, Jianwen Li, Geguang Pu, and Moshe Y. Vardi.
2017. Symbolic LTL𝑓 Synthesis. In IJCAI.

	Abstract
	1 Introduction
	Acknowledgments
	References

