
On the Semantics of Conditional Commitment

Shakil M. Khan
Department of Computer Science and

Engineering
Toronto, ON, Canada M3J 1P3

skhan@cs.yorku.ca

Yves Lespérance
Department of Computer Science and

Engineering
Toronto, ON, Canada M3J 1P3

lesperan@cs.yorku.ca

ABSTRACT
In this paper, we identify some problems with current for-
malizations of conditional commitments, i.e. commitments
to achieve a goal if some condition becomes true. We present
a solution to these problems. We also formalize two types
of communicative actions that can be used by an agent to
request another agent to achieve a goal or perform an action
provided that some condition becomes true. Our account is
set within ECASL [9], a framework for modeling communi-
cating agents based on the situation calculus.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Multiagent systems

General Terms
Theory, Design

Keywords
Agent communication, Semantics of requests, Conditional
intentions, Conditional commitments, Logics for agent sys-
tems, Formal models of agency

1. INTRODUCTION
In recent years, the importance of agent communication

in multiagent systems has been widely recognized. As a re-
sult, many researchers have developed communicative mul-
tiagent frameworks [3, 5, 7, 15, 18, 23, 25] and attempted
to formalize various types of communicative actions in these
frameworks. One important concept in these is the notion
of conditional commitment. A conditional commitment is a
commitment to achieve some goal if some condition becomes
true (e.g. a commitment to ship some goods when payment
of an agreed to amount arrives). Conditional requests are
requests that seek to have the addressee acquire a condi-
tional commitment. Any multiagent framework that deals

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

with negotiation and cooperation ought to handle condi-
tional commitments. Unfortunately, most definitions found
in the literature (in [5, 28, 23, 1], for example) are inade-
quate: they either define conditional commitments as dis-
junctive goals, which makes the agents under-committed to
the conditional goal, or define them as conjunctive goals,
which renders the agent over-committed.

We will go over some examples to point out the problems
associated with the disjunctive and the conjunctive accounts
of conditional commitment. In these, we use the following
modal operators: 3φ, i.e. φ eventually holds, Happens(α),
i.e. the action α is performed next, φ Until ψ, i.e. even-
tually ψ becomes true, and as long as ψ is false, φ holds,
and Before(ψ, φ), i.e. if ψ eventually becomes true, then φ

becomes true before ψ does. The formal semantics of these
operators are given in Section 2. In the following, we formu-
late these examples using internal/mental states semantics
for communication acts, and use the terms ‘intention’ and
‘commitment’ interchangeably.

In the disjunctive account, a conditional commitment to
achieve some goal provided that some condition holds is
modeled as a commitment to achieve the goal if the condi-
tion holds, i.e. as a simple material implication. For exam-
ple, consider an online marketplace domain. Suppose that
there are two agents, a seller agent slr, and a buyer agent
byr. If we use a disjunctive account, slr’s conditional com-
mitment to ship some goods to byr on the condition that
byr pays can be modeled as follows:

CondIntdis(slr,GetPaid,Happens(shipGoods(slr, byr)))
.
= Int(slr,¬3GetPaid ∨

[¬GetPaid Until

(GetPaid∧ Happens(shipGoods(slr, byr)))]).

This says that slr’s conditional commitment to ship the
goods when byr pays amounts to slr having the intention
that byr eventually pays and after that she ships the goods,
if byr eventually pays (as mentioned earlier, the Until con-
struct in the goal above implies that 3GetPaid and 3-
Happens(shipGoods(slr, byr))). One problem with this ac-
count of conditional intention is that there is a counter-
intuitive way to satisfy the conditional intention, namely,
the agent may commit to the triggering condition remain-
ing false and deliberately perform some action that makes
it remain false. Thus, in the example, to satisfy her condi-
tional intention, slr may intentionally perform some action
to stop byr from paying her, such as blocking debits from
byr. In other words, there is nothing in this formalization
of conditional intention that stops slr from intending not to

get paid and not to send the goods. However, this is counter-
intuitive and a model of conditional commitment should not
support this. Thus, with the disjunctive account of condi-
tional commitment, the agent seems under-committed to the
goal. Examples of accounts in the literature that formalize
conditional commitments as disjunctive goals are [23] and
[1].

In the conjunctive account, a conditional commitment to
achieve a goal provided that a condition holds is modeled as
a temporally ordered conjunctive commitment to the trig-
gering condition and the conditional goal, where the trig-
gering condition is achieved first. Although this model may
seem appropriate in many cases, it often leads to problems.
For example, suppose that slr has the conditional commit-
ment to ship a replacement unit provided that byr reports
and returns a defective good. If we use a conjunctive ac-
count, this can be modeled as follows:

CondIntcon(slr,DefGoodRet,

Happens(shipRepl(slr, byr)))
.
=

Int(slr,Before(Happens(shipRepl(slr, byr)),DefGoodRet)

∧ 3Happens(shipRepl(slr, byr))).

This says that slr’s conditional commitment to ship a re-
placement unit provided that byr returns a defective good
can be modeled as slr’s intention that byr returns a defective
good before slr ships a replacement unit, and eventually slr
ships a replacement unit. Note that, according to this defi-
nition, since slr has the intention that the defective product
is returned before she ships the replacement unit, and that
she eventually ships the replacement unit, it follows that slr
has the intention that byr eventually returns a product, i.e.
Int(slr,3DefGoodRet). So slr may deliberately perform
some action, such as shipping a defective good in the first
place, to achieve this intention. Thus, the conjunctive ac-
count of conditional commitment results in over-committed
agents. Both [5] and [28] formalize conditional commitments
as conjunctive goals.

In this paper, we propose a solution to these problems (the
under/over-commitment problems, henceforth). Our solu-
tion involves using an additional constraint with the disjunc-
tive account to eliminate the under-commitment problem.
We use the Extended Cognitive Agent Specification Lan-
guage (ECASL) [9] as our base formalism for this. Our ac-
count is formulated for internal/mental states semantics for
communication acts. Nevertheless, the same issues arise for
public/social-commitment semantics (as discussed in Sec-
tion 5). Once again, in this paper, we will use the terms
‘intention’ and ‘commitment’ interchangeably.

Using our definition of conditional intention, we then prove
that a conditional intention becomes an ordinary intention
when the associated condition is true, and that agents cor-
rectly introspect about their conditional intentions. We also
formalize two types of communicative actions that can be
used by an agent to request another agent to achieve a goal
or perform an action provided that some confdition becomes
true. Then we prove that performing such a conditional re-
quest leads to a conditional intention under the right condi-
tions.

The paper is organized as follows: in the next section, we
outline the ECASL framework. In Section 3, we present our
model of conditional commitment and discuss some of its
properties. In Section 4, we present some communicative

acts that allow agents to make requests that result in condi-
tional commitments. In Section 5, we compare our approach
to previous work on conditional commitments. Finally in
Section 6, we summarize our results and discuss possible
future work.

2. ECASL
The Extended Cognitive Agent Specification Language

(ECASL) [9], an extension of CASL [22, 24], is a framework
for specifying and verifying complex communicating multi-
agent systems that incorporates a formal model of means-
ends reasoning. In this section, we outline the part of ECASL
that is needed for our formalization of conditional commit-
ment.

In ECASL, agents are viewed as entities with mental states,
i.e., knowledge and goals, and the specifier can define the be-
havior of the agents in terms of these mental states. ECASL
combines a declarative action theory defined in the situation
calculus with a rich programming/process language, Con-
Golog [4]. Domain dynamics and agents’ mental states are
specified declaratively in the theory, while the agents’ be-
havior is specified procedurally in ConGolog.

In ECASL, a dynamic domain is represented using an ac-
tion theory [17] formulated in the situation calculus [12],
a (mostly) first order language for representing dynamically
changing worlds in which all changes are the result of named
actions. ECASL uses a theory D that includes the following
set of axioms:

• action precondition axioms, one per action a charac-
terizing Poss(a, s),

• successor state axioms (SSA), one per fluent, that en-
code both effect and frame axioms and specify exactly
when the fluent changes [16],

• initial state axioms describing what is true initially
including the mental states of the agents,

• axioms identifying the agent of each action,

• unique name axioms for actions, and

• domain-independent foundational axioms describing the
structure of situations [10].

Within ECASL, the behavior of agents is specified using
the notation of the logic programming language ConGolog
[4], the concurrent version of Golog [11]. A typical ConGolog
program is composed of a sequence of procedure declara-
tions, followed by a complex action. Complex actions can
be composed using constructs that include primitive actions,
waiting for a condition, sequence, nondeterministic branch,
nondeterministic choice of arguments, conditional branch-
ing, while loop, procedure call, nondeterministic iteration,
concurrent execution with and without priorities, and inter-
rupts. To deal with multiagent processes, primitive actions
in ECASL take the agent of the action as argument.

The semantics of the ConGolog process description lan-
guage is defined in terms of transitions, in the style of struc-
tural operational semantics [14]. The overall semantics of a
program is specified by the Do relation:

Do(δ, s, s′)
.
= ∃δ′ · (Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)).

Do(δ, s, s′) holds if and only if s′ can be reached by per-
forming a sequence of transitions starting with program δ

in s, and the remaining program δ′ may legally terminate

in s′. Here, Trans∗ is the reflexive transitive closure of the
transition relation Trans.1

The situation calculus underlying ECASL is a branching
time temporal logic, where each situation has a linear past
and a branching future. In the framework, one can write
both state formulas and path formulas. A state formula
φ(s) takes a single situation as argument and is evaluated
with respect to that situation. On the other hand, a path
formula ψ(s1, s2) takes two situations as arguments and is
evaluated with respect to the interval (finite path) [s1, s2].
A state formula φ may contain a placeholder constant now
that stands for the situation in which φ must hold. φ(s) is
the formula that results from replacing now by s. Similarly,
a path formula ψ may contain the placeholder constants now
and then that stand for the situations that are the endpoints
of the interval [now, then] over which ψ must hold. ψ(s1, s2)
denotes ψ with s1 substituted for now and s2 substituted for
then. Where the intended meaning is clear, we sometimes
suppress the placeholder(s).

ECASL allows the specifier to model agents in terms of
their mental states by including operators to specify agents’
information (i.e., their knowledge), and motivation (i.e., their
goals or intentions). We use state formulas within the scope
of knowledge, and path formulas within the scope of in-
tentions. Following [13, 20], ECASL models knowledge us-
ing a possible worlds account adapted to the situation cal-
culus. K(agt, s′, s) is used to denote that in situation s,
agt thinks that she could be in situation s′. s′ is called a
K-alternative situation for agt in s. Using K, the knowl-
edge or belief of an agent, Know(agt,φ, s), is defined as
∀s′(K(agt, s′, s) ⊃ φ(s′)), i.e. agt knows φ in s if φ holds
in all of agt’s K-accessible situations in s. In ECASL, K is
constrained to be reflexive, transitive, and Euclidean in the
initial situation to capture the fact that agents’ knowledge is
true, and that agents have positive and negative introspec-
tion. As shown in [20], these constraints then continue to
hold after any sequence of actions since they are preserved
by the successor state axiom for K.

ECASL supports knowledge expansion as a result of sens-
ing actions [20] and some informing communicative actions.
Here, we restrict our discussion to knowledge expansion as
a result of inform actions. The preconditions of inform are
as follows:

Poss(inform(inf, agt, φ), s) ≡ Know(inf, φ, s)

∧ ¬Know(inf,Know(agt, φ, now), s).

In other words, the agent inf can inform agt that φ, iff inf
knows that φ currently holds, and does not believe that agt
currently knows that φ. The successor state axiom (SSA)
for K can be defined as follows:

K(agt, s∗, do(a, s)) ≡

∃s′. K(agt, s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′).

This says that after an action happens, every agent learns
that it was possible and has happened. Moreover, if the
action involves someone informing agt that φ holds, then
agt knows this afterwards. This follows from the fact that it
is a precondition of inform(inf, agt, φ) that inf knows that

1Since we have predicates that take programs as arguments,
we need to encode programs and formulas as first-order
terms as in [4]. For notational simplicity, we suppress this
encoding and use formulas and programs as terms directly.

φ, that what is known must be true (i.e. K is reflexive),
and that the SSA for K requires the agent to know that
Poss(a, s) after a happens in s. Note that this axiom only
handles knowledge expansion, not revision.

ECASL also incorporates goal expansion and a limited
form of goal contraction. Goals or intentions are modeled
using an accessibility relation W over possible situations.
The W -accessible situations for an agent are the ones where
she thinks that all her goals are satisfied. W -accessible situa-
tions may include situations that the agent thinks are impos-
sible (i.e. that do not have a predecessor that is K-related to
the current situation), unlike Cohen and Levesque’s [2] G-
accessible worlds. But intentions are defined in terms of the
more primitive W and K relations so that the intention ac-
cessible situations are W -accessible situations that are also
compatible with what the agent knows, in the sense that
there is a K-accessible situation in their history. This guar-
antees that agents’ intentions are realistic, that is, agents
can only intend things that they believe are possible. Thus
we have:

Int(agt, ψ, s)
.
= ∀s′, s∗.

[W (agt, s∗, s) ∧K(agt, s′, s) ∧ s′ ≤ s
∗] ⊃ ψ(s′, s∗).

This means that the intentions of an agent in s are those
formulas that are true for all intervals between situations s′

and s∗ where the situations s∗ are W -accessible from s and
have a K-accessible situation s′ in their past. Intentions are
future oriented, and any goal formula will be evaluated with
respect to a finite path defined by a pair of situations, a
current situation now and an ending situation then. This
formalization of goals can deal with both achievement goals
and maintenance goals. An achievement goal φ is said to
be eventually satisfied if φ holds in some situation between
now and then, i.e., if 3(φ, now, then), which is defined as
∃s′. (now ≤ s′ ≤ then ∧ φ(s′)).2 In [21], Shapiro showed
how positive and negative introspection of intentions can be
modeled by placing some constraints on K and W . To make
sure that agents’ wishes and intentions are consistent, W is
also constrained to be serial.

ECASL provides an intention transfer communication ac-
tion, request, which is defined in terms of inform. This is
somewhat similar to Herzig and Longin’s account [7], where
a request is defined as informing about one’s intentions, and
the requested goals are adopted via cooperation principles.
The request action can be used by an agent to request an-
other agent to achieve some state of affairs. Formally, we
have:

request(req, agt, φ)
.
= inform(req, agt, Int(req, φ, now)).

The SSA for W which handles intention change in ECASL,
has the same structure as a SSA for a domain dependent
fluent. In the following, W+(agt, a, s∗, s) (W−(agt, a, s∗, s),
resp.) denotes the conditions under which s∗ is added to
(dropped from, resp.) W as a result of the action a in s:

W (agt, s∗, do(a, s)) ≡W
+(agt, a, s∗, s) ∨

(W (agt, s∗, s) ∧ ¬W−(agt, a, s∗, s)).

An agent’s intentions are expanded when it is requested

2We sometimes use 3 with a path formula ψ argument, in
which case, we mean that ψ holds over some interval [s, then]
that starts at some situation s between now and then; see
Table 1 for the formal definition.

something by another agent. After the request(req, agt, ψ)
action, agt adopts the goal that ψ, unless she has a conflict-
ing goal or is not willing to serve req for ψ. Therefore, this
action should cause agt to drop any paths in W where ψ
does not hold. This is handled in W−:

W
−(agt, a, s∗, s)

.
=

[∃req, ψ. a = request(req, agt, ψ)

∧ Serves(agt, req, ψ, s) ∧ ¬Int(agt,¬ψ, s)

∧ ∃s′. K(agt, s′, s) ∧ s′ ≤ s
∗ ∧ ¬ψ(do(a, s′), s∗)].

A limited form of intention contraction is also handled
in ECASL. Agents intentions are contracted as a result of
a cancelRequest action. ECASL also incorporates a formal
model of means-ends reasoning and commitment to rational
plans to achieve intentions. See [9] for the details of these.

Table 1 shows some abbreviations that will be used through-
out the paper.

Table 1: Some Definitions of Temporal Operators

1. 3(ψ, now, then)
.
= ∃s′. now ≤ s′ ≤ then ∧ ψ(s′, then),

2. 2(ψ, now, then)
.
= ¬3(¬ψ, now, then),

3. [φ Until ψ](now, then)
.
= ∃s′. now ≤ s′ ≤ then

∧ ψ(s′, then) ∧ ∀s′′. now ≤ s′′ < s′ ⊃ φ(s′′),
4. Before(ψ, φ, now, then)

.
= ∃s′. now ≤ s′ ≤ then

∧ ψ(s′, then) ⊃ ∃s′′. now ≤ s′′ < s′ ∧ φ(s′′),
5. E3(φ, now)

.
= ∃s. now ≤ s ∧ φ(s),

6. A2(φ, now)
.
= ¬E3(¬φ, now),

7. Happens(a, now, then)
.
= do(a, now) ≤ then,

8. Happens
C

(δ, now, then)
.
=

∃s′. s′ ≤ then ∧Do(δ, s′, then).

3. CONDITIONAL COMMITMENTS
Having presented our framework, we now return to our

discussion about conditional commitments. Informally, an
agent agt has a conditional commitment or intention that ψ
on the condition that φ if agt intends to achieve ψ as soon
as the condition φ holds. In our specification, we assume
that φ is a state formula, whereas ψ is a path formula and
can represent any kind of goal (achievement, maintenance,
etc.). In other words, the trigger condition φ of a conditional
intention takes a single situation now as argument, unlike
the goal formula ψ, which takes two situations now and then
as arguments.3 If one wishes to use an achievement goal φ′

for ψ, one can use 3(φ′, now, then), i.e. eventually φ′.
So we now propose a formalization of conditional inten-

3We could also handle trigger conditions that are not state
formulas. However, in these cases, since the trigger condi-
tion holds over a time interval, it is not always clear when
exactly the triggering of the commitment to the conditional
goal should occur. To avoid these complications, we stick to
state formulas as triggers.

tions that avoids the under/over-commitment problem:

CondInt(agt,φ, ψ, s)
.
=

Int(agt,DisjGoal(φ, ψ, now, then)

∧NoUnderComm(agt, φ, now, then), s),

DisjGoal(φ, ψ, now, then)
.
=

[¬φ Until (φ ∧ ψ)](now, then) ∨ ¬3(φ, now, then),

NoUnderComm(agt, φ, now, then)
.
=

2([Int(agt,2(¬φ, now, then), now) ⊃

Know(agt,A2(¬φ, now), now)], now, then).

That is, agt conditionally intends that ψ provided that φ,
iff agt intends that the following conditions hold:

1. either (a) φ eventually holds, and ψ holds immediately
from the time φ comes to hold, or (b) φ never holds,
and

2. if in any situation agt intends that φ never comes to
hold, she must also know in that situation that it can
never become true.

Intuitively, this says that one way to fulfill an agent’s condi-
tional intention is to (1a) satisfy ψ after φ comes to hold, and
a second way is that (1b) φ never comes to hold in the future.
This part of our account is as in the disjunctive approach.
However, we add to this that (2) the agent does not intend
that φ never comes to hold unless she knows that it can never
hold. Thus we require that if at some situation, agt intends
that φ never comes true, it must be the case that she knows
in that situation that φ can never become true, and she only
intends this because it has become inevitable. So the ad-
ditional constraint that NoUnderComm(agt, φ, now, then)
ensures that agt will not do anything intentionally to make
the triggering condition φ remain false. One might be tempt-
ed to defineNoUnderComm(agt, φ, now, then) as 2(¬Int(a-
gt,2(¬φ, now, then), now), now, then), i.e. agt never intends
that φ never holds. However, since some event may make
φ impossible to achieve, there is a possibility that agt may
come to intend that φ always be false, if this becomes in-
evitable. The only case in which agt intends that φ always
be false is when she knows that it can never become true.

Consider once again our online marketplace example given
in Section 1 for the disjunctive account. Using this def-
inition of conditional commitment, a seller slr’s intention
to send the goods when a buyer byr pays, CondInt(slr,-
GetPaid(byr, slr),Happens(shipGoods(slr, byr), now, then)-
, s) can be formalized as follows:

Int(slr,DisjGoal(GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then),

now, then)

∧NoUnderComm(slr,GetPaid(byr, slr), now, then), s).

slr’s intention can be further expanded to:

Int(slr, [GetPaidAndThenSendGoods(byr, slr, now, then)

∨ ¬3(GetPaid(byr, slr), now, then)] ∧

[2((Int(slr,2¬GetPaid(byr, slr), now) ⊃

Know(slr,A2(¬GetPaid(byr, slr), now), now)),

now, then)], s),

where,

GetPaidAndThenSendGoods(byr, slr, now, then)
.
=

[¬GetPaid(byr, slr) Until

(GetPaid(byr, slr) ∧

Happens(shipGoods(slr, byr), now, then))]

(now, then).

From this, we can see that there are only two ways by which
slr can satisfy this conditional intention: either at some
future or current situation byr pays slr and then slr sends
the goods to byr, or, byr never pays slr, and as long as
slr does not know that byr will never pay her, she does
not intend not to get paid. Since slr cannot intend not
to get paid, she cannot deliberately perform anything (for
example block payments from byr) to make the triggering
condition remain false. If at a later situation, slr learns
that it has become impossible for byr to ever pay her, slr
will inevitably intend that byr never pays her, but otherwise
she cannot acquire this intention. Thus, our formalization
of conditional commitment does not suffer from the under-
commitment problem.

Moreover, since we use the disjunctive approach, our ac-
count does not suffer from the over-commitment problem
associated with the conjunctive approach. Consider the sec-
ond example given in Section 1, where slr has the inten-
tion to ship a replacement unit when byr returns a defective
good. Using our definition, this can be expanded to slr’s
intention that either byr never returns a defective prod-
uct, or byr returns a defective product and slr ships the
replacement unit after that. Thus slr is not over-committed
and will not perform something deliberately so that byr re-
turns a product. The additional constraint that slr never
intends that byr never return a product unless she knows
that byr will never return a product does not lead to any
over-commitment. Thus our formalization of conditional in-
tention is also free from the over-commitment problem.

Note that our account allows the agent who has a condi-
tional intention to intend not to know whether the condition
holds. We could easily strengthen the definition to rule this
out, but it is not clear that this is always appropriate.

Next, we show two simple properties of conditional in-
tention. Assume that the domain theory D (as discussed in
Section 2) includes our definition of conditional commitment
given above. Then we have the following theorem that says
that if an agent agt conditionally intends that ψ provided
that φ in situation s, and if she knows that φ holds in s,
then agt intends that ψ in s.

Theorem 1.

D |= CondInt(agt, φ, ψ, s) ∧ Know(agt,φ, s) ⊃

Int(agt, ψ, s).

So when the agent knows that the condition has become
true, a conditional intention reduces to an ordinary inten-
tion. The second property states that agents are able to
introspect their conditional intentions:

Theorem 2.

D |= [CondInt(agt, φ, ψ, s) ⊃

Know(agt,CondInt(agt, φ, ψ, now), s)] ∧

[¬CondInt(agt, φ,ψ, s) ⊃

Know(agt,¬CondInt(agt, φ, ψ, now), s)].

Thus, if an agent has a conditional intention (does not have
a conditional intention, resp.) that ψ provided that φ, then
she knows that she has (does not have, resp.) this condi-
tional intention.

It would be interesting to prove additional results about
conditional intentions, for instance, that a conditional in-
tention persists as long as its condition is known to remain
false and not known to have become impossible. We leave
this for future work.

4. CONDITIONAL REQUESTS
We now discuss two communicative acts, requestWhen

and reqActWhen, that can be used by an agent to request
someone to achieve ψ or to execute a program δ respec-
tively, on the condition that φ becomes true. Recall that, in
ECASL the SSA for W determines whether an agent adopts
a goal when requested; the requested goal is adopted by
the requestee via cooperation principles encoded in the SSA
for W . Thus, we model requests as informing about in-
tentions, rather than as primitives. In the following, we
use CondIntCont(agt, φ, ψ) as an abbreviation for the con-
tent of a conditional intention DisjGoal(φ, ψ,now, then) ∧
NoUnderComm(agt, φ, now, then). Now, one simple way to
model a requester req’s request to requestee agt to achieve
ψ on the condition that φ is as follows:

requestWhensim(req, agt, φ, ψ)
.
=

request(req, agt,CondIntCont(req, φ, ψ)).

This says that, req’s conditional request to agt to achieve
ψ provided that φ amounts to req’s request to agt to fulfill
the content CondIntCont(req, φ, ψ) of her own conditional
intention. Using the definition of request, this conditional
request amounts to req informing agt that she currently in-
tends to achieve ψ provided that φ. However, note that
the content CondIntCont(req, φ, ψ) of this conditional in-
tention includes mental attitudes that refer to req, rather
than agt. Since the SSA for W does not automatically re-
place the agent parameters of mental state operators used
in a goal formula, if we model conditional requests as above,
given appropriate conditions (i.e., when agt agrees to serve
req on CondIntCont(req, φ, ψ) and does not currently have
the intention that ¬CondIntCont(req, φ, ψ)), agt will adopt
the intention that CondIntCont(req, φ, ψ), but not that
CondIntCont(agt, φ, ψ). Thus she will not have the con-
ditional intention to achieve ψ provided that φ after the
conditional request is performed, and this simple definition
is not quite correct.

For example, suppose that the manager agent mgr wants
to conditionally request the seller slr in situation s to ship
the goods when the buyer byr pays her. So mgr can do this
by performing the following action in s:

requestWhensim(mgr, slr,GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then)),

which can be expanded to:

request(mgr, slr,

CondIntCont(mgr,GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then))).

After the request is performed, if slr agrees to serve mgr
on CondIntCont(mgr,GetPaid(byr, slr), Happens (ship-

Goods(slr, byr), now, then)), and does not intend that ¬Cond-
IntCont(mgr,GetPaid(byr, slr),Happens(shipGoods(slr, by-
r), now, then)), the SSA for W will ensure that:

Int(slr, CondIntCont(mgr,GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then)), sr),

which can be expanded to:

Int(slr,DisjGoal(GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then),

now, then) ∧

NoUnderComm(mgr,GetPaid(byr, slr), now, then), sr),

where sr is the situation that results from performing the
requestWhen action in s. Now, using the definition of con-
ditional intention, we can see that in sr, slr does not have
the conditional intention of sending the goods provided that
byr pays her. The problem is with the mental state opera-
tors in the NoUnderComm(mgr, . . .) part of slr’s intention:
they say that mgr will not intend that the payment not oc-
cur unless she knows it can never occur. What we need is
for this constraint to hold for slr.

To deal with this problem, we propose the following model
of conditional requests:

requestWhen(req, agt, φ, ψ)
.
=

request(req, agt,CondIntCont(agt, φ,ψ)).

This says that req’s request to agt to conditionally achieve ψ
provided that φ amounts to req’s request to agt to fulfill the
content of agt’s conditional intention to achieve ψ provided
that φ, i.e., CondIntCont(agt, φ, ψ). Using the definition of
request, this can be further expanded to:

requestWhen(req, agt, φ, ψ)
.
=

inform(req, agt, Int(req, CondIntCont(agt, φ, ψ), now)).

That is, req can request agt to achieve ψ on the condition
that φ by informing agt that she intends that CondIntCont(
agt, φ, ψ). Note that, the agent parameter of CondIntCont(
agt, φ, ψ) is now the requestee agt, rather than the requester
req. This guarantees that given that agt serves req and does
not have the opposite intention, she will conditionally intend
to achieve ψ provided that φ after req conditionally requests
her this. Thus this formalization of conditional request does
not suffer from the above mentioned problem.

We also define a special type of conditional request, namely,
a request to perform an action when some condition holds:

reqActWhen(req, agt, φ, δ)
.
=

requestWhen(req, agt, φ,HappensC(δ, now, then)).

This states that req’s conditional request to agt to execute
the program δ provided that φ amounts to req’s conditional
request to agt to execute δ starting in the situation where φ
holds.

Now consider what happens when mgr conditionally re-
quests slr to ship the goods when byr pays her, that is, when
mgr performs the reqActWhen(mgr,slr,GetPaid(byr, slr),-
shipGoods(slr, byr)) action. Given that slr agrees to serve
mgr and does not have the opposite intention, the SSA for
W will make slr adopt the following intention:

Int(slr, CondIntCont(slr,GetPaid(byr, slr),

HappenC(sendGoods(slr, byr), when, then)), sr),

and thus, by the definition of conditional intention, she will
conditionally intend to send the goods when byr pays her.
Thus, our formalization of conditional requests allows the
proper transfer of conditional intention from the requester
to the requestee.

We next present a theorem that shows how agents’ inten-
tions are affected by the requestWhen action. Assume that
the domain theory D includes our definition of these new
communicative actions. We can show that:

Theorem 3.

D |= [¬Int(agt,¬CondIntCont(agt, φ, ψ), s)

∧ Serves(agt, req, CondIntCont(agt,φ, ψ), s)

∧ Poss(requestWhen(req,agt, φ, ψ), s)] ⊃

CondInt(agt, φ, ψ, do(requestWhen(req, agt,φ, ψ), s)).

This says that if in some situation s, an agent agt does not
intend not to fulfill the content of a conditional intention to
achieve ψ provided that φ, and if she serves another agent
req on the content of this conditional commitment in s, then
she will have the conditional intention to achieve ψ given
that φ after req conditionally request her this in s, provided
that the request is possible in s.

It would be useful to extend our framework with a commu-
nication act that allows a conditional commitment created
as a result of a requestWhen to be cancelled. We believe
that the existing ECASL cancelRequest action can be used
to define such a conditional commitment cancelling act. We
leave this for future work.

5. RELATED WORK
The under-commitment problem that we pointed out in

Section 1 is related to another problem involving intentions
discussed by Cohen and Levesque [2]. In that paper, they
consider a robot who drops the intention of bringing a bot-
tle of beer by breaking the last available bottle and thus
making the intention impossible to achieve. Their solution
was twofold: (1) they formalize intentions as persistent goals
and (2) they assume that existing intentions act as a screen
of admissibility over new intentions. In their framework,
an agent’s intentions persist until she knows that they have
been achieved, or knows that it has become impossible to
achieve them. Since the robot intends to bring a bottle of
beer, she will not drop this goal until she achieves it or gets
to know that it has become impossible to achieve. However,
the robot can break the last available bottle to make her
goal unachievable. But since an agent’s current intentions
provide a screen of admissibility for adopting new intentions,
she cannot have these two conflicting intentions at the same
time. Thus since she intends to bring a bottle, she can-
not adopt the intention to break the only available bottle.
Note that while this problem has similarities with the one
addressed here, it does not involve conditional intentions.

In the literature, there has been some work on conditional
intention. However, as mentioned earlier, all of the pro-
posed treatments that we are aware of seem to suffer from
the under- or over-commitment problems. Although it does
not explictly address conditional intentions, the FIPA agent
communication language specification [5] defines a type of
communication act that leads to conditional intentions. In
that framework, an agent can conditionally request another
agent to execute an action when some condition holds. This

is modeled as follows: req’s conditional request to agt to per-
form act when φ holds amounts to req informing agt that
she has the intention that agt execute act and that φ be true
just before that. Note that req’s intention amounts to the
conjunction that φ be true at some point and agt executes
act right after that. Thus, this treatment of conditional in-
tention can be viewed as a conjunctive account where the
intention is to first achieve the triggering condition φ, and
then to achieve the conditional goal. As discussed in Section
1, this leads to the over-commitment problem.

Yolum and Singh [28] present a different model of condi-
tional commitment that relies on a social obligation-based
semantics rather than a traditional one based on mental
states. Their main concern was the study of communica-
tion protocols that accommodate exceptions and take ad-
vantage of opportunities. They model interaction protocols
using commitment machines that supply a content to proto-
col states and actions in terms of the social commitments of
the participating agents. In their formal semantics, which
is only briefly described, they adopt a branching time tem-
poral model. The semantics for commitments involves a
modal accessibility relation for commitments C that relates
a state of the protocol (i.e. a time-point) s, a debtor agent
x, and a creditor agent y to a set of paths P . Intuitively,
x is responsible to y for satisfying φ in state s iff φ holds
at time-point s along all paths p that are C-accessible from
(x, y, s). To model conditional commitment, they introduce
a strict implication operator (denoted by ;) that requires
the consequent to hold when the antecedent holds. The
strict implication is false when the antecedent is false. Their
semantics says that φ ; φ′ holds in a state s iff φ holds in
s and for all s′ that satisfy φ, every s′′ that is similar to
s′ (i.e. s′′ ≈ s′) also satisfies φ′. What they mean by the
similarity relation ≈ is not explained. Thus for them, a con-
ditional commitment C(x, y, φ ; φ′) holds in state s iff on
all C-accessible paths p, φ holds at s, and whenever some s′

satisfies φ, every s′′ that is similar to s′ satisfies φ′. Since
they model conditional commitments using the ; opera-
tor, which behaves like a conjunction with some additional
constraints, it appears that their formalization suffers from
the over-commitment problem. It is also not clear how their
formalization ensures that the goal is achieved after the con-
dition along the paths.

Both [1] and [23] model conditional commitment as a dis-
junctive goal. In their social commitment and argument
network based framework, Bentahar et al. [1] define con-
ditional commitments as a simple implication. Their se-
mantics of conditional commitment goes as follows: M, s |=
CondIntBen(agt1, agt2, φ, ψ) iff M, s |= EF+φ ⇒ M, s |=
ABC(agt1, agt2, ψ), where s,E,F+, and ABC denotes a time-
point, there exists a path, sometime in the future, and abso-
lute commitment, respectively. This says that agt1 is com-
mitted to agt2 to achieve ψ on the condition that φ means
that agt1 is unconditionally committed to agt2 to achieve ψ
if φ holds at some timepoint over some path in the future.
Besides suffering from the under-commitment problem asso-
ciated with disjunctive accounts, this seems to require com-
mitment to the goal too early, before the condition becomes
true.

In [23], Shapiro et al. describe a framework for spec-
ifying communicative multiagent systems using ConGolog
[4] within the situation calculus, an early version of CASL.
Since they were lacking a goal-revision mechanism at that

point, they introduced a type of conditional request, the re-
questUnless action, in an attempt to avoid the need for goal-
revision. requestUnless(req, agt, φ, ψ) means that req is re-
questing agt to adopt the goal that ψ unless φ is obtained.
The execution of requestUnless(req, agt, φ, ψ) makes agt

adopt the goal that φ∨ψ. This amounts to modeling condi-
tional intentions as disjunctive goals, and hence the account
suffers from the under-commitment problem.

6. CONCLUSION
In this paper, we identified some problems with many ex-

isting formalizations of conditional commitments. These
seem to either have the agents over-committed, intending
to achieve the condition under which the goal would have
to be achieved, or under-committed, possibly intending that
this condition remain false forever. We could not find any
problem-free account in the literature. We presented a def-
inition of conditional intentions that does not suffer from
these problems. We then formalized two types of commu-
nicative actions that allow agents to make requests that lead
to conditional commitments. We also proved some proper-
ties of conditional commitments and conditional requests.
Finally, we discussed previous work on conditional commit-
ments.

Note that, our framework allows an agent with a con-
ditional intention to not intend that the trigger condition
eventually becomes true. However, it does not allow her to
intend that the trigger condition never comes to hold, with-
out also knowing that it can never become true. In other
words, in our framework, an agent’s conditional intention
that ψ provided that φ is not consistent with her intention
that 2¬φ, unless she already knows that this must be the
case. This might be problematic in some cases. For instance,
in our example where a seller has a conditional intention to
ship a replacement unit when a buyer returns a defective
product, we might want to say that the seller has the inten-
tion that the buyer never returns a defective good. However,
it is not possible for an agent to consistently have both of
these intentions in our framework. One way to overcome
this limitation might be to adopt a richer semantic model of
intention, where one allows different degrees of preferability,
similar to the levels of plausibility in traditional belief revi-
sion frameworks such as [6]. Such semantic models and the
resulting logics are more expressive, but much more complex
to specify and reason in.

The theory presented here is a part of our ongoing research
on the semantics of speech acts and agent communication
in the situation calculus. In [8], we present an extended
version of this work where we model some simple communi-
cation protocols that deal with conditional requests. Much
work remains. In the future, we would like to prove other
properties of conditional commitments, for example, about
the persistence and revision of such commitments. We also
plan to formalize complex interaction protocols, such as the
Contract Net protocol [27] and the Net Bill protocol [26], us-
ing our formalization of conditional intention. It would also
be interesting to try to use this formalization to implement
flexible communication agents as in [19] and to develop tools
to support multiagent programming.

7. ACKNOWLEDGEMENTS
We thank Hector Levesque, Pinar Yolum, and the review-

ers for useful comments on this work.

8. REFERENCES
[1] J. Bentahar, B. Moulin, J.-J. C. Meyer, and

B. Chaib-draa. A logical model of commitment and
argument network for agent communication. In Proc.
of AAMAS-04, pages 792–799, 2004.

[2] P. Cohen and H. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42(2-3):213–361,
1990.

[3] P. Cohen and H. Levesque. Rational interaction as the
basis for communication. In P. Cohen, J. Morgan, and
M. Pollack, editors, Intentions in Communication,
pages 221–255. MIT Press, Cambridge, Mass., 1990.

[4] G. De Giacomo, Y. Lespérance, and H. Levesque.
ConGolog, a concurrent programming language based
on the situation calculus. Artificial Intelligence,
121:109–169, 2000.

[5] Foundations for Intelligent Physical Agents. FIPA
communicative act library specification, document 37.
1997-2002.

[6] P. Gardenfors. Knowledge in Flux: Modeling the
Dynamics of Epistemic States. MIT Press, Cambridge,
Massachusetts, 1988.

[7] A. Herzig and D. Longin. A logic of intention with
cooperation principles and with assertive speech acts
as communication primitives. In Proc. of AAMAS-02,
pages 920–927, 2002.

[8] S. Khan. A situation calculus account of multiagent
planning, speech acts, and communication, MSc
Thesis (in preparation), 2005.

[9] S. Khan and Y. Lespérance. ECASL: A model of
rational agency for communicating agents. In Proc. of
AAMAS-05, pages 762–769. Utrecht, The
Netherlands, July 2005.

[10] G. Lakemeyer and H. Levesque. AOL: A logic of
acting, sensing, knowing, and only-knowing. In Proc.
of KR-98, pages 316–327, 1998.

[11] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. Scherl. Golog: A logic programming language for
dynamic domains. J. of Logic Programming, 31:59–84,
1997.

[12] J. McCarthy and P. Hayes. Some philosophical
problems from the standpoint of artificial intelligence.
Machine Intelligence, 4:463–502, 1969.

[13] R. Moore. A formal theory of knowledge and action.
Formal Theories of the Commonsense World, pages
319–358, 1985.

[14] G. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI-FN-19, Computer
Science Dept., Aarhus University, Denmark, 1981.

[15] A. Rao and M. Georgeff. Modeling rational agents

within a BDI-architecture. In R. Fikes and
E. Sandewall, editors, Proc. of KR&R-91, pages
473–484, 1991.

[16] R. Reiter. The frame problem in the situation
calculus: A simple solution (sometimes) and a
completeness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in the Honor of John
McCarthy. Academic Press, 1991.

[17] R. Reiter. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

[18] D. Sadek. Communication theory = rationality
principles + communicative act models. In Proc. of
AAAI-94 Workshop on Planning for Interagent
Comm., 1994.

[19] D. Sadek and P. Bretier. ARTIMIS: Natural dialogue
meets rational agency. In Proc. of IJCAI-97, pages
1030–1035, 1997.

[20] R. Scherl and H. Levesque. Knowledge, action, and the
frame problem. Artificial Intelligence, 144(1-2), 2003.

[21] S. Shapiro. Specifying and Verifying Multiagent
Systems Using CASL. PhD thesis, Dept. of C.S., U. of
Toronto, 2005.

[22] S. Shapiro and Y. Lespérance. Modeling multiagent
systems with the Cognitive Agents Specification
Language - a feature interaction resolution
application. In C. Castelfranchi and Y. Lespérance,
editors, Intelligent Agents Vol. VII - Proc. of
ATAL-00, volume LNAI 1986, pages 244–259, 2001.

[23] S. Shapiro, Y. Lespérance, and H. Levesque.
Specifying communicative multi-agent systems. Agents
and Multi-Agent Systems – Formalisms,
Methodologies, and Applications, LNAI 1441:1–14,
1998.

[24] S. Shapiro, Y. Lespérance, and H. Levesque. The
Cognitive Agents Specification Language and
verification environment for multiagent systems. In
Proc. of AAMAS-02, pages 19–26, 2002.

[25] M. Singh. Multiagent Systems: A Theoretical
Framework for Intentions, Know-How, and
Communications. LNAI 799, 1994.

[26] M. Sirbu. Credits and debits on the internet. Readings
in Agents, pages 299–305, 1998.

[27] R. Smith. The contract net protocol: High level
communication and control in a distributed problem
solver. IEEE Transactions on Computers,
C-29(12):1104–1113, 1980.

[28] P. Yolum and M. Singh. Commitment machines. In
J.-J. C. Meyer and M. Tambe, editors, Intelligent
Agents VIII : 8th Intl. Workshop, ATAL-01, volume
LNAI 2333, pages 235–247, 2002.

