
Situation Calculus Temporally Lifted Abstractions for Generalized Planning

Giuseppe De Giacomo1,2, Yves Lespérance3, Matteo Mancanelli2

1University of Oxford, Oxford, UK
2University of Rome La Sapienza, Rome, Italy

3York University, Toronto, ON, Canada
giuseppe.degiacomo@cs.ox.ac.uk, lesperan@eecs.yorku.ca, mancanelli@diag.uniroma1.it

Abstract

We present a new formal framework for generalized planning
(GP) based on the situation calculus extended with LTL con-
straints. The GP problem is specified by a first-order basic
action theory whose models are the problem instances. This
low-level theory is then abstracted into a high-level propo-
sitional nondeterministic basic action theory with a single
model. A refinement mapping relates the two theories. LTL
formulas are used to specify the temporally extended goals as
well as assumed trace constraints. If all LTL trace constraints
hold at the low level and the high-level model can simulate
all the low-level models with respect to the mapping, we say
that we have a temporally lifted abstraction. We prove that
if we have such an abstraction and the agent has a strategy
to achieve a LTL goal under some trace constraints at the
abstract level, then there exists a refinement of the strategy
to achieve the refinement of the goal at the concrete level.
We use LTL synthesis to generate the strategy at the abstract
level. We illustrate our approach by synthesizing a program
that solves a data structure manipulation problem.

Introduction
In generalized planning (GP), one tries to generate a typ-
ically iterative policy that solves an infinite set of simi-
lar planning problem instances (Srivastava, Immerman, and
Zilberstein 2008; Hu and De Giacomo 2011; Belle and
Levesque 2016). For example, we may want to synthesize
a program for finding the minimum value in a list, for lists
of any lengths. Many approaches to GP involve construct-
ing an abstraction and finding a solution for this abstraction
which handles all the actual problem instances.

We propose a new formal framework for GP based on
the situation calculus (McCarthy and Hayes 1969; Reiter
2001) that allows one to provide an abstract description of
the domain and associated LTL trace constraints (Bonet et al.
2017; Aminof et al. 2019), and prove that a controller syn-
thesized for the abstract theory can be refined into one that
achieves the goal at the concrete level.

Our framework is based on the nondeterministic situation
calculus (De Giacomo and Lespérance 2021) (DL21), where
each agent action is accompanied by an environment reac-
tion outside the agent’s control that determines the action’s

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

outcome, e.g., a flipped coin may fall head or tail. (Bani-
hashemi, De Giacomo, and Lespérance 2023) (BDL23) have
proposed an account of abstraction for nondeterministic ba-
sic action theories (NDBATs) in this language. They relate
a high-level NDBAT to a low-level NDBAT through a re-
finement mapping that specifies how a high-level action is
implemented by a ConGolog program at the low level and
how a high-level fluent can be defined by low-level state for-
mula. They then define notions of sound and/or complete
abstraction for such NDBATs in terms of a notion of bisim-
ulation wrt such a mapping between their models. (Cui, Liu,
and Luo 2021; Cui, Kuang, and Liu 2023) have adapted this
kind of approach to solve GP, focusing on QNP abstractions.

Here, we assume that the modeler specifies a proposi-
tional high-level (HL) action theory/model with a limited set
of HL fluents and nondeterministic actions, which abstracts
over a concrete low-level (LL) action theory with multiple
models, with a given refinement mapping m. At the LL, in
each model we have complete information about the state of
the world, while at the HL, we have actions that may have
several outcomes, e.g., after advancing to the next item in
a list, we may or may not reach the list’s end. But we also
have some HL LTL trace constraints, e.g., ensuring that if
we keep advancing we will eventually reach the list’s end.
We define a notion of temporally lifted abstraction for such
theories, where every LL trace that is a refinement of a se-
quence of HL actions is an m-simulation of a trace involv-
ing this action sequence in the HL model, and where the LTL
trace constraints are satisfied by the LL theory. The NDBATs
represent our GP problem, where each LL model specifies
the planning problem instances, and the HL model abstracts
away the LL details, retaining only the shared features. We
then provide a method for solving all the planning problem
instances simultaneously. In particular, we show that given
such an abstraction, if we can use LTL synthesis on the HL
model to obtain a HL strategy to achieve a LTL goal under
the given trace constraints, then we can automatically refine
it to get a LL strategy that achieves the mapped LTL goal in
all concrete instances of the problem.

We illustrate how our approach works by using it to syn-
thesize a program to find the minimum value of a list. This
application is inspired by (Bonet et al. 2020) (B20), which
proposed an approach for solving program synthesis tasks
(Green 1969; Waldinger and Lee 1969; Church 1963; Abadi,

Lamport, and Wolper 1989; Pnueli and Rosner 1989) that in-
volve the manipulation of data structures such as lists, trees,
and graphs by viewing them as instances of GP. They pro-
vide several examples of how their method can be applied,
but they do not provide complete formal specifications of
the data structures used and formal proofs that the assumed
temporal constraints and goal specifications hold for them.

Preliminaries
Nondeterministic situation calculus. The situation cal-
culus is a well known predicate logic language designed
for representing and reasoning about dynamically chang-
ing worlds (McCarthy and Hayes 1969; Reiter 2001). All
changes to the world are the result of actions, which are
terms in the language. A possible world history is repre-
sented by a term called a situation, which is a sequence of
actions. The constant S0 is used to denote the initial situa-
tion, and the function do(a, s) is used to denote the succes-
sor situation resulting from performing action a in situation
s. Predicates and functions whose value varies from situa-
tion to situation are called fluents, and are denoted by sym-
bols taking a situation term as their last argument. In this
language, a dynamic domain can be represented by a basic
action theory (BAT), where successor state axioms (SSAs)
represent the causal laws of the domain (Reiter 2001). A
predicate Poss(a, s) is used to state that a is executable in s;
the precondition axioms characterize this predicate.

(DL21) propose a simple extension of the standard situ-
ation calculus to handle nondeterministic actions. For any
primitive action by the agent in a nondeterministic domain,
there can be a number of different outcomes, depending
on how the environment reacts to the agent’s action. This
is modeled by having every action type/function A(x⃗, e)
take an additional environment reaction parameter e, ranging
over a new sort Reaction. We call the reaction-suppressed
version of the action A(x⃗) an agent action and the full ver-
sion A(x⃗, e) a system action.

A nondeterministic basic action theory can be seen as a
special kind of BAT, and it is the union of the following
disjoint sets: foundational, domain independent, axioms of
the situation calculus (Σ), axioms describing the initial sit-
uation (DS0), unique name axioms for actions (Duna), suc-
cessor state axioms describing how fluents change after sys-
tem actions are performed (Dssa), and system action pre-
condition axioms, one for each action type, stating when
the complete system action can occur (Dposs). One also
specifies agent action preconditions using Possag . The the-
ory must entail the reaction independence requirement (for-
mally, ∀e.Poss(A(x⃗, e), s) ⊃ Possag(A(x⃗), s)) and the re-
action existence requirement (formally, Possag(A(x⃗), s) ⊃
∃e.Poss(A(x⃗, e), s)).
High-level programs and ConGolog. To specify how a
HL action is implemented at the LL, we focus on (a vari-
ant of) ConGolog (De Giacomo, Lespérance, and Levesque
2000), an HL programming language characterized by

δ ::= α | φ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1∥δ2
where α is an action term, δ1; δ2 is the sequential execu-
tion of δ1 and δ2, δ1|δ2 is the nondeterministic choice of δ1

and δ2, πx.δ executes program δ for some nondeterminis-
tic choice of the object variable x, δ∗ performs δ zero or
more times, and δ1∥δ2 is the interleaved execution of δ1
and δ2. Note that φ is a situation-suppressed formula, and
we denote by φ[s] the formula obtained by restoring the
situation argument s into all fluents in φ. Conditional and
while-loop constructs are definable as follows: if ϕ then δ1
else δ2 endIf = ϕ?; δ1|¬ϕ?; δ2 and while ϕ do δ endWhile
= (ϕ?; δ)∗;¬ϕ?. We also use the abbreviation nil = True?.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using the following two predi-
cates: (i) Trans(δ, s, δ′, s′), which holds if one step of pro-
gram δ in situation s may lead to situation s′ with δ′ re-
maining to be executed; and (ii) Final(δ, s), which holds if
program δ may legally terminate in situation s. The defini-
tions of Trans and Final we use are as in (De Giacomo,
Lespérance, and Pearce 2010); differently from (De Gia-
como, Lespérance, and Levesque 2000), the test construct
φ? does not yield any transition, but is final when satisfied.
Predicate Do(δ, s, s′) means that program δ, when executed
starting in situation s, has as a legal terminating situation s′,
and is defined as Do(δ, s, s′) .

= ∃δ′.T rans∗(δ, s, δ′, s′) ∧
Final(δ′, s′), where Trans∗ denotes the reflexive transitive
closure of Trans. We use C to denote the axioms defining the
ConGolog programming language.

For simplicity, we use a restricted class of ConGolog
programs that are situation-determined (SD) (De Giacomo,
Lespérance, and Muise 2012), i.e., for every action se-
quence, the remaining program is uniquely determined
by the resulting situation: SitDet(δ, s) .

= ∀s′,∀δ′, δ′′.
Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′

Generalized Planning. A generalized planning problem
is a (finite or infinite) set of basic planning problems that
share the same set of actions and features (or observations)
(Hu and De Giacomo 2011). Intuitively, solving a GP prob-
lem means finding a strategy that serves as a solution for
each of the basic planning problems. A general way to repre-
sent a GP problem is to project the basic planning problems
onto their common observation space, resulting in an ob-
servation abstraction (Bonet and Geffner 2015; Bonet et al.
2017). Similarly to (Hu and Levesque 2010; De Giacomo
et al. 2016; Cui, Liu, and Luo 2021), in our framework a
GP is defined as a pair of an action theory and a (LTL)
goal. Specifically, each model of the action theory represents
a basic planning problem, and we abstract them by using
a propositional HL action theory, where we have a single
model and nondeterministic actions. The propositional flu-
ents in each situation represent the common observations
among all the LL models, and the outcome of an action
depends on the environment’s reaction, which models the
possible different ways in which LL traces proceed. We ex-
tend the HL theory with trace constraints to impose fairness
assumptions on the possible sequence of nondeterministic
actions. A strategy at the HL must ensure that the agent
achieves the HL goal under the trace constraints, regardless
of how the environment behaves. This strategy is a solution
to the GP problem if it can be refined at the LL and ensures
that the agent achieves the LL goal for every model.

Linear Temporal Logic. Linear Temporal Logic (LTL) is
one of the most popular formalisms for expressing temporal
properties of reactive systems (Pnueli 1977). Given a set of
atomic propositions P the formulas of LTL are as follows:

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | ⃝ϕ | ϕ1 U ϕ2
where a ∈ P . We use common abbreviations such as even-
tually as ♢ϕ .

= TrueU ϕ and always as □ϕ .
= ¬♢¬ϕ.

Formulas of LTL are interpreted over infinite sequences
(called traces) of truth evaluations of variables in P , i.e.
π = π0, π1, · · · ∈ (2P)∞. Given a trace π, we define when
an LTL formula ϕ holds at position i on π, written π, i |= ϕ,
inductively on the structure of ϕ, as follows:

• π, i |= a iff a ∈ πi (for a ∈ P);
• π, i |= ¬ϕ iff π, i ̸|= ϕ;
• π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2;
• π, i |= ⃝ϕ iff π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that π, j |= ϕ2,

and for all k, i ≤ k < j we have that π, k |= ϕ1.

We say that π satisfies ϕ, written π |= ϕ, if π, 0 |= ϕ.

LTL constraints in NDBATs. We are interested in impos-
ing some LTL temporal properties that can work as trace
constraints to filter the considered world histories in the con-
text of NDBATs. A convenient way for doing this is to lever-
age the axiomatization of infinite paths introduced by (Khan
and Lespérance 2016), which provided a natural way to talk
about “infinite future histories”. An infinite sequence of sit-
uations is called a path, and we have a special sort paths
and a predicate OnPath(p, s) meaning that situation s is
on path p. Additionally, we will use Starts(p, s), to specify
that the path p starts with situation s, and Suffix (p′, p, s),
which means that the path p′ starts with s and contains the
same situations as p starting from s.

Based on this, we define a special predicate Holds(ψ, p)
to specify that a given LTL property ψ holds on path p. Here,
we assume that the LTL atomic propositions ϕ are ground
situation-suppressed formulas defined over an NDBAT.
Definition 1. If ψ is an LTL trace constraint and p is an
infinite path, we define Holds(ψ, p) (meaning that the con-
straint ψ holds on path p) inductively as follows1:

Holds(ϕ, p)
.
= ∃s.Starts(p, s) ∧ ϕ[s]

Holds(¬ψ, p) .= ¬Holds(ψ, p)
Holds(ψ1 ∨ ψ2, p)

.
= Holds(ψ1, p) ∨Holds(ψ2, p)

Holds(⃝ψ, p)
.
=

∃s, a, s′, p′.Starts(p, s) ∧ s′ = do(a, s) ∧
Suffix (p′, p, s′) ∧Holds(ψ, p′)

Holds(ψ1 U ψ2, p)
.
=

∃s, s′, p′.Starts(p, s) ∧ s ⪯ s′ ∧
Suffix (p′, p, s′) ∧Holds(ψ2, p

′) ∧ ∀s′′, p′′.
(s ⪯ s′′ ≺ s′ ∧ Suffix (p′′, p, s′′)) ⊃ Holds(ψ1, p

′′)

Note that the original axiomatization of infinite paths does
not consider nondeterministic actions but it can be easily ex-
tended to NDBATs by focusing on system actions.

1s ≺ s′ denotes that the actions performed to reach s′ from s
were all executable; s ⪯ s′ stands for s ≺ s′ ∨ s = s′

Temporally Lifted Abstractions
We want to define a GP problem at the concrete level us-
ing a BAT Dl, where models of this BAT serve as the basic
planning problem instances of the GP. We will then define
an abstract theory by providing a propositional NDBAT Dh,
for which we have a single model and where nondetermin-
istic effects reflect the variability among different concrete
instances. We will also impose some LTL trace constraints
on the abstract model to characterize the traces that can ac-
tually occur in the HL action sequences. We refer to this as a
temporally lifted abstraction. With this structure in place, we
can approach solving the GP problem by performing LTL
synthesis on the abstraction.

For this to work, we need to ensure that executions of re-
finements of HL actions in models of the LL theory corre-
spond to executions in the HL theory/model. We will specify
the relationship between the HL NDBAT and the LL BAT by
a refinement mapping m (viewing the LL theory as a ND-
BAT). For this, we extend the notion of refinement mapping
for NDBAT abstractions from (BDL23) to handle LTL trace
constraints. We will then ensure that executions of HL ac-
tions in the models correspond through a form of simulation
relative to the refinement mapping m.

NDBAT Refinement Mapping with Trace Constraints.
In (BDL23), an NDBAT refinement mapping m is a triple
⟨ma,ms,mf ⟩ where

• ma associates each HL primitive action type A to a Con-
Golog agent program δagA defined over the LL theory that
implements the agent action (i.e., ma(A(x⃗)) = δagA (x⃗))

• ms associates each A to a ConGolog system program
δsysA defined over the LL theory that implements the sys-
tem action (i.e., ms(A(x⃗, e)) = δsysA (x⃗, e))

• mf maps each situation-suppressed HL fluent F (x⃗) to
a situation-suppressed formula ϕF (x⃗) defined over the
LL theory that characterizes the conditions under which
F (x⃗) holds in a situation (i.e., mf (F (x⃗)) = ϕF (x⃗))

We can extend such a mapping to a sequence of agent ac-
tions as follows: ma(α1, . . . , αn)

.
= ma(α1); . . . ;ma(αn)

for n ≥ 1 andma(ϵ)
.
= nil, and similarly for system actions

sequences. We also extend the notation so thatmf (ϕ) stands
for the result of substituting every fluent F (x⃗) in situation-
suppressed formula ϕ by mf (F (x⃗)).

A refinement mapping must comply with the following:

Constraint 2 (Proper Refinement Mapping). For every HL
system action sequence α⃗ and every HL action A, we have:

Dl ∪ C |= ∀s.(Do(ms(α⃗), S0, s) ⊃ ∀x⃗, s′.
(Doag(ma(A(x⃗)), s, s

′) ≡ ∃e.Do(ms(A(x⃗, e)), s, s
′))

It guarantees that (1) for every s′ reachable from s by a re-
finement of A(x⃗), there is a reaction e that generates it, and
(2) for every s′ reachable from s by a refinement of A(x⃗, e),
there is a refinement of A(x⃗) that generates it. This ensures
consistency between agent and system actions, satisfying the
reaction existence and reaction independence requirements.

Here, we want to extend the NDBAT refinement mapping
to also handle HL LTL trace constraints, which we want to

be able to map to equivalent LL trace constraints. For this,
we introduce an additional constraint from (Lespérance et al.
2024) so that the LL theory tracks when refinements of HL
actions end using a state formulaHlc(s), meaning that a HL
action has just completed in situation s:
Constraint 3. Dl ∪ C |= Hlc(s) if and only if there ex-
ists a HL system action sequence α⃗ such that Dl ∪ C |=
Do(m(α⃗), S0, s).
There are various ways to define Hlc(s) to satisfy this con-
straint; see the example for some discussion.

The revisited definition of NDBAT mapping maintains
the original elements and adds a new component mt which
specifies how HL trace constraints are mapped to the LL:
Definition 4 (Refinement Mapping for Trace Constraints).
Let ψ be an LTL trace constraint and Hlc a distinguished
symbol which signals that a HL action is completed. A ND-
BAT refinement mapping m is a tuple ⟨ma,ms,mf ,mt⟩,
where ma, ms, and mf are defined as usual and mt is a
mapping for trace constraints defined as follows:

mt(ψ)
.
= mf (ψ)

mt(¬ψ)
.
= ¬mt(ψ)

mt(ψ1 ∨ ψ2)
.
= mt(ψ1) ∨mt(ψ2)

mt(⃝ψ)
.
= ⃝(¬HlcU(Hlc ∧mt(ψ)))

mt(ψ1 U ψ2)
.
= (Hlc ⊃ mt(ψ1))U(Hlc ∧mt(ψ2))

Here, we say that if ⃝ψ holds at the HL, then mt(ψ) must
hold at the LL in the first situation when a HL action has
been completed, i.e.,Hlcmust remain false until it becomes
true and at that point mt(ψ) must hold.

Temporally lifted abstractions. Finally, we can present
the concept of temporally lifted abstractions. To relate the
HL and LL models/theories, we first define:
Definition 5 (m-isomorphic situations). Let Mh and Ml be
models of Dh and Dl, respectively. We say that situation
sh in Mh is m-isomorphic to situation sl in Ml, written
sh ≃Mh,Ml

m sl, iff

Mh, v[s/sh] |= F (x⃗, s) iff Ml, v[s/sl] |= mf (F (x⃗))[s]

for every high-level primitive fluent F (x⃗) in Fh and every
variable assignment v2.
If sh ≃Mh,Ml

m sl, sh and sl evaluate all HL fluents the same.
(BDL23) and the earlier (Banihashemi, De Giacomo, and

Lespérance 2017) define a variant of bisimulation (Milner
1971, 1989) to establish a relation based on the refinement
mapping. Here, we stick to a unidirectional version:

Definition 6 (m-simulation). Let ∆Mh

S and ∆Ml

S be the
situation domains of Mh and Ml respectively. A relation
R ⊆ ∆Mh

S ×∆Ml

S is an m-simulation relation between Mh

and Ml if ⟨sh, sl⟩ ∈ R implies
1. sh is m-isomorphic to sl
2. for every HL system action A, if there exists s′l

such that Ml, v[s/sl, s
′/s′l] |= Do(ma(A(x⃗, e)), s, s

′),
then there exists s′h such that Mh, v[s/sh, s

′/s′h] |=
Poss(A(x⃗, e), s)∧ s′ = do(A(x⃗, e), s) and ⟨s′h, s′l⟩ ∈ R

2v[x/e] denotes the variable assignment that is like v except
that the variable x is assigned the entity e

We say thatMh is m-similar toMl wrt the mappingm (writ-
ten Mh ∼←m Ml) iff there exists an m-simulation relation
R between Mh and Ml such that ⟨SMh

0 , SMl
0 ⟩ ∈ R. We

also say that a situation sh in Mh is m-similar to situation
sl in Ml (written sh ∼Mh,Ml,←

m sl) iff there exists an m-
simulation relationR betweenMh andMl and ⟨sh, sl⟩ ∈ R.
Having an m-simulation means that if a refinement of a HL
action can occur, so can the HL action. A similar idea is
present in (Cui, Liu, and Luo 2021), where the definition
of m-bisimulation is decomposed into m-simulation and m-
back-simulation to represent the two directions. It is easy to
prove the following lemma about m-similar situations.
Lemma 7. If sh ≃Mh,Ml,←

m sl, then for any high-level
situation-suppressed formula ϕ, we have that:

Mh, v[s/sh] |= ϕ[s] iff Ml, v[s/sl] |= mf (ϕ)[s]

Proof. By induction on the structure of ϕ.

At last, exploiting m-simulation together with the use of
LTL trace constraints, we can talk about the notion of tem-
porally lifted abstractions. Intuitively, we have a temporally
lifted abstraction if there is an m-simulation between an HL
model/theory and all the models of a LL theory, and every
trace constraint is satisfied on some path at the HL and on
all paths at the LL.
Definition 8 (Temporally Lifted Abstraction). Consider an
HL NDBAT Dh equipped with a set of HL trace constraint
Ψ, a model Mh of Dh, a LL NDBAT Dl and a refinement
mapping m. We say that (Dh,Mh,Ψ) is a temporally lifted
abstraction wrt m and Dl if and only if
• Mh m-simulates every model Ml of Dl

• for every high-level LTL trace constraint ψ ∈ Ψ,
Mh |= ∃ph.Starts(ph, S0h) ∧Holds(ψ, ph) and
Dl |= ∀pl.Starts(pl, S0l) ⊃ Holds(mt(ψ), pl)

We may want to verify that we have a temporally lifted
abstraction. To this end, we first show a lemma that identifies
sufficient conditions for having an m-simulation. (Complete
proofs of all results are available in the extended version.)
Lemma 9. Suppose thatMh |= Dh for some high-level the-
ory Dh and Ml |= Dl ∪ C for some low-level theory Dl and
m is a mapping between the two theories. If

(a) SMh
0 ≃Mh,Ml

m SMl
0

(b) for all high-level action sequences α⃗,

Dl ∪ C |= ∀s.Do(ms(α⃗), S0, s) ⊃∧
Ai∈Ah ∀x⃗.(∃s′Do(ms(Ai(x⃗)), s, s

′)) ⊃
mf (ϕ

Poss
Ai

(x⃗))[s]

where Ah is the set of actions and ϕPoss
Ai

(x⃗) is the right-
hand side (RHS) of the precondition axiom for Ai(x⃗),

(c) for all high-level action sequences α⃗,

Dl ∪ C |= ∀s.Do(ms(α⃗), S0, s) ⊃∧
Ai∈Ah ∀x⃗, s′.(Do(ms(Ai(x⃗)), s, s

′) ⊃∧
Fi∈Fh ∀y⃗(mf (ϕ

ssa
Fi,Ai

(y⃗, x⃗))[s] ≡ mf (Fi(y⃗))[s
′]))

where Fh is the set of fluents and ϕssaFi,Ai
(y⃗, x⃗) is the RHS

of the SSA for Fi instantiated with action Ai(x⃗) where
action terms have been eliminated using Dh

ca

then Mh ∼←m Ml.

Proof (sketch). We assume the antecedent and we need to
prove that Mh ∼←m Ml. Let R be the relation over ∆Mh

S ×
∆Ml

S such that

⟨sh, sl⟩ ∈ R
if and only if

there exists a ground high-level action sequence α⃗
such that Ml, v[s/sl] |= Do(m(α⃗), S0, s)
and sh = do(α⃗, S0)

Mh .

We want to show thatR is anm-simulation relation between
Mh and Ml, i.e. if ⟨sh, sl⟩ ∈ R, then it satisfies the two
conditions form-simulation in Definition 6. Both conditions
can be proven by induction on n, the number of actions in
sh, using Lemma 7.

Then, one can verify that one has a temporally lifted abstrac-
tion using the following theorem:
Theorem 10. Suppose that we have a HL NDBAT Dh, a
model Mh of Dh, a set of HL LTL trace constraints Ψ, a LL
NDBAT Dl, and a refinement mapping m. If

(a) Dh
S0

is a complete theory, i.e. the initial state is com-
pletely specified,

(b) Dl
S0

∪ Dl
ca ∪ Dl

coa |= m(ϕ), for all ϕ ∈ Dh
S0

,
(c) for all high-level action sequences α⃗,

Dl ∪ C |= ∀s.Do(ms(α⃗), S0, s) ⊃∧
Ai∈Ah ∀x⃗.(∃s′Do(ms(Ai(x⃗)), s, s

′)) ⊃
mf (ϕ

Poss
Ai

(x⃗))[s]

(d) for all high-level action sequences α⃗,

Dl ∪ C |= ∀s.Do(ms(α⃗), S0, s) ⊃∧
Ai∈Ah ∀x⃗, s′.(Do(ms(Ai(x⃗)), s, s

′) ⊃∧
Fi∈Fh ∀y⃗(mf (ϕ

ssa
Fi,Ai

(y⃗, x⃗))[s] ≡ mf (Fi(y⃗))[s
′]))

(e) for every high-level LTL trace constraint ψ ∈ Ψ,
Mh |= ∃ph.Starts(ph, S0h) ∧Holds(ψ, ph) and
Dl |= ∀pl.Starts(pl, S0l) ⊃ Holds(mt(ψ), pl),

then (Dh,Mh,Ψ) is a temporally lifted abstraction of Dl

wrt m.

Proof. (a) and (b) imply that for every model Ml of Dl,
SMh
0 ≃Mh,Ml

m SMl
0 . Together with (c) and (d), this implies

by Lemma 9 that for every model Ml of Dl, Mh ∼←m Ml.
The result then follows from (e) and the definition of tempo-
rally lifted abstraction.

Example (Minimum in a List). To illustrate our frame-
work, taking inspiration from the work done by (B20), we
use common programming problems and data structures. As
a first example, we consider the task of finding the minimum
value in a singly-linked list. NDBAT Dsll

l is the LL action
theory that describes the operations that can be performed
and how they affect the predicates representing lists. In it,
we mainly use two actions and two fluents.3 The actions

3The LL theory provided here is not detailed for the sake of ac-
cessibility, but it is easy to fully formalize data structure behavior.

are nextLL, which moves a cursor that scans the nodes of
the list, and updateLL, which writes the value of the cur-
rent pointed node into a dedicated register. Additionally, we
have a no op action, with no preconditions and no effects.
Note that at the LL, we have complete information and de-
terministic actions, thus we have only one possible environ-
ment reaction Success for each action. The fluents will be
pos(s), whose value represents the position of the current
node within the list, and cmp(s), which represents whether
the current node contains a lower value than the register.
Specifying action precondition axioms and successor state
axioms for Dsll

l is straightforward.
At the HL, we have a propositional theory with non-

deterministic actions that abstracts over the concrete level
and loses some information. Specifically, we don’t know
the length of the list or the values stored in each node.
NDBAT Dsll

h represents the HL domain with two fluents:
hasNext(situation), indicating whether the cursor points
to the last node of the list, and lowerThan(situation), in-
dicating whether the value of the node pointed at by the cur-
sor is lower than the value stored in the register. Note that,
if we want to perform LTL synthesis to solve the task, we
need both fluents and actions to be propositional (apart from
the situation argument). The actions used for our task will be
nextHL, which moves the cursor and performs the compar-
ison between the node and register values, and updateHL,
which updates the register’s value to the node’s. In every HL
theory, we also introduce the action stop, used in infinite
paths when the goal is already reached.

The action precondition axioms in Dsll
h are:

Possag(nextHL, s)
.
= hasNext(s)

Possag(updateHL, s)
.
= True

Possag(stop, s)
.
= True

Poss(nextHL(r), s) ≡
Possag(nextHL, s) ∧ (r = LT NE ∨
r = GEQ NE ∨ r = LT E ∨ r = GEQ E)

Poss(updateHL(r), s) ≡
Possag(updateHL, s) ∧ r = SuccessHLU

Poss(stop(r), s) ≡ Possag(stop, s) ∧ r = SuccessHS

Since we have no knowledge of the node components of
the list at the HL, we obtain the necessary information via
the environment reactions. In particular, the action nextHL

gathers environment reactions on whether the successor
node’s value is lower than the register’s (LT stands for
”lower than”; GEQ stands for ”greater than or equal to”)
and on reaching the end of the list (NE stands for ”not end”;
E stands for ”end”). Thus we have four possible reactions to
cover all the possible cases. The SSAs are straightforward:

hasNext(do(a, s)) ≡
a = nextHL(LT NE) ∨ a = nextHL(GEQ NE) ∨
hasNext(s) ∧ a ̸= nextHL(LT E) ∧
a ̸= nextHL(GEQ E)

lowerThan(do(a, s)) ≡
a = nextHL(LT NE) ∨ a = nextHL(LT E) ∨
lowerThan(s) ∧ a ̸= nextHL(GEQ NE) ∧
a ̸= nextHL(GEQ E) ∧
a ̸= updateHL(SuccessHLU)

We specify the relationship between the HL and LL ND-
BATs through the following refinement mapping msll:

ma(nextHL) = nextLL

ma(updateHL) = updateLL

ma(stop) = no op

ms(nextHL(rh)) =
nextLL(SuccessLLN);
if pos < length

if cmp = LT
then rh = LT NE? else rh = GEQ NE? endIf

else
if cmp = LT

then rh = LT E? else rh = GEQ E? endIf
endIf

ms(updateHL(rh)) =
updateLL(SuccessLLU); rh = SuccessHLU?

ms(stop(rh)) = no op(SuccessNO); rh = SuccessS?

mf (hasNext) = pos < length
mf (lowerThan) = (cmp = LT)

To properly deal with trace constraints with a refine-
ment mapping as described in Definition 4, we need to
introduce some additional components to both HL and
LL theories. First we specify how to deal with the pred-
icate Hlc(s) that denotes at the LL when an HL action
has just completed. A simple way to do that is to intro-
duce two LL actions startHLAction and endHLAction
which make Hlc(s) false and true respectively, and place
them at the beginning and at the end of the refine-
ment program of each HL action (e.g., ma(nextHL) =
startHLAction;nextLL; endHLAction). In this way
Constraint 3 is satisfied by construction. We also use an ad-
ditional HL fluent for each action, namely doneNext and
doneUpdate, to indicate the last action executed. The ax-
ioms for these fluents are straightforward. The same can be
done for the LL to make refinements consistent.

Finally, we can consider the HL LTL trace constraint:

(□♢doneNext) → ♢¬hasNext

It specifies that moving repeatedly to the next node of the
list eventually leads to the last one.

Now, we can prove the following propositions:

Proposition 11. NDBAT refinement mapping msll is proper
wrt Dsll

l .

Proposition 12. Let Msll
h be a model of Dsll

h and Ψ the set
of trace constraints. (Dsll

h ,Msll
h ,Ψ) is a temporally lifted

abstraction of Dsll
l wrt msll.

Strategic Reasoning over Abstractions
Now we want to address the problem of synthesis in the
context of temporally lifted abstractions, that is, generating
strategies that achieve given goals at the abstract and con-
crete levels. These strategies are the solutions for the GP
problem defined by the abstraction.

For NDBATs, a strong plan is a strategy for the agent that
guarantees the achievement of a goal no matter how the envi-
ronment reacts. (DL21) formalize this notion for state goals
and finite traces. They define a strategy as a function from
situations to agent actions, i.e. f (s) = A(x⃗) (note that the
value may depend on the entire history). The special agent
action stop (with no effects and preconditions) may be re-
turned when the strategy wants to stop (for a finite strategy).

Here, we extend their definition to handle LTL goals
and LTL trace constraints over infinite paths. We de-
fine AgtCanForceByIf (Goal, Cstr, f, s), meaning that the
agent can force a LTL Goal to hold no matter how the envi-
ronment responds to her actions by following strategy f in
situation s if we assume that the LTL trace/path constraint
Cstr holds, as follows:
AgtCanForceByIf (Goal, Cstr, f, s)

.
=

∀p.Out(p, f, s) ∧Holds(Cstr, p) ⊃ Holds(Goal, p)

where
Out(p, f, s)

.
=

∀a.∀s.OnPath(p, s) ∧OnPath(p, do(a, s)) ⊃
Doag(f(s), s, do(a, s))

Out(p, f, s) means that path p is a possible outcome of the
agent executing strategy f in situation s. Note that if we have
a finite set of constraints, we can simply consider Cstr as
the conjunction of them. We also define:

AgtCanForceIf (Goal, Cstr, s)
.
=

∃f.AgtCanForceByIf (Goal, Cstr, f, s)
Since in (Khan and Lespérance 2016) paths are defined

as infinite sequences of executable situations, we should
also require that the strategy is certainly executable, i.e.,
never prescribes an action that is not executable. It is pos-
sible to capture this by defining co-inductively a predicate
CertainlyExecutable(f, s), meaning that strategy f is cer-
tainly executable in situation s, as follows:

CertainlyExecutable(f, s)
.
=

∃P.[∀s.P (s) ⊃ ...] ∧ P (s)
where ... stands for
[Possag(f(s), s)] ∧ [∀s′.Doag(f(s), s, s′) ⊃ P (s′)]

To include this requirement, we would write:
AgtCanForceByIf (Goal, Cstr, f, s)

.
=

CertainlyExecutable(f, s) ∧ ∀p.Out(p, f, s) ∧
Holds(Cstr, p) ⊃ Holds(Goal, p)

We also need to consider whether the agent is able to ex-
ecute a program to completion, in particular the implemen-
tation of a HL action, no matter how the environment re-
acts. For this, (DL21) introduce AgtCanForceBy(δ, s, f),
meaning that the agent can ensure that it executes program
δ to completion by following strategy f :
AgtCanForceBy(δ, f , s)

.
= ∀P.[. . . ⊃ P (δ, s)]

where . . . stands for
[(f (s) = stop ∧ Final(δ, s)) ⊃ P (δ, s)] ∧
[∃A.∃t⃗.(f (s) = A(⃗t) ̸= stop ∧
∃e.∃δ′.T rans(δ, s, δ′, do(A(⃗t, e), s)) ∧
∀e.(∃δ′.T rans(δ, s, δ′, do(A(⃗t, e), s))) ⊃ ∃δ′.
T rans(δ, s, δ′, do(A(⃗t, e), s)) ∧ P (δ′, do(A(⃗t, e), s))
⊃ P (δ, s)]

Now we can talk about planning with abstractions and
how a plan at the abstract level is related to one at the con-
crete level. As in (BDL23), we impose an additional con-
straint on action implementation which requires that for any
HL agent action that is executable at the LL, the agent has a
strategy to execute it no matter how the environment reacts:
Constraint 13 (Agent Can Always Execute HL actions).
For every HL action A, there exists a LL strategy fA such
that for every HL system action sequence α⃗:

Dl |= ∀s.Do(m(α⃗), S0, s) ⊃
(∀x⃗.∃s′.Doag(ma(A(x⃗)), s, s

′) ⊃
AgtCanForceBy(ma(A(x⃗)), fA, s))

We can also show that if a LTL formula ψ holds on a HL
path ph, then the mapped version of ψ must hold at the LL
on refinements of ph in m-similar models. First, we define:
Definition 14. A LL path pl in Ml is a refinement of a HL
path ph in Mh wrt mapping m iff for every finite HL system
action sequence a⃗h

if Mh |= ∃s.OnPath(ph, s) ∧Do(a⃗h, S0, s)
then Ml |= ∃s.OnPath(pl, s) ∧Do(ms(a⃗h), S0, s)

This means that pl is a refinement of ph if it contains a re-
finement of the infinite action sequence that occurs over ph.
Then we can show that:
Lemma 15. Consider Mh ∼←m Ml for which Constraint 3
holds and an LTL formula ψ. If Mh |= Holds(ψ, ph) and
pl in Ml is a refinement of ph in Mh wrt m, then Ml |=
Holds(mt(ψ), pl).

Proof. Consider a given HL system action sequence a⃗h.
Since Mh ∼←m Ml, we know that every time an action from
a⃗h is completed both at the HL and (refined) at the LL,
the paths ph and pl have m-similar situations. Since Mh |=
Holds(ψ, ph), we can show that Ml |= Holds(m(ψ), pl),
i.e. the refinement of ψ holds in path pl, by induction on the
structure of ψ using Definition 1.

Then, we can prove our main result, that is, given a tempo-
rally lifted abstraction, if the agent has a strategy to achieve
a LTL goal assuming some LTL constraints at the high level,
then there exists a refinement of the HL strategy that ensures
it achieves the refinement of the goal at the low level:
Theorem 16. Let (Dh,Mh, Cstr) be a temporally lifted ab-
straction of Dl wrt refinement mapping m s.t. Constraints 3
and 13 hold, and Goal be an LTL goal. Then we have that:

if Mh |= AgtCanForceIf (Goal, Cstr, S0),
then there exists a LL strategy fl such that
Dl |= AgtCanForceByIf (mt(Goal),True, fl, S0)

Proof. Since Mh |= AgtCanForceIf (Goal, Cstr, S0),
it follows that there is a HL strategy fh such that
Mh |= AgtCanForceByIf (Goal, Cstr, fh, S0). We have
that (Dh,Mh, Cstr) is a temporally lifted abstraction of Dl

wrt refinement mappingm. LetMl be a model of Dl. By the
definition of temporally lifted abstraction, Mh ∼←m Ml.

By Constraint 13, for every HL action A, there
exists a LL strategy fA such that for every HL

system action sequence α⃗, we have Dl ∪ C |=
∀s.Do(ma(α⃗), S0, s) ⊃ (∀x⃗.∃s′.Doag(ma(A(x⃗)), s, s

′) ⊃
AgtCanForceBy(ma(A(x⃗)), fA, s)).

Given the HL strategy fh, we can define a correspond-
ing LL strategy fl as follows: fl(sl) = ffh(sh)(sl) where
sh ∼Mh,Ml,←

m s′l, s
′
l ≤ sl and for every s′′l such that

s′l < s′′l ≤ sl, it is not the case that sh ∼Mh,Ml,←
m s′′l (sh is

the HL situation that is similar to the latest predecessor of sl
that has such a similar situation at the HL).

Since Mh |= AgtCanForceByIf (Goal, Cstr, fh, S0),
every path ph produced by fh in Mh that satisfies Cstr
also satisfies Goal. Since Mh ∼←m Ml, for any path pl
such that Ml |= Out(pl, fl, S0), pl is a refinement of a
path ph in Mh, i.e. it contains a refinement of the infinite
action sequence that occurs over ph. Then the thesis fol-
lows by the fact thatHolds(Cstr, p) ⊃ Holds(Goal, p)) ≡
Holds(¬Cstr ∨Goal, p) using Lemma 15.

Let GoalLL be an additional LL LTL goal. We say that
a strategy fl is a solution with respect to GoalLL if Dl |=
AgtCanForceByIf (GoalLL, T rue, fl, S0). It is possible to
show that the LL strategy fl obtained by Theorem 16 is a
solution for a GP problem if

Dl |= ∀pl.Starts(pl, S0) ⊃
[Holds(mt(GoalHL), pl) ⊃ Holds(GoalLL, pl)]

Example Cont. Continuing with our running example,
let’s discuss the HL and LL strategies for finding the min-
imum value in a list. First, we can prove that:
Proposition 17. NDBAT Dsll

h and Dsll
l and mapping msll

satisfy constraint 13.

The HL LTL goal constraints that must be satisfied are:

♢□¬hasNext
□(lowerThan↔ ⃝doneUpdate)

The first says that the list must be scanned till the end, while
the second says that the value of the register must be updated
iff the pointed node has a lower value than the register.

A HL strategy that guarantees satisfying these goals is:

fh(s) =

updateHL if lowerThan
nextHL if ¬lowerThan ∧ hasNext
stop otherwise

This strategy prescribes updating the value of the register
whenever the node has a lower value and moving the cursor
when it is not at the end of the list. As stated before, since we
have a propositional HL specification, we can write it in LTL
and rely on LTL synthesis engines to automatically derive
this strategy (this requires translating the HL specification
to LTL). Figure 1 shows the controller obtained by using
the engine Strix (Meyer, Sickert, and Luttenberger 2018), as
done by (B20). It is consistent with fh.

The strategy at the LL can be refined as follows:

fl(s) =

updateLL if cmp = LT
nextLL if cmp = GEQ ∧ pos < length

no op otherwise

Figure 1: Controller for finding the minimum in a list.

We can handle more complex data structure programming
problems (graph traversal, binary tree traversal, sorting of
arrays, ...) and GP problems (maze solving, swamp crossing,
...) in a similar way; see the extended version for additional
detailed examples. As shown in (B20), this approach scales
well in terms of this level of complexity, as the LTL formulas
needed for these problems remains simple and compact.

Let Mh be a model of Dsll
h , Goal the conjunction of HL

LTL goal constraints and Cstr the conjunction of HL LTL
trace constraints. We can use Theorem 16 to show that:

Mh |= AgtCanForceByIf (Goal, Cstr, fh, S0)
and Dl |= AgtCanForceBy(mt(Goal),True, fl, S0)

At the LL, a GoalLL can be specified to require that the list
does not change and that the register contains the minimum
value. It is easy to see that fl is a solution forGoalLL and for
every LL path, if mt(Goal) holds then GoalLL also holds.

Discussion
In this paper, we have presented a synthesis-based frame-
work to solve a GP problem by using the nondeterministic
situation calculus and LTL synthesis. Our methodology in-
volves the following main steps:

1. Formalize the concrete planning problem instances in the
situation calculus - this amounts to writing a specifica-
tion for the domain of interest, and is straightforward.

2. Specify a propositional temporally lifted abstraction as
a HL NDBAT - this abstracts over some details and in-
cludes nondeterministic actions; some LTL trace con-
straints will also be introduced to capture restrictions on
the possible histories; obtaining the HL NDBAT is simi-
lar to the previous step and, in many cases, we can reuse
(part of) the specification of one GP task for other similar
tasks (i.e., involving the same data structure).

3. Write the LTL goals - this step is application-dependent.
4. Run a LTL synthesis engine on the HL abstraction - this

automatically derives a HL strategy to reach the goals;
notice that our HL propositional abstraction can always
be interpreted as an LTL specification.

5. Translate the HL strategy to a LL program - this step can
be handled simply by using the refinement mapping.

This methodology yields provably correct solutions with
strong formal guarantees. Our framework requires the mod-
eler to provide the specifications and the mapping. However,
there is no need to generate the entire situation calculus and
LTL specifications from scratch. Instead, one could build a

library of specifications and reuse them in a modular way.
This means that the modeler can just specify her problem
in terms of HL trace and goal constraints, exploiting this li-
brary, and then run the automatic synthesis engine.

Our work provides a general-purpose framework for GP
problems. We have illustrated its use in the context of pro-
gram synthesis, since it has long been a dream applica-
tion that could revolutionize software development. As men-
tioned earlier, (B20) also addresses program synthesis, but
our work goes significantly beyond theirs. They assume that
every planning instance in a GP problem is a finite-state de-
terministic classical planning problem and that the set of ac-
tions at the abstract and concrete levels are the same. But
how the set of planning instances in a GP problem is speci-
fied and how one proves that the temporal assumptions and
goal constraints are sound is left open. Furthermore, they fo-
cus only on tasks involving data structures. In our situation
calculus-based framework, the GP problem is specified for-
mally by a basic action theory and the planning instances
are models of this theory, which need not be finite-state and
can refer to data. The abstract actions can be implemented
by programs at the concrete level and we notably ensure the
correctness of synthesized HL programs for the LL. One can
use situation calculus reasoning techniques to show that the
LTL trace assumptions and goals in our temporally lifted ab-
stractions are satisfied. We also provide a way to prove that
one has a temporally lifted abstraction.

Our approach also differs from (BDL23) as we address
GP tasks while also handling LTL constraints. At the same
time, we are less demanding as we rely on simulation rather
than bisimulation. Furthermore, we show a way to exploit
LTL synthesis engines starting from situation calculus theo-
ries. It is worth noting that the GP problem in a first-order
(FO) setting is highly general and inherently undecidable,
being Turing complete (Lin and Levesque 1998). Neverthe-
less, we provide a methodology to generate provably cor-
rect plans. In contrast, traditional synthesis in propositional
planning is known to be decidable and, for finite traces, also
scalable à la model checking. However, these results do not
generalize easily to a FO state setting.

The work of (Cui, Liu, and Luo 2021; Cui, Kuang, and
Liu 2023) is also related to ours. They use the situation cal-
culus with FO state and they address GP, but their approach
to the problem achieves only partial correctness, since their
notion of a strong solution guarantees achieving the goal
only if the plan does not block. This is a significant limi-
tation. Instead, we handle full LTL specifications, including
termination properties guaranteeing total correctness. Addi-
tionally, our formulation is simpler and more intuitive, as
they do not use the nondeterministic situation calculus and
require both m-simulation and m-back-simulation between
models of the theories. Finally, their work focuses on QNP
abstractions, which limits its applicability.

Acknowledgments
This work has been partially supported by the ERC Ad-
vanced Grant WhiteMech (No. 834228), the PRIN project
RIPER (No. 20203FFYLK), the PNRR MUR project FAIR
(No. PE0000013), the Italian National Ph.D. on Artificial

Intelligence at Sapienza University of Rome, the National
Science and Engineering Research Council of Canada, and
York University.

References
Abadi, M.; Lamport, L.; and Wolper, P. 1989. Realizable and
Unrealizable Specifications of Reactive Systems. In ICALP,
volume 372 of Lecture Notes in Computer Science, 1–17.
Springer.
Aminof, B.; De Giacomo, G.; Murano, A.; and Rubin, S.
2019. Planning under LTL Environment Specifications. In
ICAPS, 31–39.
Banihashemi, B.; De Giacomo, G.; and Lespérance, Y. 2017.
Abstraction in Situation Calculus Action Theories. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California,
USA, 1048–1055. AAAI Press.
Banihashemi, B.; De Giacomo, G.; and Lespérance, Y. 2023.
Abstraction of Nondeterministic Situation Calculus Action
Theories. In Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI
2023, 19th-25th August 2023, Macao, SAR, China, 3112–
3122.
Belle, V.; and Levesque, H. J. 2016. Foundations for Gener-
alized Planning in Unbounded Stochastic Domains. In KR,
380–389.
Bonet, B.; De Giacomo, G.; Geffner, H.; Patrizi, F.; and Ru-
bin, S. 2020. High-level programming via generalized plan-
ning and LTL synthesis. In Proceedings of the International
Conference on Principles of Knowledge Representation and
Reasoning, volume 17, 152–161.
Bonet, B.; De Giacomo, G.; Geffner, H.; and Rubin, S.
2017. Generalized planning: non-deterministic abstractions
and trajectory constraints. In IJCAI, 873–879.
Bonet, B.; and Geffner, H. 2015. Policies that Generalize:
Solving Many Planning Problems with the Same Policy. In
IJCAI, volume 15, 2798–2804.
Church, A. 1963. Logic, arithmetics, and automata. In Proc.
Int. Congress of Mathematicians, 1962.
Cui, Z.; Kuang, W.; and Liu, Y. 2023. Automatic verification
for soundness of bounded QNP abstractions for generalized
planning. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, 3149–3157.
Cui, Z.; Liu, Y.; and Luo, K. 2021. A Uniform Abstraction
Framework for Generalized Planning. In IJCAI, 1837–1844.
De Giacomo, G.; and Lespérance, Y. 2021. The Nondeter-
ministic Situation Calculus. In Bienvenu, M.; Lakemeyer,
G.; and Erdem, E., eds., Proceedings of the 18th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, KR 2021, Online event, November 3-12,
2021, 216–226.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence, 121(1-2): 109–
169.

De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012. On
supervising agents in situation-determined ConGolog. In In-
ternational Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2012, Valencia, Spain, June 4-8, 2012
(3 Volumes), 1031–1038. IFAAMAS.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010.
Situation Calculus Based Programs for Representing and
Reasoning about Game Structures. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Twelfth International Conference, KR 2010, Toronto, On-
tario, Canada, May 9-13, 2010. AAAI Press.
De Giacomo, G.; Murano, A.; Rubin, S.; Di Stasio, A.; et al.
2016. Imperfect-Information Games and Generalized Plan-
ning. In IJCAI, 1037–1043.
Green, C. C. 1969. Application of Theorem Proving to Prob-
lem Solving. In IJCAI, 219–240.
Hu, Y.; and De Giacomo, G. 2011. Generalized planning:
Synthesizing plans that work for multiple environments. In
IJCAI, 918–923.
Hu, Y.; and Levesque, H. J. 2010. A correctness result
for reasoning about one-dimensional planning problems.
In Twelfth International Conference on the Principles of
Knowledge Representation and Reasoning.
Khan, S. M.; and Lespérance, Y. 2016. Infinite Paths in
the Situation Calculus: Axiomatization and Properties. In
Baral, C.; Delgrande, J. P.; and Wolter, F., eds., Principles
of Knowledge Representation and Reasoning: Proceedings
of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016, 565–568.
Lespérance, Y.; Giacomo, G. D.; Rostamigiv, M.; and Khan,
S. M. 2024. Abstraction of Situation Calculus Concurrent
Game Structures. In Proceedings of the AAAI Conference
on Artificial Intelligence, AAAI 2024, 10624–10634.
Lin, F.; and Levesque, H. J. 1998. What robots can do: robot
programs and effective achievability. Artificial Intelligence,
101(1-2): 201–226.
McCarthy, J.; and Hayes, P. J. 1969. Some Philosophi-
cal Problems From the Standpoint of Artificial Intelligence.
Machine Intelligence, 4: 463–502.
Meyer, P. J.; Sickert, S.; and Luttenberger, M. 2018. Strix:
Explicit Reactive Synthesis Strikes Back! In CAV (1), vol-
ume 10981 of Lecture Notes in Computer Science, 578–586.
Springer.
Milner, R. 1971. An Algebraic Definition of Simulation
Between Programs. In Proceedings of the 2nd Interna-
tional Joint Conference on Artificial Intelligence. London,
UK, September 1-3, 1971, 481–489. William Kaufmann.
Milner, R. 1989. Communication and concurrency. PHI
Series in computer science. Prentice Hall. ISBN 978-0-13-
115007-2.
Pnueli, A. 1977. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer Science
(sfcs 1977), 46–57. ieee.
Pnueli, A.; and Rosner, R. 1989. On the synthesis of a reac-
tive module. In Proceedings of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, 179–190.

Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In
AAAI, 991–997.
Waldinger, R. J.; and Lee, R. C. T. 1969. PROW: A Step
Toward Automatic Program Writing. In IJCAI, 241–252.

