
ITEC 1630

Yves Lespérance

Lecture Notes

Week 1 — Review of Implementing Classes

Recommended Readings:

Horstmann Ch. 2-4 & 6-9, especially 2, 3 & 9

Defining a Class — A Very Simple E.g.

// file Person.java

public class Person
{

// constructor methods

public Person()
{

name = "UNKNOWN";
age = 0;

}

public Person(String n, int a)
{

name = n;
age = a;

}

// instance methods

public void setNameAndAge(String n, int a)
{

name = n;
age = a;

}

1

public void setName(String name)
{

this.name = name;
}

public void setAge(int n)
{

age = n;
}

public void incrementAge()
{

age = age + 1;
}

public String getName()
{

return name;
}

public int getAge()
{

return age;
}

2

// instance variables/attributes

private String name;
private int age;

}// end class Person

3

// file TestPerson.java

public class TestPerson
{ public static void main(String[] args)

{
Person p1 = new Person("John", 21);
System.out.println("p1’s name is: " + p1.getName());
System.out.println("p1’s age is: " + p1.getAge());
p1.incrementAge();
System.out.println("p1’s age is: " + p1.getAge());
p1.setAge(18);
System.out.println("p1’s age is: " + p1.getAge());

}
}

zebra 43 % java TestPerson
p1’s name is: John
p1’s age is: 21
p1’s age is: 22
p1’s age is: 18
zebra 44 %

4

Elements of a Class Definition

A class definition may include the following:

• instance methods,

• constructors,

• instance variables/attributes/fields,

• class/static methods,

• class/static variables/constants.

5

Defining Methods

When you define a method, you take the steps required to solve a

subproblem and give them a name. Afterwards, the method can be
called without knowing how it is implemented. This is called procedural
abstraction.

A method definition specifies:

• the name of the method,

• the name and types of parameters it takes,

• the type of result it returns,

• its visibility, i.e. public, private, etc.

• whether it is an instance or class (static) method,

• the steps required to execute it — the body of the method.

6

Instance Variables/Attributes

For each piece of information that needs to be maintained about the in-

stances of a class, you need to define an instance variable/attribute/field
in the class, e.g.

public class Person
{

// methods
...
// instance variables/attributes

private String name;
private int age;

}// end class Person

If an attribute is public, users can access and change its value di-

rectly. But if the attribute is private, users can only access it indi-

rectly by calling methods. E.g.

7

public class Car
{

...

private String model;
public int mileage;

}

...

Car aCar = new Car();
aCar.mileage = 23000; // ok
System.out.println(aCar.mileage); // ok
aCar.model = "VW Beetle"; // error
System.out.println(aCar.model); // error

These access restrictions only apply to code outside the class. The

methods of the class always have access to the class’s attributes,

e.g. setAge can change the value of the age attribute in a Person

even though it is private.

Instance attributes are usually private. In this way, the class de-

signer retains the right to change the way the data in the attributes is

represented.

8

Returning Results from Methods

A method’s header specifies whether or not it returns a result, and
if it does, what the result’s type is. When no result is returned, the

method’s result type is declared to be void.

After a method has been called and its body has finished executing, the

execution of the program continues from the point where the method

was called. If a method is to return a value to the place where it was

called, it must terminate by executing the statement “return expres-
sion;”, e.g. return age;.

Then, the expression is evaluated and its value is passed back to the

point of the call as the method terminates.

Methods that return a value are often called functions and methods
that do not are often called procedures.

9

Parameters

When we call a method, we often want to pass some data to it; the

method can then use the data, save it in an attribute, or examine it to

decide what actions to take. We do this by having the method take

parameters. E.g. we need to pass the person’s age to the setAge

method; the age can be any value we want; the method uses the pa-
rameter n for this.

Parameters are declared in the header of the method definition. Both

the parameter name and type are given, e.g.

public void setAge(int n)

{

age = n;

}

public void setNameAndAge(String n, int a)

{...}

10

When you call a method, you supply an argument or actual parameter
for each formal parameter in the method definition header. Arguments
are associated to parameters by the order in which they appear. The

number and type of arguments must match that of the parameters.

E.g.

Person p1 = new Person();

int uAge = 44;

p1.setAge(uAge);

p1.setNameAndAge("Yves",44);

When a method is called, first the parameters are passed, and then
the body of the method is executed.

11

Constructors

Constructors have the same name as their class. Their job is ade-

quately initializing the new object’s attributes.

A class can have several constructor methods. This is an example of

“overloading”, i.e. having several methods with the same name in one

class. The overloaded methods must have a different number or types

of arguments. For e.g., the class Person has 2 constructors:

1. a 2 arguments constructor that initializes the name and age of the

new object to the values supplied, e.g.

Person p1 = new Person("Yves", 44);

2. a 0 arguments constructor that initializes the attributes to default

values, e.g.

Person p1 = new Person();

12

In defining constructors, the result type need not be specified as it is

always the constructor’s class.

If you don’t define any constructors, a 0 arguments constructor is au-

tomatically provided; it initializes the numeric attributes to 0, booleans

to false, and objects to null.

13

About this

Within a class definition, this without parentheses always refers to the

current instance of the class. It can be used to refer to the instance’s

attributes in a method that has a variable or parameter with the same

name, e.g.

public class Person
{

...
public void setName(String name)
{

this.name = name;
}
...
private String name;
private int age;

}// end class Person

Here the parameter name defined in the method hides the attribute

name defined in the class; but you can refer to the latter using this.name.

this(...) is a call to the class’s constructor; see Horstmann p. 94.

14

E.g. Implementing the CreditCard Class

// file CreditCard.java

public class CreditCard
{

// constructors

public CreditCard(int no, String aName, double aLimit)
{ assert 0 < no && no <= 999999 && aLimit > 0; // precondition

number = String.format("%06d", no) + "-";
int digitSum = 0;
while(no > 0)
{ digitSum = digitSum + no % 10;

no = no / 10;
}
number = number + (MOD - digitSum % MOD);
name = aName;
limit = aLimit;
balance = 0;

}

public CreditCard(int no, String aName)
{ this(no, aName, DEFAULT_LIMIT);
}

15

// instance methods - accessors

public double getBalance()
{ return balance;
}

public double getLimit()
{ return limit;
}

public String getName()
{ return name;
}

public String getNumber()
{ return number;
}

16

// mutators

public boolean setLimit(double newLimit)
{ if(newLimit >= 0 && newLimit >= balance)

{ limit = newLimit;
return true;

}
else
{ return false;
}

}

// specialized methods

public boolean charge(double amount)
{ assert amount >= 0; // precondition

if(balance+amount > limit)
{ return false;
}
else
{ balance = balance + amount;

return true;
}

}

public void credit(double amount)
{ assert amount >= 0; // precondition

balance = balance - amount;

17

}

public void pay(double amount)
{ assert amount >= 0; // precondition

balance = balance - amount;
}

// standard methods

public boolean equals(Object anObject)
{ return (anObject instanceof CreditCard &&

number.equals(((CreditCard)anObject).number));
}

public String toString()
{ String res = "CARD [";

res = res + "NO=" + number;
res = res + ", BALANCE=";
res = res + String.format("%.2f", balance) + "]";
return res;

}

18

// instance variables/attributes/fields

private String number;
private String name;
private double limit;
private double balance;

// class/static variables/attributes/fields

public static double DEFAULT_LIMIT = 1000.0;
public static int MIN_NAME_LENGTH = 3;
public static int MOD = 9;
public static int SEQUENCE_NUMBER_LENGTH = 6;

}// end class CreditCard

19

Parameter Passing — The Details

As we saw earlier, parameter passing proceeds as follows:

1. the arguments are evaluated,

2. parameter variables are created,

3. the values of the arguments are copied into the parameter vari-

ables.

E.g. in the method call c1.charge(amt), the value of the argument

amt, say 20.0 is first obtained, then a new formal parameter variable

amount is created, and then the value of the amt argument, 20.0, is

copied into this parameter variable. After this has been done, the body

of the charge method is executed.

Same when the argument is an expression, e.g.

c1.charge(c1.getLimit() - c1.getBalance())

20

If method has several parameters, they are all passed in this way, e.g.

CreditCard c1 = new CreditCard(703,"John",5000.0).

Since the method is working with a copy of the argument, any changes

made to the parameter variable don’t affect the argument. So you

cannot use parameters of primitive types to return values in Java. E.g.

public class App
{ public static void main(String[] args)

{ int n = 99;
System.out.println("in main n = " + n);
EgCl e = new EgCl();
e.increment(n);
System.out.println("in main n = " + n);

}
}

public class EgCl
{ public void increment(int m)

{ System.out.println("in increment m = " + m);
m = m + 1;
System.out.println("in increment m = " + m);

}
}

21

The mode of parameter passing used by Java is named call by value
because it is the value of the argument which is passed to the formal

parameter.

When the type of a parameter is an object type, only the reference

in the argument gets copied in the parameter, and both the argument

and parameter refer to the same object. So the method is working on

the original object, and any change to its attributes persists when the

method returns. E.g.

22

public class App
{ public static void main(String[] args)

{ CreditCard c = new CreditCard(703,"John");
System.out.println("in main c = " + c.toString());
EgCl e = new EgCl();
e.increment(c);
System.out.println("in main c = " + c.toString());

}
}

public class EgCl
{ public void increment(CreditCard ci)

{ System.out.println("in increment ci = " + ci.toString());
ci.charge(100.0);
System.out.println("in increment ci = " + ci.toString());

}
}

23

So, object parameters can be used by a method to send results back

to the caller just as well as to receive data from the caller.

In languages like C++ and Pascal, there is a parameter passing mode

named call by reference where the parameter receives a reference

to the argument. The fact that object-type variables always contain

references in Java makes object parameters behave somewhat as if

they had been passed using call by reference.

24

But unlike true call by reference, changing which object the parameter

is referring to does not change which object the argument is referring

to. E.g.

public class App
{ public static void main(String[] args)

{ CreditCard c = new CreditCard(703,"John");
System.out.println("in main c = " + c.toString());
EgCl e = new EgCl();
e.makeNewCard(c);
System.out.println("in main c = " + c.toString());

}
}

public class EgCl
{ public void makeNewCard(CreditCard cm)

{ cm = new CreditCard(704,"Mary");
System.out.println("in makeNewCard cm = " + cm.toString());

}
}

25

Control Flow and the Execution Stack

public class App
{ public static void main(String[] args)

{ int n = 1;
EgCl e = new EgCl();
e.m1(n);

}

}

public class EgCl
public void m1(int n1)
{ n1 = n1 + 1;

m2(n1);
}

private void m2(int n2)
{ n2 = n2 + 1;

System.out.println(n2);
}

}

26

When a method, say main, calls a method m1 (on e), the execution of

main is suspended and m1 starts executing. Only when the execution

of m1 terminates will the execution of main resume. If m1 calls a third

method m2, m1 is also suspended until m2 terminates. The chain of

method calls can get arbitrarily long.

Since the first method to be called is always the last to resume, the

Java interpreter uses a stack to keep track of control flow in a program

— the execution stack. We will see that this is important when en-
counter methods that call themselves, i.e. recursion. The stack is also

used to store a method’s local variables.

27

Scope of Variables

The scope of a variable is the part of the program where it is visible,
where it can be accessed. The variables declared inside a method,

as well as its parameters, are said to be local to the method. One can
only refer to them in the method or code block where they are declared.

E.g.

28

public class Eg
{ public int meth1(int v2)

{ int v3 = 3;
System.out.println(v3); // ok
System.out.println(v2); // ok
System.out.println(v1); // ok
meth2(v3);

}
private void meth2(int v4)
{ int v5 = 5;

System.out.println(v5); // ok
System.out.println(v4); // ok
System.out.println(v1); // ok
System.out.println(v3); // error
System.out.println(v2); // error
while(...)
{ int v6 = 6;

System.out.println(v6); // ok
...

}
System.out.println(v6); // error

}
private int v1 = 1;

}

29

Access Control Revisited

For attributes and methods, one specifies where they are visible using

access control modifiers such as public and private.

public means that the attribute or method is accessible everywhere.

Normally we use this only for methods and class constants that are

made available to users of the class.

private means that the attribute or method is only accessible inside

the class where it is declared. Normally we use this for all attributes

and for methods that are defined by the implementor for his own use

and are not provided to users of the class.

Besides these, there are other access control modifiers such as protected

(accessible in subclasses and other classes in the same package) and

the default/no modifier (accessible other classes in the same package),

which we will discuss later.

30

Class Methods

Suppose we want to add a method isLegal(int no) to the CreditCard

class to allow users to check whether the passed number would be a

legal credit card number (before calling the constructor):

public static boolean isLegal(int no)

{ return (0 < no && no <= 999999);

}

This cannot be an instance method because there is no instance yet.

We can make it a class method. It would belong to the class, not to
one of its instances. The method must be called on the class, e.g.

if (CreditCard.isLegal(703)) ...

In Java, class methods (and attributes) are declared static.

31

Similarly, for the class Person discussed earlier, we could define a

class method that returned the maximum legal age:

public static int getUpperAgeLimit()

{ return 150;

}

To use it, you write for e.g.

if (a > Person.getUpperAgeLimit())

32

Class Attributes

Suppose we wanted to add a counter to the class Person to keep

track of how many Person objects have been created. This counter

would have to be a class attribute/variable.

To declare it, we would add

private static int count = 0;

to the class definition. We would also change the constructors to in-

crement the counter, e.g.

public Person()

{ ... // as before

count++;

}

33

And we would add a method:
public static int getCount()
{ return count;
}

Then, we could use these as follows:

System.out.println("Person count is "
+ Person.getCount());

Person p1 = new Person();
System.out.println("Person count is "

+ Person.getCount());
Person p2 = new Person();
System.out.println("Person count is "

+ Person.getCount());

34

Class Constants

A class may also define some constants for its users. For e.g., the
class Stock defines the constant TSE URL, to store the URL used by

the refresh method to establish a connection with the TSE. To declare

TSE URL for e.g., we would write

public static final String TSE_URL =

"http://tse.com";

to the Stock class definition.

These are constant attributes of the class, not of its instances. You
must refer to them using the class name, e.g.

System.out.println(Stock.TSE URL);

35

Why Define a Class?

There are two cases where defining a class is useful.

1. Your program needs to work with some kind of data, e.g. Persons.

You want to group together the data and the operations that manipu-
late it.

You also want to hide the details of how the data is represented and
how the operations are implemented from users of the class. The class

will make some operations public, i.e. available to the users, and pro-
vide information on how to use them. This is the class’s interface. The
rest of the class’s definition is private and hidden from users.

When such a class allows many different possible implementations,

one says that the class defines an abstract data type; e.g. stack, list,
binary tree, etc.

36

2. You want to group together a set of related operations in a module,
e.g. the Math class. In this case, class users won’t create instances

of the class. The methods are associated with the class itself. In Java,

they are labeled static.

Here too, the class supplies some public operations to users and pro-
vides information on how to use them in its interface. The rest of its
definition is private.

In both cases, we say that the class encapsulates, i.e. hides, the de-
tails of its definition.

37

javadoc: A Documentation Utility

Important to have good documentation of classes’ APIs.

Can use javadoc utility to help produce this.

You put special comments in the class’s file and then run javadoc on

it to produce an HTML API documentation file.

javadoc comments start with /**. Put one immediately before each

method, non-private field, and before the class itself.

Special tags (must start line):

@param parameter-name description

@return description

@exception fully-qualified-class-name description

etc.

38

Can include other HTML tags e.g. <code>, <it>, etc.

See lab handbook and Horstmann for examples.

javadoc automatically adds links to existing classes.

When designing a class, document API using javadoc before writing

code.

Use normal comments to document class implementation.

39

Steps to Class Implementation

Study API.

Write 1st version of class with fields and methods required by API,

leaving out implementation for now; document using javadoc.

Write test harness that tests every feature of the class.

Identify private attributes and declare them.

Implement constructors, accessors, mutators, standard methods, spe-

cialized methods. Avoid redundancy by delegating and defining private

methods.

Add new test cases as you implement methods. Test methods as early

as possible. Fix bugs and run all tests again (bug fix may introduce

new bugs).

40

