
7 Time, Concurrency, and Processes

So far, we have ignored three fundamental properties of real actions—they occur in time,
they normally have durations, and frequently they occur together, i.e., concurrently. The
situation calculus, as presented to this point, provides no way of representing these features
of actions. Indeed, insofar as actions are currently represented in the situation calculus,
they occur sequentially, and atemporally. This chapter is devoted to expanding the situation
calculus ontology and axiomatization to accommodate a more realistic picture of action
occurrences.

7.1 Concurrency and Instantaneous Actions

Modeling the possibility of concurrent action execution leads to many difficult formal
and conceptual problems. For example, what can one mean by a concurrent action like
{walk(A, B), chewGum}? Intuitively, both actions have durations. By this concurrent ac-
tion, is it meant that both actions have the same duration? That the time segment occupied
by one is entirely contained in that occupied by the other? That their time segments merely
overlap? What if there are three actions and the first overlaps the second, the second over-
laps the third, but the first and third do not overlap; do they all occur concurrently? A
representational device in the situation calculus for overcoming these problems is to con-
ceive of such actions as processes, represented by relational fluents, and to introduce du-
rationless (instantaneous) actions that initiate and terminate these processes. For example,
instead of the monolithic action representation walk(x, y), we might have instantaneous
actions startWalk(x, y) and endWalk(x, y), and the process of walking from x to y,
represented by the relational fluent walking(x, y, s). startWalk(x, y) causes the fluent
walking to become true, endWalk(x, y) causes it to become false. Similarly, we might
represent the chewGum action by the pair of instantaneous actions startChewGum and
endChewGum, and the relational fluent chewingGum(s). It is straightforward to repre-
sent these fluents and instantaneous actions in the situation calculus. For example, here are
the action precondition and successor state axioms for the walking action:

Poss(startWalk(x, y), s) ≡ ¬(∃u, v)walking(u, v, s) ∧ location(s) = x,

Poss(endWalk(x, y), s) ≡ walking(x, y, s),

walking(x, y, do(a, s)) ≡ a = startWalk(x, y) ∨
walking(x, y, s) ∧ a ̸= endWalk(x, y),

location(do(a, s)) = y ≡ (∃x)a = endWalk(x, y) ∨
location(s) = y ∧ ¬(∃x, y′)a = endWalk(x, y′).
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With this device of instantaneous start and end actions in hand, arbitrarily complex
concurrency can be represented. For example,

{startWalk(A, B), startChewGum}, {endChewGum, start Sing},
{endWalk(A, B)}

is the sequence of actions beginning with simultaneously starting to walk and starting to
chew, followed by simultaneously ending to chew and starting to sing, followed by ending
the walk (at which time the singing process is still going on).

7.2 Concurrency via Interleaving

Before focusing on true concurrency, in which two or more actions start and end at ex-
actly the same times, we consider what other forms of concurrency can be realized in the
situation calculus as developed thus far. As we shall see, a surprisingly rich theory of in-
terleaved concurrency can be expressed within the sequential situation calculus, provided
we appeal to instantaneous start and end actions, as in the previous section. In computer
science, concurrency is most often modeled via interleaving. Conceptually, two actions
are interleaved when one of them is the next action to occur after the other, and usually
an interleaving account of such a concurrent occurrence is considered appropriate if the
outcome is independent of the order in which the actions are interleaved.

We can provide interleaved concurrent representations for walking and chewing gum,
such as

do([startWalk(A, B), startChewGum, endChewGum, endWalk(A, B)], S0),

in which the gum-chewing process is initiated after the walking process, and terminated
before the end of the walking process. Or, the gum-chewing can start before the walking,
and terminate before the walking ends:

do([startChewGum, startWalk(A, B), endChewGum, endWalk(A, B)], S0).

In other words, we can represent any overlapping occurrences of walking and chewing
gum, except for exact co-occurrences of any of the instantaneous initiating and terminating
actions. For many applications, this is sufficient. The great advantage is that interleaved
concurrency can be represented in the sequential situation calculus, and no new extensions
of the theory are necessary.

It is important to have a clear picture of exactly what, conceptually, is being modeled by
interleaved concurrency with instantaneous actions like startWalk(x, y) and endChew-
Gum. Since as yet, we have no explicit representation for time, the situation calculus
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axioms capture a purely qualitative notion of time. Sequential action occurrence is the
only temporal concept captured by the axioms; an action occurs before or after another. It
may occur one millisecond or one year before its successor; the axioms are neutral on this
question. So a situation do([A1, A2, . . . , An], S0) must be understood as a world history
in which, after a nondeterministic period of time, A1 occurs, then, after a nondeterministic
period of time, A2 occurs, etc. If, for example, this action sequence was the result of a
Golog robot program execution, then the robot’s action execution system would make the
decision about the exact times at which these actions would be performed sequentially in
the physical world, but the axioms, being neutral on action occurrence times, contribute
nothing to this decision. Later, we shall show how to incorporate time into the situation
calculus, after which one can axiomatically specify the times at which actions are to occur.

7.2.1 Examples of Interleaved Concurrency

Imagine a door with a spring handle. The door can be unlocked by turning the handle,
but the agent must hold the handle down, for if not, the spring loaded mechanism returns
the handle to its locked position. To open the door, an agent must turn the handle, and
hold it down while she pushes on the door. The concurrent handle turning and door push-
ing causes the door to open. Neither action by itself will open the door. This is easy to
do in the situation calculus if we view the action of turning and holding the handle down,
which intuitively has a duration, as a composite of two instantaneous actions, turnHandle
and releaseHandle, whose effects are to make the fluent locked(s) false and true respec-
tively. In the same spirit, we treat the action of pushing on a door, which also intuitively has
a duration, as a composite of two instantaneous actions start Push and end Push, whose
effects are to make the fluent pushing(s) true and false respectively. The appropriate suc-
cessor state axiom for open is:

open(do(a, s)) ≡ pushing(s) ∧ a = turnHandle ∨
¬locked(s) ∧ a = start Push ∨ open(s).

Those for pushing and locked are:

pushing(do(a, s)) ≡ a = start Push ∨ pushing(s) ∧ a ̸= end Push,

locked(do(a, s)) ≡ a = releaseHandle ∨ locked(s) ∧ a ̸= turnHandle.

Another interesting example is the following. Turning on the hot water faucet causes
hot water to run (denoted by the fluent hot (s)); similarly for turning on the cold. Both the
hot and cold water faucets share a common spout, so if only the hot water is running, you
will burn your hand.

Poss(turnonHot, s) ≡ ¬hot (s),
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Poss(turnonCold, s) ≡ ¬cold(s),

Poss(turnoffHot, s) ≡ hot (s),

Poss(turnoffCold, s) ≡ cold(s),

hot (do(a, s)) ≡ a = turnonHot ∨ hot (s) ∧ a ̸= turnoffHot,

cold(do(a, s)) ≡ a = turnonCold ∨ cold(s) ∧ a ̸= turnoffCold.

The following successor state axiom captures the conditions for burning oneself:

burn(do(a, s)) ≡ hot (s)∧a = turnoffCold∨¬cold(s)∧a = turnonHot∨burn(s).

7.2.2 Limitations of Interleaved Concurrency

Despite the wide applicability of interleaved concurrency with instantaneous actions, there
are examples for which true concurrency appears to be more appropriate and convenient.
The standard example that seems not to be representable by an interleaving account—but
see Exercise 4 below—is the scenario of a duel, in which an instantaneous shoot action by
one duelist causes the death of the other. Being alive is a precondition for shooting. If both
duelists shoot simultaneously, both die, whereas, in the absence of true concurrency, only
one death can result from a duel. A more interesting setting where true concurrency seems
appropriate is in the modeling of physical systems, such as a number of objects tracing out
trajectories under Newtonian equations of motion. These equations may predict the simul-
taneous collisions of several objects, and an interleaving axiomatization for predicting and
simulating these occurrences is clumsy and unnatural. Section 7.9 below shows how to
axiomatize such physical systems using true concurrency.

7.3 The Sequential, Temporal Situation Calculus

In this section, we add an explicit representation for time to the sequential situation calcu-
lus. This will allow us to specify the exact times, or a range of times, at which actions in a
world history must occur. For simplicity, and because we remain interested in interleaved
concurrency, we continue to consider instantaneous actions. We want to represent the fact
that a given such action occurs at a particular time. Recall that in the situation calculus, ac-
tions are denoted by first-order terms, like start Meeting(Susan) or bounce(ball, wall).
Our proposal for adding a time dimension to the situation calculus is to add a new tem-
poral argument to all instantaneous actions, denoting the actual time at which that action
occurs. Thus, start Meeting(Susan, t) might be the instantaneous action of Susan start-
ing a meeting at time t , and bounce(ball, wall, 7.3) might be the instantaneous action of
ball bouncing against wall at time 7.3.
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We now investigate how to extend the foundational axioms for the sequential situation
calculus (Section 4.2.2) to accommodate time. These four foundational axioms remain
exactly the same as before; it will be necessary only to add one new axiom to them, and to
introduce two new function symbols into si tcalc.

First, introduce a new function symbol time : action → reals. time(a) denotes the
time of occurrence of action a. This means that in any application involving a particular
action A(x⃗, t), we shall need an axiom specifying the occurrence time of the action A:

time(A(x⃗, t)) = t,

for example, time(start Meeting(person, t)) = t. Next, it will be convenient to have
a new function symbol start : si tuation → reals. start (s) denotes the start time of
situation s. This requires the new foundational axiom:

start (do(a, s)) = time(a). (7.1)

Notice that we do not define the start time of S0; this is arbitrary, and may (or may not)
be specified to be any real number, depending on the application. Notice also that we
are imagining temporal variables to range over the reals, although nothing prevents them
from ranging over the integers, rationals, or anything else on which a binary relation <

is defined. In this connection, we are not providing axioms for the reals (or integers),
but rely instead on the standard interpretation of the reals and their operations (addition,
multiplication, etc.) and relations (<, ≤, etc.).

Next, we need to reconsider the relation executable(s) on situations. Recall that this
was defined to be an abbreviation for a formula that intuitively says that all the actions oc-
curring in the action sequence s can be executed one after the other. Consider the situation

do(bounce(B, W, 4), do(start Meeting(Susan, 6), S0)),

in which the time of the second action precedes that of the first. Intuitively, such an ac-
tion sequence should not be considered possible, and we suitably amend the abbreviation
executable(s) of (4.5):

executable(s)
de f= (∀a, s∗).do(a, s∗) ⊑ s ⊃

Poss(a, s∗) ∧ start (s∗) ≤ time(a).
(7.2)

Now, executable(s) means that all the actions in s are possible, and moreover, the times
of those action occurrences are nondecreasing.

Finally, notice that the constraint start (s∗) ≤ time(a) in abbreviation (7.2) permits
action sequences in which the time of an action may be the same as the time of a preceding
action. For example,

do(end Lunch(Bill, 4), do(start Meeting(Susan, 4), S0)),

might be a perfectly good executable situation. This situation is defined by a sequence of
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two actions, each of which has the same occurrence time. We allow for this possibility
because often an action occurrence serves as an enabling condition for the simultaneous
occurrence of another action. For example, cutting a weighted string at time t enables the
action start Falling(t). Both actions occur at the same time, but conceptually, the falling
event happens “immediately after” the cutting. Accordingly, we want to allow the situation
do(start Falling(t), do(cut String(t), S0)).

The four axioms of !, namely the old foundational axioms for the situation calcu-
lus, together with (7.1) are the foundational axioms for the sequential, temporal situation
calculus.

7.3.1 Concurrent Temporal Processes

With the capacity to explicitly represent time, we can now give an interleaving account for
processes that overlap temporally in arbitrarily complex ways. Figure 7.1 illustrates a pos-
sible time line for instances of three overlapping processes, walking(x, y, s), singing(s),
and chewingGum(s).

l l l l l
0 1 2 3 4

chewingGum(S0)

singing(do(start Sing(0.5), S0))

walking(A, B, do([start Sing(0.5), startWalk(A, B, 0.5))], S0))
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startWalk(A,B,0.5) endWalk(A,B,4)

startSing(0.5) endSing(3.14)

endChewGum(4)

Figure 7.1: Temporal Processes in the Situation Calculus.
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The indicated instances of the singing and walking processes begin together (but the first
initiates “before” the second), and they terminate at different times. The instance of the
chewingGum process was in progress initially (and therefore does not have an initiating
action) and it terminates at the same time as the walking process.

7.4 Sequential, Temporal Golog

With the above axioms and abbreviations for the sequential, temporal situation calculus
in hand, it is easy to modify the Golog semantics and interpreter to accommodate time.
Semantically, we need only change the definition of the Do macro for primitive actions
(Section 6.1) to:

Do(a, s, s′)
de f= Poss(a[s], s) ∧ start (s) ≤ time(a[s]) ∧ s′ = do(a[s], s). (7.3)

Everything else about the definition of Do remains the same. To suitably modify the Golog
interpreter of Section 6.3.1, replace the clause

by

Finally, because of the new predicate, start , taking a situation argument, the earlier
Golog interpreter must be augmented by the clauses:

We can now write sequential, temporal Golog programs. However, to execute such
programs, the Golog interpreter must have a temporal reasoning component. It must, for
example, be able to infer that T1 = T2 when given that T1 ≤ T2 ∧ T2 ≤ T1. While such
a special purpose temporal theorem-prover could be written and included in the Golog
interpreter, this would involve a great deal of effort. To illustrate the use of temporal Golog,
we shall instead rely on a logic programming language with a built-in constraint solving
capability. Specifically, we shall appeal to the ECRC Common Logic Programming
System ECLIPSE 3.5.2, which provides a built-in Simplex algorithm for solving linear
equations and inequalities over the reals. So we shall assume that our Golog program
makes use of linear temporal relations like 2∗ T1 + T2 = 5 and 3∗ T2 −5 ≤ 2∗ T3, and rely
on ECLIPSE to perform the reasoning for us in the temporal domain. ECLIPSE provides a
special syntax for those relations over the reals recognized by its built-in theorem-prover.
These relations are: =, ̸=, ≥, >, ≤, <, which are represented in ECLIPSE by the infix
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$ =, $ <>, $ >=, $ >, $ <=, $ <, respectively. So, in ECLIPSE, the above modification
of the Golog interpreter to include time is:

All other clauses of the earlier interpreter of Section 6.3.1 will work correctly under
ECLIPSE.

7.4.1 Example: A Coffee Delivery Robot

Here, we describe a robot whose task is to deliver coffee in an office environment. The
robot is given a schedule of the preferred coffee periods of every employee, as well as
information about the times it takes to travel between various locations in the office envi-
ronment. The robot can carry just one cup of coffee at a time, and there is a central coffee
machine from which it gets coffee. The robot’s task is to schedule coffee deliveries in such
a way that, if possible, everyone gets coffee during his/her preferred time periods.

Primitive actions:

• pickupCoffee(t). The robot picks up a cup of coffee from the coffee machine at time
t .

• giveCoffee(person, t). The robot gives a cup of coffee to person at time t .

• startGo(loc1, loc2, t). The robot starts to go from location loc1 to loc2 at time t .

• endGo(loc1, loc2, t). The robot ends its process of going from location loc1 to loc2 at
time t .

Fluents:

• robot Location(s). A functional fluent denoting the robot’s location in situation s.

• hasCoffee(person, s). person has a cup of coffee in situation s.

• going(loc1, loc2, s). In situation s, the robot is going from loc1 to loc2.

• holdingCoffee(s). In situation s, the robot is holding a cup of coffee.

Situation-Independent Predicates and Functions:

• wantsCoffee(person, t1, t2). person wants to receive coffee at some point in the
time period [t1, t2].

• off ice(person). Denotes the office inhabited by person.

• travelT ime(loc1, loc2). Denotes the amount of time that the robot takes to travel
between loc1 and loc2.

• C M . A constant denoting the location of the coffee machine.

• Sue, Mary, Bill, Joe. Constants denoting office people.
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Primitive Action Preconditions:

Poss(pickupCoffee(t), s) ≡ ¬holdingCoffee(s) ∧ robot Location(s) = C M,

Poss(giveCoffee(person, t), s) ≡ holdingCoffee(s) ∧
robot Location(s) = off ice(person),

Poss(startGo(loc1, loc2, t), s) ≡ ¬(∃l, l ′)going(l, l ′, s) ∧ loc1 ̸= loc2 ∧
robot Location(s) = loc1,

Poss(endGo(loc1, loc2, t), s) ≡ going(loc1, loc2, s).

Successor State Axioms:

hasCof f ee(person, do(a, s)) ≡ (∃t)a = giveCoffee(person, t) ∨
hasCoffee(person, s),

robot Location(do(a, s)) = loc ≡ (∃t, loc′)a = endGo(loc′, loc, t) ∨
robot Location(s) = loc ∧ ¬(∃t, loc′, loc′′)a = endGo(loc′, loc′′, t),

going(l, l ′, do(a, s)) ≡ (∃t)a = startGo(l, l ′, t) ∨
going(l, l ′, s) ∧ ¬(∃t)a = endGo(l, l ′, t),

holdingCoffee(do(a, s)) ≡ (∃t)a = pickupCoffee(t) ∨
holdingCoffee(s) ∧ ¬(∃person, t)a = giveCoffee(person, t).

Initial Situation:

Unique names axioms stating that the following terms are pairwise unequal:

Sue, Mary, Bill, Joe, C M,

off ice(Sue), off ice(Mary), of f ice(Bill), off ice(Joe).

Initial Fluent values:

robot Location(S0) = C M, ¬(∃l, l ′)going(l, l ′, S0),

¬holdingCoffee(S0), start (S0) = 0, ¬(∃p)hasCoffee(p, S0).

Coffee delivery preferences. The following expresses the fact that all, and only, the tuples
satisfying the wantsCoffee relation are (Sue, 140, 160), . . . , (Joe, 90, 100). In other
words, this relation is definitional.

wantsCoffee(p, t1, t2) ≡
p = Sue ∧ t1 = 140 ∧ t2 = 160 ∨ p = Mary ∧ t1 = 130 ∧ t2 = 170 ∨
p = Bill ∧ t1 = 100 ∧ t2 = 110 ∨ p = Joe ∧ t1 = 90 ∧ t2 = 100.

Robot travel times:

travelT ime(C M, off ice(Sue)) = 15, travelT ime(C M, off ice(Mary)) = 10,
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travelT ime(C M, off ice(Bill)) = 8, travelT ime(C M, off ice(Joe)) = 10.

travelT ime(l, l ′) = travelT ime(l ′, l), travelT ime(l, l) = 0.

Action Occurrence Times:

time(pickupCoffee(t)) = t, time(giveCoffee(person, t)) = t,
time(startGo(loc1, loc2, t)) = t, time(endGo(loc1, loc2, t)) = t.

Golog Procedures:

proc deliverCoffee(t) % Beginning at time t the robot serves coffee to everyone,
% if possible. Else the program fails.

now ≤ t? ;
{[(∀p, t ′, t ′′).wantsCoffee(p, t ′, t ′′) ⊃ hasCoffee(p)]?

|
if robot Location = C M then deliver OneCoffee(t)

else goto(C M, t) ; deliver OneCoffee(now)

endIf } ;
deliverCof f ee(now)

endProc

The above procedure introduces a functional fluent now(s), which is exactly the same as
the fluent start (s). We prefer it here to start because it has a certain mnemonic value, but
like start , it denotes the current time.

proc deliver OneCoffee(t) % Assuming the robot is at the coffee machine,
% it delivers one cup of coffee.

(πp, t1, t2, wait)[{wantsCoffee(p, t1, t2) ∧ ¬hasCoffee(p) ∧ wait ≥ 0 ∧
t1 ≤ t + wait + travelT ime(C M, off ice(p)) ≤ t2}? ;

pickupCoffee(t + wait) ;
goto(off ice(p), now) ;
giveCoffee(p, now)

endProc

proc goto(loc, t) % Beginning at time t the robot goes to loc.
goBetween(robot Location, loc, travelT ime(robot Location, loc), t)

endProc

proc goBetween(loc1, loc2,#, t) % Beginning at time t the robot goes from loc1

% to loc2, taking # time units for the transition.
startGo(loc1, loc2, t) ; endGo(loc1, loc2, t + #)

endProc
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The following sequential, temporal Golog program implements the above specification.

Sequential, Temporal Golog Program for a Coffee Delivery Robot
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One problem with this constraint logic programming approach to coffee delivery is
that the execution of the Golog call do(deliverCoffee(1),s0,S) will not, in general, result
in a fully instantiated sequence of actions S. The actions in that sequence will not have
their occurrence times uniquely determined; rather, these occurrence times will consist
of all feasible solutions to the system of constraints generated by the program execution.
So, to get a fixed schedule of coffee delivery, we must determine one or more of these
feasible solutions. The relation chooseTimes(S) in the above program does just that. It
takes a situation term as its argument. Beginning with the first action in that situation
history, chooseTimes determines the time of that action (which, in general, will be a Prolog
variable since the ECLIPSE constraint solver will not have determined a unique value for
that action’s occurrence time). It then minimizes (via rmin(T)) that time, relative to the
current set of temporal constraints generated by executing the coffee delivery program.
Then, having fixed the occurrence time of the first action, it repeats with the second action,
etc. In this way, chooseTimes selects a particular solution to the linear temporal constraints
generated by the program, thereby producing one of many possible schedules for the robot.

The following is the output obtained by running this coffee delivery program under the
temporal Golog interpreter of Section 7.4. Before loading and running these programs, the
ECLIPSE rational constraint solver must be loaded from its library by entering lib(r). There
are two, qualitatively different solutions to this scheduling problem.
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Running the Coffee delivery Program

7.4.2 A Singing Robot

To simplify the exposition, we did not endow the above program with any interleaving
execution of processes, as described in Section 7.3.1. This would, however, be easy to do.
Suppose we wanted the robot to sing a song, but only while it is in transit between loca-
tions. Introduce two instantaneous actions start Sing(t) and end Sing(t), and a process
fluent singing(s), with action precondition and successor state axioms:

Poss(start Sing(t), s) ≡ ¬singing(s).

Poss(end Sing(t), s) ≡ singing(s),

singing(do(a, s)) ≡ (∃t)a = start Sing(t) ∨ singing(s) ∧ ¬(∃t)a = end Sing(t).
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Then the following version of the Golog procedure goBetween turns the robot into a
singing waiter:

proc goBetween(loc1, loc2,#, t)
startGo(loc1, loc2, t) ;
start Sing(t) ; end Sing(t + #) ;
endGo(loc1, loc2, t + #)

endProc

This provides a temporal, interleaving account of the concurrent execution of two pro-
cesses: singing and moving between locations.

7.4.3 Plan-Execution Monitoring

While we now know how to specify and compute robot schedules with temporal Golog,
it would be a serious mistake to believe that the problem of controlling a robot over time
has therefore been solved. It would be unrealistic to expect a robot to execute a schedule
like that returned by the coffee delivery program. Frequently, it will be impossible to meet
the exact times in such a schedule, for example, if the robot is unexpectedly delayed in
traveling to the coffee machine. Moreover, travel times cannot be precisely predicted, and
errors necessarily arise due to mechanical factors like the robot’s wheels slipping on a
smooth floor. So a coffee delivery schedule like that computed above must be viewed as
an idealized artifact; its physical realization by a real robot is unlikely to succeed at the
exact times called for by the schedule. How then can one make use of such a schedule in
controlling an imperfect robot in an imperfect world? This is an instance of the general
problem of specifying how a robot can monitor, and correct, its own execution when it is
following a predetermined plan, like the coffee delivery schedule. Insofar as is possible,
the robot should follow its plan, but it is permitted, at plan-execution time, to make suitable
modifications to that plan in order to accommodate unexpected situations. How does the
robot determine that its current plan has failed? How does it repair a failed plan? When
does it give up completely on a plan, and what does it do instead?

Plan execution monitoring is a difficult and largely unsolved problem, and we are not
about to tackle it here. Nevertheless, it is instructive to look at the problem a bit more
closely. To begin, the robot can detect plan failure only by sensing its environment. It
sees that it is not in John’s office; it reads its internal clock to determine that it is now too
late to serve Mary her coffee. So it seems that if we are to take plan-execution monitoring
seriously, we need an account of sense actions. Notice that such actions are fundamentally
different from the “ordinary” actions (picking up a block, moving an elevator) we have
considered thus far. Ordinary actions change the physical world; sense actions do not.
Except in quantum mechanics, reading the time does not cause any physical changes to the
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world. What then are the effects of sense actions? Rather than changing the state of the
world, sense actions change the mental state of the sensing agent. After performing such
an action, the agent may come to know something he did not know before—it’s now 3PM;
John is in his office. In fact, sense actions are often called knowledge-producing actions.
So it seems that, in order to model sense actions, we shall need a situation calculus account
that distinguishes between the state of the physical world, and the mental state of an agent,
and that, moreover, formalizes what it means for an agent to know something. With such a
formal story in hand, we can then axiomatically express causal laws for sense actions, such
as: sensing a clock causes the sensing agent to know what time it is. Furthermore, we can
extend our approach to the frame problem for ordinary actions to include sense actions.
All of which is an extended advertisement and motivation for Chapter 11, which gives just
such a formal treatment of sense actions.

Returning to the original problem, we can imagine a coffee delivery robot that moni-
tors its own execution, recomputing what remains of the schedule, after it has determined
(by sensing its internal clock) the actual occurrence times of its actions. We do not in-
stantiate a schedule’s action occurrence times (as we did using chooseTimes(S)), but leave
these free, subject to the constraints generated by the Golog program. Whenever the robot
physically performs an action, it senses the action’s actual occurrence time, adds this to the
constraints, then computes a remaining schedule, or fails if no continuing schedule can be
found.

7.5 The Concurrent, Non-Temporal Situation Calculus

In this section, we focus on true concurrency for primitive actions, ignoring time for the
moment. So the picture will be the same as for the sequential situation calculus that has
been developed so far, except that many actions may occur together. This means that
there will be no explicit representation for the time of an action occurrence, and situations
will be sequences of concurrent action occurrences instead of sequences of single action
occurrences as in our earlier development. To represent concurrent actions, we shall use
sets of simple actions. To avoid the conceptual problems described in Section 7.1, we
shall restrict ourselves to actions all of which have equal, but unspecified durations. These
durations could be zero, in which case concurrent actions will be represented by sets of
instantaneous actions.

We now consider how to represent such concurrent actions in the situation calculus,
which we do by treating concurrent actions as sets, possibly infinite, of simple actions. As
we shall see later, the possibility of infinitely many actions occurring concurrently must
be taken seriously, so that the obvious notation a1∥a2∥ · · · ∥an cannot accommodate this
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possibility. Because concurrent actions are sets of simple actions, we can use the notation
a ∈ c to mean that simple action a is one of the actions of the concurrent action c. We
do not axiomatize sets, but instead rely on the standard interpretation of sets and their
operations (union, intersection, etc.) and relations (membership, subset, etc.). This is in
the same spirit as our treatment of time; we did not axiomatize the reals for this purpose,
but instead relied on the standard interpretation of the reals and their operations (addition,
multiplication etc.) and relations (<, ≤, etc.). To distinguish the sorts action of simple
actions and concurrent, we use variables a, a′, . . . , and c, c′, . . . , respectively.

Next, we consider how to generalize the foundational axioms of the sequential sit-
uation calculus (Section 4.2.2) to provide for concurrency. As we do so, keep in mind
that, conceptually, all simple actions have identical, but unspecified durations and the co-
occurrence of two or more such actions means that they all begin and end together. To
begin, we need to view situations as sequences of concurrent actions, so we extend the
function symbol do to take concurrent actions as an argument. Then we have situation
terms like do({start Meeting(Sue), collide(A, B)}, S0).

After extending do in this way, the rest is easy; simply replace each action variable in
the foundational axioms by a variable of sort concurrent action:

(∀P).P(S0) ∧ (∀c, s)[P(s) ⊃ P(do(c, s))] ⊃ (∀s)P(s), (7.4)

do(c, s) = do(c′, s′) ⊃ c = c′ ∧ s = s′, (7.5)

¬s S0, (7.6)

s do(c, s′) ≡ s ⊑ s′. (7.7)

The abbreviations for executable(s) becomes:

executable(s)
de f= (∀c, s∗).do(c, s∗) ⊑ s ⊃ Poss(c, s∗).

Notice that now the predicate Poss is permitted to take a concurrent action as its
first argument, so in axiomatizing a particular application, we shall need to specify the
conditions under which certain concurrently occurring actions are possible. What can one
say in general about the preconditions of concurrent actions? At the very least, we need:

Poss(a, s) ⊃ Poss({a}, s), (7.8)

Poss(c, s) ⊃ (∃a)a ∈ c ∧ (∀a)[a ∈ c ⊃ Poss(a, s)]. (7.9)

This last axiom tells us that if a concurrent action is possible, then it contains at least one
action, and all its simple actions are possible. As we shall see later, the converse need not
hold.

The six axioms (7.4) - (7.9) are the foundational axioms for the concurrent, non-
temporal situation calculus. Notice that, except for axioms (7.8) and (7.9), these are
identical to those for the sequential situation calculus, with the exception that they refer
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to concurrent actions instead of simple actions.

7.6 Axiomatizing Concurrent Worlds

7.6.1 Successor State Axioms

In the sequential situation calculus, we provided a solution to the frame problem by ap-
pealing to a systematic way of obtaining successor state axioms from the effect axioms.
For the concurrent setting, we have to generalize these successor state axioms slightly; this
turns out to be quite straightforward, as the following example shows:

pickingU p(x, do(c, s)) ≡ start Pickup(x) ∈ c ∨
pickingU p(x, s) ∧ end Pickup(x) /∈ c.

The next example axiomatizes the two duelists scenario that, intuitively, cannot be
captured by an interleaving account of concurrency. Suppose that shoot (x, y) is the in-
stantaneous action of person x shooting person y.

dead(x, do(c, s)) ≡ (∃y)shoot (y, x) ∈ c ∨ dead(x, s).

Then it is easy to prove that

dead(T om, do({shoot (T om, Harry), shoot (Harry, T om)}, S0))

and

dead(Harry, do({shoot (T om, Harry), shoot (Harry, T om)}, S0)),

but that

dead(Harry, do({shoot (T om, Harry)}, S0))

and

¬dead(T om, do({shoot (T om, Harry)}, S0)) ≡ ¬dead(T om, S0).

7.6.2 Action Precondition Axioms

The earlier approach to axiomatizing dynamic worlds in the situation calculus relied on a
collection of action precondition axioms, one for each simple action, and we also rely on
such axioms here. However, concurrency introduces certain complications, which we now
describe.

THE PRECONDITION INTERACTION PROBLEM

In the case of action preconditions for concurrent actions, the converse of (7.9) need not
hold. Two simple actions may each be possible, their action preconditions may be jointly
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consistent, yet intuitively they should not be concurrently possible. We call this the pre-
condition interaction problem. Here is a simple example:

Poss(start MoveLe f t, s) ≡ ¬movingLe f t (s),
Poss(start MoveRight, s) ≡ ¬movingRight (s).

Intuitively, Poss({start MoveLe f t, start MoveRight}, s) should be false. Such impos-
sible combinations of actions are the reason that the foundational axiom (7.9) was not a
biconditional; the converse of axiom (7.9) can be false.

Notice that the precondition interaction problem arises only when modeling true con-
currency. This is one reason why, whenever possible, one should appeal to an interleaving
account for concurrency.

INFINITELY MANY ACTIONS CAN CO-OCCUR

Nothing prevents one from writing:

Poss(A(x), s) ≡ true,

in which case A(x) can co-occur, for all x . So if x ranges over the natural numbers (or
the reals, or ...) we get lots of possible co-occurrences. This is the principal reason that
we chose to represent concurrent actions by sets, rather than a function symbol ∥, because
one cannot always denote a concurrent collection of actions by a1∥a2∥ · · · ∥an . Unfortu-
nately, there does not seem to be a natural way, in the foundational axioms, to rule out the
possibility of infinitely many co-occurring actions.

Notice that this problem cannot arise for interleaved concurrency, which is yet another
reason for modeling concurrency with interleaving, whenever possible.

7.7 The Concurrent, Temporal Situation Calculus

Section 7.3 extended the sequential, non-temporal situation calculus to represent time by
providing an explicit time argument to actions. We now investigate how to modify and ex-
tend the foundational axioms for the concurrent, non-temporal situation calculus (Section
7.5) to accommodate time. As before, actions will be viewed as instantaneous, and will
have an explicit temporal argument denoting the time at which the action occurs. We re-
main committed to the induction axiom (7.4), and unique names axiom (7.5) for situations,
as in Section 7.5, as well as the axioms for . Recall that for the sequential, temporal
situation calculus, we introduced a function symbol time, where time(a) denotes the time
of occurrence of action a, and we shall also need this function here. As before, this means
that in any application involving a particular action A(x⃗, t), there must be an axiom telling
us the time of the action A:



168 Chapter 7

time(A(x⃗, t)) = t.

A concurrent action makes no intuitive sense if it is empty, or if it contains two or more
simple actions whose occurrence times are different, for example

{start Meeting(Sue, 3), bounce(B, W, 4)}.
Accordingly, define the notion of a coherent concurrent action to be one for which there is
at least one action in the collection, and for which all of the (instantaneous) actions in the
collection occur at the same time. This can be done with an abbreviation:

coherent (c)
de f= (∃a)a ∈ c ∧ (∃t)(∀a′)[a′ ∈ c ⊃ time(a′) = t].

Now, extend the function time from simple actions to concurrent ones:

coherent (c) ⊃ [time(c) = t ≡ (∃a)(a ∈ c ∧ time(a) = t)]. (7.10)

Next, it will be convenient to have a function start : start (s) denotes the start time of
situation s. This requires the axiom:

start (do(c, s)) = time(c). (7.11)

Notice that we do not define the start time of S0; this is arbitrary, and may (or may not) be
specified to be any real number, depending on the application.

We also need to slightly revise the abbreviation (7.2) for executable(s) to accommo-
date concurrent actions:

executable(s)
de f= (∀c, s∗).do(c, s∗) ⊑ s ⊃ Poss(c, s∗) ∧ start (s∗) ≤ time(c).

Now, executable(s) means that all the concurrent actions in s are possible, and moreover,
the times of those action occurrences are nondecreasing.

Finally, as for the non-temporal concurrent case,

Poss(a, s) ⊃ Poss({a}, s), (7.12)

and we need to generalize axiom (7.9) of the concurrent, non-temporal situation calculus
to the following:

Poss(c, s) ⊃ coherent (c) ∧ (∀a)[a ∈ c ⊃ Poss(a, s)]. (7.13)

This tells us that if a concurrent action is possible, then it is coherent and all its simple
actions are possible. Because of the precondition interaction problem, we do not adopt the
converse of (7.13) as an axiom.

The sentences (7.10)–(7.13)—together with the axioms (7.4)–(7.7) of Section 7.5 for
induction, unique names for situations, and —are the foundational axioms for the con-
current, temporal situation calculus.
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7.8 Concurrent, Temporal Golog

With an axiomatization for the concurrent, temporal situation calculus, it is easy to modify
the Golog semantics and interpreter to accommodate these features. Semantically, we need
only change the definition (7.3) of the Do macro for sequential, temporal Golog to apply
to concurrent actions instead of simple actions:

Do(c, s, s′)
de f= Poss(c[s], s) ∧ start (s) ≤ time(c[s]) ∧ s′ = do(c[s], s).

Everything else about the definition of Do remains the same. To suitably modify the
sequential, temporal Golog interpreter of Section 7.4, replace the clause

by

Suitable clauses must also be included for concurrent action and time. The following is the
resulting interpreter.

A Prolog Interpreter for Concurrent, Temporal Golog
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The next section illustrates the use of this interpreter for simulating physical systems.

7.9 Natural Actions

A natural application of the concurrent, temporal situation calculus is in modeling dynamic
physical systems, where the system evolution is due to natural actions, namely, actions like
a falling ball bouncing when it reaches the floor. Such actions obey natural laws, for exam-
ple the Newtonian equations of motion. The fundamental property of such natural actions,
that needs to be formally captured, is that they must occur at their predicted times, provided
no earlier actions (natural or agent initiated) prevent them from occurring. Because several
such actions may occur simultaneously, a theory of concurrency is needed. Because such
actions may be modeled by equations of motion, continuous time must be represented.
Since the concurrent, temporal situation calculus has these properties, it will provide the
foundations of our approach to natural actions. This section is devoted to spelling out the
details of this approach.

7.9.1 Representing Physical Laws

Our focus will be on natural actions, namely those that occur in response to known laws
of physics, like a ball bouncing at times determined by Newtonian equations of motion.
These laws of physics will be embodied in the action’s precondition axioms, for example:

Poss(bounce(t), s) ≡ is Falling(s) ∧
{height (s) + vel(s)[t − start (s)] − 1/2G[t − start (s)]2 = 0}.
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Here, height (s) and vel(s) are the height and velocity, respectively, of the ball at the start
of situation s.

Notice that the truth of Poss(bounce(t), s) does not mean that the bounce action must
occur in situation s, or even that the bounce action must eventually occur. It simply means
that the bounce is physically possible at time t in situation s; a catch action occurring
before t should prevent the bounce action.

7.9.2 Permissiveness of the Situation Calculus

Before continuing with our treatment of natural actions, it is important to think a little
more carefully about the nature of agents and the actions that they can perform, as they
have been modeled in the situation calculus developed thus far.

Recall that a situation is nothing but a history—a sequence of primitive actions. Among
all such situations, we distinguished those that are executable, in the sense that the actions
making up the sequence are all physically possible; their action preconditions are true in
the situations in which they are to occur. These executable situations s were captured by
the abbreviation executable(s) (Section 4.6.1). But the truth of an action’s preconditions
does not mean that the action must be mentioned in every executable situation. For ex-
ample, suppose A and B are two actions that are always possible: Poss(A, s) ≡ true,
Poss(B, s) ≡ true. Then do([A, . . . , A], S0) is an executable situation for any finite se-
quence of A’s; B need not occur in every executable situation, despite the fact that its
action preconditions are always possible. In this sense, the situation calculus, as presented
so far, is permissive with respect to action occurrences; there are perfectly good executable
world futures that do not include certain actions, even when it is possible to perform them.
One useful way to think about this aspect of the situation calculus is that the executable
situations describe all the possible ways that the world can evolve, assuming that the agent
capable of performing the primitive actions has the “free will” to perform, or withhold, her
actions. Thus, any particular situation represents one world history in which the agent has
chosen to perform the actions in that sequence, and has chosen to withhold other actions
not in the sequence.

In augmenting the situation calculus with natural actions, we can no longer allow such
permissiveness in defining the executable situations. Nature does not have the free will to
withhold her actions; if the time and circumstances are right for a falling ball to bounce
against the floor, it must bounce. This means that in modeling physical laws in the situation
calculus, we can no longer rely on our earlier concept of permissive executable situations.
The executable situations must be extended so they remain permissive with respect to the
free will agents in the world, but are coercive with respect to natural actions. The next
section formally defines this new concept of an executable situation.
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7.9.3 Natural Actions and Executable Situations

As discussed in the previous section, in the space of all situations, we want to single
out the executable situations, i.e. those that respect the property of natural actions that
they must occur at their predicted times, provided no earlier actions (natural or free-will-
agent initiated) prevent them from occurring. First, introduce a predicate symbol natural,
with which the axiomatizer can declare suitable actions to be natural, as, for example,
natural(bounce(t)). Next, capture this new concept of an executable situation with the
following abbreviation:

executable(s)
de f=

(∀c, s∗)[do(c, s∗) ⊑ s ⊃ Poss(c, s∗) ∧ start (s∗) ≤ time(c)] ∧
(∀a, c, s′)[natural(a) ∧ Poss(a, s′) ∧ do(c, s′) ⊑ s ⊃

a ∈ c ∨ time(c) < time(a)].
The first condition on the right-hand side is simply the old definition of an executable sit-
uation for the temporal, concurrent situation calculus (Section 7.7). It requires of the new
definition for executable(s) that each of the concurrent actions in s must be possible, and
the occurrence times of the actions s must be nondecreasing. The second condition on the
right-hand side imposes an additional constraint on situations with respect to the occur-
rences of natural actions. This may initially be a bit difficult to understand; the following
is provable from this abbreviation, and provides a more intuitive inductive characterization
of the executable situations:

executable(S0).

executable(do(c, s)) ≡ executable(s) ∧ Poss(c, s) ∧ start (s) ≤ time(c) ∧
(∀a).natural(a) ∧ Poss(a, s) ∧ a /∈ c ⊃ time(c) < time(a).

Here, c is a concurrent action that, in general, will include simple actions due to free-will-
agents, as well as natural actions. In making sense of this definition, keep in mind that the
“laws of motion” for natural actions are encoded in the actions’ precondition axioms, as
described above in Section 7.9.1. Intuitively, we get a next executable situation do(c, s)
from the current situation s iff:

1. s is executable, and,

2. c is possible and c doesn’t occur before the start of s, and,

3. Whenever a is a natural action that can occur in situation s (and therefore, being natu-
ral, it must occur next unless something happens before it), but a is not in c (and hence
doesn’t occur next), then c must occur before (not after, not at the same time as) a’s
predicted occurrence time.
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Now, the executable situations characterize all possible world evolutions, where the
non-natural actions are under the control of one or more agents with the free will to perform
or withhold such action occurrences, and where the natural actions must occur if the time
and circumstances predict their occurrences.

7.9.4 An Example: Enabling Actions

In the discussion following the presentation of axiom (7.2), we noted the possibility of
situations containing two or more concurrent actions with the same occurrence times. We
now provide an example where this is a desirable feature of our axiomatization. Consider
a scenario in which an agent is holding an object. At some time, chosen under her own
free will, she releases the object, enabling it to start falling. The start Falling action is
a natural action, which is to say, it must occur immediately after the release action. For
simplicity, assume that once the object starts to fall, it continues falling forever.

start (S0) = 0, holding(S0), ¬ f alling(S0),

natural(a) ≡ (∃t)a = start Falling(t),

Poss(release(t), s) ≡ holding(s) ∧ start (s) ≤ t,

Poss(start Falling(t), s) ≡ ¬holding(s) ∧ ¬ f alling(s) ∧ start (s) ≤ t,

f alling(do(c, s)) ≡ (∃t)start Falling(t) ∈ c ∨ f alling(s),

holding(do(c, s)) ≡ (∃t)catch(t) ∈ c ∨ holding(s) ∧ ¬(∃t)release(t) ∈ c.

Then the following is an executable situation:

do({start Falling(1)}, do({release(1)}, S0)).

The following are not executable situations:

do({start Falling(2)}, do({release(1)}, S0)),

do({release(1)}, do({start Falling(1)}, S0)).

7.9.5 Zeno’s Paradox

Executable situations admit infinitely many distinct action occurrences over a finite time
interval. Consider the natural action A:

Poss(A(t), s) ≡ t = (1 + start (s))/2,

with start (S0) = 0. Then for any n ≥ 1, the situation do([A(1/2), . . . , A(1 − 1/2n)], S0)

is executable. This means that if B is another action, natural or not, with Poss(B(t), s) ≡
t = 1, then B(1) never gets to be part of any executable situation; it never happens!
This is arguably the right intuition, given the idealization of physical reality involved in
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the axiomatization of A. There does not appear to be any simple way to prevent Zeno’s
paradox from arising in temporal axiomatizations like ours. Of course, this is not really
a paradox, in the sense that such examples do not introduce any inconsistencies into the
axiomatization.

7.9.6 The Natural-World Assumption

This is the sentence:

(∀a)natural(a). (N W A)

The Natural-World Assumption restricts the domain of discourse of actions to natural ac-
tions only.

Lemma 7.9.1: The following is a consequence of the foundational axioms and the defini-
tion of an executable situation:

executable(do(c, s)) ∧ executable(do(c′, s)) ∧ N W A ⊃ c = c′.

Intuitively, the above lemma tells us that natural worlds are deterministic: If there is an
executable successor situation, it is unique. The following theorem extends Lemma 7.9.1
to histories: When there are only natural actions, the world evolves in a unique way, if it
evolves at all.

Theorem 7.9.2: The foundational axioms for the concurrent, temporal situation calculus
together with the definition of an executable situation entail the following:

executable(s) ∧ executable(s′) ∧ N W A ⊃ s ⊑ s′ ∨ s′ ⊑ s.

7.9.7 Least-Natural-Time Points

The following abbreviation plays a central role in theorizing about natural actions:

lntp(s, t)
de f= (∃a)[natural(a) ∧ Poss(a, s) ∧ time(a) = t] ∧

(∀a)[natural(a) ∧ Poss(a, s) ⊃ time(a) ≥ t].
(7.14)

Intuitively, the least-natural-time point is the earliest time during situation s at which a
natural action can occur.

Remark 7.9.3: (7.14) entails the following:

lntp(s, t) ∧ lntp(s, t ′) ⊃ t = t ′.
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So, when it exists, the least-natural-time point is unique. Unfortunately, it need not ex-
ist, for example, when (∀a).natural(a) ≡ (∃x, t)a = B(x, t), where x ranges over the
nonzero natural numbers, and Poss(B(x, t), s) ≡ t = start (s) + 1/x . Another such
example is when (∀a).natural(a) ≡ (∃t)a = A(t), and Poss(A(t), s) ≡ t > start (s).

The Least-Natural-Time Point Condition

In view of the possibility of “pathological” axiomatizations, for which the least-natural-
time point may not exist (see comments following Remark 7.9.3), we introduce the follow-
ing sentence:

(∀s).(∃a)[natural(a)∧ Poss(a, s)] ⊃ (∃t)lntp(s, t). (L N TPC)

Normally, it will be the responsibility of the axiomatizer to prove that his axioms entail
L N TPC . Fortunately, under some very reasonable assumptions (Theorem 7.9.5 below),
we can often prove that axiomatizations of natural worlds do entail L N TPC . The follow-
ing theorem indicates why the L N TPC is important for natural worlds.

Theorem 7.9.4: The foundational axioms for the concurrent, temporal situation calculus
together with the above definitions entail:

L N TPC ∧ N W A ⊃
executable(do(c, s)) ≡ {executable(s) ∧ Poss(c, s) ∧ start (s) ≤ time(c) ∧

(∀a)[a ∈ c ≡ Poss(a, s) ∧ lntp(s, time(a))]}.

This theorem informs us that for natural worlds satisfying L N TPC , we obtain the
next executable situation from the current one by assembling into c all the possible actions
occurring at the least-natural-time point of the current situation, provided this collection of
natural actions is possible, and the least-natural-time point is greater than or equal to the
start time of the current situation. Intuitively, this is as it should be for natural worlds. So,
when L N TPC holds, this theorem provides a complete characterization of the executable
situations. What are some useful conditions guaranteeing L N TPC?

The normal settings where we wish to model natural actions involve a domain closure
assumption specifying that there are just finitely many natural action types A1, . . . , An

with arguments determined by conditions φi (x⃗i , t), where the φi are first-order formulas
with free variables among x⃗i , t :

natural(a) ≡ (∃x⃗1, t)[φ1(x⃗1, t) ∧ a = A1(x⃗1, t)] ∨ · · · ∨
(∃x⃗n, t)[φn(x⃗n, t) ∧ a = An(x⃗n, t)]. (7.15)

For example, in the case of two balls B1 and B2 moving between two walls W1 and W2

that we shall treat below, the domain closure axiom is:
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natural(a) ≡
(∃b, w, t)[(b = B1 ∨ b = B2) ∧ (w = W1 ∨ w = W2) ∧ a = bounce(b, w, t)] ∨
(∃b1, b2, t)[b1 = B1 ∧ b2 = B2 ∧ a = collide(b1, b2, t)].

This says that

bounce(B1, W1, t), bounce(B2, W1, t), bounce(B1, W2, t),
bounce(B2, W2, t), collide(B1, B2, t)

are all, and only, the natural actions.
The following is a very general sufficient condition for L N TPC to hold when the

natural actions satisfy a domain closure axiom. Its proof is a straightforward exercise in
first-order theorem-proving.

Theorem 7.9.5: The domain closure assumption (7.15) entails

n∧

i=1

(∀s)

⎧
⎨

⎩

(∃x⃗i , t)[φi (x⃗i , t) ∧ Poss(Ai (x⃗i , t), s)] ⊃
(∃y⃗i , t ′)[φi (y⃗i , t ′) ∧ Poss(Ai (y⃗i , t ′), s)∧
[(∀z⃗i , t ′′)[φi (z⃗i , t ′′) ∧ Poss(Ai (z⃗i , t ′′), s) ⊃ t ′ ≤ t ′′]]

⎫
⎬

⎭

⊃ L N TPC .

This theorem tells us that whenever a domain closure axiom of the form (7.15) holds
for the natural actions, then in order to verify that L N TPC is true, it is sufficient to verify
that for each action type Ai :

(∀s).(∃x⃗i , t)[φi (x⃗i , t) ∧ Poss(Ai (x⃗i , t), s)] ⊃
(∃y⃗i , t ′)[φi (y⃗i , t ′) ∧ Poss(Ai (y⃗i , t ′), s) ∧
[(∀z⃗i , t ′′)[φi (z⃗i , t ′′) ∧ Poss(Ai (z⃗i , t ′′), s) ⊃ t ′ ≤ t ′′]]

This, in turn, says that if the action type Ai is possible at all in situation s, then there is a
least time t ′ for which it is possible.

Theorems 7.9.4 and 7.9.5 provide the theoretical foundations for a situation calculus-
based simulator for physical systems that we now describe.

7.9.8 Simulating Natural Worlds

With the above account for natural actions in hand, we can write concurrent, temporal
Golog programs that simulate natural worlds. We illustrate how to do this with an exam-
ple. Two perfectly elastic point balls, B1 and B2, of equal mass, are rolling along the x-axis
on a frictionless floor, between two walls, W1 and W2, that are parallel to the y-axis. We
expect them to bounce indefinitely between the two walls, occasionally colliding with each
other. Such bounces and collisions will cause the balls’ velocities to change discontinu-
ously. Let wall Location(w) denote the distance from the y-axis of wall w.
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Primitive Actions and their Precondition Axioms:

• collide(b1, b2, t). Balls b1 and b2 collide at time t .

• bounce(b, w, t). Ball b bounces against wall w at time t .

Poss(collide(b1, b2, t), s) ≡ vel(b1, s) ̸= vel(b2, s) ∧ t > start (s) ∧
t = start (s) − pos(b1,s)−pos(b2,s)

vel(b1,s)−vel(b2,s)

Poss(bounce(b, w, t), s) ≡ vel(b, s) ̸= 0 ∧ t > start (s) ∧
t = start (s) + wall Location(w)−pos(b,s)

vel(b,s)
Fluents and Their Successor State Axioms:

• vel(b, s). A functional fluent denoting the velocity of ball b in situation s.

• pos(b, s). A functional fluent denoting the position (x-coordinate) of ball b in situation
s.

pos(b, do(c, s)) = pos(b, s) + vel(b, s) ∗ (time(c) − start (s)).

On hitting a wall, a ball’s new velocity becomes the opposite of its old velocity. When
two equal mass, perfectly elastic balls collide along a straight line, they exchange veloc-
ities according to the conservation laws of energy and momentum of Newtonian physics.
However, when such a collision occurs at the same time as the balls reach a wall, we make
the idealized assumption that each ball moves away from the wall with a velocity opposite
to its old velocity.

vel(b, do(c, s)) = v ≡ (∃w, t)bounce(b, w, t) ∈ c ∧ v = −vel(b, s) ∨
¬(∃w, t)bounce(b, w, t) ∈ c ∧ (∃b′, t)[v = vel(b′, s) ∧ (collide(b, b′, t) ∈ c ∨

collide(b′, b, t) ∈ c)] ∨
v = vel(b, s) ∧ ¬(∃b′, t)[collide(b, b′, t) ∈ c ∨ collide(b′, b, t) ∈ c] ∧

¬(∃w, t)bounce(b, w, t) ∈ c.
Initial Situation:

B1 ̸= B2, W1 ̸= W2, pos(B1, S0) = 0, pos(B2, S0) = 120, vel(B1, S0) = 10,

vel(B2, S0) = −5, wall Location(W1) = 0, wall Location(W2) = 120.

A domain closure axiom for natural actions:

natural(a) ≡ (∃b1, b2, t)[b1 = B1 ∧ b2 = B2 ∧ a = collide(b1, b2, t)] ∨
(∃b, w, t)[(b = B1 ∨ b = B2) ∧ (w = W1 ∨ w = W2) ∧ a = bounce(b, w, t)].

The Natural-World Assumption: (∀a)natural(a).

Assume No Precondition Interaction Problem for Natural Worlds

Recall that, because of the precondition interaction problem, axiom (7.13) is not a bicon-
ditional. However, in the case of natural worlds, for which all actions obey deterministic
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laws, it is reasonable to suppose that this is a biconditional:

Poss(c, s) ≡ coherent (c) ∧ (∀a)[a ∈ c ⊃ Poss(a, s)].
This says that a collection of actions is possible iff it is coherent, and each individual action
in the collection is possible. This seems to be an assumption about the accuracy with which
the physics of the world has been modeled by equations of motion, in the sense that if these
equations predict a co-occurrence, then this co-occurrence really happens in the physical
world, so that in our situation calculus model of that world, this co-occurrence should be
possible. In our bouncing balls scenario, we include this as an axiom.

Golog Procedure for Executable Situations:

Notice that the above axiomatization satisfies the antecedent conditions of Theorem 7.9.5.
Hence, L N TPC holds. Moreover, we are making the Natural-World Assumption that
the only actions that can occur are natural actions. Hence, Theorem 7.9.4 justifies the
following Golog procedure for computing the executable situation of length n. Theorem
7.9.2, assures us that if it exists, this situation is unique.

proc executable(n)

n = 0? |
n > 0? ; (πc)[{(∀a).a ∈ c ≡ Poss(a) ∧ lntp(time(a))}? ; c] ;
executable(n − 1)

endProc
This completes the specification of the bouncing balls problem. The following is a con-

current, temporal Golog implementation for this axiomatization; it makes use of Prolog’s
setof construct for computing the set of all simple actions that are possible in a situation’s
least-natural-time point.

Simulation of Two Balls Bouncing between Two Walls
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The following is the output received under ECLIPSE Prolog, for a run of this program
for simulating the first 10 concurrent actions for this natural world. The program was run
using the interpreter for concurrent, temporal Golog of Section 7.8.

As expected, the balls first collide at time 8.0; then B2, reversing its direction, bounces
against wall W2 at time 12.0; then B2 reverses its direction and the two balls meet at wall
W1, causing the concurrent occurrence, at time 24.0, of two bounce actions with a collide
action; then the two balls move off to the right together, etc.

7.9.9 Animating Natural Worlds

With a minimum of additional effort, from a simulation like that above, data can be ob-
tained for generating computer animations of natural worlds. We illustrate how to do this
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using the earlier bouncing balls program. Add to this program a new natural action:

• plot (x1, x2, t). Plot the values, at time t , of the x-coordinates of balls B1 and B2.

Poss(plot (x1, x2, t), s) ≡ t = clock(s) ∧
x1 = pos(B1, s)+vel(B1, s)∧ x2 = pos(B2, s)+vel(B2, s).

Here, clock(s) is a new functional fluent, denoting the clock time in situation s. The clock
is initialized to 0, and is advanced, by one time unit, only by a plot action.

clock(do(c, s)) = t ≡ (∃x1, x2, t ′)[plot (x1, x2, t ′) ∈ c ∧ t = t ′ + 1] ∨
clock(s) = t ∧ ¬(∃x1, x2, t)plot (x1, x2, t) ∈ c.

Finally, the initial situation must be augmented by clock(S0) = 0, plot must be included
among the natural actions, and we must augment the domain closure axiom for natural
actions of the previous example by a disjunct (∃x1, x2, t)a = plot (x1, x2, t).

It is straightforward to verify that the antecedent conditions of Theorem 7.9.5 hold,
and therefore, the L N TPC is true, so by Theorem 7.9.4, we can continue using the earlier
Golog program for computing the executable situations. To incorporate the plot action
into the Golog program for simulating the bouncing balls, we need only add to the above
program the following clauses:

The following is the result of executing this plot program for 40 steps. As before, it
was run using the interpreter for concurrent, temporal Golog of Section 7.8.
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It is easy to imagine how this kind of output could be passed to a graphics routine to
generate a computer animation of the bouncing balls scenario.

7.10 Exercises

1. (a) Show that the foundational axioms for the concurrent situation calculus (both
temporal and non-temporal versions) entail that

(∀s)¬Poss({ }, s).

In other words, the empty concurrent action is never possible.

(b) Show that the foundational axioms for the concurrent temporal situation calculus
entail that

(∀c, s).Poss(c, s) ⊃ (∀a, a′).a ∈ c ∧ a′ ∈ c ⊃ time(a) = time(a′).

2. Using the concurrent, non-temporal situation calculus, axiomatize the following table
lifting problem. A table on which there is a cup of coffee is resting on the floor with
its top horizontal. There are two agents; one can lift the left side of the table, the other
the right side. The coffee will not spill iff no lift action occurs, or both agents start
to lift their ends of the table together, and subsequently terminate their lifting actions
together. Use the actions start Li f t L , start Li f t R, end Li f t L , end Li f t R and the
fluents li f tingL , li f tingR, spilled , and give action precondition axioms for the
actions and successor state axioms for the fluents. Using these, and assuming initially
the coffee is not spilled, prove that after executing the action sequence

[{start Li f t L , start Li f t R}, {end Li f t L , end Li f t R}]
the coffee will not be spilled, but after the sequence
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[{start Li f t L , start Li f t R}, {end Li f t L}],
it will be spilled. Why would an interleaving account of concurrency not be appropriate
here?

3. For the concurrent, temporal situation calculus, prove:

executable(do(c, s)) ≡ executable(s) ∧ Poss(c, s′) ∧ start (s′) ≤ time(c).

4. Give an interleaving axiomatization for the two duelists example by introducing a pro-
cess fluent bullet Directed At (p), initiated by action shoot (p′, p) and terminated by
strikes(p).

5. Consider the sequential situation calculus in which actions have situation-dependent
durations, possibly zero, as well as initiation times.

(a) Propose suitable foundational axioms for this setting, as well as an appropriate
notion of executable situation.

(b) Using these, implement a Golog interpreter for this setting.

(c) Modify the coffee delivery program of Section 7.4.1 for this version of Golog and
run it. Assume that the pickupCoffee and giveCoffee actions continue to have
zero duration.

6. When the time line consists of the integers, prove that the LNTPC is always true.

7. Consider the setting of two balls falling vertically onto a horizontal floor under the
influence of gravity. The balls lie in different vertical planes, so they cannot collide.
On hitting the floor, a ball bounces, with a rebound coefficient r > 0, meaning that
it’s upward velocity becomes r times its previous downward velocity. Each ball has its
own value of r .

(a) Implement a simulation for this setting.

(b) With the help of this simulation, illustrate Zeno’s paradox, by choosing suitable
initial heights, velocities and rebound coefficients for the two balls.

(c) Finally, modify your simulation to provide a graphical plot of the falling balls.

7.11 Bibliographic Remarks

An early, and very influential account of time and actions was due to James Allen [2]. The
door latch problem of Section 7.2.1 is taken from one of his papers [3]; the other papers in
the collection containing the latter give an excellent overview of the recent status of Allen’s
theory. Another early, and quite sophisticated, fully axiomatic account of time and actions
was due to McDermott [142]. Here, McDermott addresses the frame problem, continuous
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time and change, and branching futures quite similar to those of the situation calculus.
Chapter 5 of Davis’s book [36] describes many of the details of this approach.

Perhaps the earliest treatment, in the situation calculus, of concurrency and actions
with durations was by Gelfond, Lifschitz, and Rabinov [61]. By basing it on the language

of Gelfond and Lifschitz [59], Baral and Gelfond [13] provide a semantic account of
concurrency that, although not formulated in the situation calculus, has many similarities
with ours. The principal difference is that Baral and Gelfond focus exclusively on concur-
rency, so their ontology does not include time or natural actions. More recent treatments
for concurrency in the situation calculus, again, ignoring time, are by Schubert [192] and
Lin and Shoham [127]. See also Pinto [161]. Pelavin [156] addresses the formalization
of concurrent actions by extending the ontology of Allen’s linear time logic [3] to include
histories to represent branching futures, and suitable modal operators semantically char-
acterized with respect to these histories. This gives a rich representation for time and
concurrency, somewhat like that of the situation calculus, but at the expense of a rather
complicated logic.

The idea of decomposing actions with durations into two instantaneous start and end
actions, together with a fluent representing a process, was proposed for the situation cal-
culus by Pinto [159] and Ternovskaia [210]. The precondition interaction problem for
concurrent actions is discussed by Pelavin [156] and by Pinto [159]. For an extensive
discussion of Zeno’s paradox, see Davis [37].

The material on sequential, temporal Golog and the coffee delivery program is taken
from Reiter [177], and that on concurrency and natural actions from Reiter [176], which in
turn relies heavily on earlier work by Pinto [159]. See also Pinto [162]. For the use of time
in the situation calculus for the simulation of physical and mechanical systems, see Kelley
[95]. There are several other approaches to modeling natural actions, mostly based upon
linear temporal logics. Examples are the work by Miller and Shanahan [194, 144, 145], and
Van Belleghem, Denecker, and De Schreye [17], both using extended versions of the event
calculus of Kowalski and Sergot [98]. Closely related ideas about representing physical
processes were proposed earlier by Sandewall [186]. See also Herrmann and Thielscher
[84]. Section 7.9.9 indicated how Golog might be used for computer graphics applications.
For a much more interesting exploration of this idea in computer animation that involves
sharks, a merman, Velociraptors and a Tyrannosaurus rex, see Funge [55, 56, 57, 54].

A general framework for execution monitor for an agent executing a Golog program
on-line is described in (De Giacomo, Reiter, and Soutchanski [68]). This monitor is used
by Soutchanski [205], who presents an implementation for the coffee-delivery program of
Section 7.4.1 in which the robot monitors its execution of its delivery schedule by sensing
and recording the current time in ECLIPSE’s temporal constraint store, along the lines
discussed in Section 7.4.3.


