CSC309 Winter 2016
| ecture 10

Larry Zhang

Announcements

e A3 showcase will be held in DH-2010, March 29, lecture time
* 6 minutes for each group’s presentation, 20 groups

* Order of presentations will generated randomly and posted

before the showcase, if you have to leave right after 5:00pm,
let me know.

* Everyone will fill in a form to rate other groups’ products,
there will be small portion of participation marks for this.

2

Scalability and Performance

First of all

 Performance and Scalability are two different things

 Performance is more about how fast a single
request is handled

o Scalability is about how the performance scales with
the size of user base growing

Performance

= gettylmages

128415127

Scalability

S

Outline

- How to improve the performance of a single request
o Something that can make a difference for you now
* Mostly about front-end
- How to scale your web app
e Something to worry about when you have 1 million users.

e More about back-ena

Front-end performance tricks

Stylesheets at the top, scripts at the bottom

- CSS blocks rendering

* Nothing is displayed in your browser until CSS Is loaded, so need to load
CSS right away.

- JavaScript blocks downloads

 Normally browsers try to download as many assets as possible in parallel

but JavaScri

(avoid conc

urrency

ot download blocks all other downloads for good reasons

iIssues). So If nothing really need to be blocked,

JavaScripts better be downloaded at very last.

- Browsers are becoming smarter and smarter about how to download

things.

Make fewer requests

 Fach HTTP request potential need to do DNS lookups, redirects,
404s, etc, which is costly.

 Make as smaller of HTTP request as possible.

 For example, it you have many small images in your web page,
rather than issuing one HT TP request for each image, put all of them
Into one big image (sprite), download in one single HT TP request,
then use CSS positions to get each image. This is called spriting.

o https://css-tricks.com/css-sprites/

10

https://css-tricks.com/css-sprites/

oriting example

. flags-canada, .flags-mexico, .flags-usa {

ground-image:

ound-repeat

. flags-canada {

het1ohtes 128 .

Maximizing Parallelization

 Browsers typical limits the number of parallel download from a
domain, e.g., 2 connections.

* |n order to get more concurrent download, have a separate
domain for separate assets, or even several different
domains.

e e.g., Iwitter has abs.twimg.com to server static assets.

* e.g., Facebook has static.xx.fbcdn.net to server static
assets

12

http://abs.twimg.com
http://static.xx.fbcdn.net

46
47 <link rel="stylesheet" href="https://abs.fWimg.com/a/1457833503/css/tl1/twitter core.bundle.css">
48 <link rel="stylesheet" href="https://abs.twimg.com/a/1457833503/css/tl/twitter more 1l.bundle.css">
49 <link rel="stylesheet" href="https://abs.twimg.com/a/1457833503/css/tl/twitter more 2.bundle.css">
50

51 <link rel="dns-prefetch" href="https://pbs.twimg.com">

52 <link rel="dns-prefetch" href="https://t.co">

53 <link rel="preload" href="https://abs.twimg.com/c/swift/en/init.2d14663b2258616fala2273d485f38cded8ee9cl.js" as="script">

54 <link rel="preload" href="https://abs.twimg.com/c/swift/en/bundle/timeline.52ellaaldc6ldbeecaleb6flda3d40e02dbcll3elf8a.js" as="script">
55 <link rel="preload" href="https://abs.twimg.com/c/swift/en/bundle/boot.0d9b1544d1612e785ee43c9cblefba636d4743b3.js" as="script">

56

57 <title>Twitter</title>

58 <meta name="robots" content="NOODP">

59 <meta name="description" content="Connect with your friends &#8212; and other fascinating people. Get in-the-moment updates on the things th
you. And watch events unfold, in real time, from every angle.">

<meta http-equiv="X-Frame-Options" content="DENY" /></noscript><link rel="mask-icon" sizes="any" href="/icon.svg" color="#3b5998" /><link rel="shortc:
href="https://static.xx.fbcdn.net/rsrc.php/yl/r/H3nkt0a7ZMg.ico" /><link type="text/css" rel="stylesheet"
href="https://static.xx.fbcdn.net/rsrc.php/v2/yv2/r/2FiPz£fG9-4a.css" data-bootloader-hash="oCVLD" data-permanent="1" crossorigin="anonymous" />

<link type="text/css" rel="stylesheet" href="https://static.xx.fbedn.net/rsrc.php/v2/yp/r/I5kTXqlbSJZ.css" data-bootloader-hash="44wiD"
crossorigin="anonymous" />

<link type="text/css" rel="stylesheet" href="https://static.xx.fbcdn.net/rsrc.php/v2/yl/r/qOK1EcTETSr.css" data-bootloader-hash="sVIMq" data-permaneni
crossorigin="anonymous" />

<link type="text/css" rel="stylesheet" href="https://static.xx.fbcdn.net/rsrc.php/v2/yL/r/cExaeQ07vMA.css" data-bootloader-hash="HgIa3"
crossorigin="anonymous" />

<link type="text/css" rel="stylesheet" href="https://static.xx.fbcdn.net/rsrc.php/v2/yz/r/wzfKY¥-zY¥rpM.css" data-bootloader-hash="smFGl" data-permanen
crossorigin="anonymous" />

<link type="text/css" rel="stylesheet" href="https://static.xx.fbcdn.net/rsrc.php/v2/yy/r/pPxnKFl6dtS.css" data-bootloader-hash="fWMy9" data-permaneni
crossorigin="anonymous" />

<link type="text/css" rel="stylesheet" href="https://static.xx.fbcdn.net/rsrc.php/v2/yK/r/CLxfonnméRO.css" data-bootloader-hash="I0lm+" data-permaneni
crossorigin="anonymous" />

_imitation of separate domains: DNS lookups

 Each new domain that your request (assuming nothing in cache) will involve
a DNS lookup, which very time consuming.

* Especially so if this happens inside <script>, since downloading script
blocks other parallel download.

e SO there is a tradeoff about choosing the right number of separate domains.

* Rule of thumb: if you have ~20 assets, use one subdomain to serve them; if
you have ~50 assets, use two subdomains to serve.

* Note: DNS lookup only happens when the first time a domain is accessed,
then the lookup result will be cached.

14

DNS Prefetching

<head>

<link rel="dns-prefetch" href=“http://static.fbcdn.com">

</head>

* Do the DNS lookup before your the scripts actually
needs the assets.

o Start early, save time.

15

You can prefetch other things, too

<link rel="prefetch" href="sprite.png”>

<link rel="prefetch" href=""style.css">

e |f you don't do pretetch, by default the browser won't
fetch it until it is really needed.

16

Be careful with CSS

 CSS is a major enemy of performance, because it blocks rendering, i.e., CSS is on the
critical path of page rendering.

* Nothing is shown on your page until all CSS files are fetched.

e Better get those CSS file as fast as you can

 Don't put it on a separate subdomain for static assets, to avoid extra DNS lookup

e Serve it early

» Concatenate multiple CSS files into one file, to reduce the number of HT TP requests
e Gzip and minity it (will talk about it soon)

e Cache the hell out of it

17

Gzipping and Minitying

* Minifying:

* remove comments and white space in your text assets (like JavaScript files
and CSS files);

* USe as-short-as-possible variables names and function names;

 combine declarations (e.q., rather than h1 {color:red;} p {color:red}, just
do h1, p {color:red;})

o htips://developers.google.com/speed/docs/insights/MinifyResources#overview

o Gzipping: compress it for transmission
e can give us more than 90% saving, big improvement!

18

https://developers.google.com/speed/docs/insights/MinifyResources#overview

Optimizing images

e Spriting: load one large image over one HI TP request
instead of loading several smaller images over several
H I TP requests

* Only keep necessary image resolution / sizes, resize
the image to how big it is needed; be careful with
Retina images (4 times the normal resolution)

19

Progressive JPG

Baseline Progressive

whel Sel b BN el ScT b
R PR TR

Final Image Less quality Final Image

To enable progressive JPG, check the corresponding options when saving
an image in Photoshop (or other image tools).

20

Overall tip for image optimization

e Avoid using Image whenever possible: It it can be
done using CSS only, don’t use images.

Summary ot Front-End Performance

 \What matters is the perceived performance of your
website. It Is not about the numbers, It Is about how
fast you website feels.

e Always keep user experience in mind.

Credits: http://csswizardry.com/2013/01/front-end-performance-tor-web-designers-and-front-end-developers/

22

Scalability

how many users we can support without downgrading each user's
response time

23

Application performance drops with more users

800,000 r 16,0

700,000 + 140
600,000 + 12.0
500,000 + 100
400,000 g ™ Derived visits per day
300,000 L 60 = Page loadtime
200,000 | a0
100,000 20
U ' ! ' 1 - 00

1 200 300 400 500 1,000

Response time (page load speed) vs. concurrent users (& daily visitor equivalent)

24

Solutions

e [irst step is to understand the issue, find the bottleneck
 benchmark / load test your system

 Apache bench: http://httpd.apache.org/docs/2.2/programs/ab.htmi

» JMeter: https://jmeter.apache.org/
 Monitor different components

 CPU, MEMORY, DISK, NETWORK

* Monitoring tools: http://aarvik.dk/four-linux-server-monitoring-and-
management-tools/

20

http://httpd.apache.org/docs/2.2/programs/ab.html
https://jmeter.apache.org/
http://aarvik.dk/four-linux-server-monitoring-and-management-tools/

| oad testing

Purpose
e Predict how your application will perform when a large

number of users are using your application at the same
time

How?
e Simulate artificial but realistic workloads

20

|_oad testing tools

o JMeter: free and written in Java
e [sung: free and written in Erlang

e [ocust.io: free and written In Python

27

| ocust.lo example

class User(HttpLocust)
task set = UserTasks
min walt = 5000
max _walt = 15000

Explanation:
A user’s behaviour will be defined in UserTasks class. The user will wait
randomly between 5 to 15 secs before sending a request to the application.

class UserTasks(TaskSet): Explanation:
@task(2) A user will randomly send a GET
def index(self): request to /" endpoint and a GET
request to “/about/” endpoint. The
self.client.get(“/”) user will send GET requests to “/”
about twice as many times as GET
@task(1) requests to “/about/”.

def about(self):
self.client.get(*/

about/”)

28

| ocust.io Web Intertace

Locust —

o = 127.0.0.1:8086

LOCUST READY

A MODERN LOAD TESTING TOOL

9600 users

A MODERN LOAD TESTING TOOL

LOCUST RUNNNG @ 26 4 0% B

Statistics

Start new Locust swarm

Number of users to simulate

300

/

/blog
/blog/[post-siug]
fforum
fforum/[thread-siug]
Start swarming

fforum/[thread-siug]

fforum/new

/signin

Total

29

Solution #1: Improve Hardware

e Get more RAM
e Use RAID

e Use SSD
e Spend $

30

This solution 1s OK ...

* |f you have tons of money to spend

e Buying a bigger box is quicker (ish) than redesigning
software

* Running out of PostgreSQL performance?

e spend months redesigning distributed database

e Or just buy a ton of RAM

31

Solution #2: Application Optimization

o All the front-end optimization that we have mentioned

e At the back-end minimize number requests to
database and file system

o Optimize algorithms, better data structures

o Consider time/space trade-offs, pre-compute and
store useful information to speed up response time

32

Solution #3: Apache Optimization
e Optimize PHP

* Use Native PHP functions, use single quotes, use
===, choose proper string functions, pass by
reference, disable debugging messages, use
caching, use JSON, etc.

o Nitp://www.thegeekstutt.com/2014/04/optimize-php-
code/

33

http://www.thegeekstuff.com/2014/04/optimize-php-code/

Solution #3: Apache Optimization

e Caching

* Mmod_mem_cache, caching data in memory to
speed up. (http://httpd.apache.org/docs/2.2/mod/
mod_cache.html)

e squid caching proxy: http://www.sqguid-cache.org/

e varnish cache: https://www.varnish-cache.org/about

34

http://httpd.apache.org/docs/2.2/mod/mod_cache.html
http://www.squid-cache.org/
https://www.varnish-cache.org/about

Solution #3: Apache Optimization

* [Load balancing: When you have multiple server
iINnstances running, keep their load balanced

 mod_proxy_balancer: Apache’s load balancing
modadule

o Nttp://httpd.apache.org/docs/2.2/mod/
Mmod_proxy balancer.nhtml

35

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

Solution #4: Use other web servers than Apache

 Node.|s: generally have better performance than
Apache

o Nginx: https://www.nginx.com/resources/wiki/#

36

https://www.nginx.com/resources/wiki/#

\Vlore about Node.|s

 As we mentioned before, Node.|s Is single-threaded,
.e., each Node.|s server only uses one core

 On a multi-core machine, we want to run one Node.|s
DroCess per core.

 How to effectively manage the multiple Node.|s
DrOCEeSsSses”?

37

Cluster Module of Node.|s

 Make It easier to handle mange multiple Node.|s servers.

e https://nodejs.org/api/cluster.html

var cluster = require(‘cluster’);
var numCPUs = require(‘os’).cpus().length;
if (cluster.isMaster) {

for (var 1 = @; 1 < numCPUs; i++) cluster.fork();
} else {

var app = require(‘express’)();
app.get(/’, function(req, res) {..});
app.listen(3000);

33

https://nodejs.org/api/cluster.html

Caching in Node.|s with Redis

e Nitp://redis.io/

 An In-memory data structure store, for caching

var redis = require(‘redis’);
var client = redis.createClient();
app.get(‘/expensive’, function(req, res) {
client.get(‘result’, function(err, val) {
if (val) return res.send(val);

else {
var result = 0;
for(var i=0; 1<10000; i++) {..}
client.set(‘result’, result);

}

})s
})s

39

http://redis.io/

Solution #4: Database optimizations

e Create indexes
e Optimize queries
e denormalize data

* Memcached: http://memcached.org/

 NoSQL DBs: MongoDB, Apache Cassandra, etc.

« Sharding and replication work together for distributed
database to work.

40

http://memcached.org/

Overall, the goal of scalability

* The system is organize in such that, if there is more work to
handle, there will be more workers.

e |deally, we have linear scalability, I.e., n times the workers
gives n times the performance.

* This ideally would only happen if the work can be tully
parallelized.

 But in reality some tasks are seguential rather than
parallelizable

41

Sequential vs Parallelizable tasks

e 1 paker takes 1 hour to bake 1 cake.
e 10 bakers take 1 hour to bake 10 cakes.

e« 10 bakers take 1/10 hour to bake 1 cake?

42

Platforms for scalable computing

* where they make tasks as paralleizable as possible
* Google MapReduce

 Hadoop

 Apache Spark

* Cloud computing infrastructure

e Amazon AWS

* Google Compute Engine

43

Other i1ssues

o Security Is a big thing, you'll learn it or have learned it
from other courses.

44

Going Live
Now you're capable of making something that people can use.
What are the next steps before becoming the next Facebook?

45

—0StiNg

e (Get a domain name
» Namecheap, Dreamhost, Godaddy, etc.
* Host it on some cloud computing platform

« AWS, Google Compute Engine, Rackspace, etc.

46

Refine your service

* Understand user (by talking to them for example)
o [mprove your apps usability

* Look and feel

» Core features

* API| framework

* [ough decisions to be made

47

Privacy

e Be upfront with the user
o Specifty privacy policy ina “Term” page

* NObOdy reads It, but It Is still necessary

48

Track your website

o Use Google Analytics

o (GIves refined insights about your website’s traffic

Dashboard
— \ "
N / > T =
i N b ./‘/\/\"\\/ \\\\\\\\\\\\\\\\\
Site Usage
- 312 visits 2,432 pageviews
‘ 7 79 Pages/Visit 00 04 00
w0 26.28% Bounce Rate M 41.35% % New visits
73 Visitors ;

49

Revenue moael

 Make some money with advertisement (maybe)
 (Google AdSense
 Automatically displayed relevant ads on your site
» Paid per click, ~$0.10~$3.00
 Many e-commerce sites offers commission (5-10%) for reterral

« Amazon, Bestbuy, etc.

50

Advertise your wepsite

e Use Google AdWords

e you pay Google for advertising your website

Search Engine Optimization (SEO)

* |nclude proper <meta>
 Use a descriptive <title>
* [earn about how Google’s ranking algorithm works

e https://en.wikipedia.org/wiki/PageRank

e https://en.wikipedia.org/wiki/Notollow

e Nhitps://en.wikipedia.org/wiki/Search_engine_optimization

52

https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Nofollow
https://en.wikipedia.org/wiki/Search_engine_optimization

Google Bombs

* Before Google got smart, they keyworded mostly by anchor
text

* Bloggers linked to whitehouse.gov/president with anchor text
‘miserable failure”

* Googling "miserable tailure” showed whitehouse.gov/president
as the first link

* (Google has since fixed this

o http://en.wikipedia.org/wiki/Google _bomb

http://en.wikipedia.org/wiki/Google_bomb

Web Images Groups News Froogle Local more »

GOOSle W Search I ;d;:‘::doesSeard\

- Web Results 1 - 10 of about 969,000 for miserable failure. (0.06 seconds)

Biography of President George W. Bush
Biography of the president from the official White House web site.
www.whitehouse.gov/president/gwbbio_html - 29k - Cached - Similar pages

Past Presidents - Kids Only - Current News - President
More results from www whitehouse. qov »

Welcome to MichaelMoore.com!

Official site of the gadfly of corporations, creator of the film Roger and Me
and the television show The Awful Truth. Includes mailing list, message board, ...
www._michaelmoore.com/ - 35k - Sep 1, 2005 - Cached - Similar pages

BBC NEWS | Americas | 'Miserable failure' links to Bush

Web users manipulate a popular search engine so an unflattering description leads
to the president’s page.
news.bbc.co.uk/2/hi/famericas/3298443 stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure

A search for miserable failure on Google brings up the official George W.
Bush biography from the US White House web site. Dismissed by Google as not a.
searchenginewatch.com/sereport/article php/3296101 - 45k - Sep 1, 2005 - Cached - S|m|Iar pages

A useful SEO tool

e (Google WebMaster Tools

e Nttps://
WWW.google.com/
webmasters/

* |nformation about your
site In Google’s search
engine

50

March 2009

Impressions
The top 20 queries in which your site

appeared, and the percentage of the top 20

queries represented by each search.

13%:

~N OO O S W N -

%
21%
19%
7%
5%
4%
4%
4%

3%

Query
kstp channel 5

top rank

smart kit

ecumen

blog marketing

online marketing

smartkit

search engine
optimization
services

Traffic

The top 20 queries from which users
reached your site, and the percentage of
the top 20 queries represented by each
click.

Position # % Query Position
5 1 14% top rank 3
3 5 13% topranlf online q
7 marketing
6 3 9u top ran!(online 5
marketing
g .
search engine
27 4 6% optimization 14
5 services
5 5% toprank 3
14 6 4% prweb seowebinar 2

7 4% top rank marketina 2

https://www.google.com/webmasters/

| egal stuft

* |ntellectual Property
o Copyright

* [rademark

o Patent

e Protect yourselt

then, be IUCKy.

Next week

e FInal Exam Preview

