
CSC309 Winter 2016
Lecture 10
Larry Zhang

1

Announcements
• A3 showcase will be held in DH-2010, March 29, lecture time

• 6 minutes for each group’s presentation, 20 groups

• Order of presentations will generated randomly and posted
before the showcase, if you have to leave right after 5:00pm,
let me know.

• Everyone will fill in a form to rate other groups’ products,
there will be small portion of participation marks for this.

2

Scalability and Performance

3

First of all

• Performance and Scalability are two different things

• Performance is more about how fast a single
request is handled

• Scalability is about how the performance scales with
the size of user base growing

4

Performance

5

Scalability

6

Outline
• How to improve the performance of a single request

• Something that can make a difference for you now

• Mostly about front-end

• How to scale your web app

• Something to worry about when you have 1 million users.

• More about back-end
7

Front-end performance tricks

8

Stylesheets at the top, scripts at the bottom
• CSS blocks rendering

• Nothing is displayed in your browser until CSS is loaded, so need to load
CSS right away.

• JavaScript blocks downloads

• Normally browsers try to download as many assets as possible in parallel;
but JavaScript download blocks all other downloads for good reasons
(avoid concurrency issues). So if nothing really need to be blocked,
JavaScripts better be downloaded at very last.

• Browsers are becoming smarter and smarter about how to download
things.

9

Make fewer requests
• Each HTTP request potential need to do DNS lookups, redirects,

404s, etc, which is costly.

• Make as smaller of HTTP request as possible.

• For example, if you have many small images in your web page,
rather than issuing one HTTP request for each image, put all of them
into one big image (sprite), download in one single HTTP request,
then use CSS positions to get each image. This is called spriting.

• https://css-tricks.com/css-sprites/

10

https://css-tricks.com/css-sprites/

Spriting example

Maximizing Parallelization
• Browsers typical limits the number of parallel download from a

domain, e.g., 2 connections.

• In order to get more concurrent download, have a separate
domain for separate assets, or even several different
domains.

• e.g., Twitter has abs.twimg.com to server static assets.

• e.g., Facebook has static.xx.fbcdn.net to server static
assets

12

http://abs.twimg.com
http://static.xx.fbcdn.net

Limitation of separate domains: DNS lookups
• Each new domain that your request (assuming nothing in cache) will involve

a DNS lookup, which very time consuming.

• Especially so if this happens inside <script>, since downloading script
blocks other parallel download.

• So there is a tradeoff about choosing the right number of separate domains.

• Rule of thumb: if you have ~20 assets, use one subdomain to serve them; if
you have ~50 assets, use two subdomains to serve.

• Note: DNS lookup only happens when the first time a domain is accessed,
then the lookup result will be cached.

14

DNS Prefetching

• Do the DNS lookup before your the scripts actually
needs the assets.

• Start early, save time.

15

<head>
 ...
 <link rel="dns-prefetch" href=“http://static.fbcdn.com">
 ...
</head>

You can prefetch other things, too

• If you don’t do prefetch, by default the browser won’t
fetch it until it is really needed.

16

<link rel="prefetch" href=“sprite.png”>

<link rel="prefetch" href=“style.css">

Be careful with CSS
• CSS is a major enemy of performance, because it blocks rendering, i.e., CSS is on the

critical path of page rendering.

• Nothing is shown on your page until all CSS files are fetched.

• Better get those CSS file as fast as you can

• Don’t put it on a separate subdomain for static assets, to avoid extra DNS lookup

• Serve it early

• Concatenate multiple CSS files into one file, to reduce the number of HTTP requests

• Gzip and minify it (will talk about it soon)

• Cache the hell out of it

17

Gzipping and Minifying
• Minifying:

• remove comments and white space in your text assets (like JavaScript files
and CSS files);

• use as-short-as-possible variables names and function names;

• combine declarations (e.g., rather than h1 {color:red;} p {color:red}, just
do h1, p {color:red;})

• https://developers.google.com/speed/docs/insights/MinifyResources#overview

• Gzipping: compress it for transmission

• can give us more than 90% saving, big improvement!

18

https://developers.google.com/speed/docs/insights/MinifyResources#overview

Optimizing images

• Spriting: load one large image over one HTTP request
instead of loading several smaller images over several
HTTP requests

• Only keep necessary image resolution / sizes, resize
the image to how big it is needed; be careful with
Retina images (4 times the normal resolution)

19

Progressive JPG

20

To enable progressive JPG, check the corresponding options when saving
an image in Photoshop (or other image tools).

Overall tip for image optimization

• Avoid using image whenever possible: If it can be
done using CSS only, don’t use images.

21

Summary of Front-End Performance

• What matters is the perceived performance of your
website. It is not about the numbers, it is about how
fast you website feels.

• Always keep user experience in mind.

22

Credits: http://csswizardry.com/2013/01/front-end-performance-for-web-designers-and-front-end-developers/

Scalability
how many users we can support without downgrading each user’s
response time

23

Application performance drops with more users

24

Solutions
• First step is to understand the issue, find the bottleneck

• benchmark / load test your system

• Apache bench: http://httpd.apache.org/docs/2.2/programs/ab.html

• JMeter: https://jmeter.apache.org/

• Monitor different components

• CPU, MEMORY, DISK, NETWORK

• Monitoring tools: http://aarvik.dk/four-linux-server-monitoring-and-
management-tools/

25

http://httpd.apache.org/docs/2.2/programs/ab.html
https://jmeter.apache.org/
http://aarvik.dk/four-linux-server-monitoring-and-management-tools/

Load testing

26

Load testing tools

• JMeter: free and written in Java

• Tsung: free and written in Erlang

• Locust.io: free and written in Python

27

Locust.io example

28

Locust.io Web Interface

29

Solution #1: Improve Hardware

30

• Get more RAM

• Use RAID

• Use SSD

• Spend $

This solution is OK …
• If you have tons of money to spend

• Buying a bigger box is quicker (ish) than redesigning
software

• Running out of PostgreSQL performance?

• spend months redesigning distributed database

• or just buy a ton of RAM
31

Solution #2: Application Optimization
• All the front-end optimization that we have mentioned

• At the back-end minimize number requests to
database and file system

• Optimize algorithms, better data structures

• Consider time/space trade-offs, pre-compute and
store useful information to speed up response time

32

Solution #3: Apache Optimization
• Optimize PHP

• Use Native PHP functions, use single quotes, use
===, choose proper string functions, pass by
reference, disable debugging messages, use
caching, use JSON, etc.

• http://www.thegeekstuff.com/2014/04/optimize-php-
code/

33

http://www.thegeekstuff.com/2014/04/optimize-php-code/

Solution #3: Apache Optimization
• Caching

• mod_mem_cache, caching data in memory to
speed up. (http://httpd.apache.org/docs/2.2/mod/
mod_cache.html)

• squid caching proxy: http://www.squid-cache.org/

• varnish cache: https://www.varnish-cache.org/about

34

http://httpd.apache.org/docs/2.2/mod/mod_cache.html
http://www.squid-cache.org/
https://www.varnish-cache.org/about

Solution #3: Apache Optimization
• Load balancing: When you have multiple server

instances running, keep their load balanced

• mod_proxy_balancer: Apache’s load balancing
module

• http://httpd.apache.org/docs/2.2/mod/
mod_proxy_balancer.html

35

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

Solution #4: Use other web servers than Apache

• Node.js: generally have better performance than
Apache

• Nginx: https://www.nginx.com/resources/wiki/#

36

https://www.nginx.com/resources/wiki/#

More about Node.js
• As we mentioned before, Node.js is single-threaded,

i.e., each Node.js server only uses one core

• On a multi-core machine, we want to run one Node.js
process per core.

• How to effectively manage the multiple Node.js
processes?

37

Cluster Module of Node.js
• Make it easier to handle mange multiple Node.js servers.

• https://nodejs.org/api/cluster.html

38

https://nodejs.org/api/cluster.html

Caching in Node.js with Redis

39

• http://redis.io/

• An in-memory data structure store, for caching

http://redis.io/

Solution #4: Database optimizations
• Create indexes

• optimize queries

• denormalize data

• Memcached: http://memcached.org/

• NoSQL DBs: MongoDB, Apache Cassandra, etc.

• Sharding and replication work together for distributed
database to work.

40

http://memcached.org/

Overall, the goal of scalability
• The system is organize in such that, if there is more work to

handle, there will be more workers.

• Ideally, we have linear scalability, i.e., n times the workers
gives n times the performance.

• This ideally would only happen if the work can be fully
parallelized.

• But in reality some tasks are sequential rather than
parallelizable

41

Sequential vs Parallelizable tasks

• 1 baker takes 1 hour to bake 1 cake.

• 10 bakers take 1 hour to bake 10 cakes.

• 10 bakers take 1/10 hour to bake 1 cake?

42

Platforms for scalable computing
• where they make tasks as paralleizable as possible

• Google MapReduce

• Hadoop

• Apache Spark

• Cloud computing infrastructure

• Amazon AWS

• Google Compute Engine

43

Other issues

• Security is a big thing, you’ll learn it or have learned it
from other courses.

44

Going Live
Now you’re capable of making something that people can use.
What are the next steps before becoming the next Facebook?

45

Hosting

• Get a domain name

• Namecheap, Dreamhost, Godaddy, etc.

• Host it on some cloud computing platform

• AWS, Google Compute Engine, Rackspace, etc.

46

Refine your service
• Understand user (by talking to them for example)

• Improve your apps usability

• Look and feel

• Core features

• API framework

• Tough decisions to be made
47

Privacy

• Be upfront with the user

• Specify privacy policy in a “Term” page

• nobody reads it, but it is still necessary

48

Track your website
• Use Google Analytics

• Gives refined insights about your website’s traffic

49

Revenue model
• Make some money with advertisement (maybe)

• Google AdSense

• Automatically displayed relevant ads on your site

• Paid per click, ~$0.10~$3.00

• Many e-commerce sites offers commission (5-10%) for referral

• Amazon, Bestbuy, etc.

50

Advertise your website

• Use Google AdWords

• you pay Google for advertising your website

51

Search Engine Optimization (SEO)
• Include proper <meta>

• Use a descriptive <title>

• Learn about how Google’s ranking algorithm works

• https://en.wikipedia.org/wiki/PageRank

• https://en.wikipedia.org/wiki/Nofollow

• https://en.wikipedia.org/wiki/Search_engine_optimization
52

https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Nofollow
https://en.wikipedia.org/wiki/Search_engine_optimization

PageRank

53

Google Bombs
• Before Google got smart, they keyworded mostly by anchor

text

• Bloggers linked to whitehouse.gov/president with anchor text
“miserable failure”

• Googling “miserable failure” showed whitehouse.gov/president
as the first link

• Google has since fixed this

• http://en.wikipedia.org/wiki/Google_bomb

http://en.wikipedia.org/wiki/Google_bomb

A useful SEO tool

56

• Google WebMaster Tools

• https://
www.google.com/
webmasters/

• Information about your
site in Google’s search
engine

https://www.google.com/webmasters/

Legal stuff
• Intellectual Property

• Copyright

• Trademark

• Patent

• Protect yourself

57

then, be lucky.

58

Next week

• Final Exam Preview

59

