
CSC309 Winter 2016
Lecture 9
Larry Zhang

1

Announcement

• A3 proposal due this evening.

• Don’t forget to give your game a catchy name

• We have iPad mini’s, iPod touch’s and Nexus phones and tablets
which you can borrow for the project, ask me for permission first,
then get it from Andrew Wang.

2

3

HTML5 WebSocket

• Standardized by IETF in 2011.

• Supported by most major browsers including Google Chrome,
Internet Explorer, Firefox, Safari and Opera

• Basically, it allows the browser to create a socket client (inside a
web page) that connects and talks to a WebSocket server.

4

Why WebSocket

• Low latency client-sever and server-client connections.

5

• Legacy HTTP
• Connect, send a request, get a response, disconnect. When

sending the next request need to establish the connection again.

• All communications are initiated by the client, the server cannot
proactively send something to the client.

• WebSocket
• full-duplex communication channel over a single always-on TCP

connection

6

Choose the right thing

• HTTP is still great for static, cachable content

• WebSocket is better for real-time applications, like games, stock
monitors

8

How the protocol works
• It starts off as a HTTP request, which indicates that it wants to

“upgrade” to the WebSocket protocol

• If you server can understand it, then the http connection is
switched into a WebSocket connection

9

request response

How to use WebSocket
• server side
• client side

10

Server side
• Use ws, the WebSocket server implementation for Node.js

• https://github.com/websockets/ws

• Other server implementation also exists, for different languages,
e.g., Java, Python, etc.

11

https://github.com/websockets/ws

Example: simple echo server

ws is new socket for
the new connection

Client side: basic structure

13

 socket = new WebSocket("ws://localhost:8000");

 socket.onopen = function (event) {}

 socket.onclose = function (event) {
 event.code
 event.reason
 event.wasClean
 }

 socket.onmessage = function (event) {
 event.data
 }

Everything is
event-driven

Notes
• Client and server communicate by sending messages to each other.

• Server can easily broadcast message to all its clients.

• If you run a web page “client.html” on CSLINUX.UTM, make sure
you’re visiting “http://cslinux…/client.html”, rather than “https://
cslinux…/clien.html”.

• you’re supposed to use secure ws, i.e., wss, with https, but that
doesn’t work on cslinux.

14

demo
http://www.cs.toronto.edu/~ylzhang/csc309w16/websocket/

15

http://www.cs.toronto.edu/~ylzhang/csc309w16/websocket/

Reference

• https://www.websocket.org/

• https://github.com/websockets/ws

• https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

16

https://www.websocket.org/
https://github.com/websockets/ws
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

