
CSC309 Winter 2016
Lecture 6
Larry Zhang

Admin

• A1 marking will be done soon (probably tomorrow)

• You can submit remarking requests by Feb 15

• Read TA’s annotations first, then clearly describe why your
marking need to be changed.

2

A2 Notes
• Use PostgreSQL on the CS.UTM server, we will do the marking there. (CSLINUX and

DHxxxxPCxx may not work)

• Functionality first, appearance second. Try the artistic things only if you have time for it.

• Basic word cloud can be generated using some JavaScript generated CSS applied to HTML
(don’t need to be images).

• Important requirement: the main page must be AJAX based (never refreshes).

• Twitter API rate limit is typically 180 requests per 15 minutes, but check the documentation to be
sure.

• There is also a Twitter API call that tells how close you are to the rate limit.

• Convenient way to get profile pictures: http://lorempixel.com/

3

http://lorempixel.com/

MVC (Model-View-Controller)

Model-View-Controller

• MVC is a software architectural patterns mostly used for applications
with graphical user interfaces.

• Popular for web applications.

• Invented by Trygve Reenskaug in 1970s.

• Well known frameworks using MVC: Ruby on Rails, Django

5

Design goals

• Separate the core functionality from the presentation and control
logic that uses this functionality.

• Allow multiple views to share the same data model

• Make the app easier the implement, test and maintain.

6

MVC definitions
• Model: the core functionalities, used

to store and manipulate data, typically
stored in database, session, etc.

• View: The user interface, a rendered
version of the model.

• Controller: The brain of the
application. Change the state of the
applications according to user input
and current state. Basically, a finite
state machine.

7

An easy example of MVC

8

A web app example: Guess Game

• demo
• https://cs.utm.utoronto.ca/~zhangy33/guessGameMVC/

9

https://cs.utm.utoronto.ca/~zhangy33/guessGameMVC/

Guess Game MVC: Model
• Start Game:

• randomly generate a secret number

• number of guesses = 0

• history = []

• Make a guess:

• check guessed number against the secret number, produce response message (too high or
too low, or correct)

• number of guess ++

• add guess to history

10

Core functionality
(data API)

Guess Game MVC: Views

11

login play

won

Guess Game MVC: Controller

12

start

login

play

won

login success

login fail

guess fail

guess success

start again

Guess Game MVC

•code

13

Summary
• The model code provides the data API, i.e., how to update and get

the data for the application

• The view code defines the appearance of each page, and it only
defines the appearance and has nothing to do with the
functionalities

• The controller code (index.php) runs a finite state machine, which
switches between application states, access core functionalities to
access data, and update the views of the application.

14

MVC advantages
• Clarity of design: model provides API to data access; view and

controller easy to write

• Efficient modularity: different modules can be worked on by different
developers; each module can easily be replaced

• Easy support of multiple views, each of which uses the same data API
provided by model

• Easy to maintain

• Easily distributable to different machines

15

Other patterns also exist
• Hierarchical model–view–controller

• Model–view–adapter

• Model–view–presenter

• Model–view–viewmodel

• Naked objects

• Observer pattern

• Presentation–abstraction–control

16

REST API and
RESTful Web Services

Representational State Transfer

• People don’t really agree on what REST really means

• Common perception: it is just a convention about how to use HTTP

• Use URLs to access resource.

• If we following this convention, it will enables us to build high-
performing and more maintainable web apps

18

REST
• Instead of having randomly named setter and getter URLs and using GET for all

the getters and POST for all the setters, we try to have the URLs identify resources,
and then use the HTTP actions GET, POST, PUT and DELETE to do stuff to them.

• So instead of

• GET /get_article?id=1 POST /delete_article?id=1

• You would do

• GET /articles/1/

• DELETE /articles/1/

19

We access resources
• Two basic types of URLs

• One for a collection of the resource

• /dogs

• One for a particular resource

• /dogs/42

20

REST Request Types
• GET: Read a specific resource (by an identifier) or a collection of

resources.

• PUT: Update a specific resource (by an identifier) or a collection of
resources. Can also be used to create a specific resource if the
resource identifier is know beforehand.

• DELETE: Remove/delete a specific resource by an identifier.

• POST: Create a new resource. Also a catch-all verb for operations
that don't fit into the other categories.

21

REST is Stateless

• No client context being stored on the server between requests

• What you get from an API call depends only on information provided
in the current request.

• no sessions

• e.g., /dogs?color=white&location=toronto

22

Why use REST?
• Everyone else is using it.

• A REST service is essentially a lightweight web service, suitable for
access by application clients (like a smartphone app)

• You need to use if you want developers to access your web service’s
data in a programmed way.

• Easy to scale and maintain.

23

Example: Twitter API

• GET statuses/home_timeline

• POST statuses/retweet/:id

• POST friendships/destroy

• GET search/tweets.json?q=uoft

24

Twitter API

First, OAuth
The authentication used by Twitter as well as
most of the service providers

Why OAuth
• When Alice wants a third-party app (e.g., App309, a registered

Twitter app) to access your Twitter account, and be able to post
message to your Twitter account.

• The naive and insecure way: Alice gives away her Twitter username
and password to App309.

• With OAuth, Alice can allow App309 to access her Twitter account
without telling App309 her Twitter username and password.

• It takes a few steps to setup …

27

How OAuth works

• Step 1: user shows intent

• Alice: Hey App309, I would like you to access my Twitter account.

• App309: Great! Let me ask Twitter for permission.

28

How OAuth works
• Step 2: App309 asks permission

• App309: Hi Twitter, I have a user who wants give me access to her
Twitter account. Could you give me a request token?

• Twitter: Okay, here is a token, it needs to be authorized by the
user. Also, here is a secret code, use it as signature next time you
use this token so we can verify that it is actually you using the
token.

29

How OAuth works

• Step 3: App309 redirects Alice to Twitter

• App309: Hey Alice, I’m sending you over to Twitter so you can tell
Twitter you authorize my access. Take this request token with
you.

• Alice: OK!

30

How OAuth works
• Step 4: Alice logs in to Twitter talks to Twitter

• Alice: Hey Twitter, I’d like to authorize this request token that
App309 gave me.

• Twitter: OK. Just to be sure, you want App309 to do X, Y, and Z with
your Twitter account?

• Alice: Yes!

• Twitter: OK, the request token is authorized. You can go back to
App309 and let them know they can use the request token now.

31

good
to go

How OAuth works

• Step 5: Alice go back to App309

• Alice: OK, App309, the request token is authorized.

• App309: Great! I will use it to get an access token from Twitter!

32

good
to go

How OAuth works
• Step 6: App309 goes to Twitter again

• App309: Hi Twitter, I’ve got this authorized request token, can I
exchange it for an access token?

• Twitter: Checking…, OK, here is your access token and secret,
use the access token when you want to access Alice’s Twitter
account, and sign your request with the secret, so we know it is
you.

• App309: No prob!
33

good
to go

How OAuth works

• Step 7: App309 accesses Alice’s Twitter account

• App309: Hi Twitter, I’d like to post a message to Alice’s timeline.
Here is my access token, the request is signed by the secret.

• Twitter: Checking…, OK. Done!

34

Summary
• Basically, when App309 wants access Twitter it needs to provide the following 4

strings

• CONSUMER_KEY and CONSUMER_SECRET: App309’s ID which was created
when the app is registered on Twitter.

• ACCESS_TOKEN and ACCESS_TOKEN_SECRET: proves App309’s permission
to access Alice’s account

• The authentication process is simpler if App309 is accessing Twitter on its own
behalf.

• The access token and secret for App309 is created directly in App309’s
developer console, without having to go back and forth some many times.

35

Twitter API demo

