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Why Javascript
• Javascript is for dynamically manipulate the front-end of your web 

page.  

• Add/remove/change the content/attributes of an HTML element 

• Change the style of an HTML element 

• Detect user interactions with the web page. 

• …, pretty much everything with the front-end
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How it works
• it runs only on client side (the browser), i.e., it does not communicate with the 

server side (normally) 

• So Javascript can do fast UI 

• It is interpreted language, interpreted by a Javascript Engine built in the browser.  

• V8 (Chrome), SpiderMonkey (Firefox), JavascriptCore (Safari) 

• It is event-driven, i.e., all actions are triggered by a user event 

• e.g., user clicking on something, or page loaded 

• It has nothing really to do with Java
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The Iron Triangle

• HTML: defines the content of the web page 

• CSS: specify the style of the web page 

• Javascript: program the behaviour of the web page.
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JS programming model: Event-Driven
• There is no “main” function 

• Every function call is 
trigger by an event 
happening at the web 
page. 

• If no event happens, the 
javascript are just like a 
static chunk of code and 
nothing happens.
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Before we start programming Javascript, we need to know the 
environment that is runs in. 

We know javascript can manipulate the HTML document, but 
how does JS get access to the elements in the HTML document? 
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Document Object Model (DOM)
• It is a cross-platform language-independent 

convention for representing and interacting with 
objects in HTML and XML document. 

• Standard set by W3C. 

• It is how the browser internally organized the 
objects in a loaded HTML document. 

• It is the programming interface for HTML. 

• The objects form a DOM tree.
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Document Object Model (DOM)

Every element is an object.
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Find an element and change it
• Find an HTML element 

• document.getElementById(id) 

• document.getElementsByTagName(name) 

• document.getElementsByClassName(name) 

• Change HTML elements 

• element.innerHTML = new html content 

• element.attribute = new value 

• element.setAttribute(attribute, value) 

• element.style.property = new style

demo
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http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method


Event handler: onclick
<!DOCTYPE html> 
<html> 
<body> 

<h1>My First Page</h1> 

<p id="demo"></p> 

<script> 
document.getElementById("demo").innerHTML = "Hello World!"; 
</script> 

</body> 
</html>

This action is trigger when the script is loaded. 
What if I want the action to be triggered by a click on something? 

Use the “onclick” handler.

demo
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http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method


Define a function
<!DOCTYPE html> 
<html> 
<body> 

<h1>My First Page</h1> 

<p id="demo">paragraph</p> 

<button onclick='document.getElementById("demo").innerHTML = 
"HAHA"'>I'm a button</button> 

<script> 
</script> 

</body> 
</html> 

This is ugly, too much stuff in the line

demo
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http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method


Decoupling HTML and Javascript
<!DOCTYPE html> 
<html> 
<body> 

<h1>My First Page</h1> 

<p id="demo">paragraph</p> 

<button onclick=“myfun();”>I’m a button</button> 

<script> 
function myfun () { 
    document.getElementById("demo").innerHTML = "HAHA"; 
} 
</script> 

</body> 
</html> This is still ugly. Shouldn’t the content definition (HTML) and the 

behaviour definition (Javascript) be completely decoupled?

demo
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http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method


The good code
<!DOCTYPE html> 
<html> 
<body> 

<h1>My First Page</h1> 

<p id="demo">paragraph</p> 

<button id="button1">I'm a button</button> 

<script> 
document.getElementById("button1").onclick = function () { 
    document.getElementById("demo").innerHTML = "HAHA"; 
} 
</script> 

</body> 
</html> This part can now be put into a separate file.
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Separate files
<!DOCTYPE html> 
<html> 
<body> 

<h1>My First Page</h1> 

<p id="demo">paragraph</p> 

<button id="button1">I'm a button</button> 

<script src="myScript.js"></script> 

</body> 
</html> 

// myScript.js 

document.getElementById("button1").onclick = function () { 
    document.getElementById("demo").innerHTML = "HAHA"; 
} 

• Performance tip: it is typically a good idea to put the scripts at the 
bottom of the body, it can improve page load, since loading and 
compiling Javascripts can take time. 

• Putting Javascript in a separate file also improve page load, since 
the script file can be cached.
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Note

• In CSS we have font-size, background-color 

• In JS when setting style we use fontSize, backgroundColor
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Anonymous function
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document.getElementById("button1").onclick = function () { 
    document.getElementById("demo").innerHTML = "HAHA"; 
} 

document.getElementById("button1").onclick = normalFunc; 

function normalFunc () { 
    document.getElementById("demo").innerHTML = "HAHA"; 
} 

Named function



Readings

• More on DOM 

• http://www.w3schools.com/js/js_htmldom.asp 

• More on Events 

• http://www.w3schools.com/js/js_events.asp
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http://www.w3schools.com/js/js_htmldom.asp
http://www.w3schools.com/js/js_events.asp


We’ve got an idea how to write 
Javascript. Now let’s learn the 
language a bit more systematically. 
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Variables
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Number types
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Math object
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Special values: null and undefined
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Logical operators
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if/else statements
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Boolean types
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for loop
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while loop
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Pop-up
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Arrays

29



Array methods
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String type

31



More about strings
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Split and join
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Reference: 
http://www.w3schools.com/js/default.asp
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http://www.w3schools.com/js/default.asp


Browser Object Hierarchy
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Global DOM
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The window object
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The document object
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The location object
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The navigator object
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The screen object
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The history object
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The DOM Tree
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The DOM Tree
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Types of DOM nodes
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Types of DOM nodes
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Traversing the DOM tree
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Full list: https://developer.mozilla.org/en-US/docs/Web/API/Node

https://developer.mozilla.org/en-US/docs/Web/API/Node


Create new nodes
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Modifying the DOM tree
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Which way is better?
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VS

Better

• Hack 
• Ugly, if the added element 

is complicated. 
• error-prone, especially with 

a mixed ‘’ and “” 
• can only add the end, 

cannot insert in the middle



When does the code run?
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When does the code run?
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a failing example
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• Problem: global JS code runs the moment the script is loaded 
• Script in head is processed before the page body is loaded 
• No element with id=“ok” has been created yet.



a solution: window.onload

55



The keyword this
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The keyword this
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• The event handler okayClick is bound to the element with id “ok” 
• So this means the element with id “ok” 
• No need to do getElementById() again.



• We’ve only covered a small part of things you can do with Javascript 

• You should go through the reference to get a better sense what are 
all the things 

• http://www.w3schools.com/js/default.asp 

• When you need to do it, look it up exact how to 

• Use the Developer Console
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http://www.w3schools.com/js/default.asp


demo: making a game 
http://www.cs.toronto.edu/~ylzhang/csc309w16/puzzle/game.html 
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http://www.cs.toronto.edu/~ylzhang/csc309w16/puzzle/game.html


• Today we learned

• Javascript 

• Next week

• JQuery, Ajax; PHP
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