
CSC309 Winter 2016
Lecture 3
Larry Zhang

1

Why Javascript
• Javascript is for dynamically manipulate the front-end of your web

page.

• Add/remove/change the content/attributes of an HTML element

• Change the style of an HTML element

• Detect user interactions with the web page.

• …, pretty much everything with the front-end

2

How it works
• it runs only on client side (the browser), i.e., it does not communicate with the

server side (normally)

• So Javascript can do fast UI

• It is interpreted language, interpreted by a Javascript Engine built in the browser.

• V8 (Chrome), SpiderMonkey (Firefox), JavascriptCore (Safari)

• It is event-driven, i.e., all actions are triggered by a user event

• e.g., user clicking on something, or page loaded

• It has nothing really to do with Java

3

The Iron Triangle

• HTML: defines the content of the web page

• CSS: specify the style of the web page

• Javascript: program the behaviour of the web page.

4

JS programming model: Event-Driven
• There is no “main” function

• Every function call is
trigger by an event
happening at the web
page.

• If no event happens, the
javascript are just like a
static chunk of code and
nothing happens.

5

Before we start programming Javascript, we need to know the
environment that is runs in.

We know javascript can manipulate the HTML document, but
how does JS get access to the elements in the HTML document?

6

Document Object Model (DOM)
• It is a cross-platform language-independent

convention for representing and interacting with
objects in HTML and XML document.

• Standard set by W3C.

• It is how the browser internally organized the
objects in a loaded HTML document.

• It is the programming interface for HTML.

• The objects form a DOM tree.

7

Document Object Model (DOM)

Every element is an object.

8

Find an element and change it
• Find an HTML element

• document.getElementById(id)

• document.getElementsByTagName(name)

• document.getElementsByClassName(name)

• Change HTML elements

• element.innerHTML = new html content

• element.attribute = new value

• element.setAttribute(attribute, value)

• element.style.property = new style

demo

9

http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method

Event handler: onclick
<!DOCTYPE html>
<html>
<body>

<h1>My First Page</h1>

<p id="demo"></p>

<script>
document.getElementById("demo").innerHTML = "Hello World!";
</script>

</body>
</html>

This action is trigger when the script is loaded.
What if I want the action to be triggered by a click on something?

Use the “onclick” handler.

demo

10

http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method

Define a function
<!DOCTYPE html>
<html>
<body>

<h1>My First Page</h1>

<p id="demo">paragraph</p>

<button onclick='document.getElementById("demo").innerHTML =
"HAHA"'>I'm a button</button>

<script>
</script>

</body>
</html>

This is ugly, too much stuff in the line

demo

11

http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method

Decoupling HTML and Javascript
<!DOCTYPE html>
<html>
<body>

<h1>My First Page</h1>

<p id="demo">paragraph</p>

<button onclick=“myfun();”>I’m a button</button>

<script>
function myfun () {
 document.getElementById("demo").innerHTML = "HAHA";
}
</script>

</body>
</html> This is still ugly. Shouldn’t the content definition (HTML) and the

behaviour definition (Javascript) be completely decoupled?

demo

12

http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_method

The good code
<!DOCTYPE html>
<html>
<body>

<h1>My First Page</h1>

<p id="demo">paragraph</p>

<button id="button1">I'm a button</button>

<script>
document.getElementById("button1").onclick = function () {
 document.getElementById("demo").innerHTML = "HAHA";
}
</script>

</body>
</html> This part can now be put into a separate file.

13

Separate files
<!DOCTYPE html>
<html>
<body>

<h1>My First Page</h1>

<p id="demo">paragraph</p>

<button id="button1">I'm a button</button>

<script src="myScript.js"></script>

</body>
</html>

// myScript.js

document.getElementById("button1").onclick = function () {
 document.getElementById("demo").innerHTML = "HAHA";
}

• Performance tip: it is typically a good idea to put the scripts at the
bottom of the body, it can improve page load, since loading and
compiling Javascripts can take time.

• Putting Javascript in a separate file also improve page load, since
the script file can be cached.

14

Note

• In CSS we have font-size, background-color

• In JS when setting style we use fontSize, backgroundColor

15

Anonymous function

16

document.getElementById("button1").onclick = function () {
 document.getElementById("demo").innerHTML = "HAHA";
}

document.getElementById("button1").onclick = normalFunc;

function normalFunc () {
 document.getElementById("demo").innerHTML = "HAHA";
}

Named function

Readings

• More on DOM

• http://www.w3schools.com/js/js_htmldom.asp

• More on Events

• http://www.w3schools.com/js/js_events.asp

17

http://www.w3schools.com/js/js_htmldom.asp
http://www.w3schools.com/js/js_events.asp

We’ve got an idea how to write
Javascript. Now let’s learn the
language a bit more systematically.

18

Variables

19

Number types

20

Math object

21

Special values: null and undefined

22

Logical operators

23

if/else statements

24

Boolean types

25

for loop

26

while loop

27

Pop-up

28

Arrays

29

Array methods

30

String type

31

More about strings

32

Split and join

33

Reference:
http://www.w3schools.com/js/default.asp

34

http://www.w3schools.com/js/default.asp

Browser Object Hierarchy

35

36

Global DOM

37

The window object

38

The document object

39

The location object

40

The navigator object

41

The screen object

42

The history object

43

The DOM Tree

44

The DOM Tree

45

Types of DOM nodes

46

Types of DOM nodes

47

Traversing the DOM tree

48

Full list: https://developer.mozilla.org/en-US/docs/Web/API/Node

https://developer.mozilla.org/en-US/docs/Web/API/Node

Create new nodes

49

Modifying the DOM tree

50

Which way is better?

51

VS

Better

• Hack
• Ugly, if the added element

is complicated.
• error-prone, especially with

a mixed ‘’ and “”
• can only add the end,

cannot insert in the middle

When does the code run?

52

When does the code run?

53

a failing example

54

• Problem: global JS code runs the moment the script is loaded
• Script in head is processed before the page body is loaded
• No element with id=“ok” has been created yet.

a solution: window.onload

55

The keyword this

56

The keyword this

57

• The event handler okayClick is bound to the element with id “ok”
• So this means the element with id “ok”
• No need to do getElementById() again.

• We’ve only covered a small part of things you can do with Javascript

• You should go through the reference to get a better sense what are
all the things

• http://www.w3schools.com/js/default.asp

• When you need to do it, look it up exact how to

• Use the Developer Console

58

http://www.w3schools.com/js/default.asp

demo: making a game
http://www.cs.toronto.edu/~ylzhang/csc309w16/puzzle/game.html

59

http://www.cs.toronto.edu/~ylzhang/csc309w16/puzzle/game.html

• Today we learned

• Javascript

• Next week

• JQuery, Ajax; PHP

60

