Smartphone Image Denoising Dataset

Abdelrahman Abdelhamed1             Stephen Lin2             Michael S. Brown1

1York University             2Microsoft Research

The SIDD Benchmark will be hosted as a challenge at the New Trends in Image Restoration and Enhancement (NTIRE 2019) workshop in conjunction with CVPR 2019.

We have two challenges publicly available:
NTIRE 2019 Real Image Denoising Challenge - Track 1: Raw-RGB
NTIRE 2019 Real Image Denoising Challenge - Track 2: sRGB

After the challenge is over, the benchmark will be hosted back here on this website.

Noisy Image Noisy
Ground Truth Image Ground Truth


The last decade has seen an astronomical shift from imaging with DSLR and point-and-shoot cameras to imaging with smartphone cameras. Due to the small aperture and sensor size, smartphone images have notably more noise than their DSLR counterparts. While denoising for smartphone images is an active research area, the research community currently lacks a denoising image dataset representative of real noisy images from smartphone cameras with high-quality ground truth. We address this issue in this paper with the following contributions. We propose a systematic procedure for estimating ground truth for noisy images that can be used to benchmark denoising performance for smartphone cameras. Using this procedure, we have captured a dataset, the Smartphone Image Denoising Dataset (SIDD), of ~30,000 noisy images from 10 scenes under different lighting conditions using five representative smartphone cameras and generated their ground truth images. We used this dataset to benchmark a number of denoising algorithms. We show that CNN-based methods perform better when trained on our high-quality dataset than when trained using alternative strategies, such as low-ISO images used as a proxy for ground truth data.


Abdelrahman Abdelhamed, Lin S., Brown M. S. "A High-Quality Denoising Dataset for Smartphone Cameras", IEEE Computer Vision and Pattern Recognition (CVPR'18), June 2018.

[PDF]   [Bibtex]