LE/EECS 4101 GS/EECS 5101 Advanced Data Structures

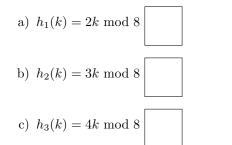
Quiz 2

Shahin Kamali

York University

March 22nd, 2023

Write your name and student id here:


"The deep roots never doubt spring will come ..." Marty Rubin

• Do not open this booklet until instructed.

- You are NOT allowed to use any printed/written material.
- Please turn off your cell phones and put them in your bags.
- Manage your time. We start the exam at 5:30 and end at 6:00. You have 30 minutes. Don't waste too much time on a single question.
- The exam is printed **double-sided**. There are **6 pages**, including this cover page and a blank page (use it if you need more space). You must submit ALL pages.

Provide your short answers in the provided boxes. There is no need to justify your answers.

- (a) True or False: For performance improvement, the sizes of hash tables are best to be powers of 2. **Answer:** As discussed in the class, the hash table size is best to be a prime that is not close to a power of 2.
- (b) True or False: The load factor can be more than 1 when handling collisions with chaining. **Answer:** Unlike open-addressing, the load factor in chaining can be larger than 1.
- (c) Tue or False: after rehashing, it is necessary to modify the hash function. the hash table size is changed, the hash function must change.
- (d) Assume a hash scheme in which keys are selected uniformly at random from the Universe set $U = 1, 2, 3, \ldots, 600$. Consider the following hash functions. Which hash function is better? (choose one answer)

d) $h_4(k) = 6k \mod 8$

e) all hash functions are equally good.

Answer: The answer is (b).

If we use $h_1(k)$, we will only use indices 0, 2, 4, 6. If we use $h_2(k)$, we will use all indices 0, 1, 2, 4, 5, 6. If we use $h_3(k)$, we will only use indices 0, 4. If we use $h_4(k)$, we will only use indices 0, 2, 4, 6.

(e) True or False: In a Quad tree of n points, where n is a large number, it is possible that one of the children of the root

be empty (null).

True

(f) True or False: The height of the kd-tree for any set of n points is $O(\log n)$.

True

True

Kd-trees are balanced (since at each level, you find the medial and partition the points into two sets Answer: of equal size.)

(g) True or False: Range query time in range trees is asymptotically faster than in kd-trees.

False

True

Answer:

Since

True

Answer: In 2d-range trees, the range queries take $O(k + \log^2 n)$, which is faster than $O(k + \sqrt{n})$ of kd-trees.

2. Hashing (3 + 3 + 4 marks)

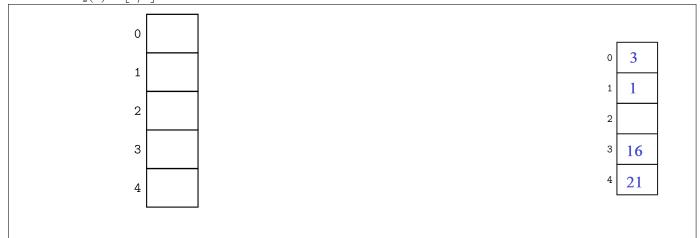
Write down the answer to the following questions. Unless otherwise mentioned, no justification is needed.

(a) We apply the Horner's rule with m = 10 to find the hash value for "PdP" in a hash table of size 100. Recall the following code for applying Horner's rule. The ASCII value of P and d are respectively 80 and 100. Write down the returned index.

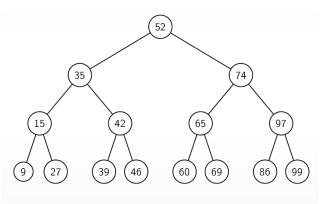
```
static int hashFn(String key) {
    int hashCode = 0;
    int m = 10;
    for (i = 0 ; i < key.length() ; i++)
        hashCode = m * hashCode + (int) key.charAt(i);
    return hashCode mod 100;
}</pre>
```

80 Answer: Initially, hashCode is 0. After the first iteration, it will become 80; then it becomes 80 * 10 + 100 = 900. Finally, it becomes 900 * 10 + 80 = 9080. The ouput will be 9080 mod 100 = 80.

(b) Given a "large" array L of n distinct integers and a "small" array S of $\lfloor \log n \rfloor$ distinct integers, we want to report all numbers that appear in both L and S. For example, for L = [3, 10, 5, 8, 14, 2, 1, 20] and S = [11, 20, 3], the output must be $\{3, 20\}$ (reported in any order).


The following two solutions both use **Cuckoo hashing** to handle collisions in hash table *H*.

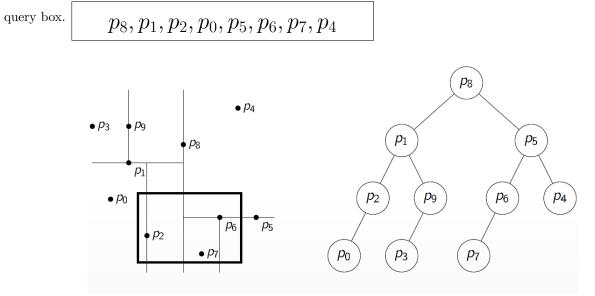
- Solution 1: scan L and insert all its items in the hash table H; then scan S and search for any item in H.
- Solution 2: scan S and insert all its items in the hash table H; then scan L and search for any item in H.


Specify which solution is better. Justify your answer in one or two sentences.

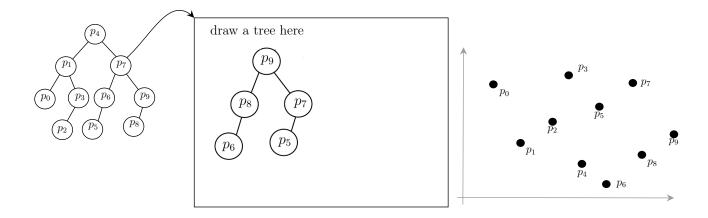
Answer: Solution 2 is better. In Cuckoo hashing, search time is O(1) (even if the uniform hashing assumption does not hold), while insertion could be slower. Thus, a solution with a smaller number of insertions is preferred.

(c) Consider a hash table dictionary with universe $U = \{0, 1, 2, ..., 24\}$ and size M = 5. If items with keys k = 21, 3, 16, 1 are inserted in that order, draw the resulting hash table if we resolve collisions using **Cuckoo hashing** with $h_1(k) = k$ mod 5 and $h_2(k) = \lfloor k/5 \rfloor$.

- 3. Multidimensional Dictionaries (3 + 4 + 3 marks)
 - (a) Specify all **outside** nodes when we search for items in the range (40, 80) in the following 1-dimensional binary search tree.



9, 15, 27, 99


Answer: Outside nodes are the ones which are dismissed

⁽not reported) without being examined. In this case, boundary nodes are 52, 35, 42, 39, 74, 97, 86, and inside nodes are 46, 60, 65, 69

(b) Specify the nodes of the following kd-tree that are **examined** when searching for the points inside the highlighted

(c) Draw the secondary tree pointed by the node for p_7 in the range tree associated with the following points.

Use this blank page for your draft work.