LE/EECS 4101 GS/EECS 5101 Advanced Data Structures

Quiz 2

Shahin Kamali

York University

March 22nd, 2023

Write your name and student id here: \square

- Do not open this booklet until instructed.

- You are NOT allowed to use any printed/written material.
- Please turn off your cell phones and put them in your bags.
- Manage your time. We start the exam at 5:30 and end at 6:00. You have $\mathbf{3 0}$ minutes. Don't waste too much time on a single question.
- The exam is printed double-sided. There are $\mathbf{6}$ pages, including this cover page and a blank page (use it if you need more space). You must submit ALL pages.

1. True/False and Multiple-Choice Questions (15 marks)

Provide your short answers in the provided boxes. There is no need to justify your answers.
(a) True or False: For performance improvement, the sizes of hash tables are best to be powers of 2.

Answer: As discussed in the class, the hash table size is best to be a prime that is not close to a power of 2 .
(b) True or False: The load factor can be more than 1 when handling collisions with chaining. \square
Answer: Unlike open-addressing, the load factor in chaining can be larger than 1.
(c) Tue or False: after rehashing, it is necessary to modify the hash function.
 the hash table size is changed, the hash function must change.
(d) Assume a hash scheme in which keys are selected uniformly at random from the Universe set $U=1,2,3, \ldots, 600$. Consider the following hash functions. Which hash function is better? (choose one answer)
a) $h_{1}(k)=2 k \bmod 8 \square$
b) $h_{2}(k)=3 k \bmod 8$
d) $h_{4}(k)=6 k \bmod 8$
e) all hash functions are equally good.
c) $h_{3}(k)=4 k \bmod 8$ \square
Answer: The answer is (b).
If we use $h_{1}(k)$, we will only use indices $0,2,4,6$. If we use $h_{2}(k)$, we will use all indices $0,1,2,4,5,6$. If we use $h_{3}(k)$, we will only use indices 0,4 . If we use $h_{4}(k)$, we will only use indices $0,2,4,6$.
(e) True or False: In a Quad tree of n points, where n is a large number, it is possible that one of the children of the root be empty (null).

True

(f) True or False: The height of the kd-tree for any set of n points is $O(\log n)$. \square
Answer: Kd-trees are balanced (since at each level, you find the medial and partition the points into two sets of equal size.)
(g) True or False: Range query time in range trees is asymptotically faster than in kd-trees. \square
Answer: In 2d-range trees, the range queries take $O\left(k+\log ^{2} n\right)$, which is faster than $O(k+\sqrt{n})$ of kd-trees.

2. Hashing $(3+3+4$ marks $)$

Write down the answer to the following questions. Unless otherwise mentioned, no justification is needed.
(a) We apply the Horner's rule with $m=10$ to find the hash value for " PdP " in a hash table of size 100 . Recall the following code for applying Horner's rule. The ASCII value of P and d are respectively 80 and 100. Write down the returned index.

```
static int hashFn(String key) {
    int hashCode = 0;
    int m = 10;
    for (i = 0 ; i < key.length() ; i++)
                hashCode = m * hashCode + (int) key.charAt(i);
    return hashCode mod 100;
}
```

80
then it becomes $80 * 10+100=900$.

Answer: Initially, hashCode is 0. After the first iteration, it will become 80;
then it becomes $80 * 10+100=900$. Finally, it becomes $900 * 10+80=9080$. The ouput will be $9080 \bmod 100=80$.
(b) Given a "large" array L of n distinct integers and a "small" array S of $\lfloor\log n\rfloor$ distinct integers, we want to report all numbers that appear in both L and S. For example, for $L=[3,10,5,8,14,2,1,20]$ and $S=[11,20,3]$, the output must be $\{3,20\}$ (reported in any order).
The following two solutions both use Cuckoo hashing to handle collisions in hash table H.

- Solution 1: scan L and insert all its items in the hash table H; then scan S and search for any item in H.
- Solution 2: scan S and insert all its items in the hash table H; then scan L and search for any item in H.

Specify which solution is better. Justify your answer in one or two sentences.
Answer: Solution 2 is better. In Cuckoo hashing, search time is $O(1)$ (even if the uniform hashing assumption does not hold), while insertion could be slower. Thus, a solution with a smaller number of insertions is preferred.
(c) Consider a hash table dictionary with universe $U=\{0,1,2, \ldots, 24\}$ and size $M=5$. If items with keys $k=21,3,16,1$ are inserted in that order, draw the resulting hash table if we resolve collisions using Cuckoo hashing with $h_{1}(k)=k$ $\bmod 5$ and $h_{2}(k)=\lfloor k / 5\rfloor$.

3. Multidimensional Dictionaries ($3+4+3$ marks)

(a) Specify all outside nodes when we search for items in the range $(40,80)$ in the following 1-dimensional binary search tree.

9, 15, 27, 99
(not reported) without being examined. In this case, boundary nodes are $52,35,42,39,74,97,86$, and inside nodes are 46, 60, 65, 69
(b) Specify the nodes of the following kd-tree that are examined when searching for the points inside the highlighted query box.
$p_{8}, p_{1}, p_{2}, p_{0}, p_{5}, p_{6}, p_{7}, p_{4}$

(c) Draw the secondary tree pointed by the node for p_{7} in the range tree associated with the following points.

Use this blank page for your draft work.

