
York University

EECS 4101/5101, Winter 2023

Assignment 5

Due Date: April 11th, at 23:59

It’s your road, and yours alone.
Others may walk it with you, but no one can walk it for you . . .

Rumi

All problems are written problems; submit your solutions electronically only via Crowd-
mark. You are welcome to discuss the general idea of the problems with other students.
However, you must write your answers individually and mention your peers (with whom you
discussed the problems) in your solution. There is also a bonus question, which is harder than
other questions. It is recommended to approach this question only if you have completed
other questions. Please refer to the course webpage for guidelines on academic integrity.

Problem 1 Binomial Tree Variant [4 + 6 + 6 = 16 marks]

In the class, we learned that a binomial tree of order i can be formed by taking two copies
of a binomial tree of order i − 1 and letting the root of one tree have the other tree as its
first child. Consider the following definition of Fibomial trees:

� A Fibomial tree of order 0 is a single node and a Fibomial tree of order 1 is also a
single node.

� A Fibomial tree of order i is formed by taking a Fibomial tree of order i − 1 and a
Fibomial tree of order i − 2 letting the root of the first tree (of order i − 1) have the
other tree as its first child (see the figure below).

23 10

6

4

1

68

7

11

5

40

12

20

17

54

30

10

6

20

15

40

7

18

5

30

25

99

0

15

13

9

43

25

10 5

0
27

5

20

19

H2

H1

H3

H4

9080

60
40

1

70

20

15

5

30

12

20

17

50

10

Relaxed 

Bionomial 

heap

0

50

100

1st

Qtr

2nd

Qtr

3rd

Qtr

4th

Qtr

Ti-2

Ti-1

15

1

a) Indicate whether the following statement is correct or not. Provide a justification of
your answer.



Let Tk denote the Fibomial tree of order k. The children of the root of Tk

are the Fibomial trees Tk−2, Tk−3, . . . , T2, T1, T0, T0 (more precisely, there is
exactly one copy of each Ti for i ∈ {k− 2, k− 3, . . . , 1} and two copies of T0

as a children of Tk).

Answer: The statement is incorrect. For example, consider T3 in the example
below; if the statement was correct, there should have been 3 leaves (one for the tree
of order 1 and two trees of order 0).

T0 T1 T2 T3

b) Indicate how many nodes exist in a Fibomial tree of order k. You should provide a
recursive formula and relate it to a known series.

Answer:
Let N(Tk) be the number of nodes in a Fibomial tree of order k. Then we have:

N(Tk) =

{
1 k = 0

N(Tk−1) +N(Tk−2) k > 0

which gives N(Tk) = F (k − 1), the k − 1’th Fibonacci number. We saw in the class
that how to find the exact value of Fibonacci number, as well as a lower bound for it.

c) Indicate what the height of a Fibomial tree of order k is. Again, you should provide a
recursive formula and solve it. Answer:
Let h(Tk) be the height of a Fibomial tree of order k. Then we have

h(Tk) =

{
0 k ≤ 1

h(Tk−2) + 1 k > 1

which gives h(Tk) = h(Tk−2) + 1 = h(Tk−4) + 2 = . . . = h(Tk−2(k/2)) + k/2 = k/2. So
we have h(Tk) = k/2.

Problem 2 Binomial Heap Operations [4 + 4 + 4 = 12 marks]

In this problem, we review binomial heap operations for heaps of the figure below. In case
of merging trees in the following operations, in case there were three binomial trees of the
same order, merge the two ‘older’ trees (keep the new tree which is the product of previous
merge).

2



a) Apply the operation merge on heaps H1 and H2. Show intermediate steps. An-
swer: See the figure below.

b) Apply operation extract-max on heap H3. Show intermediate steps. Answer:
See the figure below.

c) Apply operation insert on heap H4. Assume you insert value x = 30 to the heap.
Show intermediate steps.

Answer: See the figure.

3



Problem 3 Fibonacci Heap Operations [4 + 4 = 8 marks]

38 2615

17

30

9

2321

52

8

39

25

887241

min

29

40

a) In the Fibonacci heap below, apply the operation extractMin. Show your work.
Answer: See the figure below (credit for the the figure goes to one of our great
students who submitted it).

4



b) In the original heap, decrease the key of 40 to 10. Show your work.

Answer: See the figure below:

Problem 4 Fibonacci Heap Analysis [5 + 5 = 10 marks]

Consider a different potential for Fibonacci heaps, defined as Φ′(H) = 2t(H) + 3m(H).
Indicate the amortized time for (a) extractMin and (b) decreaseKey operations. Show your
work.

5



Answer:

� ExtractMin: As before, the actual cost for extractMin is O(t(H) + log n) (note that
the actual cost is independent of the potential). The number of trees is t(H) before
extractMin and O(log n) after the extractMin. As before, the number of mared nodes
does not increase. Therefore, we can write down ∆(Φ) ≤ 2(O(log n) − t(H)), and
the amortized cost would be O(t(H) + log n) + c(2 log n − 2t(H)), which is O(log n),
assuming c is large enough.

� DecreaseKey: As before, if the heap property is not violated (case 0), the actual cost is
O(1) and the potential does not change, yielding to amortized cost of O(1). Similarly,
if the parent of the changed key is unmarked (case 1), actual cost is constant and
the potential is increased also by a constant; the amortized cost stays O(1). Finally,
suppose the parent of the changed node is marked (case 2), and let p be the number
of added trees. Then t(H) is increased by p, which means potential is increased by 2p.
Meanwhile, the number of marked nodes m(h) is decreased by p− 1, which means the
potential is decreased by 3p−3. The difference in potential is thus 2p−(3p−3) = 3−p.
The actual cost is O(p) and hence the amortized cost will be O(p) + c(3− p), which is
O(1), assuming c is large enough.

Problem 5 Union by Weight Analysis [8 marks]

In this problem, we would like to show the amortized time of a union operation when union-
by-weight on linked-lists is used is Ω(log n). For that, we need to come up with a sequence
of Θ(n) operations for which the amortized cost per operation is Ω(log n). We start with
make-set(xi) for i ∈ {1, 2, . . . n} where n is a power of 2. Provide a consequent sequence
of Θ(n) union operations so that the total number of updated pointers for all operations is
Ω(n log n).

Answer: Here are the sequence of operations and their respective number of
pointer-updates:

� Step 1: union(xi, xi+n/2) for i ∈ {1, . . . , n/2}. There will be 1 pointer-update per
operation, which sums to n/2 total updates in this step.

� Step 2: union(xi, xi+n/4) for i ∈ {1, . . . , n/4}. There will be 2 pointer-update per
operation, which sums to n/4× 2 = n/2 total updates in this step.

� Step 3: union(xi, xi+n/8) for i ∈ {1, . . . , n/8}. There will be 4 pointer-update per
operation, which sums to n/8× 4 = n/4 total updates in this step.

� . . .

� Step k: union(xi, xi+n/2k) for i ∈ {1, . . . , n/2k}. There will be 2k−1 pointer-update per
operation, which sums to n/2k × 2k−1 = n/2 total updates in this step.

6



After k = ⌈log n⌉ steps, there will be most two sets, which are united with union(x1, x2),
with n/2 pointer updates. In summary, there will be roughly log n steps, each involving
update of n/2 pointers. The total number of pointer-updates will be Ω(n log n).

Problem 6 Union-Find Operations [4 + 4 = 8 marks]

a) Consider a union-find structure based on union-by-rank and path-compression which
is formed by T1 and T2 in the following figure. Draw the result after the following
operations: union(p, v), find(h).

Answer: See the figure below (credit for the figure goes to one of our great
students who submitted it). The ordering of the children of the root does not matter.

b) Consider a similar structure formed by T3 and T4 in the following figure. Draw the
result after the following operations: union(p, u), find(k). For the union operation, as
both trees have the same rank, assume x becomes the parent of the united tree.

7



Answer: See the figure below (credit for the figure goes to one of our great
students who submitted it). The ordering of the children of the root does not matter.

Problem 7 Skip Lists [4 + 6 = 10 marks]

a) Starting with an empty skip list, insert the seven keys 30, 10, 25, 20, 15, 70, 12. Draw
your final answer as we saw in the slides. Use the following coin tosses to determine
the heights of towers (note, not every toss is necessarily used):

H,T, T,H,H,H, T,H,H, T , T,H,H, T,H, T, T,H, T,H,H, T, T,H,H,H, T,H, T, . . .

Answer: See the figure below:

b) Consider a skip list in which we build new towers with probability 3/4.

When adding an element to the skip list, we flip two coins at the same time,
and repeat this until both coins come up tails. The number of times we toss
both coins defines the height of the tower (i.e., if both coins come up tails
in the first flips, there will be one node in the skip list, if both come coin on
the second try, the number of nodes will be 2, etc.).

Using the probability for tower heights described in the above quote, derive the ex-
pected height of a tower.

8



Answer: The height of a tower is 1 if both flips are tails after the first flip of coins;
that has a probability of 1/4. The height of a tower is 2 if the first two flips are not both
head (chance of 3/4) and in the next trial both flips are tail (chance of 1/4); so the height is
2 with a chance of 3/4×1/4 = 3/16. Similarly, we have a height h with a chance of (3/4)h−1

(not seeing a tail in previous h− 1 trials) times 1/4 (seeing a tail in h’th trial).
The expected height will be at most

H =
1

4
· 1 + 3

4
· 1
4
· 2 + (

3

4
)2 · 1

4
· 3 + . . .+ (

3

4
)h−1 · 1

4
· h+ . . .

=
1

4
· (1 + 3

4
· 2 + 9

16
· 3 + 27

64
· 4 + 81

256
· 5 + . . .)

Multiplying both sides by 3/4, we get:

3

4
·H =

1

4
· (3
4
· 1 + 9

16
· 2 + 27

64
· 3 + 81

128
· 4 + . . .)

Hence, we have

H − 3

4
·H =

1

4
· (1 + 3

4
+

9

16
+

27

64
+

81

256
+ . . .)

=
1

4
· 1

1− 3/4

=
1

4
· 4 = 1

So, we have H − 3
4
·H = 1 which implies H = 4.

Problem 8 Bonus [7 marks]

Given a rooted tree T , the deepest common forefather (DCF) of two nodes u and v is the
deepest node x in the tree such that u and v belong to the subtree rooted at x. For example,
DCF(a, b) in the figure below is node c.

Assume T is a tree of size n (for some large n) and suppose we are given n pairs of nodes
from T . Describe an algorithm that reports the DCF of all pairs in time o(n log n). Briefly
justify your answer.

a b

c

9



Answer: The right term for “deepest common forefather (DCF)” is the “lowest
common ancestor (LCA)”. We changed the name to make it more difficult to search for
online answers. Here is a code to find all LCAs (find more details at here):

The idea in the code is to traverse the tree and color nodes black as we traverse them. All
visited node so far will be maintained in a disjoint-set structure. When we are at node u, the
ancestors of u will be stored in different disjoint sets, while its visited (black) descendants
are maintained in a set that is represented by u (line 6 ensures that u is the representative).
Therefore, as soon as two nodes in a query become members of the same set (as checked in
line 8), the representative of that set is reported as their LCA in line 9.

10

https://www.geeksforgeeks.org/tarjans-off-line-lowest-common-ancestors-algorithm/

	Binomial Tree Variant [4 + 6 + 6 = 16 marks]
	Binomial Heap Operations [4 + 4 + 4 = 12 marks]
	Fibonacci Heap Operations [4 + 4 = 8 marks]
	Fibonacci Heap Analysis [5 + 5 = 10 marks]
	Union by Weight Analysis [8 marks]
	Union-Find Operations [4 + 4 = 8 marks]
	Skip Lists [4 + 6 = 10 marks]
	Bonus [7 marks]

