
EECS 4101-5101

Advanced Data Structures

Shahin Kamali

Topic 7: String Data Structures

York University

Picture is from the cover of the textbook CLRS.

1 / 22
EECS 4101-5101 Advanced Data Structures

▲

Objectives

By the end of this module, you will be able to:

Explain dictionary abstract data types for maintaining a collection
of strings.

Describe basic data structures (e.g., tries, Patricia trees) for
maintaining dictionaries of strings and explain how search, insert,
delete operations are answered using them.
Explain Su�x trees and their application in answering pattern
matching queries.

2 / 22
EECS 4101-5101 Advanced Data Structures

▲

Objectives

By the end of this module, you will be able to:

Explain dictionary abstract data types for maintaining a collection
of strings.
Describe basic data structures (e.g., tries, Patricia trees) for
maintaining dictionaries of strings and explain how search, insert,
delete operations are answered using them.

Explain Su�x trees and their application in answering pattern
matching queries.

2 / 22
EECS 4101-5101 Advanced Data Structures

▲

Objectives

By the end of this module, you will be able to:

Explain dictionary abstract data types for maintaining a collection
of strings.
Describe basic data structures (e.g., tries, Patricia trees) for
maintaining dictionaries of strings and explain how search, insert,
delete operations are answered using them.
Explain Su�x trees and their application in answering pattern
matching queries.

2 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries

Trie: A dictionary for binary strings

Items (keys) are stored only in the leaf nodes
A left child corresponds to a 0 bit
A right child corresponds to a 1 bit

Keys can have di�erent number of bits

pre�x-free: no key is a pre�x of another key

A pre�x of a string S [0..n − 1]:
a substring S [0..i] of S for some 0 ≤ i ≤ n − 1

3 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries

Example: A trie for S = {00, 110, 111, 01010, 01011}

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

4 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Search

Search: start from the root, follow the relevant path using bitwise
comparisons

Example: Search(01010)

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

5 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Search

Search: start from the root, follow the relevant path using bitwise
comparisons

Example: Search(01010) successful

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

5 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Search

Search: start from the root, follow the relevant path using bitwise
comparisons

Example: Search(0100)

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

5 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Search

Search: start from the root, follow the relevant path using bitwise
comparisons

Example: Search(0100) unsuccessful

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

5 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Insert
Insert(x): First search for x

(a) If we �nish at a leaf with key x , then x is already in trie: do nothing
(e.g., when x = 110).

(b) If we �nish at a leaf with a key y ̸= x , then y is a pre�x of x : not
possible because our keys are pre�x-free (e.g., x = 1100)

(c) If we �nish at an internal node and there are no extra bits: not
possible because our keys are pre�x-free (e.g., when x = 11)

(d) If we �nish at an internal node and there are extra bits: expand trie
by adding necessary nodes that correspond to extra bits

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

6 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Insert

Insert(x): First search for x

Case (d) example: Insert(01000)

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

6 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Insert

Insert(x): First search for x

Search(01000) unsuccessful Extra bits: 00

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

6 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Insert

Insert(x): First search for x

01010

0 1

01011

00

110 111

0

0

0

0

1

1

1

1

1

01000

0

0

6 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Delete

Delete(x)

Search for x to �nd the leaf vx
Delete vx and all ancestors of vx until we reach an ancestor that has
two children

7 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Delete

Delete(x)

Example: Delete(01010)

0 1

01010

00

110 111

0

0

0

0

1

1

1

1

7 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Delete

Delete(x)

Example: Delete(01010)

Search(01010) successful

0 1

01010

00

110 111

0

0

0

0

1

1

1

1

7 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Delete

Delete(x)

Example: Delete(01010)

0 1

00

110 111

0

0

1

1

7 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Tries: Operations

Time Complexity of all operations (search, insert, delete) is Θ(|x |)
|x |: length of binary string x , i.e., the number of bits in x

8 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries (Patricia Tries)

Patricia: Practical Algorithm To Retrieve Information Coded in
Alphanumeric (Introduced by Morrison (1968))

Reduces storage requirement: eliminate nodes with only one child

Every path of one-child nodes is compressed to a single edge

Each node stores an index indicating the next bit to be tested
during a search

A compressed trie storing n keys always has n − 1 internal
(non-leaf) nodes

9 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries (Patricia Tries)

Each node stores an index indicating the next bit to be tested
during a search

Example: A trie

0 1

01010 01011

00

110 111

0

0

0

0

1

1

1

1

1

10 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries (Patricia Tries)

Each node stores an index indicating the next bit to be tested
during a search

Equivalent compressed trie

01010 01011

0

00

0
1

0 1

111110

10

1

1

4

2

0

10 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Search(x):

Follow the proper path from the root down in the tree to a leaf
If search ends in an internal node, it is unsuccessful

E.g., search for 011: we search index 0, go to the left, index 1, go

to the right, and then there is no index 4; terminate!

In search ends in a leaf, we need to check again if the key stored at
the leaf is indeed x .

e.g., search for 01110; we end up in a leaf but the search is not

successful!

11 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Search(x):

Follow the proper path from the root down in the tree to a leaf
If search ends in an internal node, it is unsuccessful

E.g., search for 011: we search index 0, go to the left, index 1, go

to the right, and then there is no index 4; terminate!

In search ends in a leaf, we need to check again if the key stored at
the leaf is indeed x .

e.g., search for 01110; we end up in a leaf but the search is not

successful!

11 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Delete(x):

Perform Search(x) to �nd x in a leaf
If the search was successful, delete the leaf and its parent

E.g., delete 01010 from the trie

12 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Delete(x):

Perform Search(x) to �nd x in a leaf
If the search was successful, delete the leaf and its parent

E.g., delete 01010 from the trie

12 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Insert(x):
.
Perform Search(x); If the search ends at a leaf L with key y ,
compare x and y to �nd the �rst index i where they disagree.

Then create a new node N with index i .
Insert N along the path from the root to L so that the parent of N
has index < i and one child of N is either L or an existing node on

the path from the root to L that has index > i .
The other child of N will be a new leaf node containing x .
E.g., insert 01111: create N with index 2, insert it between nodes

with indices 1 and 4 on the path to the leaf

13 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Insert(x):
.
Perform Search(x); If the search ends at a leaf L with key y ,
compare x and y to �nd the �rst index i where they disagree.

Then create a new node N with index i .
Insert N along the path from the root to L so that the parent of N
has index < i and one child of N is either L or an existing node on

the path from the root to L that has index > i .
The other child of N will be a new leaf node containing x .
E.g., insert 01111: create N with index 2, insert it between nodes

with indices 1 and 4 on the path to the leaf

13 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Insert(x):
.
If the search ends at an internal node, we �nd the key
corresponding to that internal node and proceed in a similar way to
the previous case.

E.g., insert 0100: create N with index 3, insert it between nodes

with indices 1 and 4 on the path to the leaf

14 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Compressed Tries: Operations

Insert(x):
.
If the search ends at an internal node, we �nd the key
corresponding to that internal node and proceed in a similar way to
the previous case.

E.g., insert 0100: create N with index 3, insert it between nodes

with indices 1 and 4 on the path to the leaf

14 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Multiway Tries

To represent Strings over any �xed alphabet Σ

Any node will have at most |Σ| children

Example: A trie holding strings {bear, bell, ben, soul, soup}

bear bell

ben

soul soup

b s

oe

a l n
u

r l l p

15 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Multiway Tries

Allow strings that are pre�xes of other strings:
Append a special end-of-word character, say $, to all keys

Example: A trie holding strings {bear, bell, be, so, soul, soup}

bear bell

be

soul soup

b s

oe

a l $ u

$ $

l p
so

$

r
l

$ $

16 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Multiway Tries

Compressed multi-way tries

Example: A compressed trie holding strings {bear, bell, be, so, soul,
soup}

0

2

bear bell be

soul

3

soup

so

b s

a l
$ u

$

l p

2

17 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Pattern Matching

Search for a the �rst occurrence of a pattern P in a large body of
text T .

Example:

T = �Where is he?�

P1 = �he�

P2 = �who�

If P does not occur in T , return FAIL

Applications:

Information Retrieval (text editors, search engines)
Bioinformatics
Data Mining

18 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Su�x Trees

A su�x of T :
a substring T [i ..n − 1] of T for some 0 ≤ i ≤ n − 1

Build a compressed trie that stores all su�xes of text T
Insert su�xes in decreasing order of length
If a su�x is a pre�x of another su�x, we do not insert it
Store two indexes l , r on each node v (both internal nodes and
leaves) where node v corresponds to substring T [l ..r]

19 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Su�x Trees: Example

T =bananaban

[3..8]

[0..8]

[2..8][4..8]

[1..8]

[5..8]

0

3

[1..3]

2

n

nn

n

b

b

b

b

a

a

ana

aban naban

na

bananaban

ananabananaban

nanaban

1
[2..3][1..1]

0 1 2 3 4 5 6 7 8

b a n a n a b a n

20 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

Su�x Trees: Pattern Matching
To search for pattern P of length m:

Similar to Search in compressed trie with the di�erence that we are
looking for a pre�x match rather than a complete match

If we reach a leaf with a corresponding string length less than m,
then search is unsuccessful (e.g., search for �abana")
Otherwise, we reach a node v (leaf or internal) with a
corresponding string length of at least m. Then it su�ces to check
the �rst m characters of that string to see if there indeed is a match
(e.g., search for �anab")

T = bananaban
[3..8]

[0..8]

[2..8][4..8]

[1..8]

[5..8]

0

3

[1..3]

2

n

nn

n

b

b

b

b

a

a

ana

aban naban

na

bananaban

ananabananaban

nanaban

1
[2..3][1..1]

21 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

String Data Structures Summary

If you need to store a dictionary of multiple strings, use a
compressed Patricia tree for better search, insert, delete time.

If you need to store a text T to support pattern-matching queries,
maintain a Su�x tree of T .

22 / 22
EECS 4101-5101 Advanced Data Structures

▲

Tries

String Data Structures Summary

If you need to store a dictionary of multiple strings, use a
compressed Patricia tree for better search, insert, delete time.

If you need to store a text T to support pattern-matching queries,
maintain a Su�x tree of T .

22 / 22
EECS 4101-5101 Advanced Data Structures

▲

	Tries

