EECS 4101-5101
 Advanced Data Structures

Shahin Kamali
Topic 7: String Data Structures
York University

Picture is from the cover of the textbook CLRS.

Objectives

- By the end of this module, you will be able to:
- Explain dictionary abstract data types for maintaining a collection of strings.

Objectives

- By the end of this module, you will be able to:
- Explain dictionary abstract data types for maintaining a collection of strings.
- Describe basic data structures (e.g., tries, Patricia trees) for maintaining dictionaries of strings and explain how search, insert, delete operations are answered using them.

Objectives

- By the end of this module, you will be able to:
- Explain dictionary abstract data types for maintaining a collection of strings.
- Describe basic data structures (e.g., tries, Patricia trees) for maintaining dictionaries of strings and explain how search, insert, delete operations are answered using them.
- Explain Suffix trees and their application in answering pattern matching queries.
- Trie: A dictionary for binary strings
- Items (keys) are stored only in the leaf nodes
- A left child corresponds to a 0 bit
- A right child corresponds to a 1 bit
- Keys can have different number of bits
- prefix-free: no key is a prefix of another key
- A prefix of a string $S[0 . . n-1]$:
a substring $S[0 . . i]$ of S for some $0 \leq i \leq n-1$
- Example: A trie for $S=\{00,110,111,01010,01011\}$

- Search: start from the root, follow the relevant path using bitwise comparisons
- Example: Search(01010)

- Search: start from the root, follow the relevant path using bitwise comparisons
- Example: Search(01010) successful

- Search: start from the root, follow the relevant path using bitwise comparisons
- Example: Search(0100)

- Search: start from the root, follow the relevant path using bitwise comparisons
- Example: Search(0100) unsuccessful

Tries: Insert

- Insert(x): First search for x
(a) If we finish at a leaf with key x, then x is already in trie: do nothing (e.g., when $x=110$).
(b) If we finish at a leaf with a key $y \neq x$, then y is a prefix of x : not possible because our keys are prefix-free (e.g., $x=1100$)
(c) If we finish at an internal node and there are no extra bits: not possible because our keys are prefix-free (e.g., when $x=11$)
(d) If we finish at an internal node and there are extra bits: expand trie by adding necessary nodes that correspond to extra bits

Tries
 Tries: Insert

- Insert(x): First search for x
- Case (d) example: $\operatorname{Insert}(01000)$

Tries
 Tries: Insert

- Insert(x): First search for x
- Search(01000) unsuccessful Extra bits: 00

- Insert(x): First search for x

Tries

Tries: Delete

- Delete(x)
- Search for x to find the leaf v_{x}
- Delete v_{x} and all ancestors of v_{x} until we reach an ancestor that has two children

Tries
 Tries: Delete

- Delete(x)
- Example: Delete(01010)

Tries
 Tries: Delete

- Delete(x)
- Example: Delete(01010)
- Search(01010) successful

Tries: Delete

- Delete (x)
- Example: Delete(01010)

Tries
 Tries: Operations

- Time Complexity of all operations (search, insert, delete) is $\Theta(|x|)$ $|x|$: length of binary string x, i.e., the number of bits in x

Compressed Tries (Patricia Tries)

- Patricia: Practical Algorithm To Retrieve Information Coded in Alphanumeric (Introduced by Morrison (1968))
- Reduces storage requirement: eliminate nodes with only one child
- Every path of one-child nodes is compressed to a single edge
- Each node stores an index indicating the next bit to be tested during a search
- A compressed trie storing n keys always has $n-1$ internal (non-leaf) nodes
- Each node stores an index indicating the next bit to be tested during a search
- Example: A trie

Compressed Tries (Patricia Tries)

- Each node stores an index indicating the next bit to be tested during a search
- Equivalent compressed trie

Compressed Tries: Operations

- Search (x) :
- Follow the proper path from the root down in the tree to a leaf
- If search ends in an internal node, it is unsuccessful
- E.g., search for 011: we search index 0, go to the left, index 1 , go to the right, and then there is no index 4 ; terminate!

Compressed Tries: Operations

- Search (x) :
- Follow the proper path from the root down in the tree to a leaf
- If search ends in an internal node, it is unsuccessful
- E.g., search for 011: we search index 0, go to the left, index 1 , go to the right, and then there is no index 4 ; terminate!
- In search ends in a leaf, we need to check again if the key stored at the leaf is indeed x.
- e.g., search for 01110; we end up in a leaf but the search is not successful!

Compressed Tries: Operations

- Delete (x) :
- Perform Search (x) to find x in a leaf
- If the search was successful, delete the leaf and its parent
- E.g., delete $\mathbf{0 1 0 1 0}$ from the trie

Compressed Tries: Operations

- Delete (x) :
- Perform Search (x) to find x in a leaf
- If the search was successful, delete the leaf and its parent
- E.g., delete 01010 from the trie

Compressed Tries: Operations

- Insert(x):
- Perform Search (x); If the search ends at a leaf L with key y, compare x and y to find the first index i where they disagree.
- Then create a new node N with index i.
- Insert N along the path from the root to L so that the parent of N has index $<i$ and one child of N is either L or an existing node on the path from the root to L that has index $>i$.
- The other child of N will be a new leaf node containing x.
- E.g., insert 01111: create N with index 2, insert it between nodes with indices 1 and 4 on the path to the leaf

Compressed Tries: Operations

- Insert(x):
- Perform Search (x); If the search ends at a leaf L with key y, compare x and y to find the first index i where they disagree.
- Then create a new node N with index i.
- Insert N along the path from the root to L so that the parent of N has index $<i$ and one child of N is either L or an existing node on the path from the root to L that has index $>i$.
- The other child of N will be a new leaf node containing x.
- E.g., insert 01111: create N with index 2, insert it between nodes with indices 1 and 4 on the path to the leaf

Compressed Tries: Operations

- Insert(x):
- If the search ends at an internal node, we find the key corresponding to that internal node and proceed in a similar way to the previous case.
- E.g., insert 0100: create N with index 3, insert it between nodes with indices 1 and 4 on the path to the leaf

Compressed Tries: Operations

- Insert(x):
- If the search ends at an internal node, we find the key corresponding to that internal node and proceed in a similar way to the previous case.
- E.g., insert 0100: create N with index 3, insert it between nodes with indices 1 and 4 on the path to the leaf

Multiway Tries

- To represent Strings over any fixed alphabet Σ
- Any node will have at most $|\Sigma|$ children
- Example: A trie holding strings \{bear, bell, ben, soul, soup\}

Multiway Tries

- Allow strings that are prefixes of other strings:

Append a special end-of-word character, say $\$$, to all keys

- Example: A trie holding strings \{bear, bell, be, so, soul, soup\}

Multiway Tries

- Compressed multi-way tries
- Example: A compressed trie holding strings \{bear, bell, be, so, soul, soup\}

Pattern Matching

- Search for a the first occurrence of a pattern P in a large body of text T.
- Example:
- $T=$ "Where is he?"
- $P_{1}=$ "he"
- $P_{2}=$ "who"
- If P does not occur in T, return FAIL
- Applications:
- Information Retrieval (text editors, search engines)
- Bioinformatics
- Data Mining

Tries

Suffix Trees

- A suffix of T :
a substring $T[i . . n-1]$ of T for some $0 \leq i \leq n-1$
- Build a compressed trie that stores all suffixes of text T
- Insert suffixes in decreasing order of length
- If a suffix is a prefix of another suffix, we do not insert it
- Store two indexes I, r on each node v (both internal nodes and leaves) where node v corresponds to substring $T[/ . . r]$

Suffix Trees: Example

$T=$ bananaban

0	1	2	3	4	5	6	7	8
b	a	n	a	n	a	b	a	n

Suffix Trees: Pattern Matching

To search for pattern P of length m :

- Similar to Search in compressed trie with the difference that we are looking for a prefix match rather than a complete match
- If we reach a leaf with a corresponding string length less than m, then search is unsuccessful (e.g., search for "abana")
- Otherwise, we reach a node v (leaf or internal) with a corresponding string length of at least m. Then it suffices to check the first m characters of that string to see if there indeed is a match (e.g., search for "anab")

Tries
 String Data Structures Summary

- If you need to store a dictionary of multiple strings, use a compressed Patricia tree for better search, insert, delete time.

String Data Structures Summary

- If you need to store a dictionary of multiple strings, use a compressed Patricia tree for better search, insert, delete time.
- If you need to store a text T to support pattern-matching queries, maintain a Suffix tree of T.

