EECS 4101-5101
v Advanced Data Structures

— Shahin Kamali
\ SN \‘

“ Topic 7: String Data Structures
York University

Picture is from the cover of the textbook CLRS.

EECS 4101-5101 Advanced Data Structures

v

PN
~\—

\

< A . .
) Objectives

o By the end of this module, you will be able to:

o Explain dictionary abstract data types for maintaining a collection
of strings.

EECS 4101-5101 Advanced Data Structures

v

PN
~\——
.

‘ - L]
WY Objectives

o By the end of this module, you will be able to:

o Explain dictionary abstract data types for maintaining a collection
of strings.

o Describe basic data structures (e.g., tries, Patricia trees) for
maintaining dictionaries of strings and explain how search, insert,
delete operations are answered using them.

v
-
~

) ‘ - L]
WY Objectives

o By the end of this module, you will be able to:

o Explain dictionary abstract data types for maintaining a collection
of strings.

o Describe basic data structures (e.g., tries, Patricia trees) for
maintaining dictionaries of strings and explain how search, insert,
delete operations are answered using them.

o Explain Suffix trees and their application in answering pattern
matching queries.

v |r|es

D, |
N Tries

o Trie: A dictionary for binary strings

o Items (keys) are stored only in the leaf nodes
o A left child corresponds to a 0 bit
o A right child corresponds to a 1 bit

Keys can have different number of bits

prefix-free: no key is a prefix of another key

A prefix of a string S[0..n — 1]
a substring S[0..7/] of S forsome 0 <i<n-—1

-
N —
A

WY Tries

o Example: A trie for S = {00,110,111,01010,01011}

111

EECS 4101-5101 Advanced Data Structures

a
N A |

WY Tries: Search

o Search: start from the root, follow the relevant path using bitwise
comparisons

o Example: Search(01010)

EECS 4101-5101 Advanced Data Structures

a
~\
. A |

WY Tries: Search

o Search: start from the root, follow the relevant path using bitwise
comparisons

o Example: Search(01010) successful

CS 4101-5101 Advanced Data Structures

a
N A |

WY Tries: Search

o Search: start from the root, follow the relevant path using bitwise
comparisons

o Example: Search(0100)

EECS 4101-5101 Advanced Data Structures

v ||I!!
a
N -

WY Tries: Search

o Search: start from the root, follow the relevant path using bitwise
comparisons

o Example: Search(0100) unsuccessful

| Data Structures

5 / 22

v |r|es

TN -

\ea
A\

Tries: Insert
o Insert(x): First search for x

(a)
(b)
(c)
(d)

If we finish at a leaf with key x, then x is already in trie: do nothing
(e.g., when x = 110).

If we finish at a leaf with a key y # x, then y is a prefix of x: not
possible because our keys are prefix-free (e.g., x = 1100)

If we finish at an internal node and there are no extra bits: not
possible because our keys are prefix-free (e.g., when x = 11)

If we finish at an internal node and there are extra bits: expand trie
by adding necessary nodes that correspond to extra bits

\yles

WY Tries: Insert

o Insert(x): First search for x

o Case (d) example: Insert(01000)

EECS 4101-5101 Advanced Data Structures

a

0" “
\iss

WY Tries: Insert

o Insert(x): First search for x

o Search(01000) unsuccessful Extra bits: 00

EECS 4101-5101 Advanced Data Structures

EECS 4101-5101 Advanced Data Structures

WY Tries: Delete

o Delete(x)

o Search for x to find the leaf v,
o Delete v and all ancestors of v, until we reach an ancestor that has
two children

EECS 4101-5101 Advanced Data Structures

a

NS
\yles

A
WY Tries: Delete

o Delete(x)
o Example: Delete(01010)

EECS 4101-5101 Advanced Data Structures

v
a
~

S
W Tries: Delete
o Delete(x)

o Example: Delete(01010)
@ Search(01010) successful

EECS 4101-5101 Advanced Data Structures

v _
-
S\
A

WY Tries: Delete

o Delete(x)
o Example: Delete(01010)

110 111

EECS 4101-5101 Advanced Data Structures

-
=1
A

™ Tries: Operations

o Time Complexity of all operations (search, insert, delete) is ©(|x|)
|x|: length of binary string x, i.e., the number of bits in x

EECS 4101-5101 Advanced Data Structures

Y Tries

a
~

¢
*Y Compressed Tries (Patricia Tries)

Sy
A\

o Patricia: Practical Algorithm To Retrieve Information Coded in
Alphanumeric (Introduced by Morrison (1968))

o Reduces storage requirement: eliminate nodes with only one child

Every path of one-child nodes is compressed to a single edge

o Each node stores an index indicating the next bit to be tested
during a search

A compressed trie storing n keys always has n — 1 internal
(non-leaf) nodes

_, i
-

N -

Al

Y

Compressed Tries (Patricia Tries)

o Each node stores an index indicating the next bit to be tested
during a search

o Example: A trie

EECS 4101-5101 Advanced Data Structures _

_, i
-

"\ -

Al

Y

Compressed Tries (Patricia Tries)

o Each node stores an index indicating the next bit to be tested
during a search

o Equivalent compressed trie

v |r|es

1
i A
N]

\ea
A\

Compressed Tries: Operations
o Search(x):

o Follow the proper path from the root down in the tree to a leaf
o If search ends in an internal node, it is unsuccessful
o E.g., search for 011: we search index 0, go to the left, index 1, go
to the right, and then there is no index 4; terminate!

111

v Tries
TN -
N]

N
A\

Compressed Tries: Operations
o Search(x):

o Follow the proper path from the root down in the tree to a leaf
o If search ends in an internal node, it is unsuccessful
o E.g., search for 011: we search index 0, go to the left, index 1, go
to the right, and then there is no index 4; terminate!
o In search ends in a leaf, we need to check again if the key stored at
the leaf is indeed x.
o e.g., search for 01110; we end up in a leaf but the search is not
successful!

™ Compressed Tries: Operations

o Delete(x):

o Perform Search(x) to find x in a leaf
o If the search was successful, delete the leaf and its parent

o E.g., delete 01010 from the trie

111

EECS 4101-5101 Advanced Data Structures

L
(B,
W~ Compressed Tries: Operations

o Delete(x):

o Perform Search(x) to find x in a leaf
o If the search was successful, delete the leaf and its parent

o E.g., delete 01010 from the trie

111

EECS 4101-5101 Advanced Data Structures _

v Tries

\.j W“

w " Compressed Tries: Operations
o Insert(x):

o Perform Search(x); If the search ends at a leaf L with key y,
compare x and y to find the first index i where they disagree.

o Then create a new node N with index i.

o Insert N along the path from the root to L so that the parent of N
has index < i and one child of N is either L or an existing node on
the path from the root to L that has index > .

o The other child of N will be a new leaf node containing x.

o E.g., insert 01111: create N with index 2, insert it between nodes
with indices 1 and 4 on the path to the leaf

/

| W | \4) [un \ 11

v Tries
TN A
N]

S
A\

Compressed Tries: Operations
o Insert(x):

o Perform Search(x); If the search ends at a leaf L with key y,
compare x and y to find the first index i where they disagree.

o Then create a new node N with index i.

o Insert N along the path from the root to L so that the parent of N
has index < i and one child of N is either L or an existing node on
the path from the root to L that has index > .

o The other child of N will be a new leaf node containing x.

o E.g., insert 01111: create N with index 2, insert it between nodes
with indices 1 and 4 on the path to the leaf

o,

/
0 e
d -

)
v

g
g/// 1
01011

v |r|es

1
i A
N]

\ea
A\

Compressed Tries: Operations

o Insert(x):

o If the search ends at an internal node, we find the key
corresponding to that internal node and proceed in a similar way to
the previous case.

o E.g., insert 0100: create N with index 3, insert it between nodes
with indices 1 and 4 on the path to the leaf

\\
@ ,
N S
)

v |r|es

1
i A
N]

\ea
A\

Compressed Tries: Operations

o Insert(x):

o If the search ends at an internal node, we find the key
corresponding to that internal node and proceed in a similar way to
the previous case.

o E.g., insert 0100: create N with index 3, insert it between nodes
with indices 1 and 4 on the path to the leaf

0 \\\ 1
o

.
I :0)
0 | 0o O\\ 1
b P

0

0
0 / \\\ 1
/ AN

\
o011

v |r|es

a
~

A

voal

RN Multiway Tries
o To represent Strings over any fixed alphabet ©
o Any node will have at most |X| children

o Example: A trie holding strings {bear, bell, ben, soul, soup}

|bear| | bell | |sou| I ‘soup‘

v |r|es

a
~

T

voal

RN Multiway Tries

o Allow strings that are prefixes of other strings:
Append a special end-of-word character, say $, to all keys

o Example: A trie holding strings {bear, bell, be, so, soul, soup}

v | |!!
-
1
A

\ea
A\

(N

Multiway Tries

o Compressed multi-way tries

o Example: A compressed trie holding strings {bear, bell, be, so, soul,
soup}

EECS 4101-510 lvanced Data Structures

v |r|es

1
i A
N]

\ea
A\

Pattern Matching

o Search for a the first occurrence of a pattern P in a large body of

text T.
o Example:
o T = "Where is he?”
o P; ="he"

(-] P2 = “who”
o If P does not occur in T, return FAIL

o Applications:

o Information Retrieval (text editors, search engines)
o Bioinformatics
o Data Mining

v |r|es

a
~

i

A}
WY Suffix Trees

o A suffix of T:
a substring T[i.n—1] of T for some 0 <i<n-—1

o Build a compressed trie that stores all suffixes of text T

o Insert suffixes in decreasing order of length

o If a suffix is a prefix of another suffix, we do not insert it

o Store two indexes /, r on each node v (both internal nodes and
leaves) where node v corresponds to substring T[/..r]

v ||I!!
a
~\

V=
A\

(N

Suffix Trees: Example

T =bananaban

anaban ananaban

0/1|2|3|4|5|6|7]8
blaln|la|n|al|b

EECS 4101-5101 Advanced Data Structures

v Tries

-
~

A=

A
™ Suffix Trees: Pattern Matching

To search for pattern P of length m:

o Similar to Search in compressed trie with the difference that we are
looking for a prefix match rather than a complete match

o If we reach a leaf with a corresponding string length less than m,
then search is unsuccessful (e.g., search for “abana")

o Otherwise, we reach a node v (leaf or internal) with a
corresponding string length of at least m. Then it suffices to check
the first m characters of that string to see if there indeed is a match
(e.g., search for “anab")

[2.8

nanaban

T = bananaban

v | |!!
-
=1
Al

N String Data Structures Summary

o If you need to store a dictionary of multiple strings, use a
compressed Patricia tree for better search, insert, delete time.

EECS 4101-5101 Advanced Data Structures _

v |r|es

a
~

st ‘ o
N String Data Structures Summary

o If you need to store a dictionary of multiple strings, use a
compressed Patricia tree for better search, insert, delete time.

o If you need to store a text T to support pattern-matching queries,
maintain a Suffix tree of T.

	Tries

