EECS 4101-5101
v Advanced Data Structures

e ‘ Shahin Kamali
g \

Topic 6: Randomized Data Structures (Treaps)
York University

Picture is from the cover of the textbook CLRS.

EEC 01-510 lvanced Data Structur

v
-
~

‘ L] L]
oY Treap Dictionary Data Structure

o A binary tree in which each node has a key and a priority

o Keys have binary search tree property: each node’s key is larger
than its left and smaller than its right.

o Priorities have heap property: each node priority is smaller than its
parent (or could be larger to form a max-treap)

heap in orange

search tree in blue

v

PN
~

\i=

‘ L] L]
‘WYY Treap Dictionary Data Structure

o A binary tree in which each node has a key and a priority

o Keys have binary search tree property: each node’s key is larger
than its left and smaller than its right.

o Priorities have heap property: each node priority is smaller than its
parent (or could be larger to form a max-treap)

o Treaps are used for implementing dictionaries: keys are dictionary
keys and priorities are chosen randomly!

search tree in blue

v

PN
~

\

‘ L] L]
‘WYY Treap Dictionary Data Structure

o A binary tree in which each node has a key and a priority

o Keys have binary search tree property: each node’s key is larger
than its left and smaller than its right.

o Priorities have heap property: each node priority is smaller than its
parent (or could be larger to form a max-treap)

o Treaps are used for implementing dictionaries: keys are dictionary
keys and priorities are chosen randomly!

o search(k) is identical to seacrh in a BST — it takes O(h), where h
is the height of the tree

search tree in blue

_

PN
~

1 '“""‘ . .
oY Treap Dictionary Data Structure

o Consider insert(k)

heap in orange

search tree in blue

EECS 4101-5101 Advanced Data Structures _
3

o

v
PN
N\

1) ‘ L] L]
oY Treap Dictionary Data Structure

o Consider insert(k)

o Choose a random priority (a random number generated say between
[1,n°])

heap in orange

search tree in blue

v
PN
N\

1) ‘ L] L]
oY Treap Dictionary Data Structure

o Consider insert(k)

o Choose a random priority (a random number generated say between

[1,n?])
o Insert as in normal BST

heap in orange

search tree in blue

v

PN
~

V ‘ L] L]
oY Treap Dictionary Data Structure

o Consider insert(k)

o Choose a random priority (a random number generated say between
[1,n%])
o Insert as in normal BST

o Rotate up until heap order is restored (maintaining BST property
while rotating)

heap in orange

search tree in blue

v

PN
~

V ‘ L] L]
oY Treap Dictionary Data Structure

o Consider insert(k)

o Choose a random priority (a random number generated say between
[1,n%])

o Insert as in normal BST

o Rotate up until heap order is restored (maintaining BST property
while rotating)

o How long does insert(k) take?

heap in orange

search tree in blue

v

PN
~

\i=

) - .
WY Treap Dictionary Data Structure

o Consider insert(k)

o Choose a random priority (a random number generated say between
[1,n%])
o Insert as in normal BST

o Rotate up until heap order is restored (maintaining BST property
while rotating)

o How long does insert(k) take? O(h), where h is the height of the
treel

heap in orange

search tree in blue

v

PN
~

N

) - .
WY Treap Dictionary Data Structure

o Consider delete(k)

o Search for k and delete its node as in regular BSTs
o Just remove the node if a leaf
o Replace the node with its child if only one child
o Replace the ndoe with its successor or predecessor if two children

o Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

delete (2)

heap in oran

search tree in blue

v

PN
~

N

) - .
WY Treap Dictionary Data Structure

o Consider delete(k)

o Search for k and delete its node as in regular BSTs
o Just remove the node if a leaf
o Replace the node with its child if only one child
o Replace the ndoe with its successor or predecessor if two children

o Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

delete (2)

heap in oran

search tree in blue

v

PN
~

\i=

) - .
WY Treap Dictionary Data Structure

o Consider delete(k)

o Search for k and delete its node as in regular BSTs
o Just remove the node if a leaf
o Replace the node with its child if only one child
o Replace the ndoe with its successor or predecessor if two children
o Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

delete (2)

heap in oran

search tree in blue

v

PN
~

\i=

) - .
WY Treap Dictionary Data Structure

o Consider delete(k)

o Search for k and delete its node as in regular BSTs
o Just remove the node if a leaf
o Replace the node with its child if only one child
o Replace the ndoe with its successor or predecessor if two children
o Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

delete (2)

heap in oran

search tree in blue

v
-
~

\i=

) - .
WY Treap Dictionary Data Structure

o Consider delete(k)
o Search for k and delete its node as in regular BSTs
o Just remove the node if a leaf
o Replace the node with its child if only one child
o Replace the ndoe with its successor or predecessor if two children
o Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

delete (2)

heap in oran

search tree in blue

v

PN
~

N

‘ L] L]
‘WYY Treap Dictionary Data Structure

o Consider delete(k)

o Search for k and delete its node as in regular BSTs
o Just remove the node if a leaf
o Replace the node with its child if only one child
o Replace the ndoe with its successor or predecessor if two children

o Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

o How long does delete(k) take? O(h), where h is the height of the
treel

delete (2)

search tree in blue
12

v
PN
N\

1) ‘ L] L]
oY Treap Dictionary Data Structure

o Given that priorities are randomized, all elements have the same
chance of being the root (i.e., have the smallest priority).

delete (2)

heap in orange

search tree in blue

v
-
~

1 < ‘ L] L]
oY Treap Dictionary Data Structure

o Given that priorities are randomized, all elements have the same
chance of being the root (i.e., have the smallest priority).

@ The height of a treap is expected to be O(logn).

delete (2)

heap in orange

search tree in blue

v
-
~

‘ - L]
oY Treap Dictionary Data Structure

o Given that priorities are randomized, all elements have the same
chance of being the root (i.e., have the smallest priority).
@ The height of a treap is expected to be O(logn).

o Search, insert, and delete take O(log n) expected time in treaps.
o Treaps are very simple to implement, little overhead — less than AVL
trees

delete (2)

heap in orang

search tree in blue

