
EECS 4101-5101

Advanced Data Structures

Shahin Kamali

Topic 6: Randomized Data Structures (Treaps)

York University

Picture is from the cover of the textbook CLRS.

1 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

A binary tree in which each node has a key and a priority

Keys have binary search tree property: each node's key is larger
than its left and smaller than its right.
Priorities have heap property: each node priority is smaller than its
parent (or could be larger to form a max-treap)

Treaps are used for implementing dictionaries: keys are dictionary
keys and priorities are chosen randomly!

search(k) is identical to seacrh in a BST → it takes O(h), where h
is the height of the tree

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

2 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

A binary tree in which each node has a key and a priority

Keys have binary search tree property: each node's key is larger
than its left and smaller than its right.
Priorities have heap property: each node priority is smaller than its
parent (or could be larger to form a max-treap)

Treaps are used for implementing dictionaries: keys are dictionary
keys and priorities are chosen randomly!

search(k) is identical to seacrh in a BST → it takes O(h), where h
is the height of the tree

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

2 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

A binary tree in which each node has a key and a priority

Keys have binary search tree property: each node's key is larger
than its left and smaller than its right.
Priorities have heap property: each node priority is smaller than its
parent (or could be larger to form a max-treap)

Treaps are used for implementing dictionaries: keys are dictionary
keys and priorities are chosen randomly!

search(k) is identical to seacrh in a BST → it takes O(h), where h
is the height of the tree

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

2 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider insert(k)

Choose a random priority (a random number generated say between
[1, n2])
Insert as in normal BST
Rotate up until heap order is restored (maintaining BST property
while rotating)

How long does insert(k) take?

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

3 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider insert(k)

Choose a random priority (a random number generated say between
[1, n2])

Insert as in normal BST
Rotate up until heap order is restored (maintaining BST property
while rotating)

How long does insert(k) take?

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

35

8insert(35)

3 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider insert(k)

Choose a random priority (a random number generated say between
[1, n2])
Insert as in normal BST

Rotate up until heap order is restored (maintaining BST property
while rotating)

How long does insert(k) take?

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

35

8

insert(35)

3 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider insert(k)

Choose a random priority (a random number generated say between
[1, n2])
Insert as in normal BST
Rotate up until heap order is restored (maintaining BST property
while rotating)

How long does insert(k) take?

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

35

8

insert(35)

3 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider insert(k)

Choose a random priority (a random number generated say between
[1, n2])
Insert as in normal BST
Rotate up until heap order is restored (maintaining BST property
while rotating)

How long does insert(k) take?

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

35

8

insert(35)

3 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider insert(k)

Choose a random priority (a random number generated say between
[1, n2])
Insert as in normal BST
Rotate up until heap order is restored (maintaining BST property
while rotating)

How long does insert(k) take? O(h), where h is the height of the
tree!

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

35

8

insert(35)

3 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider delete(k)
Search for k and delete its node as in regular BSTs

Just remove the node if a leaf
Replace the node with its child if only one child
Replace the ndoe with its successor or predecessor if two children

Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

How long does delete(k) take?

search tree in blue

heap in orange

9

2

7

6

8

7

18

4

15

9

12

15

30

10

35

8

delete (2)

4 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider delete(k)
Search for k and delete its node as in regular BSTs

Just remove the node if a leaf
Replace the node with its child if only one child
Replace the ndoe with its successor or predecessor if two children

Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

How long does delete(k) take?

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12
15

30

10

35

8

delete (2)

4 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider delete(k)
Search for k and delete its node as in regular BSTs

Just remove the node if a leaf
Replace the node with its child if only one child
Replace the ndoe with its successor or predecessor if two children

Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

How long does delete(k) take?

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12
15

30

10

35

8

delete (2)

4 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider delete(k)
Search for k and delete its node as in regular BSTs

Just remove the node if a leaf
Replace the node with its child if only one child
Replace the ndoe with its successor or predecessor if two children

Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

How long does delete(k) take?

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12

15

30

10

35

8

delete (2)

4 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider delete(k)
Search for k and delete its node as in regular BSTs

Just remove the node if a leaf
Replace the node with its child if only one child
Replace the ndoe with its successor or predecessor if two children

Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

How long does delete(k) take?

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12

15
30

10

35

8

delete (2)

4 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Consider delete(k)
Search for k and delete its node as in regular BSTs

Just remove the node if a leaf
Replace the node with its child if only one child
Replace the ndoe with its successor or predecessor if two children

Rotate down, switching with the child with smaller priority, until
heap order is restored (maintaining BST property while rotating)

How long does delete(k) take? O(h), where h is the height of the
tree!

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12

15

30

10

35

8

delete (2)

4 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Given that priorities are randomized, all elements have the same
chance of being the root (i.e., have the smallest priority).

The height of a treap is expected to be O(log n).

Search, insert, and delete take O(log n) expected time in treaps.

Treaps are very simple to implement, little overhead � less than AVL
trees

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12
15

30

10

35

8

delete (2)

5 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Given that priorities are randomized, all elements have the same
chance of being the root (i.e., have the smallest priority).

The height of a treap is expected to be O(log n).

Search, insert, and delete take O(log n) expected time in treaps.

Treaps are very simple to implement, little overhead � less than AVL
trees

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12
15

30

10

35

8

delete (2)

5 / 5
EECS 4101-5101 Advanced Data Structures

▲



Treap Dictionary Data Structure

Given that priorities are randomized, all elements have the same
chance of being the root (i.e., have the smallest priority).

The height of a treap is expected to be O(log n).

Search, insert, and delete take O(log n) expected time in treaps.

Treaps are very simple to implement, little overhead � less than AVL
trees

search tree in blue

heap in orange

7

6

8

7

18

4

15

9

12
15

30

10

35

8

delete (2)

5 / 5
EECS 4101-5101 Advanced Data Structures

▲


