EECS 4101-5101
 Advanced Data Structures

Shahin Kamali

Topic 6: Randomized Data Structures
York University

Picture is from the cover of the textbook CLRS.

Objectives

- By the end of this module, you will be able to:
- Describe advantages of randomization in designing data structures with improved expected running time.

Objectives

- By the end of this module, you will be able to:
- Describe advantages of randomization in designing data structures with improved expected running time.
- Compare and contrast randomized and deterministic data structures for implementing an abstract data type.

Objectives

- By the end of this module, you will be able to:
- Describe advantages of randomization in designing data structures with improved expected running time.
- Compare and contrast randomized and deterministic data structures for implementing an abstract data type.
- Describe randomized data structures for Dictionaries and analyze their space and time complexity.

Skip Lists

- Randomized data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A skip list for a set S of items is a series of lists $S_{0}, S_{1}, \cdots, S_{h}$ such that:
- Each list S_{i} contains the special keys $-\infty$ and $+\infty$
- List S_{0} contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one, i.e., $S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{h}$
- List S_{h} contains only the two special keys

Skip Lists

- A skip list for a set S of items is a series of lists $S_{0}, S_{1}, \cdots, S_{h}$
- A two-dimensional collection of positions: levels and towers
- Traversing the skip list: after(p), below(p)

Search in Skip Lists

```
skip-search(L, k)
L:A skip list, k: a key
1. p\leftarrowtopmost left position of L
2. }\quadS\leftarrow\mathrm{ stack of positions, initially containing p
3. while below (p)\not= null do
4. 
5. while key(after (p))<k do
6. }\quadp\leftarrow\operatorname{after}(p
7. push p onto S
8. return S
```

- S contains positions of the largest key less than k at each level.
- after $(\operatorname{top}(S))$ will have key k, iff k is in L.
- drop down: $p \leftarrow \operatorname{below}(p)$
- scan forward: $p \leftarrow \operatorname{after}(p)$

Search in Skip Lists

Example: Skip-Search $(S, 87)$

Search in Skip Lists

Example: Skip-Search $(S, 87)$

Search in Skip Lists

Example: Skip-Search $(S, 87)$

Search in Skip Lists

Example: Skip-Search $(S, 87)$

Search in Skip Lists

Example: Skip-Search $(S, 87)$

Insert in Skip Lists

- Skip-Insert(S, k, v)
- Randomly compute the height of new item: repeatedly toss a coin until you get tails, let i the number of times the coin came up heads
- Search for k in the skip list and find the positions $p_{0}, p_{1}, \cdots, p_{i}$ of the items with largest key less than k in each list $S_{0}, S_{1}, \cdots, S_{i}$ (by performing Skip-Search $(S, k))$
- Insert item (k, v) into list S_{j} after position p_{j} for $0 \leq j \leq i$ (a tower of height i)

Insert in Skip Lists

Example: Skip-Insert(S, 52, v)
Coin tosses: $\mathrm{H}, \mathrm{T} \Rightarrow i=1$

Insert in Skip Lists

Example: Skip-Insert(S, 52, v)
Coin tosses: $\mathrm{H}, \mathrm{T} \Rightarrow i=1$
Skip-Search $(S, 52)$

Insert in Skip Lists

Example: Skip-Insert(S, 52, v)
Coin tosses: $\mathrm{H}, \mathrm{T} \Rightarrow i=1$

Insert in Skip Lists

Example: Skip-Insert(S, 100, v)
Coin tosses: $\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{T} \Rightarrow i=3$

Insert in Skip Lists

Example: Skip-Insert(S, 100, v)
Coin tosses: $\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{T} \Rightarrow i=3$
Skip-Search $(S, 100)$

Insert in Skip Lists

Example: Skip-Insert(S, 100, v)
Coin tosses: $\mathrm{H}, \mathrm{H}, \mathrm{H}, \mathrm{T} \Rightarrow i=3$
Height increase

Delete in Skip Lists

- Skip-Delete (S, k)
- Search for k in the skip list and find all the positions $p_{0}, p_{1}, \ldots, p_{i}$ of the items with the largest key smaller than k, where p_{j} is in list S_{j}. (this is the same as Skip-Search)
- For each i, if $\operatorname{key}\left(\operatorname{after}\left(p_{i}\right)\right)==k$, then remove $\operatorname{after}\left(p_{i}\right)$ from list S_{i}
- Remove all but one of the lists S_{i} that contain only the two special keys

Delete in Skip Lists

Example: Skip-Delete(S, 65)

Delete in Skip Lists

Example: Skip-Delete(S, 65)

Skip-Search $(S, 65)$

Delete in Skip Lists

Example: Skip-Delete(S,65)

Skip List Memory Complexity

- What is the expected height of a tower?
- 1 if random flip sequence is $T, 2$ if it is $H, T, 3$ if it is H, H, T.

Skip List Memory Complexity

- What is the expected height of a tower?
- 1 if random flip sequence is $T, 2$ if it is $H_{2} T, 3$ if it is H, H, T.
- The chance of a tower having height i is $\frac{1}{2^{i}}$.
- For that the first $i-1$ flips should be heads and the i 'th one a tail.

Skip List Memory Complexity

- What is the expected height of a tower?
- 1 if random flip sequence is $T, 2$ if it is $H, T, 3$ if it is H, H, T.
- The chance of a tower having height i is $\frac{1}{2^{i}}$.
- For that the first $i-1$ flips should be heads and the i 'th one a tail.
- The expected height of a tower will be $X=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\ldots$

Skip List Memory Complexity

- What is the expected height of a tower?
- 1 if random flip sequence is $T, 2$ if it is $H_{2}, T, 3$ if it is H, H, T.
- The chance of a tower having height i is $\frac{1}{2^{i}}$.
- For that the first $i-1$ flips should be heads and the i 'th one a tail.
- The expected height of a tower will be $X=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+\ldots$
- We have $X=1 / 2+2 / 4+3 / 8+4 / 16+5 / 32+6 / 64 \ldots$, i.e., $X / 2=1 / 4+2 / 8+3 / 16+4 / 32+5 / 64+\ldots$; So, $X-X / 2 \leq 1 / 2+1 / 4+1 / 8+1 / 16+1 / 32+1 / 64+\ldots=1$, i.e., $X=2$.
- So, the expected height of a tower is 2, i.e., the expected size of the skip list is $2 n \in \Theta(n)$.

Theorem

A skip list that includes n keys is expected to have $\Theta(n)$ nodes.

Skip List Height

- How many levels are expected to be in a linked list of size n ?

$$
\begin{aligned}
\operatorname{Prob}(\max \text { height }>c \log n) & =\operatorname{Prob}(\text { some element flipped }>c \log n \text { heads) } \\
& \leq n \cdot \operatorname{Prob}(\text { element } x \text { flipped }>c \log n \text { heads) [Boole's ineq.] } \\
& =n(1 / 2)^{c \log n}=n / n^{c}=\frac{1}{n^{c-1}}
\end{aligned}
$$

Skip List Height

- How many levels are expected to be in a linked list of size n ?

$$
\begin{aligned}
\operatorname{Prob}(\max \text { height }>c \log n) & =\operatorname{Prob}(\text { some element flipped }>c \log n \text { heads) } \\
& \leq n \cdot \operatorname{Prob}(\text { element } x \text { flipped }>c \log n \text { heads) [Boole's ineq.] } \\
& =n(1 / 2)^{c \log n}=n / n^{c}=\frac{1}{n^{c-1}}
\end{aligned}
$$

- With a chance of at least $1-1 / n^{c-1}$, the height of the skip list is at most $c \log n$.
- This can be used to show the number of levels in a skip list is expected to be $\Theta(\log n)$

Theorem

The height of a skip list on n items is expected to be $\Theta(\log n)$.

Search Time in Skip Lists

- How many nodes are visited for searching a key k ?

Search Time in Skip Lists

- How many nodes are visited for searching a key k ?
- Think of backward moves from the lowest level that includes k
- If it is possible to go up (the key appears in the next level), we go up (with a chance of $1 / 2$).
- If not, we stay in the same level and go left (again, with a chance of $1 / 2)$.

Search Time in Skip Lists

- How many nodes are visited for searching a key k ?
- Think of backward moves from the lowest level that includes k
- If it is possible to go up (the key appears in the next level), we go up (with a chance of $1 / 2$).
- If not, we stay in the same level and go left (again, with a chance of 1/2).
- Let $C(j)$ be the maximum number of nodes to be visited when there are j levels above us.
- After a visiting a node at the current level (with cost 1) we have:

$$
C(j) \leq 1+1 / 2 \cdot C(j-1)+1 / 2 \cdot C(j) \text { which gives } C(j) \leq 2 j
$$

Search Time in Skip Lists

- How many nodes are visited for searching a key k ?
- Think of backward moves from the lowest level that includes k
- If it is possible to go up (the key appears in the next level), we go up (with a chance of $1 / 2$).
- If not, we stay in the same level and go left (again, with a chance of 1/2).
- Let $C(j)$ be the maximum number of nodes to be visited when there are j levels above us.
- After a visiting a node at the current level (with cost 1) we have:

$$
C(j) \leq 1+1 / 2 \cdot C(j-1)+1 / 2 \cdot C(j) \text { which gives } C(j) \leq 2 j
$$

- From the previous slide, we know j is expected to be $\Theta(\log n)$.

Search Time in Skip Lists

Theorem

The number of nodes visited when searching for an item in the skip list of n keys is expected to be $\Theta(\log n)$.

- For insert, we do search and add an expected $\Theta(1)$ number of nodes; search time dominates.
- Similarly, for delete, search time dominates.

Summary of Skip Lists

- Expected space usage: $O(n)$
- Expected height: $O(\log n)$
- Skip-Search: $O(\log n)$ expected time
- Skip-Insert: $O(\log n)$ expected time
- Skip-Delete: $O(\log n)$ expected time
- Skip lists are fast and simple to implement in practice

