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Objectives

By the end of this module, you will be able to:

Describe advantages of randomization in designing data structures
with improved expected running time.

Compare and contrast randomized and deterministic data structures
for implementing an abstract data type.
Describe randomized data structures for Dictionaries and analyze
their space and time complexity.
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Skip Lists

Randomized data structure for dictionary ADT

A hierarchy of ordered linked lists

A skip list for a set S of items is a series of lists S0,S1, · · · ,Sh such
that:

Each list Si contains the special keys −∞ and +∞
List S0 contains the keys of S in nondecreasing order
Each list is a subsequence of the previous one, i.e.,
S0 ⊇ S1 ⊇ · · · ⊇ Sh

List Sh contains only the two special keys
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Skip Lists

A skip list for a set S of items is a series of lists S0,S1, · · · ,Sh
A two-dimensional collection of positions: levels and towers

Traversing the skip list: after(p), below(p)
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Search in Skip Lists

skip-search(L, k)
L: A skip list, k : a key
1. p ← topmost left position of L
2. S ← stack of positions, initially containing p
3. while below(p) ̸= null do
4. p ← below(p)
5. while key(after(p)) < k do

6. p ← after(p)
7. push p onto S
8. return S

S contains positions of the largest key less than k at each level.

after(top(S)) will have key k , i� k is in L.

drop down: p ← below(p)

scan forward: p ← after(p)
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Search in Skip Lists

Example: Skip-Search(S , 87)
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Insert in Skip Lists

Skip-Insert(S , k , v)

Randomly compute the height of new item: repeatedly toss a coin
until you get tails, let i the number of times the coin came up heads
Search for k in the skip list and �nd the positions p0, p1, · · · , pi of
the items with largest key less than k in each list S0, S1, · · · , Si (by
performing Skip-Search(S , k))
Insert item (k, v) into list Sj after position pj for 0 ≤ j ≤ i (a tower
of height i)
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Insert in Skip Lists

Example: Skip-Insert(S , 52, v)
Coin tosses: H,T ⇒ i = 1
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Insert in Skip Lists

Example: Skip-Insert(S , 52, v)
Coin tosses: H,T ⇒ i = 1

Skip-Search(S , 52)
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Insert in Skip Lists

Example: Skip-Insert(S , 52, v)
Coin tosses: H,T ⇒ i = 1
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Insert in Skip Lists

Example: Skip-Insert(S , 100, v)
Coin tosses: H,H,H,T ⇒ i = 3
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Insert in Skip Lists

Example: Skip-Insert(S , 100, v)
Coin tosses: H,H,H,T ⇒ i = 3
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Insert in Skip Lists

Example: Skip-Insert(S , 100, v)
Coin tosses: H,H,H,T ⇒ i = 3

Height increase
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Delete in Skip Lists

Skip-Delete (S , k)

Search for k in the skip list and �nd all the positions p0, p1, . . . , pi
of the items with the largest key smaller than k, where pj is in list
Sj . (this is the same as Skip-Search)
For each i , if key(after(pi )) == k, then remove after(pi ) from list
Si

Remove all but one of the lists Si that contain only the two special
keys
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Delete in Skip Lists

Example: Skip-Delete(S , 65)
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Delete in Skip Lists

Example: Skip-Delete(S , 65)
Skip-Search(S , 65)
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Delete in Skip Lists

Example: Skip-Delete(S , 65)
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Skip List Memory Complexity

What is the expected height of a tower?

1 if random �ip sequence is T , 2 if it is H,T , 3 if it is H,H,T .

The chance of a tower having height i is 1
2i
.

For that the �rst i − 1 �ips should be heads and the i 'th one a tail.

The expected height of a tower will be X = 1 · 1
2
+ 2 · 1

4
+ 3 · 1

8
+ . . .

We have X = 1/2+ 2/4+ 3/8+ 4/16+ 5/32+ 6/64 . . ., i.e.,
X/2 = 1/4+ 2/8+ 3/16+ 4/32+ 5/64+ . . .;
So, X − X/2 ≤ 1/2+ 1/4+ 1/8+ 1/16+ 1/32+ 1/64+ . . . = 1,
i.e., X = 2.

So, the expected height of a tower is 2, i.e., the expected size of the
skip list is 2n ∈ Θ(n).

Theorem

A skip list that includes n keys is expected to have Θ(n) nodes.
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Skip List Height

How many levels are expected to be in a linked list of size n?

Prob(max height > c log n) = Prob(some element �ipped > c log n heads)

≤ n · Prob(elementx �ipped > c log n heads) [Boole's ineq.]

= n(1/2)c log n = n/nc =
1

nc−1

With a chance of at least 1− 1/nc−1, the height of the skip list is
at most c log n.

This can be used to show the number of levels in a skip list is
expected to be Θ(log n)

Theorem

The height of a skip list on n items is expected to be Θ(log n).
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Search Time in Skip Lists
How many nodes are visited for searching a key k?

Think of backward moves from the lowest level that includes k

If it is possible to go up (the key appears in the next level), we go
up (with a chance of 1/2).
If not, we stay in the same level and go left (again, with a chance of
1/2).

Let C (j) be the maximum number of nodes to be visited when there
are j levels above us.

After a visiting a node at the current level (with cost 1) we have:

C (j) ≤ 1+ 1/2 · C (j − 1) + 1/2 · C (j) which gives C (j) ≤ 2j

From the previous slide, we know j is expected to be Θ(log n).
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Search Time in Skip Lists

Theorem

The number of nodes visited when searching for an item in the

skip list of n keys is expected to be Θ(log n).

For insert, we do search and add an expected Θ(1) number of
nodes; search time dominates.

Similarly, for delete, search time dominates.
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Summary of Skip Lists

Expected space usage: O(n)

Expected height: O(log n)

Skip-Search: O(log n) expected time

Skip-Insert: O(log n) expected time

Skip-Delete: O(log n) expected time

Skip lists are fast and simple to implement in practice
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