EECS 4101-5101
 Advanced Data Structures

Shahin Kamali

Topic 5: Disjoint Sets
York University

Picture is from the cover of the textbook CLRS.

Objectives

- By the end of this module, you will be able to:
- Explain the Disjoint Set abstract data type and its operations (queries).

Objectives

- By the end of this module, you will be able to:
- Explain the Disjoint Set abstract data type and its operations (queries).
- Recognize the application of Disjoint Sets as "black boxes" in algorithms like Kruskal's minimum spanning tree algorithm, and use disjoint sets as black boxes for other practical algorithms.

Objectives

- By the end of this module, you will be able to:
- Explain the Disjoint Set abstract data type and its operations (queries).
- Recognize the application of Disjoint Sets as "black boxes" in algorithms like Kruskal's minimum spanning tree algorithm, and use disjoint sets as black boxes for other practical algorithms.
- Describe various data structures for Disjoing Sets and compare and contrast their running times.

Objectives

- By the end of this module, you will be able to:
- Explain the Disjoint Set abstract data type and its operations (queries).
- Recognize the application of Disjoint Sets as "black boxes" in algorithms like Kruskal's minimum spanning tree algorithm, and use disjoint sets as black boxes for other practical algorithms.
- Describe various data structures for Disjoing Sets and compare and contrast their running times.
- Describe the standard union-find data structure for disjoint sets using union-by-rank and path compression.

Disjoint Sets

- Disjoint set is an abstract data type for maintaining a collection $S=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of disjoint, non-empty sets.
- Disjoint: there is no common element between any two sets (if a is in S_{i} it cannot be in S_{j} where $i \neq j$).
- Dynamic: sets can be modified by make-set and union operations
- Each set is identified by a representative element of the set.
$k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}$

Disjoint Sets Operations

- makeSet(x):
- Create a new set $\{x\}$ whose only element is x.
- By property 1 above, x cannot be an element of any other set.
- By default, x is the representative of the new set.

$$
k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}
$$

Disjoint Sets Operations

- makeSet(x):
- Create a new set $\{x\}$ whose only element is x.
- By property 1 above, x cannot be an element of any other set.
- By default, x is the representative of the new set.

E.g., makeSet (\{p\})

$$
k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}
$$

$$
S_{p}=\{\underline{p}\}
$$

Disjoint Sets Operations

- find (x) (also called Find-Set (x)):
- Return the representative element of the set containing x.

$$
k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}
$$

Disjoint Sets Operations

- find (x) (also called Find-Set (x)):
- Return the representative element of the set containing x.
E.g., find $(b) \rightarrow a$
$k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}$,

Disjoint Sets Operations

- find (x) (also called Find-Set (x)):
- Return the representative element of the set containing x.
E.g., find $(b) \rightarrow a$
E.g., find $(c) \rightarrow c$
$k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}$,

Disjoint Sets Operations

- union (x, y) :
- Unite the sets containing x and y.
- Suppose set S_{x} contains x and set S_{y} contains y.
- $S \leftarrow S \cup\left\{S_{x} \cup S_{y}\right\}-S_{x}-S_{y}$
- Assign a representative for $x \cup y$.
- union (x, y) is equivalent to union $($ find (x), find $(y))$.
$k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}$,

Disjoint Sets Operations

- union (x, y) :
- Unite the sets containing x and y.
- Suppose set S_{x} contains x and set S_{y} contains y.
- $S \leftarrow S \cup\left\{S_{x} \cup S_{y}\right\}-S_{x}-S_{y}$
- Assign a representative for $x \cup y$.
- union (x, y) is equivalent to union(find (x), find $(y))$.
E.g., Union $(b, d) \rightarrow$ merge S_{a} and S_{e}.

$$
\begin{aligned}
k=4 ; \quad S_{a}=\{\underline{a}, b, m, n\}, S_{c}=\{\underline{c}, g, h\}, S_{e}=\{d, \underline{e}, f\}, S_{q}=\{\underline{q}\}, \\
\rightarrow \quad S_{c}=\{\underline{c}, g, h\}, S_{q}=\{\underline{q}\}, S_{a}=\{\underline{a}, b, m, n, d, e, f\}
\end{aligned}
$$

Disjoint Sets Operations

- makeSet(x):
- Create a new set $\{x\}$ whose only element is x.
- By default, x is the representative of the new set.
- find (x) (also called Find-Set (x) :
- Return the representative element of the set containing x.
- union (x, y) :
- Unite the sets containing x and y.
- Assign a representative for $x \cup y$.
- union (x, y) is equivalent to union $($ find (x), find $(y))$.

Applications of Disjoint Sets

- Many applications in designing algorithms
- E.g., Kruskal's minimum spanning tree for a graph with n vertices and m edges.

Kruskal's MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.

Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.

Kruskal's MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal's MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

$\{A, C, D\}\{B, E\}\{F, G, H\}$

Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Sort edges by their weights and process them one by one.
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components
- The running time is $O(m \log m+m x)$, where $O(x)$ is the a mortized running time of merge and find operations.

$\{A, C, D, B, E, F, G, H\}$

Disjoint Sets Review

- Disjoint set is an abstract data type for maintaining a set of dosjoint sets
- make-set(x): create a new set with a single item x (which is not in any of the existing sets).
- find(x): returns the representative item of the set that includes x.
- union (x, y) : removes the sets in which x and y belong to and adds a new set which is the union of deleted sets

Disjoint Sets Review

- Disjoint set is an abstract data type for maintaining a set of dosjoint sets
- make-set(x): create a new set with a single item x (which is not in any of the existing sets).
- find(x): returns the representative item of the set that includes x.
- union (x, y) : removes the sets in which x and y belong to and adds a new set which is the union of deleted sets
- Disjoint sets have many applications in design of algorithms (e.g., Kruskal's MST algorithm)

Data Structures for Disjoint Sets

- Linked lists for disjoint sets:
- Each set is stored as a linked-list.
- The representative element is the first element in the list.

$$
\mathrm{S}_{1}=\{\mathrm{x}, \mathrm{p}\}
$$

$$
S_{2}=\{a, h, c\}
$$

Data Structures for Disjoint Sets

- Linked lists for disjoint sets:
- Each set is stored as a linked-list.
- The representative element is the first element in the list.
- In a 'set object', store head/tail pointers to the first/last elements.

$$
S_{1}=\{x, p\}
$$

$$
\mathrm{S}_{2}=\{\mathrm{a}, \mathrm{~h}, \mathrm{c}\}
$$

Data Structures for Disjoint Sets

- Linked lists for disjoint sets:
- Each set is stored as a linked-list.
- The representative element is the first element in the list.
- In a 'set object', store head/tail pointers to the first/last elements.
- Each node stores a set pointer to the set object.

Linked lists for disjoint sets

- makeSet(x):
- Create a list containing one node.
- takes $O(1)$
- O(1) time

Linked lists for disjoint sets

- makeSet(x):
- Create a list containing one node.
- takes $O(1)$
- O(1) time
makeSet(q)

Linked lists for disjoint sets

- $\operatorname{find}(\mathrm{x})$:
- follow the set-pointer to find the set object and get the representative element.

Linked lists for disjoint sets

- $\operatorname{find}(\mathrm{x})$:
- follow the set-pointer to find the set object and get the representative element.
find $(h) \rightarrow a$

Linked lists for disjoint sets

- find (x) :
- follow the set-pointer to find the set object and get the representative element.
- We assume we're given a reference to x.
- It takes $\mathrm{O}(1)$ time
find $(h) \rightarrow a$

Linked lists for disjoint sets

- union (x, y) :
- Append y 's list to the end of x 's list.
- find (x) becomes the representative of the new set.
- Use head pointer from x's list and tail pointer from y's list.
- Requires updating the set pointer for each node in y 's list, i.e., $\Theta(n)$ time per operation in the worst case (when y has size $\Theta(n)$).

Linked lists for disjoint sets

- union (x, y) :
- Append y 's list to the end of x 's list.
- find (x) becomes the representative of the new set.
- Use head pointer from x 's list and tail pointer from y 's list.
- Requires updating the set pointer for each node in y's list, i.e., $\Theta(n)$ time per operation in the worst case (when y has size $\Theta(n)$).

Linked lists for disjoint sets

- union (x, y) :
- Append y 's list to the end of x 's list.
- find (x) becomes the representative of the new set.
- Use head pointer from x 's list and tail pointer from y 's list.
- Requires updating the set pointer for each node in y 's list, i.e., $\Theta(n)$ time per operation in the worst case (when y has size $\Theta(n)$).
- What is the amortized cost of performing $n-1$ union operations?

union (p, h)

Review of Amortized Analysis

- Amortized analysis considers the average cost per operation for a sequence of m operations.

Review of Amortized Analysis

- Amortized analysis considers the average cost per operation for a sequence of m operations.
- In many data structures, there are many different sequences of operations
- We often consider the worst-case amortized time, i.e., the average cost of an operation for the worst-case sequence
- Sometimes people look at expected amortized time which considers the average cost for a random sequence (we do not talk about it in this course).

Linked lists for disjoint sets

- What is the amortized cost of performing $n-1$ union operations?
- The following example is a worst-case sequence which provides a lower bound.
- makeSet $\left(x_{i}\right)$ for $i \in\{1,2 \ldots, n\}$
- union $\left(x_{i}, x_{i-1}\right)$ for $i \in\{n, n-1, \ldots 2\}$, that is:
- union $\left(x_{n-1}, x_{n}\right)$: update 1 set-pointers
- union $\left(x_{n-2}, x_{n}\right)$: update 2 set-pointers
- union $\left(x_{n-i}, x_{n}\right): \rightarrow$ update i set-pointers
- union $\left(x_{1}, x_{n}\right)$: updated $n-1$ set-pointers

Linked lists for disjoint sets

- What is the amortized cost of performing $n-1$ union operations?
- The following example is a worst-case sequence which provides a lower bound.
- makeSet $\left(x_{i}\right)$ for $i \in\{1,2 \ldots, n\}$
- union $\left(x_{i}, x_{i-1}\right)$ for $i \in\{n, n-1, \ldots 2\}$, that is:
- union $\left(x_{n-1}, x_{n}\right)$: update 1 set-pointers
- union $\left(x_{n-2}, x_{n}\right)$: update 2 set-pointers
- ...
- union $\left(x_{n-i}, x_{n}\right): \rightarrow$ update i set-pointers
- ...
- union $\left(x_{1}, x_{n}\right)$: updated $n-1$ set-pointers
- Total set-pointer updates: $1+2+3+\ldots+n-1 \in \Omega\left(n^{2}\right)$.
- Amortized cost of the update operation is $\Omega(n)$ in the worst case.

Linked lists for disjoint sets

- What is the amortized cost of performing $n-1$ union operations?
- The following example is a worst-case sequence which provides a lower bound.
- makeSet $\left(x_{i}\right)$ for $i \in\{1,2 \ldots, n\}$
- union $\left(x_{i}, x_{i-1}\right)$ for $i \in\{n, n-1, \ldots 2\}$, that is:
- union $\left(x_{n-1}, x_{n}\right)$: update 1 set-pointers
- union $\left(x_{n-2}, x_{n}\right)$: update 2 set-pointers
- ...
- union $\left(x_{n-i}, x_{n}\right): \rightarrow$ update i set-pointers
- ...
- union $\left(x_{1}, x_{n}\right)$: updated $n-1$ set-pointers
- Total set-pointer updates: $1+2+3+\ldots+n-1 \in \Omega\left(n^{2}\right)$.
- Amortized cost of the update operation is $\Omega(n)$ in the worst case.
- This is a worst-case amortized time; there are sequences formed m unions for which the amortized cost is constant.

Linked lists for disjoint sets

- What is the amortized cost of performing $n-1$ union operations?
- The following example is a worst-case sequence which provides a lower bound.
- makeSet $\left(x_{i}\right)$ for $i \in\{1,2 \ldots, n\}$
- union $\left(x_{i}, x_{i-1}\right)$ for $i \in\{n, n-1, \ldots 2\}$, that is:
- union $\left(x_{n-1}, x_{n}\right)$: update 1 set-pointers
- union $\left(x_{n-2}, x_{n}\right)$: update 2 set-pointers
- ...
- union $\left(x_{n-i}, x_{n}\right): \rightarrow$ update i set-pointers
- union $\left(x_{1}, x_{n}\right)$: updated $n-1$ set-pointers
- Total set-pointer updates: $1+2+3+\ldots+n-1 \in \Omega\left(n^{2}\right)$.
- Amortized cost of the update operation is $\Omega(n)$ in the worst case.
- This is a worst-case amortized time; there are sequences formed m unions for which the amortized cost is constant.
- If we simply append the second list to the end of the first list, the (worst-case) amortized time for union is $\Theta(n)$.

Linked lists \& Union by Weight

- What if we append the smallest list to the end of the larger list?
- In the set object, in addition to head and tail pointers, maintain a weight field which indicates the number of items in that list (set).
- Make-set and find are as before, i.e., they take constant time per operation
- For union, we compare the weights and append the smaller list to the end of the larger list

Linked lists \& Union by Weight

- Consider a single node u of the list. We count the number of times the set-pointer is updated for that node.
- Each time the pointer of u is updated, that means that the set of u is merged with a larger set
- The weight of the set of u is at least doubled after the merge.
- If there are n items in all sets, the weight of each set is at most n.
- Each update for set-pointer of u doubles the weight of its list, and this weight cannot be more than n
- Hence, there are at most $\lceil\log n\rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates in total.

Linked lists \& Union by Weight

- There are at most $\lceil\log n\rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.
- In addition to the cost of set-pointer updates, the cost of each operation for other pointer updates is constants $\rightarrow \Theta(m)$ cost for m operations

Linked lists \& Union by Weight

- There are at most $\lceil\log n\rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.
- In addition to the cost of set-pointer updates, the cost of each operation for other pointer updates is constants $\rightarrow \Theta(m)$ cost for m operations
- Union by Weight has a cost of $O(n \log n+m)$ for a sequence of m operations on a universe of size n
- Assuming $m \geq n$, the amortized cost per operation is

$$
O(n \log n / m+1)=O(\log n)
$$

Linked lists \& Union by Weight

- There are at most $\lceil\log n\rceil$ set-pointer updates per item, i.e., a total of $O(n \log n)$ set-pointer updates.
- In addition to the cost of set-pointer updates, the cost of each operation for other pointer updates is constants $\rightarrow \Theta(m)$ cost for m operations
- Union by Weight has a cost of $O(n \log n+m)$ for a sequence of m operations on a universe of size n
- Assuming $m \geq n$, the amortized cost per operation is

$$
O(n \log n / m+1)=O(\log n)
$$

- Union by weight (appending smaller list to the end of larger one) improves the amortized time complexity from $\Theta(n)$ to $O(\log n)$.

Disjoint Sets Review

- Disjoint set is an abstract data type for maintaining a set of dosjoint sets
- make-set (x) : create a new set with a single item x (which is not in any of the existing sets).
- find (x) : returns the representative item of the set that includes x.
- union (x, y) : removes the sets in which x and y belong to and adds a new set which is the union of deleted sets

Disjoint Sets Review

- Disjoint set is an abstract data type for maintaining a set of dosjoint sets
- make-set (x) : create a new set with a single item x (which is not in any of the existing sets).
- find (x) : returns the representative item of the set that includes x.
- union (x, y) : removes the sets in which x and y belong to and adds a new set which is the union of deleted sets
- Disjoint sets have many applications in design of algorithms (e.g., Kruskal's MST algorithm)

Disjoint Sets Review

- Disjoint set is an abstract data type for maintaining a set of dosjoint sets
- make-set (x) : create a new set with a single item x (which is not in any of the existing sets).
- find (x) : returns the representative item of the set that includes x.
- union (x, y) : removes the sets in which x and y belong to and adds a new set which is the union of deleted sets
- Disjoint sets have many applications in design of algorithms (e.g., Kruskal's MST algorithm)
- Maintaining a list for each set and union-by-weight (appending smaller list to the end of larger one) gives an amortized time of $O(\log n)$ per operation.

Disjoint Set Forests

- A data structure for disjoint sets which is based on trees instead of lists.
- Each set is stored as a rooted tree
- Each node points to its parent
- The root points to itself
- The representative element is the root

Disjoint Set Forests

- MakeSet (x) takes $O(1)$ time:
- Create a new tree containing one node x
- parent $(x) \rightarrow x$

Disjoint Set Forests

- MakeSet(x) takes $O(1)$ time:
- Create a new tree containing one node x
- parent $(x) \rightarrow x$
- Find(x):
- Follow parent pointers to the root and return it.
- $y \leftarrow x$
- while $y \neq \operatorname{parent}(y)$
- $\quad y \leftarrow \operatorname{parent}(y)$
- return y
- Time proportional to the tree's height

Disjoint Set Forests

- Union(x, y) (first approach):
- Set root of y 's tree to point to the root of x 's tree.
- $\operatorname{root}_{x} \leftarrow \operatorname{find}(x)$
- root $_{y} \leftarrow$ find (y)
- parent $\left(\right.$ root $\left._{y}\right) \leftarrow$ root $_{x}$.
- Time is proportional to tree's height

Disjoint Set Forests

- Union(x, y) (first approach):
- Set root of y 's tree to point to the root of x 's tree.
- $\operatorname{root}_{x} \leftarrow \operatorname{find}(x)$
- $\operatorname{root}_{y} \leftarrow$ find (y)
- parent $\left(\right.$ root $\left._{y}\right) \leftarrow$ root $_{x}$.
- Time is proportional to tree's height
- Tree's height can be $\Theta(n)$ for a universe of size n
- In the worst case, each operation takes $\Theta(n)$.

\therefore Amortized cost of first approach
- What is the amortized cost when performing m operations?

Amortized cost of first approach

- What is the amortized cost when performing m operations?
- If we simply make the second tree point to the first one, it takes $\Theta(n)$ in the worst case:
- Consider the following worst-case sequence of operations:
- make-set $\left(x_{i}\right)$ for $i \in\{1, \ldots, n\}$
- union $\left(x_{i}, x_{1}\right)$ for $i \in\{2, \ldots, n\}$.

Amortized cost of first approach

- What is the amortized cost when performing m operations?
- If we simply make the second tree point to the first one, it takes $\Theta(n)$ in the worst case:
- Consider the following worst-case sequence of operations:
- make-set $\left(x_{i}\right)$ for $i \in\{1, \ldots, n\}$
- union $\left(x_{i}, x_{1}\right)$ for $i \in\{2, \ldots, n\}$.
- After the i 'th union, set of x_{1} is a tree of height i.
- The total time for the $2 n-1$ operations is $\sum_{i=1}^{n-1} i=n(n-1) / 2$, l.e., the amortized cost is $\Theta(n)$.

Amortized cost of first approach

- What is the amortized cost when performing m operations?
- If we simply make the second tree point to the first one, it takes $\Theta(n)$ in the worst case:
- Consider the following worst-case sequence of operations:
- make-set $\left(x_{i}\right)$ for $i \in\{1, \ldots, n\}$
- union $\left(x_{i}, x_{1}\right)$ for $i \in\{2, \ldots, n\}$.
- After the i 'th union, set of x_{1} is a tree of height i.
- The total time for the $2 n-1$ operations is $\sum_{i=1}^{n-1} i=n(n-1) / 2$, I.e., the amortized cost is $\Theta(n)$.
- After forming this bad tree, the worst-case sequence of operations continues with $m-2 n+1$ find(x) operation where x is the only leaf of the tree.

Amortized cost of first approach

- What is the amortized cost when performing m operations?
- If we simply make the second tree point to the first one, it takes $\Theta(n)$ in the worst case:
- Consider the following worst-case sequence of operations:
- make-set $\left(x_{i}\right)$ for $i \in\{1, \ldots, n\}$
- union $\left(x_{i}, x_{1}\right)$ for $i \in\{2, \ldots, n\}$.
- After the i 'th union, set of x_{1} is a tree of height i.
- The total time for the $2 n-1$ operations is $\sum_{i=1}^{n-1} i=n(n-1) / 2$, I.e., the amortized cost is $\Theta(n)$.
- After forming this bad tree, the worst-case sequence of operations continues with $m-2 n+1$ find (x) operation where x is the only leaf of the tree.

Observation

Having the second tree point to the first one for union results in the worst-case trees of height n and amortized time of $\Theta(n)$ for each operation.

Reducing the Height of Trees

- Two strategies for bounding tree heights:
- union by rank
- path compression

Union by Rank

- Attempt to attach the shorter tree to the root of the taller one
- Similar to union-by-weight on lists
- Maintain the rank as an upper bound for the height of each tree.
- The rank increased when both trees have the same rank

Union by Rank

- Attempt to attach the shorter tree to the root of the taller one
- Similar to union-by-weight on lists
- Maintain the rank as an upper bound for the height of each tree.
- The rank increased when both trees have the same rank $\operatorname{root}_{x} \leftarrow \operatorname{find}(x) ; \operatorname{root}_{y} \leftarrow$ find (y) if $\operatorname{rank}\left(\right.$ root $\left._{x}\right)>\operatorname{rank}\left(\right.$ root $\left._{y}\right)$ $\operatorname{parent}\left(\right.$ root $\left._{y}\right) \leftarrow \operatorname{root}_{x}$ else $\operatorname{parent}\left(\right.$ root $\left._{x}\right) \leftarrow \operatorname{root}_{y}$ if $\operatorname{rank}\left(\operatorname{root}_{x}\right)=\operatorname{rank}\left(\operatorname{root}_{y}\right)$ $\operatorname{rank}\left(\right.$ root $\left._{y}\right) \leftarrow \operatorname{rank}\left(\right.$ root $\left._{y}\right)+1$
$\mathrm{S}_{1}=\{\mathrm{x}, \mathrm{p}\} \quad \mathrm{S}_{2}=\{\mathrm{a}, \mathrm{h}, \mathrm{c}, \mathrm{f}\}$

Union by Rank

- If $\operatorname{rank}(x)=h$, the tree rooted at x has at least 2^{h} nodes.

Union by Rank

- If $\operatorname{rank}(x)=h$, the tree rooted at x has at least 2^{h} nodes.
- Use induction; for the base, we know when $h=0$, the tree contains $1=2^{0}$ nodes.

Union by Rank

- If $\operatorname{rank}(x)=h$, the tree rooted at x has at least 2^{h} nodes.
- Use induction; for the base, we know when $h=0$, the tree contains $1=2^{0}$ nodes.
- Choose any $h>0$ and consider the union operation in which the rank is increased from $h-1$ to h.
- At the time of union, both trees had rank $h-1$
- By induction hypothesis, they each included at least 2^{h-1} nodes.
- Then the resulting tree has at least $2 \cdot 2^{h-1}=2^{h}$ nodes.

Union by Rank

- If $\operatorname{rank}(x)=h$, the tree rooted at x has at least 2^{h} nodes.
- Use induction; for the base, we know when $h=0$, the tree contains $1=2^{0}$ nodes.
- Choose any $h>0$ and consider the union operation in which the rank is increased from $h-1$ to h.
- At the time of union, both trees had rank $h-1$
- By induction hypothesis, they each included at least 2^{h-1} nodes.
- Then the resulting tree has at least $2 \cdot 2^{h-1}=2^{h}$ nodes.
- The number of nodes is at least 2^{h} since after the union, the number of nodes can be increased further.

Union by Rank

- If $\operatorname{rank}(x)=h$, the tree rooted at x has at least 2^{h} nodes.
- Use induction; for the base, we know when $h=0$, the tree contains $1=2^{0}$ nodes.
- Choose any $h>0$ and consider the union operation in which the rank is increased from $h-1$ to h.
- At the time of union, both trees had rank $h-1$
- By induction hypothesis, they each included at least 2^{h-1} nodes.
- Then the resulting tree has at least $2 \cdot 2^{h-1}=2^{h}$ nodes.
- The number of nodes is at least 2^{h} since after the union, the number of nodes can be increased further.
- Since the number of nodes is at least 2^{h}, the height of the trees is $O(\log n)$
- Union, find operations when we use union by rank is $O(\log n)$.

Path Compression

- A simple, effective add on to union by rank
- Find (x) involves finding a path from x to the root of its tree
- For each node on the path, update its pointer to point directly to the root.

Path Compression

- A simple, effective add on to union by rank
- Find (x) involves finding a path from x to the root of its tree
- For each node on the path, update its pointer to point directly to the root.

```
if x\not= parent(x)
        parent}(x)\leftarrow\mathrm{ find(parent(x))
return parent(x)
```


Path Compression

- A simple, effective add on to union by rank
- Find (x) involves finding a path from x to the root of its tree
- For each node on the path, update its pointer to point directly to the root.

```
if }x\not==\mathrm{ parent(x)
            parent(x)}\leftarrow\mathrm{ find(parent (x))
return parent(x)
```

- For each visited node, the additional work is updating one pointer.

Path Compression

- A simple, effective add on to union by rank
- Find (x) involves finding a path from x to the root of its tree
- For each node on the path, update its pointer to point directly to the root.

```
if }x\not=\mathrm{ parent(x)
        parent(x)}\leftarrow\mathrm{ find(parent (x))
return parent(x)
```

- For each visited node, the additional work is updating one pointer.
- Time complexity remains the same asymptotically, i.e., $O(\log n)$.

Path Compression

- A simple, effective add on to union by rank
- Find (x) involves finding a path from x to the root of its tree
- For each node on the path, update its pointer to point directly to the root.

```
if }x\not==\mathrm{ parent(x)
        parent (x) \leftarrow find(parent(x))
return parent(x)
```

- For each visited node, the additional work is updating one pointer.
- Time complexity remains the same asymptotically, i.e., $O(\log n)$.
- For any y that used to lie on the path from x to the root, any subsequent call to find (y) takes $\mathrm{O}(1)$ time
- The amortized time is significantly improved.

Disjoint set data structure

- Maintain a set of disjoint forests
- Apply union-by rank after union operation (attach the tree with smaller rank to the one with higher rank)
- Apply path compression after find operation (update the pointer of any node on the Find path to point to the root)
- Note that the height might change after path compression; hence we use term rank as an upper bound for height

Disjoint set data structure

- Maintain a set of disjoint forests
- Apply union-by rank after union operation (attach the tree with smaller rank to the one with higher rank)
- Apply path compression after find operation (update the pointer of any node on the Find path to point to the root)
- Note that the height might change after path compression; hence we use term rank as an upper bound for height
- The amortized time for performing any operation is $O(\alpha(n))$ where $\alpha(n)$ is a very, very, very slow growing function of n similar to inverse Ackermann function.
- For any practical reason, $\alpha(n) \leq 4$.
- In practice (not in theory) you can support disjoint operations in constant time.

$\alpha(n)$ Description

- Let $f^{(i)}(n)$ denote $f(n)$ iteratively applied i times to the initial value of n.

$$
f^{(i)}(n)= \begin{cases}n & \text { if } i=0 \\ f\left(f^{(i-1)}(n)\right) & \text { if } i>0\end{cases}
$$

$\alpha(n)$ Description

- Let $f^{(i)}(n)$ denote $f(n)$ iteratively applied i times to the initial value of n.

$$
f^{(i)}(n)= \begin{cases}n & \text { if } i=0 \\ f\left(f^{(i-1)}(n)\right) & \text { if } i>0\end{cases}
$$

- E.g., if $f(n)=2 n$, then

$$
\begin{aligned}
& f^{(0)}(n)=n=2^{0} n, \\
& \left.0^{(1)}(n)=f\left(f^{(0)}\right)(n)\right)=2(n)=2^{1} n, \\
& f^{(2)}(n)=f\left(f^{(1)}(n)\right)=2\left(2^{1} n\right)=2^{2} n,
\end{aligned}
$$

$$
\dddot{f}^{(i)}(n)=f\left(f^{(i-1)}(n)\right)=2\left(2^{i-1} n\right)=2^{i} n,
$$

$\alpha(n)$ Description

- Let $f^{(i)}(n)$ denote $f(n)$ iteratively applied i times to the initial value of n.

$$
f^{(i)}(n)= \begin{cases}n & \text { if } i=0 \\ f\left(f^{(i-1)}(n)\right) & \text { if } i>0\end{cases}
$$

- E.g., if $f(n)=2 n$, then

$$
\begin{aligned}
& f^{(0)}(n)=n=2^{0} n, \\
& f^{(1)}(n)=f\left(f^{(0)}\right)(n)=2(n)=2^{1} n, \\
& f^{(2)}(n)=f\left(f^{(1)}(n)\right)=2\left(2^{1} n\right)=2^{2} n,
\end{aligned}
$$

$$
\dddot{\dddot{C l}}^{(i)}(n)=f\left(f^{(i-1)}(n)\right)=2\left(2^{i-1} n\right)=2^{i} n,
$$

- E.g., if $f(n)=2^{n}$, then

$$
\begin{aligned}
& f^{(0)}(n)=n \\
& f^{(1)}(n)=f\left(f^{(0)}(n)\right)=f(n)=2^{n} \\
& f^{(2)}(n)=f\left(f^{(1)}(n)\right)=f\left(2^{n}\right)=2^{2^{n}}
\end{aligned}
$$

$$
\left.f^{i}(n)=f\left(f^{(i-1)}(n)\right)=2^{2^{2^{n}}}\right\} i \text { times }
$$

$\alpha(n)$ Description (cntd.)

- For any $k \geq 0$ and $j \geq 1$, let

$$
A_{k}(j)= \begin{cases}j+1 & \text { if } k=0 \\ A_{k-1}^{(j+1)}(j) & \text { if } k>0\end{cases}
$$

$\alpha(n)$ Description (cntd.)

- For any $k \geq 0$ and $j \geq 1$, let

$$
A_{k}(j)= \begin{cases}j+1 & \text { if } k=0 \\ A_{k-1}^{(j+1)}(j) & \text { if } k>0\end{cases}
$$

- Function $A_{k}(j)$ is strictly increasing in both j and k
- For $j>0, A_{1}(j)=2 j+1$.
- For $j>0, A_{2}(j)=2^{j+1}(j+1)-1$.
- $A_{3}(1)=A_{2}^{(2)}(1)=A_{2}\left(A_{2}(1)\right)=A_{2}(7)=2^{8} \cdot 8-1=2^{11}-1=2047$
- $A_{4}(1)=A_{3}^{(2)}(1)=A_{3}\left(A_{3}(1)\right)=A_{3}(2047)=A_{2}^{(2048)}(2047) \gg$
$A_{2}(2047)=2^{2048}(2048)-1>2^{2048} \gg 10^{80}$
- $A_{4}(1)$ is by far larger than the number of atoms in the universe.

$\alpha(n)$ Description (cntd.)

- $\alpha(n)$ is the inverse of $A_{k}(n): \alpha(n)=\min \left\{k \mid A_{k}(1) \geq n\right\}$
- $\alpha(n)$ is the lowest value of k for which $A_{k}(1)$ is at least n

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq A_{4}(1)\end{cases}
$$

$\alpha(n)$ Description (cntd.)

- $\alpha(n)$ is the inverse of $A_{k}(n): \alpha(n)=\min \left\{k \mid A_{k}(1) \geq n\right\}$
- $\alpha(n)$ is the lowest value of k for which $A_{k}(1)$ is at least n

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq A_{4}(1)\end{cases}
$$

- For any practical purpose, $\alpha(n) \leq 4$.
- Theoretically, however, $\alpha(n) \in \omega(1)$, i.e., for every constant c, there is a very huge n such that $\alpha(n) \geq c$.

$\alpha(n)$ Description (cntd.)

- $\alpha(n)$ is the inverse of $A_{k}(n): \alpha(n)=\min \left\{k \mid A_{k}(1) \geq n\right\}$
- $\alpha(n)$ is the lowest value of k for which $A_{k}(1)$ is at least n

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq A_{4}(1)\end{cases}
$$

- For any practical purpose, $\alpha(n) \leq 4$.
- Theoretically, however, $\alpha(n) \in \omega(1)$, i.e., for every constant c, there is a very huge n such that $\alpha(n) \geq c$.
- Recall that the worst-case amortized time for performing an operation (make-set, union, find) is $\alpha(n)$.
- This bound is tight, i.e., we cannot do better than $\alpha(n)$.

$\alpha(n)$ Description (cntd.)

- $\alpha(n)$ is the inverse of $A_{k}(n): \alpha(n)=\min \left\{k \mid A_{k}(1) \geq n\right\}$
- $\alpha(n)$ is the lowest value of k for which $A_{k}(1)$ is at least n

$$
\alpha(n)= \begin{cases}0 & \text { for } 0 \leq n \leq 2 \\ 1 & \text { for } n=3 \\ 2 & \text { for } 4 \leq n \leq 7 \\ 3 & \text { for } 8 \leq n \leq 2047 \\ 4 & \text { for } 2048 \leq n \leq A_{4}(1)\end{cases}
$$

- For any practical purpose, $\alpha(n) \leq 4$.
- Theoretically, however, $\alpha(n) \in \omega(1)$, i.e., for every constant c, there is a very huge n such that $\alpha(n) \geq c$.
- Recall that the worst-case amortized time for performing an operation (make-set, union, find) is $\alpha(n)$.
- This bound is tight, i.e., we cannot do better than $\alpha(n)$.
- $\alpha(n)$ is the smallest super-constant function that appears in algorithm analysis (there are smaller ones like $\alpha(\alpha(n)$) which don't appear in analysis of practical algorithms).

Disjoint Set Summary

- Disjoint sets maintain a set of disjoint sets with support of make-set (x), find (x), and union (x, y).

Disjoint Set Summary

- Disjoint sets maintain a set of disjoint sets with support of make-set(x), find (x), and union (x, y).
- The right data structure for disjoint sets is a forest of trees (one tree per set).
- In case of a union, apply union by rank
- In case of a find, apply path compression

Disjoint Set Summary

- Disjoint sets maintain a set of disjoint sets with support of make-set(x), find (x), and union (x, y).
- The right data structure for disjoint sets is a forest of trees (one tree per set).
- In case of a union, apply union by rank
- In case of a find, apply path compression
- The amortized cost per operation for this data structure is $\Theta(\alpha(n))$ which is very slowly growing
- This is the best that is possible!

