EECS 4101-5101
v Advanced Data Structures

— Shahin Kamali
\ SN \‘

A Topic 5: Disjoint Sets
York University

Picture is from the cover of the textbook CLRS.

EECS 4101-5101 Advanced Data Structures

v
PN

! ’”""‘ . .
WY Objectives

o By the end of this module, you will be able to:

o Explain the Disjoint Set abstract data type and its operations
(queries).

EECS 4101-5101 Advanced Data Structures

v

PN
N\
.

‘ - L]
WY Objectives

o By the end of this module, you will be able to:

o Explain the Disjoint Set abstract data type and its operations
(queries).

o Recognize the application of Disjoint Sets as "black boxes" in
algorithms like Kruskal's minimum spanning tree algorithm, and use
disjoint sets as black boxes for other practical algorithms.

v

PN
~

‘ - L]
WY Objectives

W

o By the end of this module, you will be able to:

o Explain the Disjoint Set abstract data type and its operations
(queries).

o Recognize the application of Disjoint Sets as "black boxes" in
algorithms like Kruskal's minimum spanning tree algorithm, and use
disjoint sets as black boxes for other practical algorithms.

o Describe various data structures for Disjoing Sets and compare and
contrast their running times.

v
PN
~

‘ - L]
WY Objectives

W

o By the end of this module, you will be able to:

o Explain the Disjoint Set abstract data type and its operations
(queries).

o Recognize the application of Disjoint Sets as "black boxes" in
algorithms like Kruskal's minimum spanning tree algorithm, and use
disjoint sets as black boxes for other practical algorithms.

o Describe various data structures for Disjoing Sets and compare and
contrast their running times.

o Describe the standard union-find data structure for disjoint sets
using union-by-rank and path compression.

v
PN
~

‘ . - .
™Y Disjoint Sets

o Disjoint set is an abstract data type for maintaining a collection
5={5,5,...,5k} of disjoint, non-empty sets.

o Disjoint: there is no common element between any two sets (if a is
in S; it cannot be in S; where i # j).

o Dynamic: sets can be modified by make-set and union operations

o Each set is identified by a representative element of the set.

k=4, S;={ab,mn} S ={cg h},Se={d e} Sq={q}

v
PN
N\

1 0. s = s -
‘W« Disjoint Sets Operations

o makeSet(x):

o Create a new set {x} whose only element is x.
o By property 1 above, x cannot be an element of any other set.
o By default, x is the representative of the new set.

k = 4, Sa:{g,b,m,n},S :{£7g7h}75 :{dvgaf}75 :{ﬂ}

v
PN
~

1 < s = s -
‘W« Disjoint Sets Operations

o makeSet(x):

o Create a new set {x} whose only element is x.
o By property 1 above, x cannot be an element of any other set.
o By default, x is the representative of the new set.

E.g., makeSet({p})

k=4, S;={ab,mn} S ={c g h},Se={d e r} Sq=1{q}

Sp = {B}

v
PN
N\

. s = s -
‘W« Disjoint Sets Operations

o find(x) (also called Find-Set(x)):

o Return the representative element of the set containing x.

k=4; S;={ab,mn} S ={c,g, h}, Se=1{d,e f},S5=1{q},

EECS 4101-5101 Advanced Data Structures

v
PN
N\

1 . s = s -
‘W« Disjoint Sets Operations

o find(x) (also called Find-Set(x)):

o Return the representative element of the set containing x.

E.g., find(b) — a

k=4, S,= {éa ba m, n}ysc = {£7g7 h},Se = {d7§a f},S = {ﬂ}a

v
PN
~

1 < s = s -
‘W« Disjoint Sets Operations

o find(x) (also called Find-Set(x)):

o Return the representative element of the set containing x.

E.g. find(b) — a
E.g., find(c) — ¢

k = 4; Sa:{éabam7n}75 :{E’gvh}ase:{dvgaf}vs :{ﬂ}a

v
PN
~

1 < s = s -
‘W« Disjoint Sets Operations

@ union(x,y):

o Unite the sets containing x and y.

o Suppose set Sy contains x and set S, contains y.

o S+ SU{S5US,} -5 -5,

o Assign a representative for x U y.

o union(x,y) is equivalent to union(find(x), find(y)).

k=4 S;={ab,mn},Sc={c g h},Se={d,ef},S :{ﬂ}7

v
PN
~

1 A s = .
WY Disjoint Sets Operations

o union(x, y):

o Unite the sets containing x and y.
o Suppose set Sy contains x and set S, contains y.

o S+ SU{S5US}-5-5

o Assign a representative for x U y.

o union(x,y) is equivalent to union(find(x), find(y)).

E.g., Union(b, d) — merge S; and S..

k=4, S;={a,b,mn},Sc={c g, h},Se={d,e f}, Sq=1{q},

— SC - {£7g7 h}vsq = {ﬂ}?sa = {éa b7 m,n, daea f}

v
PN
~

‘ L] - L] -
‘W« Disjoint Sets Operations

o makeSet(x):

o Create a new set {x} whose only element is x.
o By default, x is the representative of the new set.

o find(x) (also called Find-Set(x):
o Return the representative element of the set containing x.
e union(x,y):

o Unite the sets containing x and y.
o Assign a representative for x U y.
o union(x,y) is equivalent to union(find(x), find(y)).

v
-
~

1 . ‘ . - - - -
oY Applications of Disjoint Sets

o Many applications in designing algorithms

o E.g., Kruskal's minimum spanning tree for a graph with n vertices
and m edges.

EECS 4101-5101 Advanced Data Structures

v
PN
~

Z&%*‘*‘ Kruskal’s MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

MORNG

7;
©" 0" 5. 0w
@ @ find(B) # find(E)

{A}{B} {C}{D} add to MST
{E} {F}{G} {H} union(B,E)

v
-
~

\

>‘;§3‘*‘ Kruskal’'s MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

find(G) # find(H)
add to MST
{A} {B, E} {C} {D} union(G,H)

{F}{G} {H}

v
PN
~

WY Kruskal's MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices
o e does not form a cycle iff its endpoints are in different components

MOMNO
@ @ 7@— —@ —~(GFp>

find(G) # find(F)

@ 12 @ add to MST

union(G,F)
{A}{B, E} {C}
{D}{F}{G, H}

v
-
~

WY Kruskal's MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices
o e does not form a cycle iff its endpoints are in different components

(:) 12 @/
find(A) # find(D)

{A} (B, E} {C} oDy
{D}{F, G, H}

v
PN
~

WY Kruskal's MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices
o e does not form a cycle iff its endpoints are in different components

‘\@

9@
@ ®/ find(A) # find(C)

add to MST
{{é} E{); {2, EH}} union(A,C)

v
PN
~

WY Kruskal's MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices
o e does not form a cycle iff its endpoints are in different components

‘\@

ﬁ)— —@ —(C,D)
@ ®/ find(C) = find(D)

DO NOTHING
{A,C,D}{B, E}
{F, G, H}

v
-
~

WY Kruskal's MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices
o e does not form a cycle iff its endpoints are in different components

2 : @_2@ (EG)»
@ find(E) # find(G)
®/ add to MST

union(E,G)
{A,C,D}{B, E}{F, G, H}

v

.‘ ‘ .

W Kruskal’'s MST algorithm
o Sort edges by their weights and process them one by one.
o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices
o e does not form a cycle iff its endpoints are in different components

1

10
0"

@ find(C) # find(F)
®/ add to MST

union(C,F)
{A, C, D}
{B,E,F, G, H}

v

PN
~

WY Kruskal's MST algorithm

o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices
o e does not form a cycle iff its endpoints are in different components

Samel
T o

{A,C,D,B,E,F, G, H}

v

0‘ ‘ .
WY Kruskal’s MST algorithm
o Sort edges by their weights and process them one by one.

o If an edge e does not form a cycle in MST, add it to MST.

o Maintain MST's connected component as disjoint sets of vertices

o e does not form a cycle iff its endpoints are in different components

o The running time is O(mlog m 4+ mx), where O(x) is the amortized
running time of merge and find operations.

Samel
T o

{A,C,D,B,E,F, G, H}

v
-
~

‘ » - . L]
Y Disjoint Sets Review

o Disjoint set is an abstract data type for maintaining a set of
dosjoint sets

o make-set(x): create a new set with a single item x (which is not in
any of the existing sets).

o find(x): returns the representative item of the set that includes x.

o union(x,y): removes the sets in which x and y belong to and adds a
new set which is the union of deleted sets

v

PN
~

‘ » - . L]
) Disjoint Sets Review

o Disjoint set is an abstract data type for maintaining a set of
dosjoint sets

o make-set(x): create a new set with a single item x (which is not in
any of the existing sets).

o find(x): returns the representative item of the set that includes x.

o union(x,y): removes the sets in which x and y belong to and adds a
new set which is the union of deleted sets

o Disjoint sets have many applications in design of algorithms (e.g.,
Kruskal's MST algorithm)

v
PN

- € s = w
™Y Data Structures for Disjoint Sets

o Linked lists for disjoint sets:

o Each set is stored as a linked-list.
o The representative element is the first element in the list.

S| ={x.p} S, ={a, h,c}

] I R A e N

2 2] @

[= L=+ [= [
representative representative

EECS 4101-510 lvanced Data Structures

v
PN
~

i

V ‘ L] - L]
‘WY Data Structures for Disjoint Sets

o Linked lists for disjoint sets:

o Each set is stored as a linked-list.
o The representative element is the first element in the list.
o In a ‘set object’, store head/tail pointers to the first/last elements.

Si={x.p} Sy ={a,h,c}

set object set object

v
PN
~

A\t

A ‘ L] - L]
‘WY Data Structures for Disjoint Sets

o Linked lists for disjoint sets:

o Each set is stored as a linked-list.

o The representative element is the first element in the list.

o In a ‘set object’, store head/tail pointers to the first/last elements.
o Each node stores a set pointer to the set object.

set pointers
—

Si={x,p} 7= S, ={a, h,c}
— ~ -

set object set object

v
PN

.‘irhx‘ . . = = =
WY Linked lists for disjoint sets

o makeSet(x):

o Create a list containing one node.
o takes O(1)
o O(1) time

EECS 4101-5101 Advanced Data Structures 12 /32

v _

PN
~
.

A
L a)

ENN

Linked lists for disjoint sets

o makeSet(x):

o Create a list containing one node.
o takes O(1)
o O(1) time

makeSet(q)

Si={x.p} Sy={a h,c} Si={a})

Jﬁ

ERORE E = @T
tail
] representative tail Teprest nldllL o

EECS 4101-5101 Advanced Data Structures __

v
PN

.‘irhx‘ . . = = =
WY Linked lists for disjoint sets

o find(x):

o follow the set-pointer to find the set object and get the
representative element.

EECS 4101-5101 Advanced Data Structures 13/ 32

v

PN
1
.

. ‘ . . L] . L]
WY Linked lists for disjoint sets

o find(x):

o follow the set-pointer to find the set object and get the
representative element.

EECS 4101-510 lvanced Data Structures

v

PN
~
.

< ‘ . . L] . L]
WY Linked lists for disjoint sets

o find(x):

o follow the set-pointer to find the set object and get the
representative element.

o We assume we're given a reference to x.

o It takes O(1) time

(LI LN I N
a7
represemali/)/e
7

set object set object

v
PN
~

\sz

V ‘ . . L] . L]
WY Linked lists for disjoint sets

o union(x,y):

o Append y’s list to the end of x's list.

o find(x) becomes the representative of the new set.

o Use head pointer from x's list and tail pointer from y's list.

o Requires updating the set pointer for each node in y's list, i.e.,
©(n) time per operation in the worst case (when y has size ©(n)).

v
PN
~

‘ L] L] - L] -
W) Linked lists for disjoint sets

o union(x,y):
o Append y's list to the end of x's list.
o find(x) becomes the representative of the new set.
o Use head pointer from x's list and tail pointer from y's list.
o Requires updating the set pointer for each node in y's list, i.e.,
©(n) time per operation in the worst case (when y has size ©(n)).

union(p,h)

Sy ={x,p} sf(ahj_xa
head EIT) head
tail representative

set object set object

lﬂJ
Q

tail

represenuu\ e

S3={x.p.a.h.c} {
v lv

Shla

representative [}

v
PN
~

‘ L] L] - L] -
™) Linked lists for disjoint sets

o union(x,y):
o Append y's list to the end of x's list.
o find(x) becomes the representative of the new set.
o Use head pointer from x's list and tail pointer from y's list.
o Requires updating the set pointer for each node in y's list, i.e.,
©(n) time per operation in the worst case (when y has size ©(n)).
o What is the amortized cost of performing n — 1 union operations?

union(p,h)

Sy ={x,p} Sf(ahj_xa
head EIT) head
tail representative

set object set object

lﬂJ
Q

tail

represenull\ e

S3={x.p.a.h,c} l
v lv

Shla

representative T

v

PN
~\-
.

\

A""‘ . . .
Y Review of Amortized Analysis

o Amortized analysis considers the average cost per operation for a
sequence of m operations.

EECS 4101-5101 Advanced Data Structures 15 / 32

v

PN
~

N

) € . . .
WYY Review of Amortized Analysis

o Amortized analysis considers the average cost per operation for a
sequence of m operations.

o In many data structures, there are many different sequences of
operations

o We often consider the worst-case amortized time, i.e., the average
cost of an operation for the worst-case sequence

o Sometimes people look at expected amortized time which considers
the average cost for a random sequence (we do not talk about it in
this course).

v
-
~

\i=

‘ L] L] - L] -
W™ Linked lists for disjoint sets

o What is the amortized cost of performing n — 1 union operations?

o The following example is a worst-case sequence which provides a
lower bound.
o makeSet(x;) for i € {1,2...,n}
o union(x;, xi—1) for i € {n,n—1,...2}, that is:
o union(xp—1,xn): update 1 set-pointers
union(xp—2, xp): update 2 set-pointers

o

o ...

o union(xp_j,xn): — update i set-pointers
o

o

union(x1, xp): updated n — 1 set-pointers

v

PN
~

\i=

‘ L] L] L] - L]
W™ Linked lists for disjoint sets
o What is the amortized cost of performing n — 1 union operations?
o The following example is a worst-case sequence which provides a

lower bound.

o makeSet(x;) for i € {1,2...,n}
o union(x;, xi—1) for i € {n,n—1,...2}, that is:
o union(xp—1,xn): update 1 set-pointers
union(xp—2, xp): update 2 set-pointers

o

o ...

o union(xp_j,xn): — update i set-pointers
o

o

union(x1, xp): updated n — 1 set-pointers
o Total set-pointer updates: 1 +2+3+...+n—1¢€ Q(n?).
o Amortized cost of the update operation is (n) in the worst case.

v

PN
~

\

‘ . L] L] . L]
WYY Linked lists for disjoint sets

o What is the amortized cost of performing n — 1 union operations?
o The following example is a worst-case sequence which provides a
lower bound.
o makeSet(x;) for i € {1,2...,n}
o union(xj, xi—1) for i € {n,n —1,...2}, that is:
o union(xp—1,xn): update 1 set-pointers
union(xp—2, xp): update 2 set-pointers

o

o ...

o union(xp_j,xn): — update i set-pointers
o

o

union(x1, xp): updated n — 1 set-pointers
o Total set-pointer updates: 1 +2+3+...+n—1¢€ Q(n?).
o Amortized cost of the update operation is (n) in the worst case.

o This is a worst-case amortized time; there are sequences formed m
unions for which the amortized cost is constant.

v

PN
~

\

‘ . L] L] . L]
WYY Linked lists for disjoint sets

o What is the amortized cost of performing n — 1 union operations?
o The following example is a worst-case sequence which provides a
lower bound.

o makeSet(x;) for i € {1,2...,n}
o union(x;, xi—1) for i € {n,n—1,...2}, that is:
o union(xp—1,xn): update 1 set-pointers
union(xp—2, xp): update 2 set-pointers

o

o ...

o union(xp_j,xn): — update i set-pointers
o

o

union(x1, xp): updated n — 1 set-pointers
o Total set-pointer updates: 1 +2+3+...+n—1¢€ Q(n?).
o Amortized cost of the update operation is (n) in the worst case.
o This is a worst-case amortized time; there are sequences formed m
unions for which the amortized cost is constant.
o If we simply append the second list to the end of the first list,
the (worst-case) amortized time for union is ©(n).

v

PN
~

" Linked lists & Union by Weight

o What if we append the smallest list to the end of the larger list?
o In the set object, in addition to head and tail pointers, maintain a
weight field which indicates the number of items in that list (set).

o Make-set and find are as before, i.e., they take constant time per
operation

o For union, we compare the weights and append the smaller list to
the end of the larger list

S, =1{x,p} Sy={ah, C}j

i -
@ head [a
tail]

weight: 3

| representative

set object set object

Sy ={x,p,a h,c}

l] [[
-
[+ [=
weight: 5 representative

set obJec(

v

PN
~

)" Linked lists & Union by Weight

W

o Consider a single node u of the list. We count the number of times
the set-pointer is updated for that node.

o Each time the pointer of u is updated, that means that the set of u
is merged with a larger set

o The weight of the set of v is at least doubled after the merge.
o If there are n items in all sets, the weight of each set is at most n.

o Each update for set-pointer of u doubles the weight of its list, and
this weight cannot be more than n

o Hence, there are at most [log n] set-pointer updates per item, i.e.,
a total of O(nlog n) set-pointer updates in total.

v

PN
~

w™ " Linked lists & Union by Weight

W

o There are at most [log n] set-pointer updates per item, i.e., a total
of O(nlog n) set-pointer updates.

o In addition to the cost of set-pointer updates, the cost of each
operation for other pointer updates is constants — ©(m) cost for m
operations

v
PN
~

" Linked lists & Union by Weight

o There are at most [log n] set-pointer updates per item, i.e., a total
of O(nlog n) set-pointer updates.

o In addition to the cost of set-pointer updates, the cost of each

operation for other pointer updates is constants — ©(m) cost for m
operations

@ Union by Weight has a cost of O(nlogn+ m) for a sequence of m
operations on a universe of size n

o Assuming m > n, the amortized cost per operation is
O(nlogn/m+ 1) = O(log n)

v

PN
~

.
\i=

)" Linked lists & Union by Weight

o There are at most [log n] set-pointer updates per item, i.e., a total
of O(nlog n) set-pointer updates.

o In addition to the cost of set-pointer updates, the cost of each
operation for other pointer updates is constants — ©(m) cost for m
operations

@ Union by Weight has a cost of O(nlogn+ m) for a sequence of m
operations on a universe of size n

o Assuming m > n, the amortized cost per operation is
O(nlogn/m+ 1) = O(log n)

o Union by weight (appending smaller list to the end of larger
one) improves the amortized time complexity from ©(n) to
O(log n).

v
-
~

‘ » - . L]
Y Disjoint Sets Review

o Disjoint set is an abstract data type for maintaining a set of
dosjoint sets

o make-set(x): create a new set with a single item x (which is not in
any of the existing sets).

o find(x): returns the representative item of the set that includes x.

o union(x,y): removes the sets in which x and y belong to and adds a
new set which is the union of deleted sets

v

PN
~

‘ » - . L]
) Disjoint Sets Review

o Disjoint set is an abstract data type for maintaining a set of
dosjoint sets

o make-set(x): create a new set with a single item x (which is not in
any of the existing sets).

o find(x): returns the representative item of the set that includes x.

o union(x,y): removes the sets in which x and y belong to and adds a
new set which is the union of deleted sets

o Disjoint sets have many applications in design of algorithms (e.g.,
Kruskal's MST algorithm)

v

PN
~

‘ » - . L]
) Disjoint Sets Review

o Disjoint set is an abstract data type for maintaining a set of
dosjoint sets

o make-set(x): create a new set with a single item x (which is not in
any of the existing sets).

o find(x): returns the representative item of the set that includes x.

o union(x,y): removes the sets in which x and y belong to and adds a
new set which is the union of deleted sets

o Disjoint sets have many applications in design of algorithms (e.g.,
Kruskal's MST algorithm)

o Maintaining a list for each set and union-by-weight (appending
smaller list to the end of larger one) gives an amortized time of
O(log n) per operation.

v
PN
~

< ‘ L] - L]
W) Disjoint Set Forests

o A data structure for disjoint sets which is based on trees instead of
lists.

o Each set is stored as a rooted tree

o Each node points to its parent

o The root points to itself

o The representative element is the root

Sl={x’P} SZ={a7h7C:f}
:

; @@\i

v
-
LN

,;o“ Disjoint Set Forests

o MakeSet(x) takes O(1) time:

o Create a new tree containing one node x
o parent(x) — x

Sy ={xp} Sy = {ahcf}

@fé

ECS 4101-5101 Advanced Data Structures /32

v
-
~

< ‘ L] - L]
W) Disjoint Set Forests

o MakeSet(x) takes O(1) time:

o Create a new tree containing one node x
o parent(x) — x
o Find(x):
o Follow parent pointers to the root and return it.
0 y<X
o while y # parent(y)

° y < parent(y)
o return y

o Time proportional to the tree’s height

S ={x,p} S, ={a,h,c, f}

0
@5%

v
PN
1

. ‘ L] - L]
W) Disjoint Set Forests

o Union(x,y) (first approach):
o Set root of y's tree to point to the root of x’s tree.
o rooty < find(x)
o root, « find(y)
o parent(rooty) < rooty.
o Time is proportional to tree’s height

S;={x,p} S, ={a,h,c, f} {x,p, a,h, c, f}
y Oy Oy
) (a) (=)
go — 9n
N of

v
-
~

‘ L] - L]
W) Disjoint Set Forests

o Union(x,y) (first approach):

o Set root of y's tree to point to the root of x’s tree.
o rooty < find(x)
o root, « find(y)
o parent(rooty) < rooty.

o Time is proportional to tree’s height

o Tree's height can be ©(n) for a universe of size n
o In the worst case, each operation takes ©(n).

S; =1{x,p} S, ={a,h,c, f} {x,p, a,h,c, f}
y Oy Oy
) () Q)
g ~ dh
: of

v
-
~

! A‘ . -
Y Amortized cost of first approach

o What is the amortized cost when performing m operations?

EECS 4101-5101 Advanced Data Structures 24 / 32

v
-
~

\ i

. . .
WY Amortized cost of first approach

o What is the amortized cost when performing m operations?

o If we simply make the second tree point to the first one, it takes
©(n) in the worst case:
o Consider the following worst-case sequence of operations:
o make-set(x;) for i € {1,...,n}
o union(x;,x1) for i € {2,...,n}.

v
-
~

A) . .
WY Amortized cost of first approach

W

o What is the amortized cost when performing m operations?

o If we simply make the second tree point to the first one, it takes

©(n) in the worst case:
o Consider the following worst-case sequence of operations:

o make-set(x;) for i € {1,...,n}
o union(x;,x1) for i € {2,...,n}.

o After the i’th union, set of x; is a tree of height i.
n—1

o The total time for the 2n — 1 operations is > i = n(n—1)/2, le.,
-1

the amortized cost is ©(n).

v

PN
~

A) . .
WY Amortized cost of first approach

W

o What is the amortized cost when performing m operations?

o If we simply make the second tree point to the first one, it takes
©(n) in the worst case:
o Consider the following worst-case sequence of operations:
o make-set(x;) for i € {1,...,n}
o union(x;,x1) for i € {2,...,n}.
o After the i’th union, set of x; is a tree of height i.

n—1
o The total time for the 2n — 1 operations is > i = n(n—1)/2, le.,
-1

the amortized cost is ©(n).

o After forming this bad tree, the worst-case sequence of operations
continues with m — 2n+ 1 find(x) operation where x is the only leaf
of the tree.

v

PN
~

A . .
WY Amortized cost of first approach

o What is the amortized cost when performing m operations?

o If we simply make the second tree point to the first one, it takes
©(n) in the worst case:
o Consider the following worst-case sequence of operations:
o make-set(x;) for i € {1,...,n}
o union(xj,x1) for i € {2,...,n}.
o After the i'th union, set of x; is a tree of height /.
n—1
o The total time for the 2n — 1 operations is > i = n(n—1)/2, l.e.,
i=1
the amortized cost is ©(n).
o After forming this bad tree, the worst-case sequence of operations
continues with m — 2n+ 1 find(x) operation where x is the only leaf
of the tree.

Observation

Having the second tree point to the first one for union results in
the worst-case trees of height n and amortized time of ©(n) for
each operation.

v
PN
~

;t;*;i‘i‘ Reducing the Height of Trees

o Two strategies for bounding tree heights:

o union by rank
o path compression

EECS 4101-5101 Advanced Data Structures /32

v
-
~

\ i

A“;;\“ Union by Rank

o Attempt to attach the shorter tree to the root of the taller one
o Similar to union-by-weight on lists

o Maintain the rank as an upper bound for the height of each tree.
o The rank increased when both trees have the same rank

Sy ={xp} Sy ={a,h,c f} {x,p, a,h, c, f}

Lo

v

PN
~

;";;\“ Union by Rank

o Attempt to attach the shorter tree to the root of the taller one
o Similar to union-by-weight on lists

o Maintain the rank as an upper bound for the height of each tree.
o The rank increased when both trees have the same rank
rootx < find(x); root, <« find(y)
if rank(root,) > rank(root,)
parent(root,) < root,
else
parent(rooty) < root,
if rank(rooty) = rank(root,)
rank(root,) < rank(root,) + 1

Sy ={xp} Sy ={a,h,c f} {x,p, a,h, c, f}

0
@5?

_
PN

2;@?“‘ Union by Rank

o If rank(x) = h, the tree rooted at x has at least 2" nodes.

EECS 4101-5101 Advanced Data Structures

v
-
~

;;;;;\“‘ Union by Rank

o If rank(x) = h, the tree rooted at x has at least 2" nodes.

o Use induction; for the base, we know when h = 0, the tree contains
1 = 2° nodes.

EECS 4101-5101 Advanced Data Structures __ /32
27 2

v
=
-
.
\es
A

RS

Union by Rank

o If rank(x) = h, the tree rooted at x has at least 2" nodes.

Use induction; for the base, we know when h = 0, the tree contains
1 = 2° nodes.

Choose any h > 0 and consider the union operation in which the
rank is increased from h—1 to h.

At the time of union, both trees had rank h —1

By induction hypothesis, they each included at least 27~ nodes.
Then the resulting tree has at least 2 - 2771 = 2/ nodes.

v
=
2
.
\es
A

RS

Union by Rank

o If rank(x) = h, the tree rooted at x has at least 2" nodes.

Use induction; for the base, we know when h = 0, the tree contains
1 = 2° nodes.

Choose any h > 0 and consider the union operation in which the
rank is increased from h—1 to h.

At the time of union, both trees had rank h —1

By induction hypothesis, they each included at least 27~ nodes.
Then the resulting tree has at least 2 - 2771 = 2/ nodes.

The number of nodes is at least 2" since after the union, the
number of nodes can be increased further.

v
=
2
.
o=
A

2N

Union by Rank

o If rank(x) = h, the tree rooted at x has at least 2" nodes.

Use induction; for the base, we know when h = 0, the tree contains
1 = 2° nodes.

Choose any h > 0 and consider the union operation in which the
rank is increased from h—1 to h.

At the time of union, both trees had rank h —1

By induction hypothesis, they each included at least 27~ nodes.
Then the resulting tree has at least 2 - 2771 = 2/ nodes.

The number of nodes is at least 2" since after the union, the
number of nodes can be increased further.

o Since the number of nodes is at least 2", the height of the trees is
O(log n)

Union, find operations when we use union by rank is O(log n).

v
PN

TN T .
) Path Compression
o A simple, effective add on to union by rank

o Find(x) involves finding a path from x to the root of its tree
o For each node on the path, update its pointer to point directly to
the root.

v
PN
~

.
\c

— . .
) Path Compression
o A simple, effective add on to union by rank

o Find(x) involves finding a path from x to the root of its tree
o For each node on the path, update its pointer to point directly to
the root.
if x # parent(x)
parent(x) < find(parent(x))
return parent(x)

v
-
~

X - :
WY Path Compression
o A simple, effective add on to union by rank

o Find(x) involves finding a path from x to the root of its tree
o For each node on the path, update its pointer to point directly to
the root.
if x # parent(x)
parent(x) < find(parent(x))
return parent(x)

o For each visited node, the additional work is updating one pointer.

p y
.

s (2)

R L
&7 a

v
-
~

‘ -
WY Path Compression
o A simple, effective add on to union by rank
o Find(x) involves finding a path from x to the root of its tree
o For each node on the path, update its pointer to point directly to
the root.
if x # parent(x)
parent(x) < find(parent(x))
return parent(x)

o For each visited node, the additional work is updating one pointer.
o Time complexity remains the same asymptotically, i.e., O(log n).

@ &
&y = 74N
AR %M

&

v

PN
~

\

‘ L]
WY Path Compression
o A simple, effective add on to union by rank

o Find(x) involves finding a path from x to the root of its tree
o For each node on the path, update its pointer to point directly to
the root.
if x # parent(x)
parent(x) < find(parent(x))
return parent(x)
o For each visited node, the additional work is updating one pointer.

o Time complexity remains the same asymptotically, i.e., O(log n).

o For any y that used to lie on the path from x to the root, any
subsequent call to find(y) takes O(1) time

o The amortized time is significantly improved.

B find(d) - v‘g\/
b AN N

v
-
~

‘ » - .
o) Disjoint set data structure

o Maintain a set of disjoint forests

o Apply union-by rank after union operation (attach the tree with
smaller rank to the one with higher rank)
o Apply path compression after find operation (update the pointer of
any node on the Find path to point to the root)
o Note that the height might change after path compression; hence
we use term rank as an upper bound for height

v

PN
~

‘ » - .
o) Disjoint set data structure

o Maintain a set of disjoint forests

o Apply union-by rank after union operation (attach the tree with

smaller rank to the one with higher rank)
o Apply path compression after find operation (update the pointer of
any node on the Find path to point to the root)

o Note that the height might change after path compression; hence
we use term rank as an upper bound for height

o The amortized time for performing any operation is O(a(n)) where
a(n) is a very, very, very slow growing function of n similar to
inverse Ackermann function.

o For any practical reason, a(n) < 4.
o In practice (not in theory) you can support disjoint operations in
constant time.

v
PN

— .
WY «(n) Description

A)
o Let f()(n) denote f(n) iteratively applied i times to the initial value

of n.
q ifi=0
FOmy=1" :
(n) {f(f(’—l)(n)) if i >0

EECS 4101-5101 Advanced Data Structures 30 / 32

v
PN
N\

1 : ‘ L] L]
‘Y «(n) Description

o Let f()(n) denote f(n) iteratively applied i times to the initial value
of n.
; ifi=0
Fimy=4" '
(n) {f(f('—1>(n)) if i >0
o E.g., if f(n) =2n, then
O (n) = n=2%n,

F(n) = £(FO)(n)) = 2(n) = 2%n,
f@(n) = F(FW(n)) = 2(21n) = 22n,

F)(n) = F(FI=D(n)) = 2(2'~1n) = 27,

v
-
~

1 ‘ L] L]
‘Y «(n) Description

o Let f()(n) denote f(n) iteratively applied i times to the initial value
of n.
; ifi=0
F(my =" '
(n) {f(f('—1>(n)) if i >0

o E.g., if f(n) =2n, then
f(o)(n) =n=20n,
fM(n) = F(FO(n)) = 2(n) = 21n,
f@(n) = F(FM(n)) = 2(21n) = 22n,

fD(n) = F(FU-1(n)) = 2(2'~1n) = 2/n,
o E.g., if f(n) =2", then

fO(n)=n

f(n) = £(fO)(n)) = f(n) = 2"

F@(n) = F(FD(n)) = F(2") = 2*

2n

Fi(n) = F(FG-D(n)) = 22" }i times

_

PN
~

;‘5\“ a(n) Description (cntd.)

o Forany k >0andj>1, let

L fi+1 k=0
A = .
«U) {A(kf_*j)(j) if k>0

EECS 4101-5101 Advanced Data Structures 31/ 32

v
-
~

2.;5“‘ a(n) Description (cntd.)

o Forany k >0andj>1, let

L fi+1 k=0
A = .
«U) {A‘kf_*j)(j) if k>0

o Function Ak ()) is strictly increasing in both j and k
o Forj>0, Ai(j) =2j+1.
o Forj>0, A:(j)=2"(+1)—1.
o As(1) = AP (1) = Ax(Ax(1)) = Ax(7) =28-8—1 =21 —1 =2047
o Ad(1) = AP(1) = As(As(1)) = As(2047) = AP**®)(2047) >>
A>(2047) = 229%8(2048) — 1 > 2208 > 1080
o A4(1) is by far larger than the number of atoms in the universe.

v
PN
N\

;;;;*“ a(n) Description (cntd.)
o «f(n) is the inverse of Ax(n): a(n) = min{k|Ac(1) > n}
o a(n) is the lowest value of k for which Ak(1) is at least n

0 for0<n<2

forn=3

for4 <n<7

for 8 < n <2047

for 2048 < n < A4(1)

a(n) =

BN =

v
-
~

;;;;\“ a(n) Description (cntd.)
o «f(n) is the inverse of Ax(n): a(n) = min{k|Ac(1) > n}
o a(n) is the lowest value of k for which Ak(1) is at least n

0 for0<n<2

forn=3

for4 <n<7

for 8 < n <2047

for 2048 < n < A4(1)

a(n) =

BN =

o For any practical purpose, a(n) < 4.
o Theoretically, however, a(n) € w(1), i.e., for every constant c, there
is a very huge n such that a(n) > c.

v

NN a(n) Description (cntd.)
o «f(n) is the inverse of Ax(n): a(n) = min{k|Ac(1) > n}
o a(n) is the lowest value of k for which Ak(1) is at least n

0 for0<n<2

forn=3

fora <n<7

for 8 < n <2047

for 2048 < n < A4(1)

a(n) =

BN =

o For any practical purpose, a(n) < 4.
o Theoretically, however, a(n) € w(1), i.e., for every constant c, there
is a very huge n such that a(n) > c.
o Recall that the worst-case amortized time for performing an
operation (make-set, union, find) is a(n).
o This bound is tight, i.e., we cannot do better than «(n).

v

PN
~

S a(n) Description (cntd.)
o «f(n) is the inverse of Ax(n): a(n) = min{k|Ac(1) > n}
o a(n) is the lowest value of k for which Ak(1) is at least n

0 for0<n<2

forn=3

fora <n<7

for 8 < n <2047

for 2048 < n < A4(1)

a(n) =

BN =

o For any practical purpose, a(n) < 4.
o Theoretically, however, a(n) € w(1), i.e., for every constant c, there
is a very huge n such that a(n) > c.
o Recall that the worst-case amortized time for performing an
operation (make-set, union, find) is a(n).
o This bound is tight, i.e., we cannot do better than «(n).
o «f(n) is the smallest super-constant function that appears in

algorithm analysis (there are smaller ones like «(a(n)) which don’t
appear in analysis of practical algorithms).

v
-
~

WY Disjoint Set Summary

o Disjoint sets maintain a set of disjoint sets with support of
make-set(x), find(x), and union(x,y).

EECS 4101-5101 Advanced Data Structures 33/ 32

v
-
~

SN Disjoint Set Summary

Al

o Disjoint sets maintain a set of disjoint sets with support of
make-set(x), find(x), and union(x,y).

o The right data structure for disjoint sets is a forest of trees (one
tree per set).

o In case of a union, apply union by rank
o In case of a find, apply path compression

v

PN
~

‘ . - .
™Y Disjoint Set Summary

o Disjoint sets maintain a set of disjoint sets with support of
make-set(x), find(x), and union(x,y).

o The right data structure for disjoint sets is a forest of trees (one
tree per set).

o In case of a union, apply union by rank
o In case of a find, apply path compression

o The amortized cost per operation for this data structure is ©(a(n))
which is very slowly growing

o This is the best that is possiblel

