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Objectives

By the end of this module, you will be able to:

Explain the Disjoint Set abstract data type and its operations
(queries).

Recognize the application of Disjoint Sets as �black boxes" in
algorithms like Kruskal's minimum spanning tree algorithm, and use
disjoint sets as black boxes for other practical algorithms.
Describe various data structures for Disjoing Sets and compare and
contrast their running times.
Describe the standard union-�nd data structure for disjoint sets
using union-by-rank and path compression.
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Disjoint Sets

Disjoint set is an abstract data type for maintaining a collection
S = {S1,S2, . . . ,Sk} of disjoint, non-empty sets.

Disjoint: there is no common element between any two sets (if a is
in Si it cannot be in Sj where i ̸= j).
Dynamic: sets can be modi�ed by make-set and union operations
Each set is identi�ed by a representative element of the set.

k = 4; Sa = {a, b,m, n},Sc = {c, g , h},Se = {d , e, f },Sq = {q}
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Disjoint Sets Operations

makeSet(x):

Create a new set {x} whose only element is x .
By property 1 above, x cannot be an element of any other set.
By default, x is the representative of the new set.

k = 4; Sa = {a, b,m, n},Sc = {c, g , h},Se = {d , e, f },Sq = {q}
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Disjoint Sets Operations

makeSet(x):

Create a new set {x} whose only element is x .
By property 1 above, x cannot be an element of any other set.
By default, x is the representative of the new set.

E.g., makeSet({p})

k = 4; Sa = {a, b,m, n},Sc = {c, g , h},Se = {d , e, f },Sq = {q}

Sp = {p}
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Disjoint Sets Operations

�nd(x) (also called Find-Set(x)):

Return the representative element of the set containing x .

k = 4; Sa = {a, b,m, n},Sc = {c , g , h},Se = {d , e, f },Sq = {q},
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Disjoint Sets Operations

�nd(x) (also called Find-Set(x)):

Return the representative element of the set containing x .

E.g., �nd(b) → a
E.g., �nd(c) → c

k = 4; Sa = {a, b,m, n},Sc = {c , g , h},Se = {d , e, f },Sq = {q},
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Disjoint Sets Operations

union(x , y):

Unite the sets containing x and y .
Suppose set Sx contains x and set Sy contains y .
S ← S ∪ {Sx ∪ Sy} − Sx − Sy

Assign a representative for x ∪ y .
union(x , y) is equivalent to union(find(x), find(y)).

k = 4; Sa = {a, b,m, n},Sc = {c , g , h},Se = {d , e, f },Sq = {q},
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Suppose set Sx contains x and set Sy contains y .
S ← S ∪ {Sx ∪ Sy} − Sx − Sy

Assign a representative for x ∪ y .
union(x , y) is equivalent to union(find(x), find(y)).

E.g., Union(b, d) → merge Sa and Se .

k = 4; Sa = {a, b,m, n},Sc = {c , g , h},Se = {d , e, f },Sq = {q},

→ Sc = {c, g , h},Sq = {q}, Sa = {a, b,m, n, d , e, f }
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Disjoint Sets Operations

makeSet(x):

Create a new set {x} whose only element is x .
By default, x is the representative of the new set.

�nd(x) (also called Find-Set(x):

Return the representative element of the set containing x .

union(x , y):

Unite the sets containing x and y .
Assign a representative for x ∪ y .
union(x , y) is equivalent to union(find(x), find(y)).
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Applications of Disjoint Sets

Many applications in designing algorithms

E.g., Kruskal's minimum spanning tree for a graph with n vertices
and m edges.
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Kruskal's MST algorithm
Sort edges by their weights and process them one by one.

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components
The running time is O(m logm +mx), where O(x) is the amortized
running time of merge and �nd operations.
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Disjoint Sets Review

Disjoint set is an abstract data type for maintaining a set of
dosjoint sets

make-set(x): create a new set with a single item x (which is not in
any of the existing sets).
�nd(x): returns the representative item of the set that includes x .
union(x,y): removes the sets in which x and y belong to and adds a
new set which is the union of deleted sets

Disjoint sets have many applications in design of algorithms (e.g.,
Kruskal's MST algorithm)
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Data Structures for Disjoint Sets

Linked lists for disjoint sets:

Each set is stored as a linked-list.
The representative element is the �rst element in the list.

In a `set object', store head/tail pointers to the �rst/last elements.
Each node stores a set pointer to the set object.
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Linked lists for disjoint sets

makeSet(x):

Create a list containing one node.
takes O(1)
O(1) time
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Linked lists for disjoint sets

makeSet(x):

Create a list containing one node.
takes O(1)
O(1) time

makeSet(q)
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Linked lists for disjoint sets

�nd(x):

follow the set-pointer to �nd the set object and get the
representative element.

We assume we're given a reference to x .
It takes O(1) time
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Linked lists for disjoint sets

union(x,y):

Append y 's list to the end of x 's list.
�nd(x) becomes the representative of the new set.
Use head pointer from x 's list and tail pointer from y 's list.
Requires updating the set pointer for each node in y 's list, i.e.,
Θ(n) time per operation in the worst case (when y has size Θ(n)).

What is the amortized cost of performing n − 1 union operations?
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Review of Amortized Analysis

Amortized analysis considers the average cost per operation for a
sequence of m operations.

In many data structures, there are many di�erent sequences of
operations

We often consider the worst-case amortized time, i.e., the average
cost of an operation for the worst-case sequence
Sometimes people look at expected amortized time which considers
the average cost for a random sequence (we do not talk about it in
this course).
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Linked lists for disjoint sets

What is the amortized cost of performing n − 1 union operations?

The following example is a worst-case sequence which provides a
lower bound.

makeSet(xi ) for i ∈ {1, 2 . . . , n}
union(xi , xi−1) for i ∈ {n, n − 1, . . . 2}, that is:

union(xn−1, xn): update 1 set-pointers
union(xn−2, xn): update 2 set-pointers
. . .
union(xn−i , xn): → update i set-pointers
. . .
union(x1, xn): updated n − 1 set-pointers

Total set-pointer updates: 1+ 2+ 3+ . . .+ n − 1 ∈ Ω(n2).

Amortized cost of the update operation is Ω(n) in the worst case.
This is a worst-case amortized time; there are sequences formed m
unions for which the amortized cost is constant.

If we simply append the second list to the end of the �rst list,
the (worst-case) amortized time for union is Θ(n).
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Linked lists & Union by Weight

What if we append the smallest list to the end of the larger list?

In the set object, in addition to head and tail pointers, maintain a
weight �eld which indicates the number of items in that list (set).

Make-set and �nd are as before, i.e., they take constant time per
operation
For union, we compare the weights and append the smaller list to
the end of the larger list
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Linked lists & Union by Weight

Consider a single node u of the list. We count the number of times
the set-pointer is updated for that node.

Each time the pointer of u is updated, that means that the set of u
is merged with a larger set

The weight of the set of u is at least doubled after the merge.

If there are n items in all sets, the weight of each set is at most n.

Each update for set-pointer of u doubles the weight of its list, and
this weight cannot be more than n
Hence, there are at most ⌈log n⌉ set-pointer updates per item, i.e.,
a total of O(n log n) set-pointer updates in total.
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Linked lists & Union by Weight

There are at most ⌈log n⌉ set-pointer updates per item, i.e., a total
of O(n log n) set-pointer updates.

In addition to the cost of set-pointer updates, the cost of each
operation for other pointer updates is constants → Θ(m) cost for m
operations

Union by Weight has a cost of O(n log n +m) for a sequence of m
operations on a universe of size n

Assuming m ≥ n, the amortized cost per operation is
O(n log n/m + 1) = O(log n)

Union by weight (appending smaller list to the end of larger
one) improves the amortized time complexity from Θ(n) to
O(log n).

19 / 32
EECS 4101-5101 Advanced Data Structures

▲



Linked lists & Union by Weight

There are at most ⌈log n⌉ set-pointer updates per item, i.e., a total
of O(n log n) set-pointer updates.

In addition to the cost of set-pointer updates, the cost of each
operation for other pointer updates is constants → Θ(m) cost for m
operations

Union by Weight has a cost of O(n log n +m) for a sequence of m
operations on a universe of size n

Assuming m ≥ n, the amortized cost per operation is
O(n log n/m + 1) = O(log n)

Union by weight (appending smaller list to the end of larger
one) improves the amortized time complexity from Θ(n) to
O(log n).

19 / 32
EECS 4101-5101 Advanced Data Structures

▲



Linked lists & Union by Weight

There are at most ⌈log n⌉ set-pointer updates per item, i.e., a total
of O(n log n) set-pointer updates.

In addition to the cost of set-pointer updates, the cost of each
operation for other pointer updates is constants → Θ(m) cost for m
operations

Union by Weight has a cost of O(n log n +m) for a sequence of m
operations on a universe of size n

Assuming m ≥ n, the amortized cost per operation is
O(n log n/m + 1) = O(log n)

Union by weight (appending smaller list to the end of larger
one) improves the amortized time complexity from Θ(n) to
O(log n).

19 / 32
EECS 4101-5101 Advanced Data Structures

▲



Disjoint Sets Review

Disjoint set is an abstract data type for maintaining a set of
dosjoint sets

make-set(x): create a new set with a single item x (which is not in
any of the existing sets).
�nd(x): returns the representative item of the set that includes x .
union(x,y): removes the sets in which x and y belong to and adds a
new set which is the union of deleted sets

Disjoint sets have many applications in design of algorithms (e.g.,
Kruskal's MST algorithm)

Maintaining a list for each set and union-by-weight (appending
smaller list to the end of larger one) gives an amortized time of
O(log n) per operation.
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Disjoint Set Forests

A data structure for disjoint sets which is based on trees instead of
lists.

Each set is stored as a rooted tree
Each node points to its parent
The root points to itself
The representative element is the root
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Disjoint Set Forests

MakeSet(x) takes O(1) time:

Create a new tree containing one node x
parent(x) → x

Find(x):
Follow parent pointers to the root and return it.

y ← x
while y ̸= parent(y)

y ← parent(y)
return y

Time proportional to the tree's height
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Disjoint Set Forests

Union(x,y) (�rst approach):
Set root of y 's tree to point to the root of x 's tree.

rootx ← �nd(x)
rooty ← �nd(y)
parent(rooty )← rootx .

Time is proportional to tree's height

Tree's height can be Θ(n) for a universe of size n

In the worst case, each operation takes Θ(n).
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Amortized cost of �rst approach

What is the amortized cost when performing m operations?

If we simply make the second tree point to the �rst one, it takes
Θ(n) in the worst case:
Consider the following worst-case sequence of operations:

make-set(xi ) for i ∈ {1, . . . , n}
union(xi , x1) for i ∈ {2, . . . , n}.

After the i 'th union, set of x1 is a tree of height i .

The total time for the 2n − 1 operations is
n−1∑
i=1

i = n(n − 1)/2, I.e.,

the amortized cost is Θ(n).
After forming this bad tree, the worst-case sequence of operations
continues with m− 2n+ 1 �nd(x) operation where x is the only leaf
of the tree.
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The total time for the 2n − 1 operations is
n−1∑
i=1

i = n(n − 1)/2, I.e.,

the amortized cost is Θ(n).
After forming this bad tree, the worst-case sequence of operations
continues with m− 2n+ 1 �nd(x) operation where x is the only leaf
of the tree.

Observation

Having the second tree point to the �rst one for union results in

the worst-case trees of height n and amortized time of Θ(n) for

each operation.
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Reducing the Height of Trees

Two strategies for bounding tree heights:

union by rank
path compression
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Union by Rank

Attempt to attach the shorter tree to the root of the taller one

Similar to union-by-weight on lists

Maintain the rank as an upper bound for the height of each tree.

The rank increased when both trees have the same rank
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Union by Rank

Attempt to attach the shorter tree to the root of the taller one

Similar to union-by-weight on lists

Maintain the rank as an upper bound for the height of each tree.

The rank increased when both trees have the same rank

rootx ← �nd(x); rooty ← �nd(y)
if rank(rootx) > rank(rooty )

parent(rooty )← rootx
else

parent(rootx)← rooty
if rank(rootx) = rank(rooty )

rank(rooty ) ← rank(rooty ) + 1
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Union by Rank

If rank(x) = h, the tree rooted at x has at least 2h nodes.

Use induction; for the base, we know when h = 0, the tree contains
1 = 20 nodes.
Choose any h > 0 and consider the union operation in which the
rank is increased from h − 1 to h.
At the time of union, both trees had rank h − 1
By induction hypothesis, they each included at least 2h−1 nodes.
Then the resulting tree has at least 2 · 2h−1 = 2h nodes.
The number of nodes is at least 2h since after the union, the
number of nodes can be increased further.

Since the number of nodes is at least 2h, the height of the trees is
O(log n)

Union, �nd operations when we use union by rank is O(log n).
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Path Compression
A simple, e�ective add on to union by rank

Find(x) involves �nding a path from x to the root of its tree
For each node on the path, update its pointer to point directly to
the root.

For each visited node, the additional work is updating one pointer.

Time complexity remains the same asymptotically, i.e., O(log n).

For any y that used to lie on the path from x to the root, any
subsequent call to find(y) takes O(1) time

The amortized time is signi�cantly improved.
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Disjoint set data structure

Maintain a set of disjoint forests

Apply union-by rank after union operation (attach the tree with
smaller rank to the one with higher rank)
Apply path compression after �nd operation (update the pointer of
any node on the Find path to point to the root)

Note that the height might change after path compression; hence
we use term rank as an upper bound for height

The amortized time for performing any operation is O(α(n)) where
α(n) is a very, very, very slow growing function of n similar to
inverse Ackermann function.

For any practical reason, α(n) ≤ 4.
In practice (not in theory) you can support disjoint operations in
constant time.
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α(n) Description

Let f (i)(n) denote f (n) iteratively applied i times to the initial value
of n.

f (i)(n) =

{
n if i = 0

f (f (i−1)(n)) if i > 0

E.g., if f (n) = 2n, then
f (0)(n) = n = 20n,
f (1)(n) = f (f (0)(n)) = 2(n) = 21n,
f (2)(n) = f (f (1)(n)) = 2(21n) = 22n,
...
f (i)(n) = f (f (i−1)(n)) = 2(2i−1n) = 2in,

E.g., if f (n) = 2n, then

f (0)(n) = n
f (1)(n) = f (f (0)(n)) = f (n) = 2n

f (2)(n) = f (f (1)(n)) = f (2n) = 22
n

...

f i (n) = f (f (i−1)(n)) = 22
..
.2

n }
i times
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α(n) Description (cntd.)

For any k ≥ 0 and j ≥ 1, let

Ak(j) =

{
j + 1 if k = 0

A
(j+1)
k−1

(j) if k > 0

Function Ak(j) is strictly increasing in both j and k

For j > 0, A1(j) = 2j + 1.
For j > 0, A2(j) = 2j+1(j + 1)− 1.

A3(1) = A
(2)
2 (1) = A2(A2(1)) = A2(7) = 28 · 8− 1 = 211− 1 = 2047

A4(1) = A
(2)
3 (1) = A3(A3(1)) = A3(2047) = A

(2048)
2 (2047) >>

A2(2047) = 22048(2048)− 1 > 22048 >> 1080

A4(1) is by far larger than the number of atoms in the universe.
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α(n) Description (cntd.)
α(n) is the inverse of Ak(n): α(n) = min{k |Ak(1) ≥ n}

α(n) is the lowest value of k for which Ak(1) is at least n

α(n) =



0 for 0 ≤ n ≤ 2

1 for n = 3

2 for 4 ≤ n ≤ 7

3 for 8 ≤ n ≤ 2047

4 for 2048 ≤ n ≤ A4(1)

For any practical purpose, α(n) ≤ 4.
Theoretically, however, α(n) ∈ ω(1), i.e., for every constant c, there
is a very huge n such that α(n) ≥ c.

Recall that the worst-case amortized time for performing an
operation (make-set, union, �nd) is α(n).

This bound is tight, i.e., we cannot do better than α(n).

α(n) is the smallest super-constant function that appears in
algorithm analysis (there are smaller ones like α(α(n)) which don't
appear in analysis of practical algorithms).
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Disjoint Set Summary

Disjoint sets maintain a set of disjoint sets with support of
make-set(x), �nd(x), and union(x,y).

The right data structure for disjoint sets is a forest of trees (one
tree per set).

In case of a union, apply union by rank
In case of a �nd, apply path compression

The amortized cost per operation for this data structure is Θ(α(n))
which is very slowly growing

This is the best that is possible!
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