EECS 4101-5101 Advanced Data Structures

Shahin Kamali

Topic 4c Priority Queue Applications

York University

Picture is from the cover of the textbook CLRS.

- We review applications of priority queues (in particular, the Fibonacci Heap implementation).
 - Discrete event simulation
 - Dijkstra's shortest-path algorithm.
 - Huffman Encoding

• Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.

- Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.
- Example 1: A natural scientist asks whether the number of wolves and the number of sheep in a terrain (system) stabilize in the long run, and if so to what values.

- Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.
- Example 1: A natural scientist asks whether the number of wolves and the number of sheep in a terrain (system) stabilize in the long run, and if so to what values.
 - The number of wolves changes with a constant birth rate and a death rate that is inversely proportional to the number of sheep.

- Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.
- Example 1: A natural scientist asks whether the number of wolves and the number of sheep in a terrain (system) stabilize in the long run, and if so to what values.
 - The number of wolves changes with a constant birth rate and a death rate that is inversely proportional to the number of sheep.
 - The number of sheep changes with a constant birth rate and a death rate that is directly proportional to the number of wolves.

- Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.
- Example 1: A natural scientist asks whether the number of wolves and the number of sheep in a terrain (system) stabilize in the long run, and if so to what values.
 - The number of wolves changes with a constant birth rate and a death rate that is inversely proportional to the number of sheep.
 - The number of sheep changes with a constant birth rate and a death rate that is directly proportional to the number of wolves.
 - Each event is birth/death of a wolf/sheep.

• Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.

- Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.
- Example 2: A computer scientist would like to know whether a particular server is a "bottleneck" in a system of jobs that circulate in a network of servers (e.g., CPU's and I/O devices).

- Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.
- Example 2: A computer scientist would like to know whether a particular server is a "bottleneck" in a system of jobs that circulate in a network of servers (e.g., CPU's and I/O devices).
 - Whether a server always is busy while the other servers are mostly idle.

- Discrete-event Simulation is used to understand the behavior of **systems**, i.e., a collection of entities (e.g., people and machines) that interact over time.
- Example 2: A computer scientist would like to know whether a particular server is a "bottleneck" in a system of jobs that circulate in a network of servers (e.g., CPU's and I/O devices).
 - Whether a server always is busy while the other servers are mostly idle.
 - Each event is start/end of a job.

- To simulate discrete event systems, we note each event has a discrete start time, known as **simulation time**.
- The events are added to a priority queue with their simulation time used as the priority.
- The execution of the simulation proceeds by repeatedly pulling the top of the queue and executing the event thereon.

- To simulate discrete event systems, we note each event has a discrete start time, known as **simulation time**.
- The events are added to a priority queue with their simulation time used as the priority.
- The execution of the simulation proceeds by repeatedly pulling the top of the queue and executing the event thereon.
- What is the time complexity of the entire simulation with *n* events?
 - Binary/binomial heaps: n events are added for a total cost of O(n log n) and extracted, again for a total cost of O(n log n), summing to O(n log n).

- To simulate discrete event systems, we note each event has a discrete start time, known as **simulation time**.
- The events are added to a priority queue with their simulation time used as the priority.
- The execution of the simulation proceeds by repeatedly pulling the top of the queue and executing the event thereon.
- What is the time complexity of the entire simulation with *n* events?
 - Binary/binomial heaps: n events are added for a total cost of $O(n \log n)$ and extracted, again for a total cost of $O(n \log n)$, summing to $O(n \log n)$.
 - Fibonacci heaps: *n* events are added for a total cost of *n* and extracted for a total cost of $O(n \log n)$, summing to $O(n \log n)$ for the entire simulation

- To simulate discrete event systems, we note each event has a discrete start time, known as **simulation time**.
- The events are added to a priority queue with their simulation time used as the priority.
- The execution of the simulation proceeds by repeatedly pulling the top of the queue and executing the event thereon.
- What is the time complexity of the entire simulation with *n* events?
 - Binary/binomial heaps: n events are added for a total cost of $O(n \log n)$ and extracted, again for a total cost of $O(n \log n)$, summing to $O(n \log n)$.
 - Fibonacci heaps: *n* events are added for a total cost of *n* and extracted for a total cost of $O(n \log n)$, summing to $O(n \log n)$ for the entire simulation
- The selection of the heap type does not change the time complexity for discrete-time simulation.

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph G = (V, E), with *n* vertices and *m* edges, and with weight function *w* mapping edges to real-valued weights.
- The weight w(p) of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.
 - The output is stored in a shortest path tree.

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph G = (V, E), with *n* vertices and *m* edges, and with weight function *w* mapping edges to real-valued weights.
- The weight w(p) of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.
 - The output is stored in a shortest path tree.
 - If negative weights are allowed, we use slower Bellman-Ford algorithm, which runs in $\Theta(mn)$; otherwise, we use the faster Dijkstra's algorithm.

Relaxation

• We use a **Relax** procedure which takes and edge (u, v) and tests whether we can improve the shortest path to v found so far by going through u and, if so, updating v.d (the estimated distance) and $v.\pi$ (the parent of v).

> RELAX(u, v, w)**if** v.d > u.d + w(u, v)v.d = u.d + w(u, v) $v.\pi = u$

- Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been determined.
 - The algorithm repeatedly I) selects the vertex $u \in V S$ with the minimum shortest-path estimate, II) adds u to S, and III) relaxes all edges leaving u.
 - We use a min-priority queue Q of vertices, keyed by their estimate d values.

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```


- Initially, Q = G.V, $S = \phi$, and s.d = 0 and $v.d = \infty$ for any $v \neq s$.
- Repeatedly take the vertex *u* with smallest estimate, add it to *S*, and relax edges leaving *u*.

- Initially, Q = G.V, $S = \phi$, and s.d = 0 and $v.d = \infty$ for any $v \neq s$.
- Repeatedly take the vertex *u* with smallest estimate, add it to *S*, and relax edges leaving *u*.

- Initially, Q = G.V, $S = \phi$, and s.d = 0 and $v.d = \infty$ for any $v \neq s$.
- Repeatedly take the vertex *u* with smallest estimate, add it to *S*, and relax edges leaving *u*.

- Initially, Q = G.V, $S = \phi$, and s.d = 0 and $v.d = \infty$ for any $v \neq s$.
- Repeatedly take the vertex *u* with smallest estimate, add it to *S*, and relax edges leaving *u*.

- Initially, Q = G.V, $S = \phi$, and s.d = 0 and $v.d = \infty$ for any $v \neq s$.
- Repeatedly take the vertex *u* with smallest estimate, add it to *S*, and relax edges leaving *u*.

- Initially, Q = G.V, $S = \phi$, and s.d = 0 and $v.d = \infty$ for any $v \neq s$.
- Repeatedly take the vertex *u* with smallest estimate, add it to *S*, and relax edges leaving *u*.

- Dijkstra's algorithm calculates the shortest path from *s* to every vertex.
 - Anytime we put a new vertex *u* in *S* (the vertices already added to the tree), we can say that we already know the shortest path from *s* to *u*.

Dijkstra's Analysis

- Dijkstra's algorithm calculates the shortest path from *s* to every vertex.
 - Anytime we put a new vertex *u* in *S* (the vertices already added to the tree), we can say that we already know the shortest path from *s* to *u*.
 - Vertices are added to S in the sorted order of their distance from s.

- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:

DIJKSTRA(G, w, s)INITIALIZE-SINGLE-SOURCE(G, s) $S = \emptyset$ 2 3 Q = G.Vwhile $Q \neq \emptyset$ 4 5 u = EXTRACT-MIN(Q) $S = S \cup \{u\}$ 6 7 for each vertex $v \in G.Adj[u]$ 8 RELAX(u, v, w)

- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:
 - Creating initial heap takes O(n) (why?)
 - Each vertex is extracted once from a priority queue of size O(n); summing to Θ(n log n) for all vertices.
 - Each edge e = (u, v) is visited exactly once (in Line 7, when we visit its starting point and relax e).

DIJKSTRA(G, w, s) 1 INITIALIZE-SINGLE-SOURCE(G, s) 2 $S = \emptyset$ 3 Q = G.V4 while $Q \neq \emptyset$ 5 u = EXTRACT-MIN(Q)6 $S = S \cup \{u\}$ 7 for each vertex $v \in G.Adj[u]$ 8 RELAX(u, v, w)

- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:
 - Creating initial heap takes O(n) (why?)
 - Each vertex is extracted once from a priority queue of size O(n); summing to Θ(n log n) for all vertices.
 - Each edge e = (u, v) is visited exactly once (in Line 7, when we visit its starting point and relax e).
 - After relax, we reduce the key of the endpoint v in Q; this takes a $O(\log n)$ decrease-key operation $\rightarrow O(m \log n)$ over all edges.

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```


- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:
 - Creating initial heap takes O(n) (why?)
 - Each vertex is extracted once from a priority queue of size O(n); summing to $\Theta(n \log n)$ for all vertices.
 - Each edge e = (u, v) is visited exactly once (in Line 7, when we visit its starting point and relax e).
 - After relax, we reduce the key of the endpoint v in Q; this takes a $O(\log n)$ decrease-key operation $\rightarrow O(m \log n)$ over all edges.
 - In total, the running time is $\Theta((m+n)\log n)$.

DIJKSTRA(G, w, s)

```
INITIALIZE-SINGLE-SOURCE(G, s)
```

```
2 S = \emptyset
```

```
3 \quad O = G.V
```

- 4 while $O \neq \emptyset$
- 5 u = EXTRACT-MIN(O)
- $6 \qquad S = S \cup \{u\}$
- 7 for each vertex $v \in G.Adj[u]$ 8

```
RELAX(u, v, w)
```


- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:

DIJKSTRA(G, w, s)INITIALIZE-SINGLE-SOURCE(G, s) $S = \emptyset$ 2 3 Q = G.Vwhile $Q \neq \emptyset$ 4 5 u = EXTRACT-MIN(Q) $S = S \cup \{u\}$ 6 7 for each vertex $v \in G.Adj[u]$ 8 RELAX(u, v, w)

- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:
 - Creating initial heap takes O(n) (why?)
 - Each vertex is extracted once from a priority queue of size O(n); summing to Θ(n log n) for all vertices.
 - Each edge e = (u, v) is visited exactly once (in Line 7, when we visit its starting point and relax e).

DIJKSTRA(G, w, s) 1 INITIALIZE-SINGLE-SOURCE(G, s) 2 $S = \emptyset$ 3 Q = G.V4 while $Q \neq \emptyset$ 5 u = EXTRACT-MIN(Q)6 $S = S \cup \{u\}$ 7 for each vertex $v \in G.Adj[u]$ 8 RELAX(u, v, w)

- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:
 - Creating initial heap takes O(n) (why?)
 - Each vertex is extracted once from a priority queue of size O(n); summing to Θ(n log n) for all vertices.
 - Each edge e = (u, v) is visited exactly once (in Line 7, when we visit its starting point and relax e).
 - After relax, we reduce the key of the endpoint v in Q; this takes a O(1) decrease-key operation $\rightarrow O(m)$ over all edges.

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```


- What is the time complexity of the Dijkstra's algorithm?
- Binary/binomial heaps:
 - Creating initial heap takes O(n) (why?)
 - Each vertex is extracted once from a priority queue of size O(n); summing to $\Theta(n \log n)$ for all vertices.
 - Each edge e = (u, v) is visited exactly once (in Line 7, when we visit its starting point and relax e).
 - After relax, we reduce the key of the endpoint v in Q; this takes a O(1) decrease-key operation $\rightarrow O(m)$ over all edges.
 - In total, the running time is $\Theta(m + n \log n)$.

DIJKSTRA(G, w, s)

```
INITIALIZE-SINGLE-SOURCE(G, s)
```

```
2 S = \emptyset
```

```
3 \quad O = G.V
```

- 4 while $O \neq \emptyset$
- 5 u = EXTRACT-MIN(O)

```
6 \qquad S = S \cup \{u\}
```

```
7
   for each vertex v \in G.Adj[u]
8
```

```
RELAX(u, v, w)
```


• The running time of Dijkstra's algorithm is $O(n \log n + m)$ when a Fibonacci heap is used, which is better than $O((n + m) \log n)$ of a Binary/binomial heap implementation

Prefix-Free Encoding/Decoding

- Binary trees that represent codes are **prefix-free** in the sense that the code for a character *c* is not the prefix of a code for a character *c'*.
 - There is always an optimal encoding which is prefix-free.
 - Prefix-free codes are easy to decode!

- Encode ANuANT
- Decode 111000001010111

Prefix-Free Encoding/Decoding

- Binary trees that represent codes are **prefix-free** in the sense that the code for a character *c* is not the prefix of a code for a character *c'*.
 - There is always an optimal encoding which is prefix-free.
 - Prefix-free codes are easy to decode!

- Encode $AN_{\sqcup}ANT \rightarrow 010010000100111$
- Decode 111000001010111 \rightarrow TO_LEAT

- For a given source text S, how to determine the "best" tree which minimizes the length of C?
 - ${f 0}$ Determine the frequency of each character $c\in\Sigma$ in S
 - O Make |Σ| height-0 trees holding each character c ∈ Σ. Assign a "frequency" to each tree: sum of frequencies of all letters in tree (initially, these are just the character frequencies.)
 - Merge two trees with the least frequencies, new frequency is their sum

(corresponds to adding one bit to the encoding of each character)

Repeat Step 3 until there is only 1 tree left; this is D.

£.5	0		1-12	-1.16	- · 1 E
I:D	e:9	C: Z	D:13	a:10	a:4.)

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- For a given source text *S*, how to determine the "best" tree which minimizes the length of *C*?
 - ${f 0}$ Determine the frequency of each character $c\in\Sigma$ in S
 - ② Make $|\Sigma|$ height-0 trees holding each character $c\in\Sigma$.
 - Merge two trees with the least frequencies, new frequency is their sum

(corresponds to adding one bit to the encoding of each character)

- Repeat Step 3 until there is only 1 tree left; this is D.
- What data structure should we store the trees in to make this efficient?

- For a given source text *S*, how to determine the "best" tree which minimizes the length of *C*?
 - ${f 0}$ Determine the frequency of each character $c\in\Sigma$ in S
 - ② Make $|\Sigma|$ height-0 trees holding each character $c\in\Sigma$.
 - O Merge two trees with the least frequencies, new frequency is their sum

(corresponds to adding one bit to the encoding of each character)

- Repeat Step 3 until there is only 1 tree left; this is D.
- What data structure should we store the trees in to make this efficient?

A min-ordered heap! Step 3 is two extract-mins and one insert

- For a given source text *S*, how to determine the "best" tree which minimizes the length of *C*?
 - ${f 0}$ Determine the frequency of each character $c\in\Sigma$ in S
 - ② Make $|\Sigma|$ height-0 trees holding each character $c\in\Sigma$.
 - Of Merge two trees with the least frequencies, new frequency is their sum

(corresponds to adding one bit to the encoding of each character)

- Repeat Step 3 until there is only 1 tree left; this is D.
- What data structure should we store the trees in to make this efficient?

A min-ordered heap! Step 3 is two extract-mins and one insert

• Does Fibonacci heap have an advantage over binary/binomial heap here?

• Priority queues are used as "black-boxes" in many classic algorithms.

- Priority queues are used as "black-boxes" in many classic algorithms.
- Sometimes Fibonacci heaps provide better running time for the algorithm.
 - When there are insert queries are more frequent than delete queries.
 - When we use many decrease-key queries (e.g., Dijkstra's algorithm)

- Priority queues are used as "black-boxes" in many classic algorithms.
- Sometimes Fibonacci heaps provide better running time for the algorithm.
 - When there are insert queries are more frequent than delete queries.
 - When we use many decrease-key queries (e.g., Dijkstra's algorithm)
- On the negative side, Fibonacci heaps are harder to implement!