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Today's Class

We review applications of priority queues (in particular, the
Fibonacci Heap implementation).

Discrete event simulation
Dijkstra's shortest-path algorithm.
Hu�man Encoding
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Discrete-event Simulation

Discrete-event Simulation is used to understand the behavior of
systems, i.e., a collection of entities (e.g., people and machines)
that interact over time.

Example 1: A natural scientist asks whether the number of wolves
and the number of sheep in a terrain (system) stabilize in the long
run, and if so to what values.

The number of wolves changes with a constant birth rate and a
death rate that is inversely proportional to the number of sheep.
The number of sheep changes with a constant birth rate and a
death rate that is directly proportional to the number of wolves.
Each event is birth/death of a wolf/sheep.
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Discrete-event Simulation

Discrete-event Simulation is used to understand the behavior of
systems, i.e., a collection of entities (e.g., people and machines)
that interact over time.

Example 2: A computer scientist would like to know whether a
particular server is a �bottleneck� in a system of jobs that circulate
in a network of servers (e.g., CPU's and I/O devices).

Whether a server always is busy while the other servers are mostly
idle.
Each event is start/end of a job.
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Discrete-event Simulation

To simulate discrete event systems, we note each event has a
discrete start time, known as simulation time.

The events are added to a priority queue with their simulation time
used as the priority.

The execution of the simulation proceeds by repeatedly pulling the
top of the queue and executing the event thereon.

What is the time complexity of the entire simulation with n events?

Binary/binomial heaps: n events are added for a total cost of
O(n log n) and extracted, again for a total cost of O(n log n),
summing to O(n log n).
Fibonacci heaps: n events are added for a total cost of n and
extracted for a total cost of O(n log n), summing to O(n log n) for
the entire simulation

The selection of the heap type does not change the time
complexity for discrete-time simulation.
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Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E ), with n vertices and m edges, and with weight
function w mapping edges to real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

The output is stored in a shortest path tree.

If negative weights are allowed, we use slower Bellman-Ford
algorithm, which runs in Θ(mn); otherwise, we use the faster
Dijkstra's algorithm.

6 / 18
EECS 4101-5101 Advanced Data Structures

▲



Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E ), with n vertices and m edges, and with weight
function w mapping edges to real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

The output is stored in a shortest path tree.
If negative weights are allowed, we use slower Bellman-Ford
algorithm, which runs in Θ(mn); otherwise, we use the faster
Dijkstra's algorithm.

6 / 18
EECS 4101-5101 Advanced Data Structures

▲



Relaxation

We use a Relax procedure which takes and edge (u, v) and tests
whether we can improve the shortest path to v found so far by
going through u and, if so, updating v .d (the estimated distance)
and v .π (the parent of v).
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Dijkstra's Algorithm

Dijkstra's algorithm maintains a set S of vertices whose �nal
shortest-path weights from the source s have already been
determined.

The algorithm repeatedly I) selects the vertex u ∈ V − S with the
minimum shortest-path estimate, II) adds u to S , and III) relaxes all
edges leaving u.
We use a min-priority queue Q of vertices, keyed by their estimate d
values.
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Dijkstra's Exmaple

Initially, Q = G .V , S = ϕ, and s.d = 0 and v .d = ∞ for any v ̸= s.

Repeatedly take the vertex u with smallest estimate, add it to S ,
and relax edges leaving u.
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Dijkstra's Analysis

Dijkstra's algorithm calculates the shortest path from s to every
vertex.

Anytime we put a new vertex u in S (the vertices already added to
the tree), we can say that we already know the shortest path from s
to u.

Vertices are added to S in the sorted order of their distance from s.
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Dijkstra's Algorithm

What is the time complexity of the Dijkstra's algorithm?

Binary/binomial heaps:

Creating initial heap takes O(n) (why?)
Each vertex is extracted once from a priority queue of size O(n);
summing to Θ(n log n) for all vertices.
Each edge e = (u, v) is visited exactly once (in Line 7, when we
visit its starting point and relax e).
After relax, we reduce the key of the endpoint v in Q; this takes a
O(log n) decrease-key operation → O(m log n) over all edges.
In total, the running time is Θ((m + n) log n).
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Dijkstra's Algorithm

The running time of Dijkstra's algorithm is O(n log n +m) when a
Fibonacci heap is used, which is better than O((n +m) log n) of a
Binary/binomial heap implementation
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Pre�x-Free Encoding/Decoding

Binary trees that represent codes are pre�x-free in the sense that
the code for a character c is not the pre�x of a code for a character
c ′.

There is always an optimal encoding which is pre�x-free.
Pre�x-free codes are easy to decode!
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Encode AN ANT

→ 010010000100111

Decode 111000001010111

→ TO EAT
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Building the Hu�man Tree

For a given source text S , how to determine the �best� tree which
minimizes the length of C?

1 Determine the frequency of each character c ∈ Σ in S
2 Make |Σ| height-0 trees holding each character c ∈ Σ.

Assign a �frequency� to each tree: sum of frequencies of all letters
in tree (initially, these are just the character frequencies.)

3 Merge two trees with the least frequencies, new frequency is their
sum
(corresponds to adding one bit to the encoding of each character)

4 Repeat Step 3 until there is only 1 tree left; this is D.
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Building Hu�man Example
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minimizes the length of C?
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2 Make |Σ| height-0 trees holding each character c ∈ Σ.
3 Merge two trees with the least frequencies, new frequency is their

sum
(corresponds to adding one bit to the encoding of each character)

4 Repeat Step 3 until there is only 1 tree left; this is D.

What data structure should we store the trees in to make this
e�cient?

A min-ordered heap! Step 3 is two extract-mins and one insert

Does Fibonacci heap have an advantage over binary/binomial heap
here?
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Summary

Priority queues are used as �black-boxes" in many classic algorithms.

Sometimes Fibonacci heaps provide better running time for the
algorithm.

When there are insert queries are more frequent than delete queries.
When we use many decrease-key queries (e.g., Dijkstra's algorithm)

On the negative side, Fibonacci heaps are harder to implement!
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