
EECS 4101-5101

Advanced Data Structures

Shahin Kamali

Topic 4b Fibonacci Heaps

York University

Picture is from the cover of the textbook CLRS.

1 / 22
EECS 4101-5101 Advanced Data Structures

▲



Fibonacci Heaps

Last time, we studied Binomial heaps for priority queues.

Insert, ExtractMax (or ExtractMin), Delete (with given pointer),
and Merge all took O(log n) time.

12

9

4

10

6

15

8

30

212

1

66

61

9

4

10

6

15

8

30

212

1

66

61

a max-heap a min-heap

12

Today, we study Fibonacci Heaps which are a more-relaxed and
faster structure.

They support Insert and Merge in O(1) and ExtractMax and Delete
in O(log n) amortized time.
In our examples, we use min-heaps, but everything can
symmetrically extend to max heaps.

2 / 22
EECS 4101-5101 Advanced Data Structures

▲



Fibonacci Heaps

Last time, we studied Binomial heaps for priority queues.

Insert, ExtractMax (or ExtractMin), Delete (with given pointer),
and Merge all took O(log n) time.

12

9

4

10

6

15

8

30

212

1

66

61

9

4

10

6

15

8

30

212

1

66

61

a max-heap a min-heap

12

Today, we study Fibonacci Heaps which are a more-relaxed and
faster structure.

They support Insert and Merge in O(1) and ExtractMax and Delete
in O(log n) amortized time.
In our examples, we use min-heaps, but everything can
symmetrically extend to max heaps.

2 / 22
EECS 4101-5101 Advanced Data Structures

▲



Fibonacci Heaps

Fibonacci heaps are similar to Binomial heaps, in the sense that
they are a collection of trees with the heap property

But the trees do not need to have any particular structure
The order of tree is de�ned by their degree, and there can be
multiple trees of the same degree.
Nodes may be marked, indicating that they have had a child that is
�lost" (moved).
We augment the tree with a �min" pointer.

3 / 22
EECS 4101-5101 Advanced Data Structures

▲



Fibonacci Heaps

A complete implementation involves pointers to all children,
parents, direct sibling, etc.

We omit these details in our example �gures.

A Fibonacci heap consisting of five min-heap-ordered trees a 4 / 22
EECS 4101-5101 Advanced Data Structures

▲



Potential Fibonacci Heaps

Let t(H) denote the number of trees and m(H) denote the number
of marked nodes in a Fibonacci heap H.
We de�ne the potential of H to be Φ(H) = t(H) + 2m(H).

E.g., er we have t(H) = 5, m(H) = 3, and ϕ(H) = 5+ 2 · 3 = 11.

Note that the potential is only used for the analysis (not the
implementation).

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



Potential Fibonacci Heaps

Let t(H) denote the number of trees and m(H) denote the number
of marked nodes in a Fibonacci heap H.
We de�ne the potential of H to be Φ(H) = t(H) + 2m(H).

E.g., er we have t(H) = 5, m(H) = 3, and ϕ(H) = 5+ 2 · 3 = 11.

Note that the potential is only used for the analysis (not the
implementation).

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



Potential Fibonacci Heaps

We de�ne the amortized cost for operation t to be:

amortizedCost(t) = actualCost(t) + c(·Φ(t)− Φ(t − 1))

where c is a su�ciently large constant we de�ne later.

ActualCost = actCost(1) + actCost(2) + . . . + actCost(m − 1) + actCost(m)

= actCost(1) + cΦ(1) − cΦ(0) + actCost(2) + cΦ(2) − cΦ(1) + . . . + actCost(m) + cΦ(m) − cΦ(m − 1) + cΦ(m) − cΦ(0)

= amortizedCost(1) + amortizedCost(2) + . . . + amortizedCost(m − 1) + amrotizedCost(m) + c(Φ(m) − Φ(0))︸ ︷︷ ︸
a constant

.

So, if we show the amortized cost for an operation is O(f (x)), the
total cost for all m operations will be O(mf (x)).

6 / 22
EECS 4101-5101 Advanced Data Structures

▲



Insertion Fibonacci Heaps

To insert an element to H, just create a single node and add it as a
tree (just before the min(H)), and update the min pointer if
needed.

Actual cost is? O(1)
The number of trees t(H) has increased by 1; the number of
marked nodes stays unchanged → ∆(Φ) = 1.
AmortizedCost = actualCost + ∆(Φ) = O(1).

E.g., insert(21)

7 / 22
EECS 4101-5101 Advanced Data Structures

▲



Insertion Fibonacci Heaps

To insert an element to H, just create a single node and add it as a
tree (just before the min(H)), and update the min pointer if
needed.

Actual cost is? O(1)
The number of trees t(H) has increased by 1; the number of
marked nodes stays unchanged → ∆(Φ) = 1.
AmortizedCost = actualCost + ∆(Φ) = O(1).

E.g., insert(21)

7 / 22
EECS 4101-5101 Advanced Data Structures

▲



Merging Two Fibonacci Heaps

To merge two Fibonacci heaps H1 and H2, We just need to update
a few pointers to merge the set of trees (and also the min-pointer).

Actual cost is? O(1)
The number of trees t(H) equals to t(H1) + t(H2). The number of
marked nodes and the potentail is not changed
AmortizedCost = actualCost + 0 = O(1).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Merging Two Fibonacci Heaps

To merge two Fibonacci heaps H1 and H2, We just need to update
a few pointers to merge the set of trees (and also the min-pointer).

Actual cost is? O(1)
The number of trees t(H) equals to t(H1) + t(H2). The number of
marked nodes and the potentail is not changed
AmortizedCost = actualCost + 0 = O(1).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

To extract the minimum element from H, we �rst remove the
minimum element, and add its children to the list of the trees in H.

Go through all trees, and merge trees of the same degree (similarly
to Binomial heap).

Maintain an array A of pointers to the trees, where A[i ] points to a
tree of degree i .
Do a linear scan of the trees. When you visit a tree T with degree
d , if A[d ] is null, let A[d ] = T , and if A[d ] is not null, merge T
with A[d ], update A[d ] = null and let A[d + 1] = merged-tree
(continue merging if A[d + 1] is not null).

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Fibonacci Sequence Background

Recall that F1 = 1,F2 = 1,F3 = 2, . . . ,Fi = Fi−1 + Fi−2.

We can use induction to show 1+ F1 + F2 + . . .+ Fi = Fi+2.

Base: 1+ F1 = 1+ 1 = 2 = F3.
Induction step: (1+ F1 + F2 + . . .+ Fi−1) + Fi = Fi+1 + Fi = Fi+2.

Asymptotically, we have Fn = Θ(Φn), where Φ = 1+
√
5

2
≈ 1.618 is

the golden ratio.

10 / 22
EECS 4101-5101 Advanced Data Structures

▲



Fibonacci Sequence Background

Recall that F1 = 1,F2 = 1,F3 = 2, . . . ,Fi = Fi−1 + Fi−2.

We can use induction to show 1+ F1 + F2 + . . .+ Fi = Fi+2.

Base: 1+ F1 = 1+ 1 = 2 = F3.
Induction step: (1+ F1 + F2 + . . .+ Fi−1) + Fi = Fi+1 + Fi = Fi+2.

Asymptotically, we have Fn = Θ(Φn), where Φ = 1+
√
5

2
≈ 1.618 is

the golden ratio.

10 / 22
EECS 4101-5101 Advanced Data Structures

▲



Fibonacci Sequence Background

Recall that F1 = 1,F2 = 1,F3 = 2, . . . ,Fi = Fi−1 + Fi−2.

We can use induction to show 1+ F1 + F2 + . . .+ Fi = Fi+2.

Base: 1+ F1 = 1+ 1 = 2 = F3.
Induction step: (1+ F1 + F2 + . . .+ Fi−1) + Fi = Fi+1 + Fi = Fi+2.

Asymptotically, we have Fn = Θ(Φn), where Φ = 1+
√
5

2
≈ 1.618 is

the golden ratio.

10 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let N(d) = min. number of nodes in a single tree T with degree d
at the root. What is N(d)?

We use induction to show N(d) ≥ Fd+2.

In the base, when d = 0, we have N(d) = 1 = F2.

Let T be a tree with minimum number of nodes N(d). Sort
subtrees of the root of T by their degree as T1, . . . ,Td ; let that ci
denote the degree of Ti . We have c1 ≥ 0.
For i ≥ 2, the tree Ti at some point is merged by the tree formed
by the root at T1, . . . ,Ti−1; at the time of the merger, the degree
of Ti had been i − 1 (why?); It is possible that Ti lost a child after
and its degree became i − 2.
So, by inductive hypothesis, for i ≥ 2, we have
Size(Ti ) ≥ F(i−2)+2 = Fi .

The size of T is N(d) = 1 + Size(T1) + F2 + F3 + . . . Fd = 1 +
d∑

i=0
Fi = Fd+2.

Fact 1: The number of nodes in a tree of degree d after
merging (extracting min) is at least N(d) = Fd+2.

11 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let N(d) = min. number of nodes in a single tree T with degree d
at the root. What is N(d)?

We use induction to show N(d) ≥ Fd+2.

In the base, when d = 0, we have N(d) = 1 = F2.
Let T be a tree with minimum number of nodes N(d). Sort
subtrees of the root of T by their degree as T1, . . . ,Td ; let that ci
denote the degree of Ti . We have c1 ≥ 0.
For i ≥ 2, the tree Ti at some point is merged by the tree formed
by the root at T1, . . . ,Ti−1; at the time of the merger, the degree
of Ti had been i − 1 (why?); It is possible that Ti lost a child after
and its degree became i − 2.

So, by inductive hypothesis, for i ≥ 2, we have
Size(Ti ) ≥ F(i−2)+2 = Fi .

The size of T is N(d) = 1 + Size(T1) + F2 + F3 + . . . Fd = 1 +
d∑

i=0
Fi = Fd+2.

Fact 1: The number of nodes in a tree of degree d after
merging (extracting min) is at least N(d) = Fd+2.

11 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let N(d) = min. number of nodes in a single tree T with degree d
at the root. What is N(d)?

We use induction to show N(d) ≥ Fd+2.

In the base, when d = 0, we have N(d) = 1 = F2.
Let T be a tree with minimum number of nodes N(d). Sort
subtrees of the root of T by their degree as T1, . . . ,Td ; let that ci
denote the degree of Ti . We have c1 ≥ 0.
For i ≥ 2, the tree Ti at some point is merged by the tree formed
by the root at T1, . . . ,Ti−1; at the time of the merger, the degree
of Ti had been i − 1 (why?); It is possible that Ti lost a child after
and its degree became i − 2.
So, by inductive hypothesis, for i ≥ 2, we have
Size(Ti ) ≥ F(i−2)+2 = Fi .

The size of T is N(d) = 1 + Size(T1) + F2 + F3 + . . . Fd = 1 +
d∑

i=0
Fi = Fd+2.

Fact 1: The number of nodes in a tree of degree d after
merging (extracting min) is at least N(d) = Fd+2.

11 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let N(d) = min. number of nodes in a single tree T with degree d
at the root. What is N(d)?

We use induction to show N(d) ≥ Fd+2.

In the base, when d = 0, we have N(d) = 1 = F2.
Let T be a tree with minimum number of nodes N(d). Sort
subtrees of the root of T by their degree as T1, . . . ,Td ; let that ci
denote the degree of Ti . We have c1 ≥ 0.
For i ≥ 2, the tree Ti at some point is merged by the tree formed
by the root at T1, . . . ,Ti−1; at the time of the merger, the degree
of Ti had been i − 1 (why?); It is possible that Ti lost a child after
and its degree became i − 2.
So, by inductive hypothesis, for i ≥ 2, we have
Size(Ti ) ≥ F(i−2)+2 = Fi .

The size of T is N(d) = 1 + Size(T1) + F2 + F3 + . . . Fd = 1 +
d∑

i=0
Fi = Fd+2.

Fact 1: The number of nodes in a tree of degree d after
merging (extracting min) is at least N(d) = Fd+2.

11 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let N(d) = min. number of nodes in a single tree T with degree d
at the root. What is N(d)?

We use induction to show N(d) ≥ Fd+2.

In the base, when d = 0, we have N(d) = 1 = F2.
Let T be a tree with minimum number of nodes N(d). Sort
subtrees of the root of T by their degree as T1, . . . ,Td ; let that ci
denote the degree of Ti . We have c1 ≥ 0.
For i ≥ 2, the tree Ti at some point is merged by the tree formed
by the root at T1, . . . ,Ti−1; at the time of the merger, the degree
of Ti had been i − 1 (why?); It is possible that Ti lost a child after
and its degree became i − 2.
So, by inductive hypothesis, for i ≥ 2, we have
Size(Ti ) ≥ F(i−2)+2 = Fi .

The size of T is N(d) = 1 + Size(T1) + F2 + F3 + . . . Fd = 1 +
d∑

i=0
Fi = Fd+2.

Fact 1: The number of nodes in a tree of degree d after
merging (extracting min) is at least N(d) = Fd+2.

11 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let D(m) = max. degree of any node in a single tree T with m
nodes right after extractMin. What is D(m)?

Let N(d) = min. number of nodes in a single tree T with degree d
at the root. We just used induction to show N(d) ≥ Fd+2.

Therefore, we have N(d) ≥ Fd+2 ∈ Θ(Φd+2) or
log(N(d)) ∈ Ω(d + 2), or d ∈ O(logN(d)). Equivalently
D(m) ∈ O(log n).

Fact 2: The degree of any tree in a Fibonacci heap at any
time is at most D(m) = O(log n).

After the merger, the degrees never increase until the next merge.

12 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let P(n) = maximum number of trees after the merger.

We show that P(n) ∈ O(log n).

No trees have the same degree (why?) and each tree with degree d
has at least N(d) = Fd+2 nodes (Fact 1).
The total number of nodes is thus
n ≥ F1 + . . .+ FP(n) = FP(n)+2 − 1, that is P(n) ∈ O(log n)

Fact 3: The number of trees in a Fibonacci tree right after
merging (extracting min) is at most P(n) = O(log n).

13 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Let P(n) = maximum number of trees after the merger.

We show that P(n) ∈ O(log n).

No trees have the same degree (why?) and each tree with degree d
has at least N(d) = Fd+2 nodes (Fact 1).
The total number of nodes is thus
n ≥ F1 + . . .+ FP(n) = FP(n)+2 − 1, that is P(n) ∈ O(log n)

Fact 3: The number of trees in a Fibonacci tree right after
merging (extracting min) is at most P(n) = O(log n).

13 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum Node

Fact 1: The number of nodes in a tree of degree d after
merging (extracting min) is at least N(d) = Fd+2.

Fact 2: The degree of any tree in a Fibonacci heap at any
time is at most D(m) = O(log n).

Fact 3: The number of trees in a Fibonacci tree right after
merging (extracting min) is at most P(n) = O(log n).

14 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum node

For the time complexity, we consider these notations:

Let D(n) = max degree of any node in a single tree with n nodes.
Let t(H) = number of trees in the heap H before the merger.
m(H) = number of marked nodes in the heap H
Potential function Φ(H) = t(H) + 2m(H)

Actual cost is O(log n + t(H))

O(D(n)) = O(log n) work adding min's children into root list and
t(H) for the linear scan (each merger takes constant time).

The number of trees is t(H) before extractMin and at most
O(log n) after the merger (Fact 3). The number of marked nodes
does not change. So, we can write ∆(Φ) ≤ O(log n) + 1− t(H).

The amortized cost will be actualCost + c ·∆(Φ) =
O(log n + t(H)) + c(log n + 1− t(H)) = O(log n), assuming c is
selected be large enough.

15 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum node

For the time complexity, we consider these notations:

Let D(n) = max degree of any node in a single tree with n nodes.
Let t(H) = number of trees in the heap H before the merger.
m(H) = number of marked nodes in the heap H
Potential function Φ(H) = t(H) + 2m(H)

Actual cost is O(log n + t(H))

O(D(n)) = O(log n) work adding min's children into root list and
t(H) for the linear scan (each merger takes constant time).

The number of trees is t(H) before extractMin and at most
O(log n) after the merger (Fact 3). The number of marked nodes
does not change. So, we can write ∆(Φ) ≤ O(log n) + 1− t(H).

The amortized cost will be actualCost + c ·∆(Φ) =
O(log n + t(H)) + c(log n + 1− t(H)) = O(log n), assuming c is
selected be large enough.

15 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum node

For the time complexity, we consider these notations:

Let D(n) = max degree of any node in a single tree with n nodes.
Let t(H) = number of trees in the heap H before the merger.
m(H) = number of marked nodes in the heap H
Potential function Φ(H) = t(H) + 2m(H)

Actual cost is O(log n + t(H))

O(D(n)) = O(log n) work adding min's children into root list and
t(H) for the linear scan (each merger takes constant time).

The number of trees is t(H) before extractMin and at most
O(log n) after the merger (Fact 3). The number of marked nodes
does not change. So, we can write ∆(Φ) ≤ O(log n) + 1− t(H).

The amortized cost will be actualCost + c ·∆(Φ) =
O(log n + t(H)) + c(log n + 1− t(H)) = O(log n), assuming c is
selected be large enough.

15 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum node

Theorem

The amortized running time of extractMax in a Fibonacci heap

with n keys is O(log n).

16 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 0: min-heap property not violated

Decrease key of x to k.
The actual cost is O(1), the potential is not changed → the
amortized cost is O(1).

38

26

24

46

17

30

7

2321

52

18

39

decrease 46 to 45

35 88 72

41

17 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 0: min-heap property not violated

Decrease key of x to k.
The actual cost is O(1), the potential is not changed → the
amortized cost is O(1).

38

26

24

45

17

30

7

2321

52

18

39

decrease 46 to 45

35 88 72

41

17 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 1: parent of x is unmarked

Decrease key of x to k.
Cut o� link between x and its parent, unmark x if marked, and
mark parent of x .
Add tree rooted at x to root list, updating heap min pointer if
needed.
The actual cost is O(1), t(h) is incremented and m(h) is increased
by at most 1 → ∆(Φ) ≤ 3 → amortized cost is O(1).

38

26

24

45

17

30

7

2321

52

18

39

decrease 45 to 15

35 88 72

41

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 1: parent of x is unmarked

Decrease key of x to k.
Cut o� link between x and its parent, unmark x if marked, and
mark parent of x .
Add tree rooted at x to root list, updating heap min pointer if
needed.
The actual cost is O(1), t(h) is incremented and m(h) is increased
by at most 1 → ∆(Φ) ≤ 3 → amortized cost is O(1).

38

26

24

15

17

30

7

2321

52

18

39

decrease 45 to 15

35 88 72

41

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 1: parent of x is unmarked

Decrease key of x to k.
Cut o� link between x and its parent, unmark x if marked, and
mark parent of x .
Add tree rooted at x to root list, updating heap min pointer if
needed.
The actual cost is O(1), t(h) is incremented and m(h) is increased
by at most 1 → ∆(Φ) ≤ 3 → amortized cost is O(1).

38

26

24

15

17

30

7

2321

52

18

39

decrease 45 to 15

35 88 72

41

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 1: parent of x is unmarked

Decrease key of x to k.
Cut o� link between x and its parent, unmark x if marked, and
mark parent of x .
Add tree rooted at x to root list, updating heap min pointer if
needed.
The actual cost is O(1), t(h) is incremented and m(h) is increased
by at most 1 → ∆(Φ) ≤ 3 → amortized cost is O(1).

38

26

24

15

17

30

7

2321

52

18

39

decrease 45 to 15

35 88 72

41

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 1: parent of x is unmarked

Decrease key of x to k.
Cut o� link between x and its parent, unmark x if marked, and
mark parent of x .
Add tree rooted at x to root list, updating heap min pointer if
needed.
The actual cost is O(1), t(h) is incremented and m(h) is increased
by at most 1 → ∆(Φ) ≤ 3 → amortized cost is O(1).

38

26

24

15

17

30

7

2321

52

18

39

decrease 45 to 15

35 88

7241

min

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 2: parent of x is marked

Decrease key of x to k.
Cut o� link between x and its parent p[x ], unmark x if marked, and
add it to the list of the trees.
cut o� link between p[x ] and p[p[x ]], add p[x ] to the list, unmark
p[x ]

If p[p[x]] unmarked, then mark it and stop
If p[p[x]] marked, cut o� p[p[x]], unmark, and repeat until
unmarked node found or root reached

38

26

24

15

17

30

7

2321

52

18

39

decrease 35 to 5

35 88

7241

min

19 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 2: parent of x is marked

Decrease key of x to k.
Cut o� link between x and its parent p[x ], unmark x if marked, and
add it to the list of the trees.
cut o� link between p[x ] and p[p[x ]], add p[x ] to the list, unmark
p[x ]

If p[p[x]] unmarked, then mark it and stop
If p[p[x]] marked, cut o� p[p[x]], unmark, and repeat until
unmarked node found or root reached

38

26

24

15

17

30

7

2321

52

18

39

decrease 35 to 5

5 88

7241

min

19 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 2: parent of x is marked

Decrease key of x to k.
Cut o� link between x and its parent p[x ], unmark x if marked, and
add it to the list of the trees.
cut o� link between p[x ] and p[p[x ]], add p[x ] to the list, unmark
p[x ]

If p[p[x]] unmarked, then mark it and stop
If p[p[x]] marked, cut o� p[p[x]], unmark, and repeat until
unmarked node found or root reached

38

26

24

15

17

30

7

2321

52

18

39

decrease 35 to 5

5

88

7241

min

19 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 2: parent of x is marked

Decrease key of x to k.
Cut o� link between x and its parent p[x ], unmark x if marked, and
add it to the list of the trees.
cut o� link between p[x ] and p[p[x ]], add p[x ] to the list, unmark
p[x ]

If p[p[x]] unmarked, then mark it and stop
If p[p[x]] marked, cut o� p[p[x]], unmark, and repeat until
unmarked node found or root reached

38 26

24

15

17

30

7

2321

52

18

39

decrease 35 to 5

5

887241

min

19 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 2: parent of x is marked

Decrease key of x to k.
Cut o� link between x and its parent p[x ], unmark x if marked, and
add it to the list of the trees.
cut o� link between p[x ] and p[p[x ]], add p[x ] to the list, unmark
p[x ]

If p[p[x]] unmarked, then mark it and stop
If p[p[x]] marked, cut o� p[p[x]], unmark, and repeat until
unmarked node found or root reached

38 26 2415

17

30

7

2321

52

18

39

5

887241

min

19 / 22
EECS 4101-5101 Advanced Data Structures

▲



Decreasing Key

Given a pointer to an element x , decrease key of x to k

Case 2: parent of x is marked

Suppose p new trees are added here → t(h) is increased by p.
Roots of all these trees, except possibly the �rst one, have been
marked before the operation and are unmarked after → m(h) is
decremented by at least p − 1.
Potential changes from t(h) + 2m(h) to at most
(t(h) + p) + 2(m(h)− (p − 1)) = t(h) + 2m(h)− p + 2. That is
∆(Φ) ≤ 2− p.
The actual cost is O(p) (why?), and the amortized cost will be
O(p) + c(2− p) = O(1) for su�ciently large c.

38

26

24

15

17

30

7

2321

52

18

39

decrease 35 to 5

35 88

7241

min

38 26 2415

17

30

7

2321

52

18

39

5

887241

min

20 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum node

Theorem

The amortized running time of extractMin in a Fibonacci heap

with n keys is O(log n).

Theorem

The amortized running time of decreaseKey in a Fibonacci heap

with n keys is O(1).

To delete an item (with a pointer to it), simply decrease its key to
−∞ and call extractMin. This runs in O(log n) amortized time.

Theorem

The amortized running time of delete in a Fibonacci heap with n
keys is O(log n).

21 / 22
EECS 4101-5101 Advanced Data Structures

▲



Extracting the Minimum node

Theorem

The amortized running time of extractMin in a Fibonacci heap

with n keys is O(log n).

Theorem

The amortized running time of decreaseKey in a Fibonacci heap

with n keys is O(1).

To delete an item (with a pointer to it), simply decrease its key to
−∞ and call extractMin. This runs in O(log n) amortized time.

Theorem

The amortized running time of delete in a Fibonacci heap with n
keys is O(log n).

21 / 22
EECS 4101-5101 Advanced Data Structures

▲



Data Structures for Priority Queues

A summary of data structures for priority queues.

Operation Binary heap Binomial heap Fibonacci heap
(worst-case) (worst-case) (amortized)

MAKE-HEAP Θ(1) Θ(1) Θ(1))
INSERT Θ(log n) O(log n) Θ(1)
MINIMUM Θ(1) O(log n) Θ(1)

EXTRACT-MIN Θ(log n) Θ(log n) O(log n)
MERGE/UNION Θ(n) O(log n) Θ(1)
DECREASE-KEY Θ(log n) Θ(log n) Θ(1)

DELETE Θ(log n) Θ(log n) O(log n)

22 / 22
EECS 4101-5101 Advanced Data Structures

▲


