EECS 4101-5101
 Advanced Data Structures

Shahin Kamali

Topic 4b Fibonacci Heaps
York University

Picture is from the cover of the textbook CLRS.

Fibonacci Heaps

- Last time, we studied Binomial heaps for priority queues.
- Insert, ExtractMax (or ExtractMin), Delete (with given pointer), and Merge all took $O(\log n)$ time.

Fibonacci Heaps

- Last time, we studied Binomial heaps for priority queues.
- Insert, ExtractMax (or ExtractMin), Delete (with given pointer), and Merge all took $O(\log n)$ time.

- Today, we study Fibonacci Heaps which are a more-relaxed and faster structure.
- They support Insert and Merge in $O(1)$ and ExtractMax and Delete in $O(\log n)$ amortized time.
- In our examples, we use min-heaps, but everything can symmetrically extend to max heaps.

Fibonacci Heaps

- Fibonacci heaps are similar to Binomial heaps, in the sense that they are a collection of trees with the heap property
- But the trees do not need to have any particular structure
- The order of tree is defined by their degree, and there can be multiple trees of the same degree.
- Nodes may be marked, indicating that they have had a child that is "lost" (moved).
- We augment the tree with a "min" pointer.

Fibonacci Heaps

- A complete implementation involves pointers to all children, parents, direct sibling, etc.
- We omit these details in our example figures.

Potential Fibonacci Heaps

- Let $t(H)$ denote the number of trees and $m(H)$ denote the number of marked nodes in a Fibonacci heap H.
We define the potential of H to be $\Phi(H)=t(H)+2 m(H)$.
- E.g., er we have $t(H)=5, m(H)=3$, and $\phi(H)=5+2 \cdot 3=11$.

Potential Fibonacci Heaps

- Let $t(H)$ denote the number of trees and $m(H)$ denote the number of marked nodes in a Fibonacci heap H. We define the potential of H to be $\Phi(H)=t(H)+2 m(H)$.
- E.g., er we have $t(H)=5, m(H)=3$, and $\phi(H)=5+2 \cdot 3=11$.
- Note that the potential is only used for the analysis (not the implementation).

Potential Fibonacci Heaps

- We define the amortized cost for operation t to be:

$$
\operatorname{amortized} \operatorname{Cost}(t)=\operatorname{actua} / \operatorname{Cos} t(t)+c(\cdot \Phi(t)-\Phi(t-1))
$$

where c is a sufficiently large constant we define later.

$$
\begin{aligned}
\text { ActualCost } & =\operatorname{act} \operatorname{Cost}(\mathbf{1})+\operatorname{act} \operatorname{Cost}(2)+\ldots+\operatorname{act} \operatorname{Cost}(m-\mathbf{1})+\operatorname{act} \operatorname{Cost}(m) \\
& =\operatorname{act} \operatorname{Cost}(\mathbf{1})+c \Phi(\mathbf{1})-c \Phi(0)+\operatorname{act} \operatorname{Cost}(2)+c \Phi(2)-c \Phi(\mathbf{1})+\ldots+\operatorname{act} \operatorname{Cost}(m)+c \Phi(m)-c \Phi(m-\mathbf{1})+c \Phi(m)-c \Phi(0) \\
& =\operatorname{amortized} \operatorname{Cost}(\mathbf{1})+\operatorname{amortized} \operatorname{Cost}(2)+\ldots+\operatorname{amortized} \operatorname{Cost}(m-\mathbf{1})+\operatorname{amrotized} \operatorname{Cost}(m)+\underbrace{c(\Phi(m)-\Phi(0))}_{\mathbf{a} \text { constant }} .
\end{aligned}
$$

- So, if we show the amortized cost for an operation is $O(f(x))$, the total cost for all m operations will be $O(m f(x))$.

Insertion Fibonacci Heaps

- To insert an element to H, just create a single node and add it as a tree (just before the $\min (H)$), and update the min pointer if needed.
E.g., insert(21)

Insertion Fibonacci Heaps

- To insert an element to H, just create a single node and add it as a tree (just before the $\min (H)$), and update the min pointer if needed.
- Actual cost is? $O(1)$
- The number of trees $t(H)$ has increased by 1 ; the number of marked nodes stays unchanged $\rightarrow \Delta(\Phi)=1$.
- AmortizedCost $=$ actualCost $+\Delta(\Phi)=O(1)$.
E.g., insert(21)

Merging Two Fibonacci Heaps

- To merge two Fibonacci heaps H_{1} and H_{2}, We just need to update a few pointers to merge the set of trees (and also the min-pointer).

Merging Two Fibonacci Heaps

- To merge two Fibonacci heaps H_{1} and H_{2}, We just need to update a few pointers to merge the set of trees (and also the min-pointer).
- Actual cost is? $O(1)$
- The number of trees $t(H)$ equals to $t\left(H_{1}\right)+t\left(H_{2}\right)$. The number of marked nodes and the potentail is not changed
- AmortizedCost $=$ actualCost $+0=O(1)$.

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Extracting the Minimum Node

- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
- Maintain an array A of pointers to the trees, where $A[i]$ points to a tree of degree i.
- Do a linear scan of the trees. When you visit a tree T with degree d, if $A[d]$ is null, let $A[d]=T$, and if $A[d]$ is not null, merge T with $A[d]$, update $A[d]=$ null and let $A[d+1]=$ merged-tree (continue merging if $A[d+1]$ is not null).

Fibonacci Sequence Background

- Recall that $F_{1}=1, F_{2}=1, F_{3}=2, \ldots, F_{i}=F_{i-1}+F_{i-2}$.

Fibonacci Sequence Background

- Recall that $F_{1}=1, F_{2}=1, F_{3}=2, \ldots, F_{i}=F_{i-1}+F_{i-2}$.
- We can use induction to show $1+F_{1}+F_{2}+\ldots+F_{i}=F_{i+2}$.
- Base: $1+F_{1}=1+1=2=F_{3}$.
- Induction step: $\left(1+F_{1}+F_{2}+\ldots+F_{i-1}\right)+F_{i}=F_{i+1}+F_{i}=F_{i+2}$.

Fibonacci Sequence Background

- Recall that $F_{1}=1, F_{2}=1, F_{3}=2, \ldots, F_{i}=F_{i-1}+F_{i-2}$.
- We can use induction to show $1+F_{1}+F_{2}+\ldots+F_{i}=F_{i+2}$.
- Base: $1+F_{1}=1+1=2=F_{3}$.
- Induction step: $\left(1+F_{1}+F_{2}+\ldots+F_{i-1}\right)+F_{i}=F_{i+1}+F_{i}=F_{i+2}$.
- Asymptotically, we have $F_{n}=\Theta\left(\Phi^{n}\right)$, where $\Phi=\frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio.

Extracting the Minimum Node

- Let $N(d)=\min$. number of nodes in a single tree T with degree d at the root. What is $N(d)$?
- We use induction to show $N(d) \geq F_{d+2}$.
- In the base, when $d=0$, we have $N(d)=1=F_{2}$.

Extracting the Minimum Node

- Let $N(d)=\min$. number of nodes in a single tree T with degree d at the root. What is $N(d)$?
- We use induction to show $N(d) \geq F_{d+2}$.
- In the base, when $d=0$, we have $N(d)=1=F_{2}$.
- Let T be a tree with minimum number of nodes $N(d)$. Sort subtrees of the root of T by their degree as T_{1}, \ldots, T_{d}; let that c_{i} denote the degree of T_{i}. We have $c_{1} \geq 0$.
- For $i \geq 2$, the tree T_{i} at some point is merged by the tree formed by the root at T_{1}, \ldots, T_{i-1}; at the time of the merger, the degree of T_{i} had been $i-1$ (why?); It is possible that T_{i} lost a child after and its degree became $i-2$.

Extracting the Minimum Node

- Let $N(d)=\min$. number of nodes in a single tree T with degree d at the root. What is $N(d)$?
- We use induction to show $N(d) \geq F_{d+2}$.
- In the base, when $d=0$, we have $N(d)=1=F_{2}$.
- Let T be a tree with minimum number of nodes $N(d)$. Sort subtrees of the root of T by their degree as T_{1}, \ldots, T_{d}; let that c_{i} denote the degree of T_{i}. We have $c_{1} \geq 0$.
- For $i \geq 2$, the tree T_{i} at some point is merged by the tree formed by the root at T_{1}, \ldots, T_{i-1}; at the time of the merger, the degree of T_{i} had been $i-1$ (why?); It is possible that T_{i} lost a child after and its degree became $i-2$.
- So, by inductive hypothesis, for $i \geq 2$, we have $\operatorname{Size}\left(T_{i}\right) \geq F_{(i-2)+2}=F_{i}$.

Extracting the Minimum Node

- Let $N(d)=\min$. number of nodes in a single tree T with degree d at the root. What is $N(d)$?
- We use induction to show $N(d) \geq F_{d+2}$.
- In the base, when $d=0$, we have $N(d)=1=F_{2}$.
- Let T be a tree with minimum number of nodes $N(d)$. Sort subtrees of the root of T by their degree as T_{1}, \ldots, T_{d}; let that c_{i} denote the degree of T_{i}. We have $c_{1} \geq 0$.
- For $i \geq 2$, the tree T_{i} at some point is merged by the tree formed by the root at T_{1}, \ldots, T_{i-1}; at the time of the merger, the degree of T_{i} had been $i-1$ (why?); It is possible that T_{i} lost a child after and its degree became $i-2$.
- So, by inductive hypothesis, for $i \geq 2$, we have $\operatorname{Size}\left(T_{i}\right) \geq F_{(i-2)+2}=F_{i}$.
- The size of T is $N(d)=1+\operatorname{Size}\left(T_{1}\right)+F_{2}+F_{3}+\ldots F_{d}=1+\sum_{i=0}^{d} F_{i}=F_{d+2}$.

Extracting the Minimum Node

- Let $N(d)=\min$. number of nodes in a single tree T with degree d at the root. What is $N(d)$?
- We use induction to show $N(d) \geq F_{d+2}$.
- In the base, when $d=0$, we have $N(d)=1=F_{2}$.
- Let T be a tree with minimum number of nodes $N(d)$. Sort subtrees of the root of T by their degree as T_{1}, \ldots, T_{d}; let that c_{i} denote the degree of T_{i}. We have $c_{1} \geq 0$.
- For $i \geq 2$, the tree T_{i} at some point is merged by the tree formed by the root at T_{1}, \ldots, T_{i-1}; at the time of the merger, the degree of T_{i} had been $i-1$ (why?); It is possible that T_{i} lost a child after and its degree became $i-2$.
- So, by inductive hypothesis, for $i \geq 2$, we have $\operatorname{Size}\left(T_{i}\right) \geq F_{(i-2)+2}=F_{i}$.
- The size of T is $N(d)=\mathbf{1}+\operatorname{Size}\left(T_{\mathbf{1}}\right)+F_{\mathbf{2}}+F_{\mathbf{3}}+\ldots F_{d}=\mathbf{1}+\sum_{i=0}^{d} F_{i}=F_{d+\mathbf{2}}$.
- Fact 1: The number of nodes in a tree of degree d after merging (extracting min) is at least $N(d)=F_{d+2}$.

Extracting the Minimum Node

- Let $D(m)=$ max. degree of any node in a single tree T with m nodes right after extractMin. What is $D(m)$?
- Let $N(d)=\min$. number of nodes in a single tree T with degree d at the root. We just used induction to show $N(d) \geq F_{d+2}$.
- Therefore, we have $N(d) \geq F_{d+2} \in \Theta\left(\Phi^{d+2}\right)$ or $\log (N(d)) \in \Omega(d+2)$, or $d \in O(\log N(d))$. Equivalently $D(m) \in O(\log n)$.
- Fact 2: The degree of any tree in a Fibonacci heap at any time is at most $D(m)=O(\log n)$.
- After the merger, the degrees never increase until the next merge.

Extracting the Minimum Node

- Let $P(n)=$ maximum number of trees after the merger.
- We show that $P(n) \in O(\log n)$.
- No trees have the same degree (why?) and each tree with degree d has at least $N(d)=F_{d+2}$ nodes (Fact 1).
- The total number of nodes is thus

$$
n \geq F_{1}+\ldots+F_{P(n)}=F_{P(n)+2}-1, \text { that is } P(n) \in O(\log n)
$$

Extracting the Minimum Node

- Let $P(n)=$ maximum number of trees after the merger.
- We show that $P(n) \in O(\log n)$.
- No trees have the same degree (why?) and each tree with degree d has at least $N(d)=F_{d+2}$ nodes (Fact 1).
- The total number of nodes is thus

$$
n \geq F_{1}+\ldots+F_{P(n)}=F_{P(n)+2}-1, \text { that is } P(n) \in O(\log n)
$$

- Fact 3: The number of trees in a Fibonacci tree right after merging (extracting min) is at most $P(n)=O(\log n)$.

Extracting the Minimum Node

- Fact 1: The number of nodes in a tree of degree d after merging (extracting min) is at least $N(d)=F_{d+2}$.
- Fact 2: The degree of any tree in a Fibonacci heap at any time is at most $D(m)=O(\log n)$.
- Fact 3: The number of trees in a Fibonacci tree right after merging (extracting $\mathbf{m i n}$) is at most $P(n)=O(\log n)$.

Extracting the Minimum node

- For the time complexity, we consider these notations:
- Let $D(n)=\max$ degree of any node in a single tree with n nodes.
- Let $t(H)=$ number of trees in the heap H before the merger.
- $m(H)=$ number of marked nodes in the heap H
- Potential function $\Phi(H)=t(H)+2 m(H)$

Extracting the Minimum node

- For the time complexity, we consider these notations:
- Let $D(n)=\max$ degree of any node in a single tree with n nodes.
- Let $t(H)=$ number of trees in the heap H before the merger.
- $m(H)=$ number of marked nodes in the heap H
- Potential function $\Phi(H)=t(H)+2 m(H)$
- Actual cost is $O(\log n+t(H))$
- $O(D(n))=O(\log n)$ work adding min's children into root list and $t(H)$ for the linear scan (each merger takes constant time).
- The number of trees is $t(H)$ before extractMin and at most $O(\log n)$ after the merger (Fact 3). The number of marked nodes does not change. So, we can write $\Delta(\Phi) \leq O(\log n)+1-t(H)$.

Extracting the Minimum node

- For the time complexity, we consider these notations:
- Let $D(n)=\max$ degree of any node in a single tree with n nodes.
- Let $t(H)=$ number of trees in the heap H before the merger.
- $m(H)=$ number of marked nodes in the heap H
- Potential function $\Phi(H)=t(H)+2 m(H)$
- Actual cost is $O(\log n+t(H))$
- $O(D(n))=O(\log n)$ work adding min's children into root list and $t(H)$ for the linear scan (each merger takes constant time).
- The number of trees is $t(H)$ before extractMin and at most $O(\log n)$ after the merger (Fact 3). The number of marked nodes does not change. So, we can write $\Delta(\Phi) \leq O(\log n)+1-t(H)$.
- The amortized cost will be actual Cost $+c \cdot \Delta(\Phi)=$ $O(\log n+t(H))+c(\log n+1-t(H))=O(\log n)$, assuming c is selected be large enough.

Extracting the Minimum node

Theorem

The amortized running time of extractMax in a Fibonacci heap with n keys is $O(\log n)$.

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 0: min-heap property not violated
- Decrease key of x to k.
- The actual cost is $O(1)$, the potential is not changed \rightarrow the amortized cost is $O(1)$.

decrease 46 to 45

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 0: min-heap property not violated
- Decrease key of x to k.
- The actual cost is $O(1)$, the potential is not changed \rightarrow the amortized cost is $O(1)$.

decrease 46 to 45

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
- Decrease key of x to k.
- Cut off link between x and its parent, unmark x if marked, and mark parent of x.
- Add tree rooted at x to root list, updating heap min pointer if needed.
- The actual cost is $O(1), t(h)$ is incremented and $m(h)$ is increased by at most $1 \rightarrow \Delta(\Phi) \leq 3 \rightarrow$ amortized cost is $O(1)$.

decrease 45 to 15

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
- Decrease key of x to k.
- Cut off link between x and its parent, unmark x if marked, and mark parent of x.
- Add tree rooted at x to root list, updating heap min pointer if needed.
- The actual cost is $O(1), t(h)$ is incremented and $m(h)$ is increased by at most $1 \rightarrow \Delta(\Phi) \leq 3 \rightarrow$ amortized cost is $O(1)$.

decrease 45 to 15

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
- Decrease key of x to k.
- Cut off link between x and its parent, unmark x if marked, and mark parent of x.
- Add tree rooted at x to root list, updating heap min pointer if needed.
- The actual cost is $O(1), t(h)$ is incremented and $m(h)$ is increased by at most $1 \rightarrow \Delta(\Phi) \leq 3 \rightarrow$ amortized cost is $O(1)$.

decrease 45 to 15

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
- Decrease key of x to k.
- Cut off link between x and its parent, unmark x if marked, and mark parent of x.
- Add tree rooted at x to root list, updating heap min pointer if needed.
- The actual cost is $O(1), t(h)$ is incremented and $m(h)$ is increased by at most $1 \rightarrow \Delta(\Phi) \leq 3 \rightarrow$ amortized cost is $O(1)$.

decrease 45 to 15

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
- Decrease key of x to k.
- Cut off link between x and its parent, unmark x if marked, and mark parent of x.
- Add tree rooted at x to root list, updating heap min pointer if needed.
- The actual cost is $O(1), t(h)$ is incremented and $m(h)$ is increased by at most $1 \rightarrow \Delta(\Phi) \leq 3 \rightarrow$ amortized cost is $O(1)$.

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
- Decrease key of x to k.
- Cut off link between x and its parent $p[x]$, unmark x if marked, and add it to the list of the trees.
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to the list, unmark $p[x]$
- If $p[p[x]]$ unmarked, then mark it and stop
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat until unmarked node found or root reached

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
- Decrease key of x to k.
- Cut off link between x and its parent $p[x]$, unmark x if marked, and add it to the list of the trees.
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to the list, unmark $p[x]$
- If $p[p[x]]$ unmarked, then mark it and stop
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat until unmarked node found or root reached

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
- Decrease key of x to k.
- Cut off link between x and its parent $p[x]$, unmark x if marked, and add it to the list of the trees.
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to the list, unmark $p[x]$
- If $p[p[x]]$ unmarked, then mark it and stop
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat until unmarked node found or root reached

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
- Decrease key of x to k.
- Cut off link between x and its parent $p[x]$, unmark x if marked, and add it to the list of the trees.
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to the list, unmark $p[x]$
- If $p[p[x]]$ unmarked, then mark it and stop
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat until unmarked node found or root reached

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
- Decrease key of x to k.
- Cut off link between x and its parent $p[x]$, unmark x if marked, and add it to the list of the trees.
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to the list, unmark $p[x]$
- If $p[p[x]]$ unmarked, then mark it and stop
- If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat until unmarked node found or root reached

Decreasing Key

- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
- Suppose p new trees are added here $\rightarrow t(h)$ is increased by p.
- Roots of all these trees, except possibly the first one, have been marked before the operation and are unmarked after $\rightarrow m(h)$ is decremented by at least $p-1$.
- Potential changes from $t(h)+2 m(h)$ to at most $(t(h)+p)+2(m(h)-(p-1))=t(h)+2 m(h)-p+2$. That is $\Delta(\Phi) \leq 2-p$.
- The actual cost is $O(p)$ (why?), and the amortized cost will be $O(p)+c(2-p)=O(1)$ for sufficiently large c.

Extracting the Minimum node

Theorem

The amortized running time of extractMin in a Fibonacci heap with n keys is $O(\log n)$.

Theorem

The amortized running time of decreaseKey in a Fibonacci heap with n keys is $O(1)$.

Extracting the Minimum node

Theorem

The amortized running time of extractMin in a Fibonacci heap with n keys is $O(\log n)$.

Theorem

The amortized running time of decreaseKey in a Fibonacci heap with n keys is $O(1)$.

- To delete an item (with a pointer to it), simply decrease its key to $-\infty$ and call extractMin. This runs in $O(\log n)$ amortized time.

Theorem

The amortized running time of delete in a Fibonacci heap with n keys is $O(\log n)$.

Data Structures for Priority Queues

- A summary of data structures for priority queues.

Operation	Binary heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
MAKE-HEAP	$\Theta(1)$	$\Theta(1)$	$\Theta(1))$
INSERT	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$O(\log n)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
MERGE/UNION	$\Theta(n)$	$O(\log n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
DELETE	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$

