

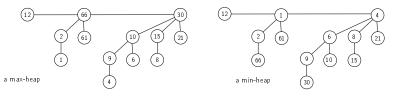
EECS 4101-5101 Advanced Data Structures

Shahin Kamali

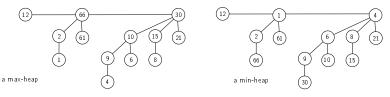
Topic 4b Fibonacci Heaps York University

Picture is from the cover of the textbook CLRS.

- Last time, we studied Binomial heaps for priority queues.
 - Insert, ExtractMax (or ExtractMin), Delete (with given pointer), and Merge all took O(log n) time.

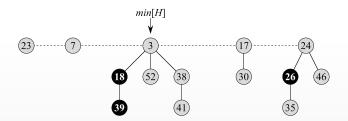


- Last time, we studied Binomial heaps for priority queues.
 - Insert, ExtractMax (or ExtractMin), Delete (with given pointer), and Merge all took O(log n) time.

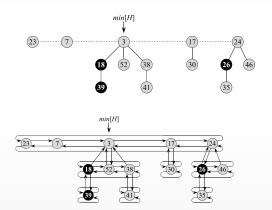


- Today, we study Fibonacci Heaps which are a more-relaxed and faster structure.
 - They support Insert and Merge in O(1) and ExtractMax and Delete in $O(\log n)$ amortized time.
 - In our examples, we use min-heaps, but everything can symmetrically extend to max heaps.

- Fibonacci heaps are similar to Binomial heaps, in the sense that they are a collection of trees with the heap property
 - But the trees do not need to have any particular structure
 - The order of tree is defined by their degree, and there can be multiple trees of the same degree.
 - Nodes may be marked, indicating that they have had a child that is "lost" (moved).
 - We augment the tree with a "min" pointer.

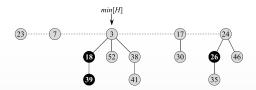


- A complete implementation involves pointers to all children, parents, direct sibling, etc.
 - We omit these details in our example figures.



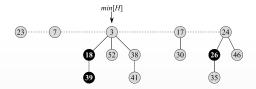
Potential Fibonacci Heaps

- Let t(H) denote the number of trees and m(H) denote the number of marked nodes in a Fibonacci heap H. We define the **potential** of H to be $\Phi(H) = t(H) + 2m(H)$.
 - E.g., er we have t(H) = 5, m(H) = 3, and $\phi(H) = 5 + 2 \cdot 3 = 11$.



Potential Fibonacci Heaps

- Let t(H) denote the number of trees and m(H) denote the number of marked nodes in a Fibonacci heap H.
 - We define the **potential** of H to be $\Phi(H) = t(H) + 2m(H)$.
 - E.g., er we have t(H) = 5, m(H) = 3, and $\phi(H) = 5 + 2 \cdot 3 = 11$.
- Note that the potential is only used for the analysis (not the implementation).



Potential Fibonacci Heaps

We define the amortized cost for operation t to be:

$$amortizedCost(t) = actualCost(t) + c(\cdot \Phi(t) - \Phi(t-1))$$

where c is a sufficiently large constant we define later.

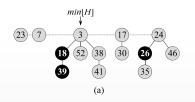
$$\begin{aligned} & \textit{ActualCost} = \textit{actCost}(1) + \textit{actCost}(2) + \ldots + \textit{actCost}(m-1) + \textit{actCost}(m) \\ & = \textit{actCost}(1) + c\Phi(1) - c\Phi(0) + \textit{actCost}(2) + c\Phi(2) - c\Phi(1) + \ldots + \textit{actCost}(m) + c\Phi(m) - c\Phi(m-1) + c\Phi(m) - c\Phi(0) \\ & = \textit{amortizedCost}(1) + \textit{amortizedCost}(2) + \ldots + \textit{amortizedCost}(m-1) + \textit{amrotizedCost}(m) + \underbrace{c(\Phi(m) - \Phi(0))}_{\textbf{a constant}}. \end{aligned}$$

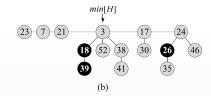
• So, if we show the amortized cost for an operation is O(f(x)), the total cost for all m operations will be O(mf(x)).

Insertion Fibonacci Heaps

• To insert an element to H, just create a single node and add it as a tree (just before the min(H)), and update the min pointer if needed.

 $\mathsf{E.g.}$, $\mathsf{insert}(21)$

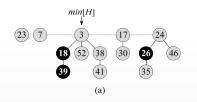


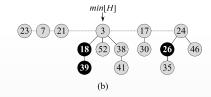


Insertion Fibonacci Heaps

- To insert an element to H, just create a single node and add it as a tree (just before the min(H)), and update the min pointer if needed.
 - Actual cost is? O(1)
 - The number of trees t(H) has increased by 1; the number of marked nodes stays unchanged $\rightarrow \Delta(\Phi) = 1$.
 - AmortizedCost = actualCost + $\Delta(\Phi) = O(1)$.

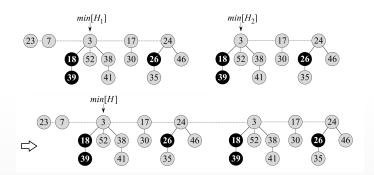
E.g., insert(21)





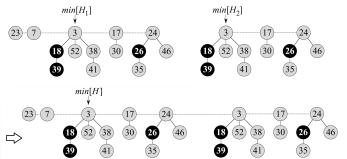
Merging Two Fibonacci Heaps

• To merge two Fibonacci heaps H_1 and H_2 , We just need to update a few pointers to merge the set of trees (and also the min-pointer).

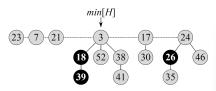


Merging Two Fibonacci Heaps

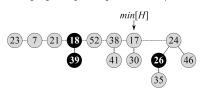
- To merge two Fibonacci heaps H_1 and H_2 , We just need to update a few pointers to merge the set of trees (and also the min-pointer).
 - Actual cost is? O(1)
 - The number of trees t(H) equals to $t(H_1) + t(H_2)$. The number of marked nodes and the potential is not changed
 - AmortizedCost = actualCost + 0 = O(1).



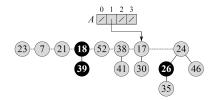
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



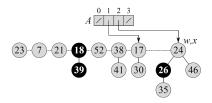
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



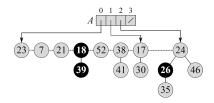
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



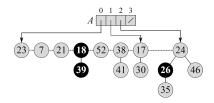
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



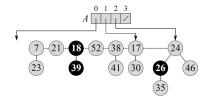
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



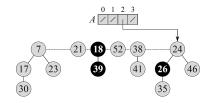
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



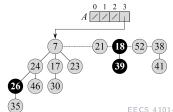
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



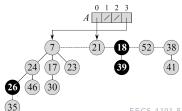
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



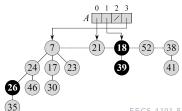
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



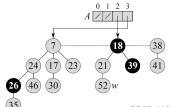
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



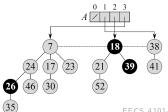
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



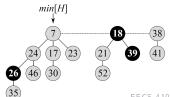
- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



- To extract the minimum element from H, we first remove the minimum element, and add its children to the list of the trees in H.
- Go through all trees, and merge trees of the same degree (similarly to Binomial heap).
 - Maintain an array A of pointers to the trees, where A[i] points to a tree of degree i.
 - Do a linear scan of the trees. When you visit a tree T with degree d, if A[d] is null, let A[d] = T, and if A[d] is not null, merge T with A[d], update A[d] = null and let A[d+1] = merged-tree (continue merging if A[d+1] is not null).



Fibonacci Sequence Background

• Recall that $F_1 = 1, F_2 = 1, F_3 = 2, \dots, F_i = F_{i-1} + F_{i-2}$.

Fibonacci Sequence Background

- Recall that $F_1 = 1, F_2 = 1, F_3 = 2, \dots, F_i = F_{i-1} + F_{i-2}$.
- We can use induction to show $1 + F_1 + F_2 + \ldots + F_i = F_{i+2}$.
 - Base: $1 + F_1 = 1 + 1 = 2 = F_3$.
 - Induction step: $(1 + F_1 + F_2 + \ldots + F_{i-1}) + F_i = F_{i+1} + F_i = F_{i+2}$.

Fibonacci Sequence Background

- Recall that $F_1 = 1, F_2 = 1, F_3 = 2, \dots, F_i = F_{i-1} + F_{i-2}$.
- We can use induction to show $1 + F_1 + F_2 + \ldots + F_i = F_{i+2}$.
 - Base: $1 + F_1 = 1 + 1 = 2 = F_3$.
 - Induction step: $(1 + F_1 + F_2 + ... + F_{i-1}) + F_i = F_{i+1} + F_i = F_{i+2}$.
- Asymptotically, we have $F_n = \Theta(\Phi^n)$, where $\Phi = \frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio.

- Let $N(d) = \min$ number of nodes in a single tree T with degree d at the root. What is N(d)?
- We use induction to show $N(d) \ge F_{d+2}$.
 - In the base, when d=0, we have $N(d)=1=F_2$.

- Let $N(d) = \min$ number of nodes in a single tree T with degree d at the root. What is N(d)?
- We use induction to show $N(d) \geq F_{d+2}$.
 - In the base, when d=0, we have $N(d)=1=F_2$.
 - Let T be a tree with minimum number of nodes N(d). Sort subtrees of the root of T by their degree as T_1, \ldots, T_d ; let that c_i denote the degree of T_i . We have $c_1 > 0$.
 - For $i \geq 2$, the tree T_i at some point is merged by the tree formed by the root at T_1, \ldots, T_{i-1} ; at the time of the merger, the degree of T_i had been i-1 (why?); It is possible that T_i lost a child after and its degree became i-2.

- Let $N(d) = \min$ number of nodes in a single tree T with degree d at the root. What is N(d)?
- We use induction to show $N(d) \geq F_{d+2}$.
 - In the base, when d=0, we have $N(d)=1=F_2$.
 - Let T be a tree with minimum number of nodes N(d). Sort subtrees of the root of T by their degree as T_1, \ldots, T_d ; let that c_i denote the degree of T_i . We have $c_1 > 0$.
 - For $i \geq 2$, the tree T_i at some point is merged by the tree formed by the root at T_1, \ldots, T_{i-1} ; at the time of the merger, the degree of T_i had been i-1 (why?); It is possible that T_i lost a child after and its degree became i-2.
 - So, by inductive hypothesis, for $i \geq 2$, we have $Size(T_i) \ge F_{(i-2)+2} = F_i$.

- Let $N(d) = \min$ number of nodes in a single tree T with degree d at the root. What is N(d)?
- We use induction to show $N(d) \geq F_{d+2}$.
 - In the base, when d=0, we have $N(d)=1=F_2$.
 - Let T be a tree with minimum number of nodes N(d). Sort subtrees of the root of T by their degree as T_1, \ldots, T_d ; let that c_i denote the degree of T_i . We have $c_1 > 0$.
 - For $i \geq 2$, the tree T_i at some point is merged by the tree formed by the root at T_1, \ldots, T_{i-1} ; at the time of the merger, the degree of T_i had been i-1 (why?); It is possible that T_i lost a child after and its degree became i-2.
 - So, by inductive hypothesis, for $i \geq 2$, we have $Size(T_i) \ge F_{(i-2)+2} = F_i$.
 - The size of T is $N(d)=1+Size(T_1)+F_2+F_3+\ldots F_d=1+\sum\limits_{i=1}^dF_i=F_{d+2}$.

- Let $N(d) = \min$ number of nodes in a single tree T with degree d at the root. What is N(d)?
- We use induction to show $N(d) \geq F_{d+2}$.
 - In the base, when d=0, we have $N(d)=1=F_2$.
 - Let T be a tree with minimum number of nodes N(d). Sort subtrees of the root of T by their degree as T_1, \ldots, T_d ; let that c_i denote the degree of T_i . We have $c_1 > 0$.
 - For $i \geq 2$, the tree T_i at some point is merged by the tree formed by the root at T_1, \ldots, T_{i-1} ; at the time of the merger, the degree of T_i had been i-1 (why?); It is possible that T_i lost a child after and its degree became i-2.
 - So, by inductive hypothesis, for $i \geq 2$, we have $Size(T_i) \ge F_{(i-2)+2} = F_i$.
 - The size of T is $N(d) = 1 + Size(T_1) + F_2 + F_3 + \dots + F_d = 1 + \sum_{i=1}^{d} F_i = F_{d+2}$.
- Fact 1: The number of nodes in a tree of degree d after merging (extracting min) is at least $N(d) = F_{d+2}$.

- Let $D(m) = \max$ degree of any node in a single tree T with m nodes right after extractMin. What is D(m)?
- Let $N(d) = \min$ number of nodes in a single tree T with degree d at the root. We just used induction to show $N(d) \geq F_{d+2}$.
- Therefore, we have $N(d) \geq F_{d+2} \in \Theta(\Phi^{d+2})$ or $\log(N(d)) \in \Omega(d+2)$, or $d \in O(\log N(d))$. Equivalently $D(m) \in O(\log n)$.
- Fact 2: The degree of any tree in a Fibonacci heap at any time is at most $D(m) = O(\log n)$.
 - After the merger, the degrees never increase until the next merge.

- Let P(n) = maximum number of trees after the merger.
- We show that $P(n) \in O(\log n)$.
 - No trees have the same degree (why?) and each tree with degree d has at least $N(d) = F_{d+2}$ nodes (Fact 1).
 - The total number of nodes is thus $n \ge F_1 + \ldots + F_{P(n)} = F_{P(n)+2} 1$, that is $P(n) \in O(\log n)$

- Let P(n) = maximum number of trees after the merger.
- We show that $P(n) \in O(\log n)$.
 - No trees have the same degree (why?) and each tree with degree d has at least $N(d) = F_{d+2}$ nodes (Fact 1).
 - The total number of nodes is thus $n \ge F_1 + \ldots + F_{P(n)} = F_{P(n)+2} - 1$, that is $P(n) \in O(\log n)$
- Fact 3: The number of trees in a Fibonacci tree right after merging (extracting min) is at most $P(n) = O(\log n)$.

- Fact 1: The number of nodes in a tree of degree d after merging (extracting min) is at least $N(d) = F_{d+2}$.
- Fact 2: The degree of any tree in a Fibonacci heap at any time is at most $D(m) = O(\log n)$.
- Fact 3: The number of trees in a Fibonacci tree right after merging (extracting min) is at most $P(n) = O(\log n)$.

- For the time complexity, we consider these notations:
 - Let $D(n) = \max \text{ degree of any node in a single tree with } n \text{ nodes.}$
 - Let t(H) = number of trees in the heap H before the merger.
 - m(H) = number of marked nodes in the heap H
 - Potential function $\Phi(H) = t(H) + 2m(H)$

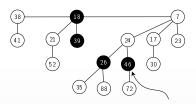
- For the time complexity, we consider these notations:
 - Let $D(n) = \max \text{ degree of any node in a single tree with } n \text{ nodes.}$
 - Let t(H) = number of trees in the heap H before the merger.
 - m(H) = number of marked nodes in the heap H
 - Potential function $\Phi(H) = t(H) + 2m(H)$
- Actual cost is $O(\log n + t(H))$
 - $O(D(n)) = O(\log n)$ work adding min's children into root list and t(H) for the linear scan (each merger takes constant time).
- The number of trees is t(H) before extract Min and at most $O(\log n)$ after the merger (Fact 3). The number of marked nodes does not change. So, we can write $\Delta(\Phi) \leq O(\log n) + 1 - t(H)$.

- For the time complexity, we consider these notations:
 - Let $D(n) = \max \text{ degree of any node in a single tree with } n \text{ nodes.}$
 - Let t(H) = number of trees in the heap H before the merger.
 - m(H) = number of marked nodes in the heap H
 - Potential function $\Phi(H) = t(H) + 2m(H)$
- Actual cost is $O(\log n + t(H))$
 - $O(D(n)) = O(\log n)$ work adding min's children into root list and t(H) for the linear scan (each merger takes constant time).
- The number of trees is t(H) before extract Min and at most $O(\log n)$ after the merger (Fact 3). The number of marked nodes does not change. So, we can write $\Delta(\Phi) \leq O(\log n) + 1 - t(H)$.
- The amortized cost will be actualCost $+ c \cdot \Delta(\Phi) =$ $O(\log n + t(H)) + c(\log n + 1 - t(H)) = O(\log n)$, assuming c is selected be large enough.

Theorem

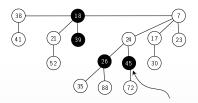
The amortized running time of extractMax in a Fibonacci heap with n keys is $O(\log n)$.

- Given a pointer to an element x, decrease key of x to k
- Case 0: min-heap property not violated
 - Decrease key of x to k.
 - The actual cost is O(1), the potential is not changed \rightarrow the amortized cost is O(1).



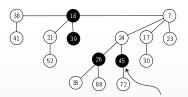
decrease 46 to 45

- Given a pointer to an element x, decrease key of x to k
- Case 0: min-heap property not violated
 - Decrease key of x to k.
 - The actual cost is O(1), the potential is not changed \rightarrow the amortized cost is O(1).

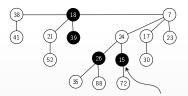


decrease 46 to 45

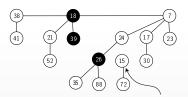
- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
 - Decrease key of x to k.
 - Cut off link between x and its parent, unmark x if marked, and mark parent of x.
 - Add tree rooted at x to root list, updating heap min pointer if needed.
 - The actual cost is O(1), t(h) is incremented and m(h) is increased by at most $1 \to \Delta(\Phi) \le 3 \to \text{amortized cost}$ is O(1).



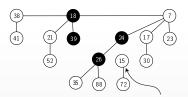
- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
 - Decrease key of x to k.
 - Cut off link between x and its parent, unmark x if marked, and mark parent of x.
 - Add tree rooted at x to root list, updating heap min pointer if needed.
 - The actual cost is O(1), t(h) is incremented and m(h) is increased by at most $1 \to \Delta(\Phi) \le 3 \to \text{amortized cost}$ is O(1).



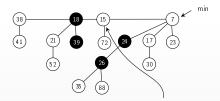
- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
 - Decrease key of x to k.
 - Cut off link between x and its parent, unmark x if marked, and mark parent of x.
 - Add tree rooted at x to root list, updating heap min pointer if needed.
 - The actual cost is O(1), t(h) is incremented and m(h) is increased by at most $1 \to \Delta(\Phi) \le 3 \to \text{amortized cost}$ is O(1).



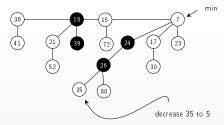
- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
 - Decrease key of x to k.
 - Cut off link between x and its parent, unmark x if marked, and mark parent of x.
 - Add tree rooted at x to root list, updating heap min pointer if needed.
 - The actual cost is O(1), t(h) is incremented and m(h) is increased by at most $1 \to \Delta(\Phi) \le 3 \to \text{amortized cost}$ is O(1).



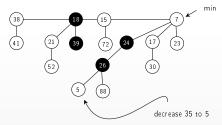
- Given a pointer to an element x, decrease key of x to k
- Case 1: parent of x is unmarked
 - Decrease key of x to k.
 - Cut off link between x and its parent, unmark x if marked, and mark parent of x.
 - Add tree rooted at x to root list, updating heap min pointer if needed.
 - The actual cost is O(1), t(h) is incremented and m(h) is increased by at most $1 \to \Delta(\Phi) \le 3 \to \text{amortized cost}$ is O(1).



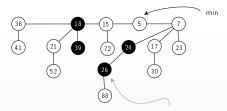
- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
 - Decrease key of x to k.
 - Cut off link between x and its parent p[x], unmark x if marked, and add it to the list of the trees.
 - cut off link between p[x] and p[p[x]], add p[x] to the list, unmark p[x]
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached



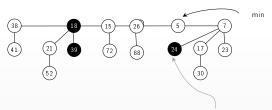
- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
 - Decrease key of x to k.
 - Cut off link between x and its parent p[x], unmark x if marked, and add it to the list of the trees.
 - cut off link between p[x] and p[p[x]], add p[x] to the list, unmark p[x]
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached



- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
 - Decrease key of x to k.
 - Cut off link between x and its parent p[x], unmark x if marked, and add it to the list of the trees.
 - cut off link between p[x] and p[p[x]], add p[x] to the list, unmark p[x]
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached

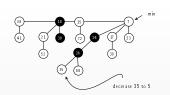


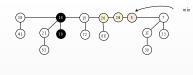
- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
 - Decrease key of x to k.
 - Cut off link between x and its parent p[x], unmark x if marked, and add it to the list of the trees.
 - cut off link between p[x] and p[p[x]], add p[x] to the list, unmark p[x]
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached



- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
 - Decrease key of x to k.
 - Cut off link between x and its parent p[x], unmark x if marked, and add it to the list of the trees.
 - cut off link between p[x] and p[p[x]], add p[x] to the list, unmark p[x]
 - If p[p[x]] unmarked, then mark it and stop
 - If p[p[x]] marked, cut off p[p[x]], unmark, and repeat until unmarked node found or root reached

- Given a pointer to an element x, decrease key of x to k
- Case 2: parent of x is marked
 - Suppose p new trees are added here $\rightarrow t(h)$ is increased by p.
 - Roots of all these trees, except possibly the first one, have been marked before the operation and are unmarked after $\rightarrow m(h)$ is decremented by at least p-1.
 - Potential changes from t(h)+2m(h) to at most (t(h)+p)+2(m(h)-(p-1))=t(h)+2m(h)-p+2. That is $\Delta(\Phi)\leq 2-p$.
 - The actual cost is O(p) (why?), and the amortized cost will be O(p) + c(2-p) = O(1) for sufficiently large c.





Theorem

The amortized running time of extractMin in a Fibonacci heap with n keys is $O(\log n)$.

Theorem

The amortized running time of decreaseKey in a Fibonacci heap with n keys is O(1).

Theorem

The amortized running time of extractMin in a Fibonacci heap with n keys is $O(\log n)$.

Theorem

The amortized running time of decreaseKey in a Fibonacci heap with n keys is O(1).

• To delete an item (with a pointer to it), simply decrease its key to $-\infty$ and call extractMin. This runs in $O(\log n)$ amortized time.

Theorem

The amortized running time of delete in a Fibonacci heap with n keys is $O(\log n)$.

Data Structures for Priority Queues

• A summary of data structures for priority queues.

Operation	Binary heap	Binomial heap	Fibonacci heap
	(worst-case)	(worst-case)	(amortized)
MAKE-HEAP	$\Theta(1)$	Θ(1)	$\Theta(1))$
INSERT	$\Theta(\log n)$	$O(\log n)$	$\Theta(1)$
MINIMUM	$\Theta(1)$	$O(\log n)$	$\Theta(1)$
EXTRACT-MIN	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$
MERGE/UNION	$\Theta(n)$	$O(\log n)$	$\Theta(1)$
DECREASE-KEY	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
DELETE	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)$