EECS 4101-5101
 Advanced Data Structures

Shahin Kamali

Topic 4a-Biomial Heaps
York University

Picture is from the cover of the textbook CLRS.

Priority queues

- A priority queue is an abstract data type formed by a set S of key-value pairs
- Basic operations include:
- insert (k) inserts a new element with key k into S
- get-Max which returns the element of S with the largest key
- extract-Max which returns the element of S with the largest key and delete it from S
- We are often given the whole data and need to build the data structure based on it.
- Any data structure for a priority queue should be constructed efficiently.

Priority queue implementation

- What is a good implementation (data structure) for priority queues?

Priority queue implementation

- What is a good implementation (data structure) for priority queues?
- You have seen binary heaps before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.

Priority queue implementation

- What is a good implementation (data structure) for priority queues?
- You have seen binary heaps before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.
- Is a balanced binary search tree a good implementation of a priority queue?

Priority queue implementation

- What is a good implementation (data structure) for priority queues?
- You have seen binary heaps before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.
- Is a balanced binary search tree a good implementation of a priority queue?
- with a little augmentation, get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.

Priority queue implementation

- What is a good implementation (data structure) for priority queues?
- You have seen binary heaps before: get-Max runs in $O(1)$ and extract-Max and insert both take $\Theta(\log n)$ for n keys.
- Is a balanced binary search tree a good implementation of a priority queue?
- with a little augmentation, get-Max runs in $O(1)$ and extract-Max and insert both can run in $\Theta(\log n)$.
- The problem with BSTs: it is costly to build them
- How long does it take to form a BST from a given set of items?
- It takes $\Omega(n \log n)$; otherwise you can sort them in $o(n \log n)$ by building the BST and doing an inoder traverse in $O(n)$.
- We know we cannot comparison-sort in $o(n \log n)$ and hence cannot build the tree in such time.

Binary heaps

- A heap is a tree data structure
- For every node i other than the root, we have key $[$ parent $[i]] \geq$ key $[i]$.
- A binary heap is a complete binary tree which can be stored using an array.
- build-heap takes $\Theta(n)$ time
- insert, extract-Max take $\Theta(\log n)$
- get-Max takes $O(1)$

100	19	36	17	3	25	1	2	7

Binary heaps

- Suppose multiple priority queues on different servers.
- Occasionally a server must be rebooted, requiring two priority queues to be merged.
- With a typical binary heap, merging requires concatenating arrays and re-running build-heap; this takes $\Theta(n): '-($

50	35	30	28	27	13	19	5	10

Binary heaps

- Suppose multiple priority queues on different servers.
- Occasionally a server must be rebooted, requiring two priority queues to be merged.
- With a typical binary heap, merging requires concatenating arrays and re-running build-heap; this takes $\Theta(n)$:'-(
- When implementing an abstract data type always consider if you need it to be mergable or not.

(5) 10

Rethinking about Data Structure

- We would like to build a data structure for priority queues that:
- supports insert, extract-Max, get-Max, and build efficiently (as in binary heaps)
- merging two priority queues takes $O(n)$

Rethinking about Data Structure

- We would like to build a data structure for priority queues that:
- supports insert, extract-Max, get-Max, and build efficiently (as in binary heaps)
- merging two priority queues takes $O(n)$
- Solution: binomial heaps which are mergable heaps that efficiently support

```
- insert \((H, x)\)
- extract-Max(H)
- get-Max(H)
- build \((A)\)
```

- union $\left(H_{1}, H_{2}\right)$ (merge)
- increase-key (H, x, k)
- delete (H, x)

Bionomial Trees

- A binomial tree is an ordered tree defined recursively
- children of each node have a specific ordering (similar to 'left' and 'right' child in binary trees).

Bionomial Trees

- A binomial tree is an ordered tree defined recursively
- children of each node have a specific ordering (similar to 'left' and 'right' child in binary trees).
- The base case for a binomial tree B_{0} is a single node
- To build B_{k}, we take two copies of B_{k-1} and let the first child of the root of the second copy be the root of the first copy.

Bionomial Trees

- A binomial tree is an ordered tree defined recursively
- children of each node have a specific ordering (similar to 'left' and 'right' child in binary trees).
- The base case for a binomial tree B_{0} is a single node
- To build B_{k}, we take two copies of B_{k-1} and let the first child of the root of the second copy be the root of the first copy.

Fun with Binomial Trees

- Fun 1: The children of the root of the binomial tree B_{k} are the binomial trees $B_{k-1}, \ldots B_{0}$.

Fun with Binomial Trees

- Fun 1: The children of the root of the binomial tree B_{k} are the binomial trees $B_{k-1}, \ldots B_{0}$.
- Induction: assume it is true for all binomial trees B_{i} with $i \leq k-1$ (base easily holds).
- The tree B_{k} has its first child as B_{k-1} (recursive construction).
- With respect to other children, it is a binomial tree B_{k-1} and hence has children B_{k-2}, \ldots, B_{0} by induction hypothesis

Fun with Bionomial Trees

- Fun 2: B_{k} has 2^{k} nodes:

Fun with Bionomial Trees

- Fun 2: B_{k} has 2^{k} nodes:
- The recursion is $N\left(B_{k}\right)=2 N\left(B_{k-1}\right), N\left(B_{0}\right)=1$

Fun with Bionomial Trees

- Fun 2: B_{k} has 2^{k} nodes:
- The recursion is $N\left(B_{k}\right)=2 N\left(B_{k-1}\right), N\left(B_{0}\right)=1$
- B_{k} has height k :

Fun with Bionomial Trees

- Fun 2: B_{k} has 2^{k} nodes:
- The recursion is $N\left(B_{k}\right)=2 N\left(B_{k-1}\right), N\left(B_{0}\right)=1$
- B_{k} has height k :
- The recursion is $h\left(B_{k}\right)=h\left(B_{k-1}\right)+1$:

Fun with Bionomial Trees

- Fun 2: B_{k} has 2^{k} nodes:
- The recursion is $N\left(B_{k}\right)=2 N\left(B_{k-1}\right), N\left(B_{0}\right)=1$
- B_{k} has height k :
- The recursion is $h\left(B_{k}\right)=h\left(B_{k-1}\right)+1$:
- Within B_{k} there are $\binom{k}{i}$ nodes at depth i.
- The recursion is $\operatorname{ch}(k, i)=\operatorname{ch}(k-1, i-1)+\operatorname{ch}(k-1, i)$
- Solving this recursion gives $c h(k, i)=\binom{k}{i}$. To get an idea of the proof, note that $\binom{k}{i}=\binom{k-1}{i-1}+\binom{k-1}{i}$

Binomial Heaps

Definition

A binomial heap is a set of binomial trees such that:

- each binomial tree is heap-ordered (key[parent $[i]] \geq k e y[i])$
- for each k there is at most one binomial tree of order k

Binomial Heaps

Definition

A binomial heap is a set of binomial trees such that:

- each binomial tree is heap-ordered (key $[$ parent $[i]] \geq k e y[i])$
- for each k there is at most one binomial tree of order k

Binomial Heaps

Definition

A binomial heap is a set of binomial trees such that:

- each binomial tree is heap-ordered (key[parent $[i]] \geq k e y[i])$
- for each k there is at most one binomial tree of order k

Binomial Heaps

Definition

A binomial heap is a set of binomial trees such that:

- each binomial tree is heap-ordered (key[parent $[i]] \geq k e y[i])$
- for each k there is at most one binomial tree of order k

Binomial Heaps

Definition

A binomial heap is a set of binomial trees such that:

- each binomial tree is heap-ordered (key[parent $[i]] \geq k e y[i])$
- for each k there is at most one binomial tree of order k

Binomial Heaps

Definition

A binomial heap is a set of binomial trees such that:

- each binomial tree is heap-ordered (key $[$ parent $[i]] \geq k e y[i])$
- for each k there is at most one binomial tree of order k

Number of Trees in Binomial Heaps

- How many trees are in a binomial heap of n nodes?

Number of Trees in Binomial Heaps

- How many trees are in a binomial heap of n nodes?
- Let x be the number of trees
- We express the number of nodes as a function of x
- The number of trees is maximized when there is one tree of order i for any $i \in[0, x-1]$ (note that no two trees of same order can exist).
- Recall that a binomial tree of order i has 2^{i} nodes.
- We have $n=1+2+\ldots+2^{x-1}=2^{x}-1$, i.e., $x=\lceil\log (n+1)\rceil$
- A binomial heap storing n keys has at most $\log (n+1)$ binomial trees.

$$
i=0 \quad i=1 \quad i=2 \quad i=3 \quad i=4
$$

Finding Max in Binomial Heaps

- For get-Max() operation, just follow the links connecting roots of binomial trees
- The maximum element in all the heap is the max node, hence root, in one of the trees
- E.g., max in the below heap is $\max \{11,99,40\}=90$

Finding Max in Binomial Heaps

- For get-Max() operation, just follow the links connecting roots of binomial trees
- The maximum element in all the heap is the max node, hence root, in one of the trees
- E.g., max in the below heap is $\max \{11,99,40\}=90$
- There are $\log (n+1)$ trees and hence the time complexity is $\Theta(\log n)$.
- It is a bit worse that $O(1)$ of get-Max() in binary heaps

Merging of Two Binomial Heaps

- Union operation: we want to merge two heaps of sizes n_{1} and n_{2}.
- Similar to merge operation in merge sort, follow the links connecting roots of the heaps, and 'merge' them into one list (i.e., one heap).
- If two trees of same order i are visited, merge them into a binomial tree of order $i+1$
- It is possible by the definition of binomial tree.
- The tree with the smaller key in its root becomes a child of the other tree.
- Two trees can be merged in $O(1)$.
- When 3 trees of order i, merge the 2 older trees (keep the new one).

Merging of Two Binomial Heaps

- There is an analogy with binary addition: add bits and carry
- Read from the least significant to the most significant bit (right to left)
- $111+011=1010$; " 1010 " means 1 tree of order 3, 0 tree of order 2,1 tree of order 1 , and 0 tree of order 0 .

Merge Time Complexity

- What is time complexity of merge?
- Each merge operation takes $O(1)$.
- For each tree rank, there will be at most one merge
- The total time complexity is $O\left(\log \left(n_{1}\right)+\log \left(n_{2}\right)\right)=O\left(2 \log \left(\max \left\{n_{1}, n_{2}\right\}\right)\right)=O(\log n)$ where n is the size after the merge

Merge Time Complexity

- What is time complexity of merge?
- Each merge operation takes $O(1)$.
- For each tree rank, there will be at most one merge
- The total time complexity is

$$
O\left(\log \left(n_{1}\right)+\log \left(n_{2}\right)\right)=O\left(2 \log \left(\max \left\{n_{1}, n_{2}\right\}\right)\right)=O(\log n) \text { where } n
$$ is the size after the merge

- It is possible to merge two binomial heaps in $O(\log n)$ where n is the number of keys after the merge.

Insert Operation

- To insert a new key x to the priority queue:
- Create a new binomial heap of size 1 (order 0) with the new key
- Return the union of the old heap with the new one (e.g., Insert(40))

Insert Operation

- To insert a new key x to the priority queue:
- Create a new binomial heap of size 1 (order 0) with the new key
- Return the union of the old heap with the new one (e.g., Insert(40))
- The time complexity is similar to merge.
- It is possible to insert a new item to a binomial heap in $O(\log n)$, which is as good as binary heaps

Extract-Max Operation

- To extract max, first search and find the maximum.
- Assuming max is in a binomial tree of order k, its children are k binomial trees of order $0,1,2, \ldots, k-1$
- Delete max and create a new binomial heap formed by these trees.
- Merge the old heap and the new one.
- The time complexity is $O(\log n)$ for finding the max and $O(\log n)$ for merging the two heaps, i.e., $O(\log n)$ in total

Extract-Max Operation

- To extract max, first search and find the maximum.
- Assuming max is in a binomial tree of order k, its children are k binomial trees of order $0,1,2, \ldots, k-1$
- Delete max and create a new binomial heap formed by these trees.
- Merge the old heap and the new one.
- The time complexity is $O(\log n)$ for finding the max and $O(\log n)$ for merging the two heaps, i.e., $O(\log n)$ in total
- It is possible to extract maximum element in a binomial heap in $O(\log n)$, which is as good as binary heaps

Bionmial Heaps Review

- Get-Max can be done in $\Theta(\log n)$ (a bit slower than $\Theta(1)$ of binary heaps).
- Merge can be done in $\Theta(\log n)$ (much better than $\Theta(n)$ of binary heaps).
- Insert and Extract-Max can be done in $\Theta(\log n)$ (similar to binary heaps)

Increase Key

- Increase (a, x) : assume you are given a pointer to a key a and want to increase it by x.

Increase Key

- Increase(a, x): assume you are given a pointer to a key a and want to increase it by x.
- Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching)

Increase Key

- Increase (a, x) : assume you are given a pointer to a key a and want to increase it by x.
- Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching)
- Increase the key and 'float' it upward until key[parent[i]] \geq key $[i]$ (e.g., increase ' 8 ' to '68').

Increase Key

- Increase (a, x) : assume you are given a pointer to a key a and want to increase it by x.
- Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching)
- Increase the key and 'float' it upward until key $[$ parent $[i]] \geq$ key $[i]$ (e.g., increase ' 8 ' to '68').

Increase Key

- Increase (a, x) : assume you are given a pointer to a key a and want to increase it by x.
- Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching)
- Increase the key and 'float' it upward until key $[$ parent $[i]] \geq$ key $[i]$ (e.g., increase ' 8 ' to '68').

Increase Key

- Increase (a, x) : assume you are given a pointer to a key a and want to increase it by x.
- Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching)
- Increase the key and 'float' it upward until key $[$ parent $[i]] \geq$ key $[i]$ (e.g., increase ' 8 ' to '68').

Increase Key

- Increase (a, x) : assume you are given a pointer to a key a and want to increase it by x.
- Note that if the pointer is not given, you need to search for the key, which takes $\Theta(n)$ in any heap (heaps are NOT good for searching)
- Increase the key and 'float' it upward until key $[$ parent $[i]] \geq$ key $[i]$ (e.g., increase ' 8 ' to ' 68 ').
- Time is proportional to the height of a binomial tree, i.e., the order of the tree
- Recall that a binomial tree of order k has 2^{k} nodes, so, the order and hence the height of any tree in the heap is $O(\log n)$.
- Increase the key of a given node can be done in time $\Theta(\log n)$.

Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it

Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it
- Call Increase-key to set the key to ∞.
- Call Extract-Max to remove the largest item; this would remove our node from the heap
- Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.

Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it
- Call Increase-key to set the key to ∞.
- Call Extract-Max to remove the largest item; this would remove our node from the heap
- Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.

Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it
- Call Increase-key to set the key to ∞.
- Call Extract-Max to remove the largest item; this would remove our node from the heap
- Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.

Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it
- Call Increase-key to set the key to ∞.
- Call Extract-Max to remove the largest item; this would remove our node from the heap
- Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.

Delete

- Delete(a): assume you are given a pointer to a key a and want to delete it
- Call Increase-key to set the key to ∞.
- Call Extract-Max to remove the largest item; this would remove our node from the heap
- Time is $O(\log n)$ for Increase-key and $O(\log n)$ for Extract-Max.
- Deleting a given node can be done in time $O(\log n)$.

Binomial Heaps Summary

- Given a key (a pointer to its node), we can increase or delete that node in $O(\log n)$.

Theorem

Priority queries can be implemented with binomial tree so that GetMax, Merge, Extract-Max, Increase (with given pointer) and delete (with given pointer) can all be performed in $O(\log n)$.

