
EECS 4101-5101

Advanced Data Structures

Shahin Kamali

Topic 4a - Biomial Heaps

York University

Picture is from the cover of the textbook CLRS.

1 / 21
EECS 4101-5101 Advanced Data Structures

▲



Priority queues

A priority queue is an abstract data type formed by a set S of
key-value pairs

Basic operations include:

insert (k) inserts a new element with key k into S
get-Max which returns the element of S with the largest key
extract-Max which returns the element of S with the largest key
and delete it from S

We are often given the whole data and need to build the data
structure based on it.

Any data structure for a priority queue should be constructed

e�ciently.

2 / 21
EECS 4101-5101 Advanced Data Structures

▲



Priority queue implementation

What is a good implementation (data structure) for priority queues?

You have seen binary heaps before: get-Max runs in O(1) and
extract-Max and insert both take Θ(log n) for n keys.

Is a balanced binary search tree a good implementation of a priority
queue?

with a little augmentation, get-Max runs in O(1) and extract-Max
and insert both can run in Θ(log n).

The problem with BSTs: it is costly to build them

How long does it take to form a BST from a given set of items?
It takes Ω(n log n); otherwise you can sort them in o(n log n) by
building the BST and doing an inoder traverse in O(n).
We know we cannot comparison-sort in o(n log n) and hence cannot
build the tree in such time.

3 / 21
EECS 4101-5101 Advanced Data Structures

▲



Priority queue implementation

What is a good implementation (data structure) for priority queues?

You have seen binary heaps before: get-Max runs in O(1) and
extract-Max and insert both take Θ(log n) for n keys.

Is a balanced binary search tree a good implementation of a priority
queue?

with a little augmentation, get-Max runs in O(1) and extract-Max
and insert both can run in Θ(log n).

The problem with BSTs: it is costly to build them

How long does it take to form a BST from a given set of items?
It takes Ω(n log n); otherwise you can sort them in o(n log n) by
building the BST and doing an inoder traverse in O(n).
We know we cannot comparison-sort in o(n log n) and hence cannot
build the tree in such time.

3 / 21
EECS 4101-5101 Advanced Data Structures

▲



Priority queue implementation

What is a good implementation (data structure) for priority queues?

You have seen binary heaps before: get-Max runs in O(1) and
extract-Max and insert both take Θ(log n) for n keys.

Is a balanced binary search tree a good implementation of a priority
queue?

with a little augmentation, get-Max runs in O(1) and extract-Max
and insert both can run in Θ(log n).

The problem with BSTs: it is costly to build them

How long does it take to form a BST from a given set of items?
It takes Ω(n log n); otherwise you can sort them in o(n log n) by
building the BST and doing an inoder traverse in O(n).
We know we cannot comparison-sort in o(n log n) and hence cannot
build the tree in such time.

3 / 21
EECS 4101-5101 Advanced Data Structures

▲



Priority queue implementation

What is a good implementation (data structure) for priority queues?

You have seen binary heaps before: get-Max runs in O(1) and
extract-Max and insert both take Θ(log n) for n keys.

Is a balanced binary search tree a good implementation of a priority
queue?

with a little augmentation, get-Max runs in O(1) and extract-Max
and insert both can run in Θ(log n).

The problem with BSTs: it is costly to build them

How long does it take to form a BST from a given set of items?
It takes Ω(n log n); otherwise you can sort them in o(n log n) by
building the BST and doing an inoder traverse in O(n).
We know we cannot comparison-sort in o(n log n) and hence cannot
build the tree in such time.

3 / 21
EECS 4101-5101 Advanced Data Structures

▲



Priority queue implementation

What is a good implementation (data structure) for priority queues?

You have seen binary heaps before: get-Max runs in O(1) and
extract-Max and insert both take Θ(log n) for n keys.

Is a balanced binary search tree a good implementation of a priority
queue?

with a little augmentation, get-Max runs in O(1) and extract-Max
and insert both can run in Θ(log n).

The problem with BSTs: it is costly to build them

How long does it take to form a BST from a given set of items?
It takes Ω(n log n); otherwise you can sort them in o(n log n) by
building the BST and doing an inoder traverse in O(n).
We know we cannot comparison-sort in o(n log n) and hence cannot
build the tree in such time.

3 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binary heaps

A heap is a tree data structure

For every node i other than the root, we have
key [parent[i ]] ≥ key [i ].

A binary heap is a complete binary tree which can be stored using
an array.

build-heap takes Θ(n) time
insert, extract-Max take Θ(log n)
get-Max takes O(1)

4 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binary heaps
Suppose multiple priority queues on di�erent servers.

Occasionally a server must be rebooted, requiring two priority
queues to be merged.

With a typical binary heap, merging requires concatenating arrays
and re-running build-heap; this takes Θ(n) :'-(

When implementing an abstract data type always consider if you
need it to be mergable or not.

5 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binary heaps
Suppose multiple priority queues on di�erent servers.

Occasionally a server must be rebooted, requiring two priority
queues to be merged.

With a typical binary heap, merging requires concatenating arrays
and re-running build-heap; this takes Θ(n) :'-(

When implementing an abstract data type always consider if you
need it to be mergable or not.

5 / 21
EECS 4101-5101 Advanced Data Structures

▲



Rethinking about Data Structure

We would like to build a data structure for priority queues that:

supports insert, extract-Max, get-Max, and build e�ciently (as in
binary heaps)
merging two priority queues takes o(n)

Solution: binomial heaps which are mergable heaps that e�ciently
support

insert(H, x)
extract-Max(H)
get-Max(H)
build(A)

union(H1,H2) (merge)

increase-key(H, x , k)

delete(H, x)

6 / 21
EECS 4101-5101 Advanced Data Structures

▲



Rethinking about Data Structure

We would like to build a data structure for priority queues that:

supports insert, extract-Max, get-Max, and build e�ciently (as in
binary heaps)
merging two priority queues takes o(n)

Solution: binomial heaps which are mergable heaps that e�ciently
support

insert(H, x)
extract-Max(H)
get-Max(H)
build(A)

union(H1,H2) (merge)

increase-key(H, x , k)

delete(H, x)

6 / 21
EECS 4101-5101 Advanced Data Structures

▲



Bionomial Trees

A binomial tree is an ordered tree de�ned recursively

children of each node have a speci�c ordering (similar to `left' and
`right' child in binary trees).

The base case for a binomial tree B0 is a single node

To build Bk , we take two copies of Bk−1 and let the �rst child of
the root of the second copy be the root of the �rst copy.

7 / 21
EECS 4101-5101 Advanced Data Structures

▲



Bionomial Trees

A binomial tree is an ordered tree de�ned recursively

children of each node have a speci�c ordering (similar to `left' and
`right' child in binary trees).

The base case for a binomial tree B0 is a single node

To build Bk , we take two copies of Bk−1 and let the �rst child of
the root of the second copy be the root of the �rst copy.

7 / 21
EECS 4101-5101 Advanced Data Structures

▲



Bionomial Trees

A binomial tree is an ordered tree de�ned recursively

children of each node have a speci�c ordering (similar to `left' and
`right' child in binary trees).

The base case for a binomial tree B0 is a single node

To build Bk , we take two copies of Bk−1 and let the �rst child of
the root of the second copy be the root of the �rst copy.

7 / 21
EECS 4101-5101 Advanced Data Structures

▲



Fun with Binomial Trees

Fun 1: The children of the root of the binomial tree Bk are the
binomial trees Bk−1, . . .B0.

Induction: assume it is true for all binomial trees Bi with i ≤ k − 1
(base easily holds).
The tree Bk has its �rst child as Bk−1 (recursive construction).
With respect to other children, it is a binomial tree Bk−1 and hence
has children Bk−2, . . . ,B0 by induction hypothesis

8 / 21
EECS 4101-5101 Advanced Data Structures

▲



Fun with Binomial Trees

Fun 1: The children of the root of the binomial tree Bk are the
binomial trees Bk−1, . . .B0.

Induction: assume it is true for all binomial trees Bi with i ≤ k − 1
(base easily holds).
The tree Bk has its �rst child as Bk−1 (recursive construction).
With respect to other children, it is a binomial tree Bk−1 and hence
has children Bk−2, . . . ,B0 by induction hypothesis

8 / 21
EECS 4101-5101 Advanced Data Structures

▲



Fun with Bionomial Trees

Fun 2: Bk has 2k nodes:

The recursion is N(Bk) = 2N(Bk−1),N(B0) = 1

Bk has height k:

The recursion is h(Bk) = h(Bk−1) + 1:

Within Bk there are
(
k
i

)
nodes at depth i .

The recursion is ch(k, i) = ch(k − 1, i − 1) + ch(k − 1, i)
Solving this recursion gives ch(k, i) =

(
k
i

)
. To get an idea of the

proof, note that
(
k
i

)
=

(
k−1
i−1

)
+

(
k−1
i

)

9 / 21
EECS 4101-5101 Advanced Data Structures

▲



Fun with Bionomial Trees

Fun 2: Bk has 2k nodes:

The recursion is N(Bk) = 2N(Bk−1),N(B0) = 1

Bk has height k:

The recursion is h(Bk) = h(Bk−1) + 1:

Within Bk there are
(
k
i

)
nodes at depth i .

The recursion is ch(k, i) = ch(k − 1, i − 1) + ch(k − 1, i)
Solving this recursion gives ch(k, i) =

(
k
i

)
. To get an idea of the

proof, note that
(
k
i

)
=

(
k−1
i−1

)
+

(
k−1
i

)

9 / 21
EECS 4101-5101 Advanced Data Structures

▲



Fun with Bionomial Trees

Fun 2: Bk has 2k nodes:

The recursion is N(Bk) = 2N(Bk−1),N(B0) = 1

Bk has height k :

The recursion is h(Bk) = h(Bk−1) + 1:

Within Bk there are
(
k
i

)
nodes at depth i .

The recursion is ch(k, i) = ch(k − 1, i − 1) + ch(k − 1, i)
Solving this recursion gives ch(k, i) =

(
k
i

)
. To get an idea of the

proof, note that
(
k
i

)
=

(
k−1
i−1

)
+

(
k−1
i

)

9 / 21
EECS 4101-5101 Advanced Data Structures

▲



Fun with Bionomial Trees

Fun 2: Bk has 2k nodes:

The recursion is N(Bk) = 2N(Bk−1),N(B0) = 1

Bk has height k :

The recursion is h(Bk) = h(Bk−1) + 1:

Within Bk there are
(
k
i

)
nodes at depth i .

The recursion is ch(k, i) = ch(k − 1, i − 1) + ch(k − 1, i)
Solving this recursion gives ch(k, i) =

(
k
i

)
. To get an idea of the

proof, note that
(
k
i

)
=

(
k−1
i−1

)
+

(
k−1
i

)

9 / 21
EECS 4101-5101 Advanced Data Structures

▲



Fun with Bionomial Trees

Fun 2: Bk has 2k nodes:

The recursion is N(Bk) = 2N(Bk−1),N(B0) = 1

Bk has height k :

The recursion is h(Bk) = h(Bk−1) + 1:

Within Bk there are
(
k
i

)
nodes at depth i .

The recursion is ch(k, i) = ch(k − 1, i − 1) + ch(k − 1, i)
Solving this recursion gives ch(k, i) =

(
k
i

)
. To get an idea of the

proof, note that
(
k
i

)
=

(
k−1
i−1

)
+

(
k−1
i

)

9 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binomial Heaps

De�nition

A binomial heap is a set of binomial trees such that:

each binomial tree is heap-ordered (key [parent[i ]] ≥ key [i ])

for each k there is at most one binomial tree of order k

10 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binomial Heaps

De�nition

A binomial heap is a set of binomial trees such that:

each binomial tree is heap-ordered (key [parent[i ]] ≥ key [i ])

for each k there is at most one binomial tree of order k

10 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binomial Heaps

De�nition

A binomial heap is a set of binomial trees such that:

each binomial tree is heap-ordered (key [parent[i ]] ≥ key [i ])

for each k there is at most one binomial tree of order k

10 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binomial Heaps

De�nition

A binomial heap is a set of binomial trees such that:

each binomial tree is heap-ordered (key [parent[i ]] ≥ key [i ])

for each k there is at most one binomial tree of order k

10 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binomial Heaps

De�nition

A binomial heap is a set of binomial trees such that:

each binomial tree is heap-ordered (key [parent[i ]] ≥ key [i ])

for each k there is at most one binomial tree of order k

10 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binomial Heaps

De�nition

A binomial heap is a set of binomial trees such that:

each binomial tree is heap-ordered (key [parent[i ]] ≥ key [i ])

for each k there is at most one binomial tree of order k

10 / 21
EECS 4101-5101 Advanced Data Structures

▲



Number of Trees in Binomial Heaps

How many trees are in a binomial heap of n nodes?

Let x be the number of trees
We express the number of nodes as a function of x
The number of trees is maximized when there is one tree of order i
for any i ∈ [0, x − 1] (note that no two trees of same order can
exist).

Recall that a binomial tree of order i has 2i nodes.
We have n = 1+ 2+ . . .+ 2x−1 = 2x − 1, i.e., x = ⌈log(n + 1)⌉

A binomial heap storing n keys has at most log(n + 1) binomial
trees.

11 / 21
EECS 4101-5101 Advanced Data Structures

▲



Number of Trees in Binomial Heaps

How many trees are in a binomial heap of n nodes?

Let x be the number of trees
We express the number of nodes as a function of x
The number of trees is maximized when there is one tree of order i
for any i ∈ [0, x − 1] (note that no two trees of same order can
exist).

Recall that a binomial tree of order i has 2i nodes.
We have n = 1+ 2+ . . .+ 2x−1 = 2x − 1, i.e., x = ⌈log(n + 1)⌉

A binomial heap storing n keys has at most log(n + 1) binomial
trees.

11 / 21
EECS 4101-5101 Advanced Data Structures

▲



Finding Max in Binomial Heaps

For get-Max() operation, just follow the links connecting roots of
binomial trees

The maximum element in all the heap is the max node, hence root,
in one of the trees
E.g., max in the below heap is max{11, 99, 40} = 90

There are log(n + 1) trees and hence the time complexity is
Θ(log n).

It is a bit worse that O(1) of get-Max() in binary heaps

12 / 21
EECS 4101-5101 Advanced Data Structures

▲



Finding Max in Binomial Heaps

For get-Max() operation, just follow the links connecting roots of
binomial trees

The maximum element in all the heap is the max node, hence root,
in one of the trees
E.g., max in the below heap is max{11, 99, 40} = 90

There are log(n + 1) trees and hence the time complexity is
Θ(log n).

It is a bit worse that O(1) of get-Max() in binary heaps

12 / 21
EECS 4101-5101 Advanced Data Structures

▲



Merging of Two Binomial Heaps
Union operation: we want to merge two heaps of sizes n1 and n2.

Similar to merge operation in merge sort, follow the links connecting
roots of the heaps, and `merge' them into one list (i.e., one heap).
If two trees of same order i are visited, merge them into a binomial
tree of order i + 1

It is possible by the de�nition of binomial tree.

The tree with the smaller key in its root becomes a child of the

other tree.

Two trees can be merged in O(1).

When 3 trees of order i , merge the 2 older trees (keep the new one).

13 / 21
EECS 4101-5101 Advanced Data Structures

▲



Merging of Two Binomial Heaps

There is an analogy with binary addition: add bits and carry

Read from the least signi�cant to the most signi�cant bit (right to
left)
111 + 011 = 1010; �1010� means 1 tree of order 3, 0 tree of order
2, 1 tree of order 1, and 0 tree of order 0.

14 / 21
EECS 4101-5101 Advanced Data Structures

▲



Merge Time Complexity

What is time complexity of merge?

Each merge operation takes O(1).
For each tree rank, there will be at most one merge
The total time complexity is
O(log(n1) + log(n2)) = O(2 log(max{n1, n2})) = O(log n) where n
is the size after the merge

It is possible to merge two binomial heaps in O(log n) where n
is the number of keys after the merge.

15 / 21
EECS 4101-5101 Advanced Data Structures

▲



Merge Time Complexity

What is time complexity of merge?

Each merge operation takes O(1).
For each tree rank, there will be at most one merge
The total time complexity is
O(log(n1) + log(n2)) = O(2 log(max{n1, n2})) = O(log n) where n
is the size after the merge

It is possible to merge two binomial heaps in O(log n) where n
is the number of keys after the merge.

15 / 21
EECS 4101-5101 Advanced Data Structures

▲



Insert Operation

To insert a new key x to the priority queue:

Create a new binomial heap of size 1 (order 0) with the new key
Return the union of the old heap with the new one (e.g., Insert(40))

The time complexity is similar to merge.

It is possible to insert a new item to a binomial heap in

O(log n), which is as good as binary heaps

16 / 21
EECS 4101-5101 Advanced Data Structures

▲



Insert Operation

To insert a new key x to the priority queue:

Create a new binomial heap of size 1 (order 0) with the new key
Return the union of the old heap with the new one (e.g., Insert(40))
The time complexity is similar to merge.

It is possible to insert a new item to a binomial heap in

O(log n), which is as good as binary heaps

16 / 21
EECS 4101-5101 Advanced Data Structures

▲



Extract-Max Operation

To extract max, �rst search and �nd the maximum.

Assuming max is in a binomial tree of order k, its children are k
binomial trees of order 0, 1, 2, . . . , k − 1
Delete max and create a new binomial heap formed by these trees.
Merge the old heap and the new one.
The time complexity is O(log n) for �nding the max and O(log n)
for merging the two heaps, i.e., O(log n) in total

It is possible to extract maximum element in a binomial heap

in O(log n), which is as good as binary heaps

17 / 21
EECS 4101-5101 Advanced Data Structures

▲



Extract-Max Operation

To extract max, �rst search and �nd the maximum.

Assuming max is in a binomial tree of order k, its children are k
binomial trees of order 0, 1, 2, . . . , k − 1
Delete max and create a new binomial heap formed by these trees.
Merge the old heap and the new one.
The time complexity is O(log n) for �nding the max and O(log n)
for merging the two heaps, i.e., O(log n) in total

It is possible to extract maximum element in a binomial heap

in O(log n), which is as good as binary heaps

17 / 21
EECS 4101-5101 Advanced Data Structures

▲



Bionmial Heaps Review

Get-Max can be done in Θ(log n) (a bit slower than Θ(1) of binary
heaps).

Merge can be done in Θ(log n) (much better than Θ(n) of binary
heaps).

Insert and Extract-Max can be done in Θ(log n) (similar to binary
heaps)

18 / 21
EECS 4101-5101 Advanced Data Structures

▲



Increase Key

Increase(a,x): assume you are given a pointer to a key a and want
to increase it by x .

Note that if the pointer is not given, you need to search for the key,
which takes Θ(n) in any heap (heaps are NOT good for searching)

Increase the key and `�oat' it upward until key [parent[i ]] ≥ key [i ]
(e.g., increase '8' to '68').

Time is proportional to the height of a binomial tree, i.e., the order
of the tree

Recall that a binomial tree of order k has 2k nodes, so, the order
and hence the height of any tree in the heap is O(log n).

Increase the key of a given node can be done in time Θ(log n).

19 / 21
EECS 4101-5101 Advanced Data Structures

▲



Increase Key

Increase(a,x): assume you are given a pointer to a key a and want
to increase it by x .

Note that if the pointer is not given, you need to search for the key,
which takes Θ(n) in any heap (heaps are NOT good for searching)

Increase the key and `�oat' it upward until key [parent[i ]] ≥ key [i ]
(e.g., increase '8' to '68').

Time is proportional to the height of a binomial tree, i.e., the order
of the tree

Recall that a binomial tree of order k has 2k nodes, so, the order
and hence the height of any tree in the heap is O(log n).

Increase the key of a given node can be done in time Θ(log n).

19 / 21
EECS 4101-5101 Advanced Data Structures

▲



Increase Key

Increase(a,x): assume you are given a pointer to a key a and want
to increase it by x .

Note that if the pointer is not given, you need to search for the key,
which takes Θ(n) in any heap (heaps are NOT good for searching)

Increase the key and `�oat' it upward until key [parent[i ]] ≥ key [i ]
(e.g., increase '8' to '68').

Time is proportional to the height of a binomial tree, i.e., the order
of the tree

Recall that a binomial tree of order k has 2k nodes, so, the order
and hence the height of any tree in the heap is O(log n).

Increase the key of a given node can be done in time Θ(log n).

19 / 21
EECS 4101-5101 Advanced Data Structures

▲



Increase Key

Increase(a,x): assume you are given a pointer to a key a and want
to increase it by x .

Note that if the pointer is not given, you need to search for the key,
which takes Θ(n) in any heap (heaps are NOT good for searching)

Increase the key and `�oat' it upward until key [parent[i ]] ≥ key [i ]
(e.g., increase '8' to '68').

Time is proportional to the height of a binomial tree, i.e., the order
of the tree

Recall that a binomial tree of order k has 2k nodes, so, the order
and hence the height of any tree in the heap is O(log n).

Increase the key of a given node can be done in time Θ(log n).

19 / 21
EECS 4101-5101 Advanced Data Structures

▲



Increase Key

Increase(a,x): assume you are given a pointer to a key a and want
to increase it by x .

Note that if the pointer is not given, you need to search for the key,
which takes Θ(n) in any heap (heaps are NOT good for searching)

Increase the key and `�oat' it upward until key [parent[i ]] ≥ key [i ]
(e.g., increase '8' to '68').

Time is proportional to the height of a binomial tree, i.e., the order
of the tree

Recall that a binomial tree of order k has 2k nodes, so, the order
and hence the height of any tree in the heap is O(log n).

Increase the key of a given node can be done in time Θ(log n).

19 / 21
EECS 4101-5101 Advanced Data Structures

▲



Increase Key

Increase(a,x): assume you are given a pointer to a key a and want
to increase it by x .

Note that if the pointer is not given, you need to search for the key,
which takes Θ(n) in any heap (heaps are NOT good for searching)

Increase the key and `�oat' it upward until key [parent[i ]] ≥ key [i ]
(e.g., increase '8' to '68').

Time is proportional to the height of a binomial tree, i.e., the order
of the tree

Recall that a binomial tree of order k has 2k nodes, so, the order
and hence the height of any tree in the heap is O(log n).

Increase the key of a given node can be done in time Θ(log n).

19 / 21
EECS 4101-5101 Advanced Data Structures

▲



Increase Key

Increase(a,x): assume you are given a pointer to a key a and want
to increase it by x .

Note that if the pointer is not given, you need to search for the key,
which takes Θ(n) in any heap (heaps are NOT good for searching)

Increase the key and `�oat' it upward until key [parent[i ]] ≥ key [i ]
(e.g., increase '8' to '68').

Time is proportional to the height of a binomial tree, i.e., the order
of the tree

Recall that a binomial tree of order k has 2k nodes, so, the order
and hence the height of any tree in the heap is O(log n).

Increase the key of a given node can be done in time Θ(log n).

19 / 21
EECS 4101-5101 Advanced Data Structures

▲



Delete

Delete(a): assume you are given a pointer to a key a and want to
delete it

Call Increase-key to set the key to ∞.
Call Extract-Max to remove the largest item; this would remove our
node from the heap

Time is O(log n) for Increase-key and O(log n) for Extract-Max.

Deleting a given node can be done in time O(log n).

20 / 21
EECS 4101-5101 Advanced Data Structures

▲



Delete

Delete(a): assume you are given a pointer to a key a and want to
delete it

Call Increase-key to set the key to ∞.
Call Extract-Max to remove the largest item; this would remove our
node from the heap

Time is O(log n) for Increase-key and O(log n) for Extract-Max.

Deleting a given node can be done in time O(log n).

20 / 21
EECS 4101-5101 Advanced Data Structures

▲



Delete

Delete(a): assume you are given a pointer to a key a and want to
delete it

Call Increase-key to set the key to ∞.
Call Extract-Max to remove the largest item; this would remove our
node from the heap

Time is O(log n) for Increase-key and O(log n) for Extract-Max.

Deleting a given node can be done in time O(log n).

20 / 21
EECS 4101-5101 Advanced Data Structures

▲



Delete

Delete(a): assume you are given a pointer to a key a and want to
delete it

Call Increase-key to set the key to ∞.
Call Extract-Max to remove the largest item; this would remove our
node from the heap

Time is O(log n) for Increase-key and O(log n) for Extract-Max.

Deleting a given node can be done in time O(log n).

20 / 21
EECS 4101-5101 Advanced Data Structures

▲



Delete

Delete(a): assume you are given a pointer to a key a and want to
delete it

Call Increase-key to set the key to ∞.
Call Extract-Max to remove the largest item; this would remove our
node from the heap

Time is O(log n) for Increase-key and O(log n) for Extract-Max.

Deleting a given node can be done in time O(log n).

20 / 21
EECS 4101-5101 Advanced Data Structures

▲



Delete

Delete(a): assume you are given a pointer to a key a and want to
delete it

Call Increase-key to set the key to ∞.
Call Extract-Max to remove the largest item; this would remove our
node from the heap

Time is O(log n) for Increase-key and O(log n) for Extract-Max.

Deleting a given node can be done in time O(log n).

20 / 21
EECS 4101-5101 Advanced Data Structures

▲



Binomial Heaps Summary

Given a key (a pointer to its node), we can increase or delete that
node in O(log n).

Theorem

Priority queries can be implemented with binomial tree so that Get-

Max, Merge, Extract-Max, Increase (with given pointer) and delete

(with given pointer) can all be performed in O(log n).

21 / 21
EECS 4101-5101 Advanced Data Structures

▲


