#### EECS 4101-5101 Advanced Data Structures



Topic 3 - Multidimensional Dictionaries

York University

Picture is from the cover of the textbook CLRS.





### Multi-Dimensional Data

- Various applications
  - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive,...)
  - Attributes of an employee (name, age, salary,  $\cdots$ )



### Multi-Dimensional Data

- Various applications
  - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive,...)
  - $\bullet\,$  Attributes of an employee (name, age, salary,  $\cdots)$
- Dictionary for multi-dimensional data A collection of *d*-dimensional items
   Each item has *d* aspects (coordinates): (x<sub>0</sub>, x<sub>1</sub>, ..., x<sub>d-1</sub>)
   Operations: insert, delete, range-search query



# Multi-Dimensional Data

- Various applications
  - Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive,...)
  - $\bullet\,$  Attributes of an employee (name, age, salary,  $\cdots)$
- Dictionary for multi-dimensional data
   A collection of *d*-dimensional items
   Each item has *d* aspects (coordinates): (x<sub>0</sub>, x<sub>1</sub>, · · · , x<sub>d-1</sub>)
   Operations: insert, delete, range-search query
- (Orthogonal) Range-search query: specify a range (interval) for certain aspects, and find all the items whose aspects fall within given ranges.

Example: laptops with screen size between 11 and 13 inches, RAM between 8 and 16 GB, price between 1,500 and 2,000 CAD



### Multi-Dimensional Data

- Each item has d aspects (coordinates):  $(x_0, x_1, \dots, x_{d-1})$
- Aspect values  $(x_i)$  are numbers
- Each item corresponds to a point in *d*-dimensional space
- We concentrate on d = 2, i.e., points in Euclidean plane





# **One-Dimensional Range Search**

- First solution: ordered arrays
  - Running time:  $O(\log n + k)$ , k: number of reported items
  - Problem: does not generalize to higher dimensions



## **One-Dimensional Range Search**

- First solution: ordered arrays
  - Running time:  $O(\log n + k)$ , k: number of reported items
  - Problem: does not generalize to higher dimensions

• Second solution: balanced BST (e.g., AVL tree)

```
BST-RangeSearch(T, k_1, k_2)
T: A balanced search tree, k_1, k_2: search keys
Report keys in T that are in range [k_1, k_2]
1
      if T = nil then return
      if key(T) < k_1 then
2.
3.
            BST-RangeSearch(T.right, k_1, k_2)
      if key(T) > k_2 then
4.
5.
            BST-RangeSearch(T.left, k_1, k_2)
       if k_1 \leq key(T) \leq k_2 then
6.
7.
           BST-RangeSearch(T.left, k_1, k_2)
8.
           report key(T)
           BST-RangeSearch(T.right, k_1, k_2)
9.
```



### Range Search example

BST-RangeSearch(T, 30, 65)





### Range Search example

BST-RangeSearch(T, 30, 65)

Nodes either on boundary, inside, or outside.





### Range Search example

BST-RangeSearch(T, 30, 65)

Nodes either on boundary, inside, or outside.



Note: Not every boundary node is returned.





# **One-Dimensional Range Search**

- **P**<sub>1</sub>: path traversed in BST-Search(T, k<sub>1</sub>)
- P2: path traversed in BST-Search(T, k2)
- Partition nodes of T into three groups:
  - **1** boundary nodes: nodes in  $P_1$  or  $P_2$
  - inside nodes: non-boundary nodes that belong to either (a subtree rooted at a right child of a node of P<sub>1</sub>) or (a subtree rooted at a left child of a node of P<sub>2</sub>)
  - outside nodes: non-boundary nodes that belong to either (a subtree rooted at a left child of a node of P<sub>1</sub>) or (a subtree rooted at a right child of a node of P<sub>2</sub>)



## **One-Dimensional Range Search**

- **P**<sub>1</sub>: path traversed in BST-Search(T, k<sub>1</sub>)
- P<sub>2</sub>: path traversed in BST-Search(T, k<sub>2</sub>)
- **k**: number of reported items
- Nodes visited during the search:
  - O(log n) boundary nodes
  - O(k) inside nodes
  - No outside nodes
- Running time  $O(\log n + k)$



# 2-Dimensional Range Search

- Each item has 2 aspects (coordinates): (x<sub>i</sub>, y<sub>i</sub>)
- Each item corresponds to a point in Euclidean plane
- Options for implementing *d*-dimensional dictionaries:
  - Reduce to one-dimensional dictionary: combine the *d*-dimensional key into one key



# 2-Dimensional Range Search

- Each item has 2 aspects (coordinates): (x<sub>i</sub>, y<sub>i</sub>)
- Each item corresponds to a point in Euclidean plane
- Options for implementing *d*-dimensional dictionaries:
  - Reduce to one-dimensional dictionary: combine the *d*-dimensional key into one key
     Problem: Range search on one aspect is not straightforward



## 2-Dimensional Range Search

- Each item has 2 aspects (coordinates): (x<sub>i</sub>, y<sub>i</sub>)
- Each item corresponds to a point in Euclidean plane
- Options for implementing *d*-dimensional dictionaries:
  - Reduce to one-dimensional dictionary: combine the *d*-dimensional key into one key
    - Problem: Range search on one aspect is not straightforward
  - Use several dictionaries: one for each dimension Problem: inefficient, wastes space
  - Partition trees
    - A tree with n leaves, each leaf corresponds to an item
    - Each internal node corresponds to a region
    - quadtrees, kd-trees
  - multi-dimensional range trees



# Quadtrees

- We have *n* points  $P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$  in the plane
- How to build a quadtree on P:
  - Find a square *R* that contains all the points of *P* (We can compute minimum and maximum *x* and *y* values among *n* points)
  - Root of the quadtree corresponds to R
  - Split: Partition *R* into four equal subsquares (quadrants), each correspond to a child of *R*
  - Recursively repeat this process for any node that contains more than one point
  - Points on split lines belong to left/bottom side
  - Each leaf stores (at most) one point
  - We can delete a leaf that does not contain any point



#### Quadtrees





#### Quadtrees







#### Quadtrees





#### Quadtrees





#### Quadtrees





#### Quadtrees





#### Quadtrees





#### Quadtrees





#### Quadtrees





#### Quadtrees





#### Quadtrees





## Quadtree Operations

- Search: Analogous to binary search trees
- Insert:
  - Search for the point
  - Split the leaf if there are two points
- Delete:
  - Search for the point
  - Remove the point
  - Walk back up in the tree to discard unnecessary splits



### Quadtree: Range Search

QTree-RangeSearch(T, R)T: A quadtree node, R: Query rectangle1. if (T is a leaf) then2. if (T.point  $\in R$ ) then3. report T.point4. for each child C of T do5. if C.region  $\cap R \neq \emptyset$  then6. QTree-RangeSearch(C, R)

- Complexity of range search:  $\Theta(n+h)$  even if the answer is  $\emptyset$
- spread factor of points P :  $\beta(P) = d_{max}/d_{min}$
- $d_{max}(d_{min})$ : maximum (minimum) distance between two points in P
- height of quadtree:  $h \in \Theta(\log_2 \frac{d_{max}}{d_{min}})$
- Complexity to build initial tree:  $\Theta(nh)$



# Quadtree Conclusion

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (usually the boundary box is padded to get a power of two).
- Space wasteful
- Major drawback: can have very large height for certain nonuniform distributions of points
- Easily generates to higher dimensions (octrees, etc. ).



- We have *n* points  $P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$
- Quadtrees split square into quadrants regardless of where points actually lie
- kd-tree idea: Split the points into two (roughly) equal subsets
- How to build a kd-tree on *P*:
  - Split P into two equal subsets using a vertical line
  - Split each of the two subsets into two equal pieces using horizontal lines
  - Continue splitting, alternating vertical and horizontal lines, until every point is in a separate region
- Complexity:  $\Theta(n \log n)$ , height of the tree:  $\Theta(\log n)$



- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree





- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree





- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree





- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree





- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree





# KD-tree Construction (details)

- Initialize:
  - Sort the *n* points according to their *x*-coordinates and store in  $X \rightarrow O(n \log n)$
  - Sort the n points according to their y-coordinates and store in  $Y \rightarrow O(n \log n)$



# KD-tree Construction (details)

- Initialize:
  - Sort the *n* points according to their *x*-coordinates and store in  $X \rightarrow O(n \log n)$
  - Sort the *n* points according to their *y*-coordinates and store in  $Y \rightarrow O(n \log n)$
- Recursive process on X, Y:
  - The root of the tree is the point with median x-coordinate (index  $i = \lfloor n/2 \rfloor$  in the sorted list X)
  - Let  $X_1 = X[1..i-1]$  ,  $X_2 = X[i+1..n]$
  - Partition Y to  $Y_1$ ,  $Y_2$  such that  $Y_1 = X_1$  and  $Y_2 = X_2$  (but in the sorted order according to y-coordinate).
  - Recurs on  $(X_1, Y_1)$  and  $(X_2, Y_2)$  but alternate the coordinate; these form the left and right subtrees.





# **KD-tree Construction (details)**

- Initialize:
  - Sort the *n* points according to their *x*-coordinates and store in *X*  $\rightarrow O(n \log n)$
  - Sort the *n* points according to their *y*-coordinates and store in *Y*  $\rightarrow O(n \log n)$
- Recursive process on X, Y:
  - The root of the tree is the point with median x-coordinate (index  $i = \lfloor n/2 \rfloor$  in the sorted list X)
  - Let  $X_1 = X[1..i-1]$ ,  $X_2 = X[i+1..n]$
  - Partition Y to  $Y_1, Y_2$  such that  $Y_1 = X_1$  and  $Y_2 = X_2$  (but in the sorted order according to y-coordinate).
  - Recurs on (X<sub>1</sub>, Y<sub>1</sub>) and (X<sub>2</sub>, Y<sub>2</sub>) but alternate the coordinate; these form the left and right subtrees.
- Time analysis:
  - The partitioning takes O(n) time. The recursion is T(n) = 2T(n/2) + O(n) which solves as  $T(n) = \Theta(n \log n)$ . The initialization is also  $\Theta(n \log n)$ . EECS 4101-5101 Advanced Data Structures 15 / 27



### **KD-tree Operations**

- Search: as in any binary search tree (check x or y coordinate on even/odd levels of the tree, respectively).
- Insert, Delete: not hard. However they may leave the tree unbalanced. Therefore we need to do (periodic) rebalancing.
  - A rotation is equivalent to shifting a vertical line to its left/right point or shifting the horizontal line to its below/above point.





### **KD-tree Operations**

- Search: as in any binary search tree (check x or y coordinate on even/odd levels of the tree, respectively).
- Insert, Delete: not hard. However they may leave the tree unbalanced. Therefore we need to do (periodic) rebalancing.
  - A rotation is equivalent to shifting a vertical line to its left/right point or shifting the horizontal line to its below/above point.





# kd-tree: Range Search Complexity

- The complexity is O(k + U) where k is the number of keys reported and U is the number of regions (tree nodes) we go to but unsuccessfully
  - Here,  $U = \{p_8, p_1, p_{10}, p_5, p_{11}, p_{12}\}$
  - U corresponds to the number of regions which intersect but are not fully in R
  - Those regions have to intersect one of the four sides of R





# kd-tree: Range Search Complexity

- Q(n): Maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line
- Q(n) satisfies the following recurrence relation:

$$Q(n) = 2Q(n/4) + O(1)$$

• It solves to 
$$Q(n) = O(\sqrt{n})$$

• Therefore, the complexity of range search in kd-trees is  $O(k + \sqrt{n})$ 





# kd-tree: Range Search Complexity

- Q(n): Maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line
- Q(n) satisfies the following recurrence relation:

$$Q(n) = 2Q(n/4) + O(1)$$

• It solves to 
$$Q(n) = O(\sqrt{n})$$

• Therefore, the complexity of range search in kd-trees is  $O(k + \sqrt{n})$ 







## kd-tree: Higher Dimensions

- kd-trees for *d*-dimensional space
  - At the root the point set is partitioned based on the first coordinate
  - At the children of the root the partition is based on the second coordinate
  - ullet At depth d-1 the partition is based on the last coordinate
  - At depth *d* we start all over again, partitioning on first coordinate
- Storage: O(n)
- Construction time:  $O(n \log n)$
- Insertion/deletion:  $O(\log n)$
- Range query time:  $O(n^{1-1/d} + k)$

(Note: *d* is considered to be a constant.)



# Range Trees

- We have *n* points  $P = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$  in the plane
- A range tree is a tree of trees (a multi-level data structure)
- How to build a range tree on P:
  - Build a balanced binary search tree τ determined by the x-coordinates of the n points
  - For every node v ∈ τ, build a balanced binary search tree τ<sub>assoc</sub>(v) (associated structure of τ) determined by the y-coordinates of the nodes in the subtree of τ with root node v



### Range Tree Structure





### Range Tree Structure

• There is one primary tree (x-tree) and n secondary trees (y-trees).





### Range Tree Structure

• There is one primary tree (x-tree) and n secondary trees (y-trees).





### Range Trees: Size & Construction

• The size of the primary tree is O(n) for n points.



- The size of the primary tree is O(n) for n points.
- Each point x is associated with a leaf in the primary tree  $\tau$ .
  - From the leaf to the root of  $\tau$ , the secondary tree associated with any node includes x.



- The size of the primary tree is O(n) for n points.
- Each point x is associated with a leaf in the primary tree  $\tau$ .
  - From the leaf to the root of  $\tau$ , the secondary tree associated with any node includes x.
  - So, x is present in  $\Theta(\log n)$  secondary trees.
  - Over all points, all secondary trees take  $\Theta(n \log n)$  space.



- The size of the primary tree is O(n) for n points.
- Each point x is associated with a leaf in the primary tree  $\tau$ .
  - From the leaf to the root of  $\tau$ , the secondary tree associated with any node includes x.
  - So, x is present in  $\Theta(\log n)$  secondary trees.
  - Over all points, all secondary trees take  $\Theta(n \log n)$  space.
- A 2d-range tree of n points take  $O(n \log n)$  space
  - It is slightly more than O(n) of kd-trees.



- The size of the primary tree is O(n) for n points.
- Each point x is associated with a leaf in the primary tree  $\tau$ .
  - From the leaf to the root of  $\tau$ , the secondary tree associated with any node includes x.
  - So, x is present in  $\Theta(\log n)$  secondary trees.
  - Over all points, all secondary trees take  $\Theta(n \log n)$  space.
- A 2d-range tree of n points take  $O(n \log n)$  space
  - It is slightly more than O(n) of kd-trees.
- A 2d-range tree of n points can be constructured in  $O(n \log n)$ 
  - Details omitted here.



### **Range Trees: Operations**

- Search: trivially as in a binary search tree
- Insert: insert point in the primary tree au by x-coordinate
  - From inserted leaf, walk back up to the root and insert the point in all associated trees  $\tau_{assoc}(v)$  of nodes v on path to the root.
- Delete: analogous to insertion.
- Note: re-balancing is a problem.



### Range Trees: Range Search

- To perform a range search query  $R = [x_1, x_2] \times [y_1, y_2]$ :
  - Perform a range search (on the x-coordinates) for the interval  $[x_1, x_2]$  in  $\tau$  (BST-RangeSearch $(\tau, x_1, x_2)$ )
  - For every outside node, do nothing.
  - For every "top" inside node v, perform a range search (on the y-coordinates) for the interval  $[y_1, y_2]$  in  $\tau_{assoc}(v)$ . During the range search of  $\tau_{assoc}(v)$ , do not check x-coordinates (they are within range).
  - For every boundary node, test to see if the corresponding point is within the region *R*.



#### Range Trees: Range Search

• E.g., range search  $[4,59]\times[14,35]$ 

- Search for range [4, 59] in  $\tau$ . Do nothing for outside nodes (e.g.,  $p_{12}$ ,  $p_{28}$ ).
- Boundary nodes are checked individually (e.g.,  $p_{10} = (10, 8)$  is not in the range).
- Do a range search on y-coordinate on trees associated with top nodes (e.g.,  $p_6$ ,  $p_0$ ).





#### Range Trees: Range Search

 $\bullet~$  E.g., range search  $[4,59]\times[14,35]$ 

- Search for range [4, 59] in  $\tau$ . Do nothing for outside nodes (e.g.,  $p_{12}$ ,  $p_{28}$ ).
- Boundary nodes are checked individually (e.g.,  $p_{10} = (10, 8)$  is not in the range).
- Do a range search on y-coordinate on trees associated with top nodes (e.g.,  $p_6$ ,  $p_0$ ).
- There is an overhead of  $O(\log n)$  for 1-dimensional search on each top node, and there are  $O(\log n)$  top nodes  $\rightarrow O(\log^2 n)$  time complexity



26 / 27



# **Range Trees: Higher Dimensions**

- Range trees for *d*-dimensional space
  - Storage:  $O(n(\log n)^{d-1})$
  - Construction time: O(n(log n)<sup>d-1</sup>)
    Range query time: O((log n)<sup>d</sup> + k)

(Note: *d* is considered to be a constant.)





# Range Trees: Higher Dimensions

- Space/time trade-off
  - Storage:  $O(n(\log n)^{d-1})$
  - Construction time:  $O(n(\log n)^{d-1})$
  - Range query time:  $O((\log n)^d + k)$

(Note: *d* is considered to be a constant.)

kd-trees: O(n)

kd-trees:  $O(n \log n)$ kd-trees:  $O(n^{1-1/d} + k)$