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Range Search Query

Multi-Dimensional Data

Various applications

Attributes of a product (laptop: price, screen size, processor speed,
RAM, hard drive,· · · )
Attributes of an employee (name, age, salary,· · · )

Dictionary for multi-dimensional data
A collection of d-dimensional items
Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)
Operations: insert, delete, range-search query

(Orthogonal) Range-search query: specify a range (interval) for
certain aspects, and �nd all the items whose aspects fall within
given ranges.
Example: laptops with screen size between 11 and 13 inches, RAM
between 8 and 16 GB, price between 1,500 and 2,000 CAD
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Range Search Query

Multi-Dimensional Data

Each item has d aspects (coordinates): (x0, x1, · · · , xd−1)

Aspect values (xi ) are numbers

Each item corresponds to a point in d-dimensional space

We concentrate on d = 2, i.e., points in Euclidean plane
price (CAD)

1100 1300 1400 1500 1600 1700 1800
processor speed (MHz)

600

800

1000

1200

(1200,1000)

range-search query (1350 ≤ x ≤ 1550, 700 ≤ y ≤ 1100)

item: ordered pair (x , y) ∈ R× R
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Range Search Query

One-Dimensional Range Search

First solution: ordered arrays

Running time: O(log n + k), k: number of reported items
Problem: does not generalize to higher dimensions

Second solution: balanced BST (e.g., AVL tree)

BST-RangeSearch(T , k1, k2)
T : A balanced search tree, k1, k2: search keys
Report keys in T that are in range [k1, k2]
1. if T = nil then return

2. if key(T ) < k1 then

3. BST-RangeSearch(T .right, k1, k2)
4. if key(T ) > k2 then

5. BST-RangeSearch(T .left, k1, k2)
6. if k1 ≤ key(T ) ≤ k2 then

7. BST-RangeSearch(T .left, k1, k2)
8. report key(T )
9. BST-RangeSearch(T .right, k1, k2)
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Range Search Query

Range Search example
BST-RangeSearch(T , 30, 65)

Nodes either on boundary, inside, or outside.

52

35

15

9 27

42

39 46

74

65

60 69

97

86 99

Note: Not every boundary node is returned.
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Range Search Query

One-Dimensional Range Search

P1: path traversed in BST-Search(T , k1)

P2: path traversed in BST-Search(T , k2)

Partition nodes of T into three groups:

1 boundary nodes: nodes in P1 or P2

2 inside nodes: non-boundary nodes that belong to either (a subtree
rooted at a right child of a node of P1) or (a subtree rooted at a
left child of a node of P2)

3 outside nodes: non-boundary nodes that belong to either (a subtree
rooted at a left child of a node of P1) or (a subtree rooted at a
right child of a node of P2)
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Range Search Query

One-Dimensional Range Search

P1: path traversed in BST-Search(T , k1)

P2: path traversed in BST-Search(T , k2)

k : number of reported items

Nodes visited during the search:

O(log n) boundary nodes
O(k) inside nodes
No outside nodes

Running time O(log n + k)
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Range Search Query

2-Dimensional Range Search

Each item has 2 aspects (coordinates): (xi , yi )

Each item corresponds to a point in Euclidean plane

Options for implementing d-dimensional dictionaries:

Reduce to one-dimensional dictionary: combine the d-dimensional
key into one key

Problem: Range search on one aspect is not straightforward
Use several dictionaries: one for each dimension
Problem: ine�cient, wastes space
Partition trees

A tree with n leaves, each leaf corresponds to an item

Each internal node corresponds to a region

quadtrees, kd-trees

multi-dimensional range trees
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Range Search Query

Quadtrees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

How to build a quadtree on P:

Find a square R that contains all the points of P (We can compute
minimum and maximum x and y values among n points)
Root of the quadtree corresponds to R
Split: Partition R into four equal subsquares (quadrants), each
correspond to a child of R
Recursively repeat this process for any node that contains more
than one point
Points on split lines belong to left/bottom side
Each leaf stores (at most) one point
We can delete a leaf that does not contain any point
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Range Search Query

Quadtrees

Example: We have 13 points P = {(x0, y0), (x1, y1), · · · , (x12, y12)}
in the plane
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Range Search Query

Quadtree Operations

Search: Analogous to binary search trees

Insert:

Search for the point
Split the leaf if there are two points

Delete:

Search for the point
Remove the point
Walk back up in the tree to discard unnecessary splits
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Range Search Query

Quadtree: Range Search

QTree-RangeSearch(T ,R)
T : A quadtree node, R: Query rectangle
1. if (T is a leaf) then
2. if (T .point ∈ R) then
3. report T .point
4. for each child C of T do

5. if C .region ∩ R ̸= ∅ then

6. QTree-RangeSearch(C ,R)

Complexity of range search: Θ(n + h) even if the answer is ∅
spread factor of points P : β(P) = dmax/dmin

dmax(dmin): maximum (minimum) distance between two points in P

height of quadtree: h ∈ Θ(log
2

dmax

dmin
)

Complexity to build initial tree: Θ(nh)
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Range Search Query

Quadtree Conclusion

Very easy to compute and handle

No complicated arithmetic, only divisions by 2 (usually the boundary
box is padded to get a power of two).

Space wasteful

Major drawback: can have very large height for certain nonuniform
distributions of points

Easily generates to higher dimensions (octrees, etc. ).
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Range Search Query

kd-trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)}
Quadtrees split square into quadrants regardless of where points
actually lie

kd-tree idea: Split the points into two (roughly) equal subsets

How to build a kd-tree on P:

Split P into two equal subsets using a vertical line
Split each of the two subsets into two equal pieces using horizontal
lines
Continue splitting, alternating vertical and horizontal lines, until
every point is in a separate region

Complexity: Θ(n log n), height of the tree: Θ(log n)
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Range Search Query

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

14 / 27
EECS 4101-5101 Advanced Data Structures

▲



Range Search Query

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

14 / 27
EECS 4101-5101 Advanced Data Structures

▲



Range Search Query

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

14 / 27
EECS 4101-5101 Advanced Data Structures

▲



Range Search Query

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

14 / 27
EECS 4101-5101 Advanced Data Structures

▲



Range Search Query

kd-trees

kd-tree idea: Split the points into two (roughly) equal subsets

A balanced binary tree

p0

p1

p2

p3

p4

p5p6

p7

p8

p9

p8

p1

p2

p0

p9

p3

p5

p6

p7

p4

14 / 27
EECS 4101-5101 Advanced Data Structures

▲



Range Search Query

KD-tree Construction (details)

Initialize:

Sort the n points according to their x-coordinates and store in X
→ O(n log n)
Sort the n points according to their y -coordinates and store in Y
→ O(n log n)

Recursive process on X ,Y :

The root of the tree is the point with median x-coordinate (index
i = ⌊n/2⌋ in the sorted list X )
Let X1 = X [1..i − 1] , X2 = X [i + 1..n]
Partition Y to Y1,Y2 such that Y1 = X1 and Y2 = X2 (but in the
sorted order according to y-coordinate).
Recurs on (X1,Y1) and (X2,Y2) but alternate the coordinate; these
form the left and right subtrees.

Time analysis:

The partitioning takes O(n) time. The recursion is
T (n) = 2T (n/2) + O(n) which solves as T (n) = Θ(n log n). The
initialization is also Θ(n log n).
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Range Search Query

KD-tree Operations

Search: as in any binary search tree (check x or y coordinate on
even/odd levels of the tree, respectively).

Insert, Delete: not hard. However they may leave the tree
unbalanced. Therefore we need to do (periodic) rebalancing.

A rotation is equivalent to shifting a vertical line to its left/right
point or shifting the horizontal line to its below/above point.
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Range Search Query

kd-tree: Range Search Complexity

The complexity is O(k + U) where k is the number of keys reported
and U is the number of regions (tree nodes) we go to but
unsuccessfully

Here, U = {p8, p1, p10, p5, p11, p12}
U corresponds to the number of regions which intersect but are not
fully in R
Those regions have to intersect one of the four sides of R
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Range Search Query

kd-tree: Range Search Complexity

Q(n): Maximum number of regions in a kd-tree with n points that
intersect a vertical (horizontal) line

Q(n) satis�es the following recurrence relation:

Q(n) = 2Q(n/4) + O(1)

It solves to Q(n) = O(
√
n)

Therefore, the complexity of range search in kd-trees is O(k +
√
n)
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Range Search Query

kd-tree: Higher Dimensions

kd-trees for d-dimensional space

At the root the point set is partitioned based on the �rst coordinate
At the children of the root the partition is based on the second
coordinate
At depth d − 1 the partition is based on the last coordinate
At depth d we start all over again, partitioning on �rst coordinate

Storage: O(n)

Construction time: O(n log n)

Insertion/deletion: O(log n)

Range query time: O(n1−1/d + k)

(Note: d is considered to be a constant.)
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Range Search Query

Range Trees

We have n points P = {(x0, y0), (x1, y1), · · · , (xn−1, yn−1)} in the
plane

A range tree is a tree of trees (a multi-level data structure)

How to build a range tree on P:

Build a balanced binary search tree τ determined by the
x-coordinates of the n points
For every node v ∈ τ , build a balanced binary search tree τassoc(v)
(associated structure of τ) determined by the y -coordinates of the
nodes in the subtree of τ with root node v
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Range Search Query

Range Tree Structure

Section 5.3
RANGE TREES

T

P(ν)

ν

Tassoc(ν)

P(ν)

binary search tree
on y-coordinates

binary search tree on
x-coordinates

Figure 5.6
A 2-dimensional range tree

returns the root of a 2-dimensional range tree T of P. As in the previous section,
we assume that no two points have the same x- or y-coordinate. We shall get rid
of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)
Input. A set P of points in the plane.
Output. The root of a 2-dimensional range tree.
1. Construct the associated structure: Build a binary search tree Tassoc on the

set Py of y-coordinates of the points in P. Store at the leaves of Tassoc not
just the y-coordinate of the points in Py, but the points themselves.

2. if P contains only one point
3. then Create a leaf ν storing this point, and make Tassoc the associated

structure of ν .
4. else Split P into two subsets; one subset Pleft contains the points with

x-coordinate less than or equal to xmid, the median x-coordinate,
and the other subset Pright contains the points with x-coordinate
larger than xmid.

5. νleft ← BUILD2DRANGETREE(Pleft)
6. νright ← BUILD2DRANGETREE(Pright)
7. Create a node ν storing xmid, make νleft the left child of ν , make

νright the right child of ν , and make Tassoc the associated structure
of ν .

8. return ν

Note that in the leaves of the associated structures we do not just store the
y-coordinate of the points but the points themselves. This is important because,
when searching the associated structures, we need to report the points and not
just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(n logn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of T, 107
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Range Search Query

Range Tree Structure

There is one primary tree (x-tree) and n secondary trees

(y -trees).
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Range Search Query

Range Trees: Size & Construction

The size of the primary tree is O(n) for n points.

Each point x is associated with a leaf in the primary tree τ .

From the leaf to the root of τ , the secondary tree associated with
any node includes x .
So, x is present in Θ(log n) secondary trees.
Over all points, all secondary trees take Θ(n log n) space.

A 2d-range tree of n points take O(n log n) space

It is slightly more than O(n) of kd-trees.

A 2d-range tree of n points can be constructured in O(n log n)

Details omitted here.
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Range Search Query

Range Trees: Operations

Search: trivially as in a binary search tree

Insert: insert point in the primary tree τ by x-coordinate

From inserted leaf, walk back up to the root and insert the point in
all associated trees τassoc(v) of nodes v on path to the root.

Delete: analogous to insertion.

Note: re-balancing is a problem.
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Range Search Query

Range Trees: Range Search

To perform a range search query R = [x1, x2]× [y1, y2]:

Perform a range search (on the x-coordinates) for the interval
[x1, x2] in τ (BST-RangeSearch(τ, x1, x2))
For every outside node, do nothing.
For every �top� inside node v , perform a range search (on the
y -coordinates) for the interval [y1, y2] in τassoc(v). During the range
search of τassoc(v), do not check x-coordinates (they are within
range).
For every boundary node, test to see if the corresponding point is
within the region R.
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Range Search Query

Range Trees: Range Search
E.g., range search [4, 59]× [14, 35]

Search for range [4, 59] in τ . Do nothing for outside nodes (e.g., p12, p28).
Boundary nodes are checked individually (e.g., p10 = (10, 8) is not in the range).
Do a range search on y-coordinate on trees associated with top nodes (e.g., p6, p0).

There is an overhead of O(log n) for 1-dimensional search on each top node, and
there are O(log n) top nodes → O(log2 n) time complexity
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Range Search Query

Range Trees: Higher Dimensions

Range trees for d-dimensional space

Storage: O(n (log n)d−1)
Construction time: O(n (log n)d−1)
Range query time: O((log n)d + k)

(Note: d is considered to be a constant.)

Section 5.4
HIGHER-DIMENSIONAL RANGE TREES

Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log2 n+ k) time, where k is the number of reported points.

Proof. At each node ν in the main tree T we spend constant time to decide where
the search path continues, and we possibly call 1DRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn+ kν), where kν is
the number of points reported in this call. Hence, the total time we spend is

∑
ν

O(logn+ kν),

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum ∑ν kν equals k, the total number of reported points. Furthermore,
the search paths of x and x′ in the main tree T have length O(logn). Hence,
∑ν O(logn) = O(log2 n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(n logn) storage and can be constructed in O(n logn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log2 n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+ k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(ν) of a node ν in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at ν . For each node ν we construct
an associated structure Tassoc(ν); the second-level tree Tassoc(ν) is a (d − 1)-
dimensional range tree for the points in P(ν), restricted to their last d − 1
coordinates. This (d −1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d −2)-dimensional range tree of
the points in its subtree, restricted to the last (d −2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select 109
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Range Trees: Higher Dimensions
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