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Topic 3 - Multidimensional Dictionaries

York University

Picture is from the cover of the textbook CLRS.
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Multi-Dimensional Data

o Various applications

o Attributes of a product (laptop: price, screen size, processor speed,
RAM, hard drive,- - -)
o Attributes of an employee (name, age, salary,- - -)
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Multi-Dimensional Data

o Various applications

o Attributes of a product (laptop: price, screen size, processor speed,
RAM, hard drive,- - -)
o Attributes of an employee (name, age, salary,- - -)

o Dictionary for multi-dimensional data
A collection of d-dimensional items
Each item has d aspects (coordinates): (xg, X1, " , Xd—1)
Operations: insert, delete, range-search query
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o Various applications

o Attributes of a product (laptop: price, screen size, processor speed,
RAM, hard drive,- - -)
o Attributes of an employee (name, age, salary,- - -)

o Dictionary for multi-dimensional data
A collection of d-dimensional items
Each item has d aspects (coordinates): (xg, X1, " , Xd—1)
Operations: insert, delete, range-search query

o (Orthogonal) Range-search query: specify a range (interval) for
certain aspects, and find all the items whose aspects fall within
given ranges.

Example: laptops with screen size between 11 and 13 inches, RAM
between 8 and 16 GB, price between 1,500 and 2,000 CAD
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o Each item has d aspects (coordinates): (xg, X1, "+ ,Xd—1)

Aspect values (x;) are numbers
o Each item corresponds to a point in d-dimensional space

o We concentrate on d = 2, i.e., points in Euclidean plane

price (CAD)
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One-Dimensional Range Search

o First solution: ordered arrays

o Running time: O(log n + k), k: number of reported items
o Problem: does not generalize to higher dimensions
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o First solution: ordered arrays

o Running time: O(log n + k), k: number of reported items
o Problem: does not generalize to higher dimensions

@ Second solution: balanced BST (e.g., AVL tree)

BST-RangeSearch(T, ki, k)

T: A balanced search tree, kq, ko: search keys

Report keys in T that are in range [kq, k2]

1. if T = nil then return

if key(T) < ky then
BST-RangeSearch( T .right, ki, k2)

if key(T) > ko then
BST-RangeSearch( T .left, ki, k)

if ki < key(T) < ky then
BST-RangeSearch( T .left, ki, k)
report key(T)
BST-RangeSearch( T .right, ki, k2)

©ONOOREWN
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BST-RangeSearch( T, 30, 65)
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Y Range Search example

BST-RangeSearch(T, 30, 65)
Nodes either on boundary, inside, or outside.
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BST-RangeSearch(T, 30, 65)
Nodes either on boundary, inside, or outside.

Note: Not every boundary node is returned.
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o Py: path traversed in BST-Search(T, ky)
o P,: path traversed in BST-Search(T, ks)

o Partition nodes of T into three groups:

@ boundary nodes: nodes in Py or P>

@ inside nodes: non-boundary nodes that belong to either (a subtree
rooted at a right child of a node of Py) or (a subtree rooted at a
left child of a node of P-)

@ outside nodes: non-boundary nodes that belong to either (a subtree
rooted at a left child of a node of P1) or (a subtree rooted at a
right child of a node of P,)
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One-Dimensional Range Search

Py: path traversed in BST-Search(T, k1)
Py: path traversed in BST-Search(T, kz)

o k: number of reported items
o Nodes visited during the search:

o O(log n) boundary nodes
o O(k) inside nodes
o No outside nodes

Running time O(log n + k)
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i 2-Dimensional Range Search
o Each item has 2 aspects (coordinates): (x;, y;)

o Each item corresponds to a point in Euclidean plane
o Options for implementing d-dimensional dictionaries:

o Reduce to one-dimensional dictionary: combine the d-dimensional
key into one key
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2-Dimensional Range Search

o Each item has 2 aspects (coordinates): (x;, y;)
o Each item corresponds to a point in Euclidean plane

o Options for implementing d-dimensional dictionaries:

o Reduce to one-dimensional dictionary: combine the d-dimensional
key into one key
Problem: Range search on one aspect is not straightforward
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w 2-Dimensional Range Search

o Each item has 2 aspects (coordinates): (x;, y;)
o Each item corresponds to a point in Euclidean plane

o Options for implementing d-dimensional dictionaries:

o Reduce to one-dimensional dictionary: combine the d-dimensional
key into one key
Problem: Range search on one aspect is not straightforward

o Use several dictionaries: one for each dimension
Problem: inefficient, wastes space

o Partition trees

o A tree with n leaves, each leaf corresponds to an item
o Each internal node corresponds to a region
o quadtrees, kd-trees

o multi-dimensional range trees
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Range Search Query

Quadtrees

o We have n points P = {(xo,¥0), (x1,¥1), -, (Xo—1, ¥n—1)} in the

plane

o How

to build a quadtree on P:

Find a square R that contains all the points of P (We can compute
minimum and maximum x and y values among n points)

Root of the quadtree corresponds to R

Split: Partition R into four equal subsquares (quadrants), each
correspond to a child of R

Recursively repeat this process for any node that contains more
than one point

Points on split lines belong to left/bottom side

Each leaf stores (at most) one point

We can delete a leaf that does not contain any point
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o Example: We have 13 points P = {(xo, ¥0), (X1, 1), - , (x12, y12) }
in the plane
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Quadtrees

o Example: We have 13 points P = {(xg, o), (x1,)1), - , (x12, y12) }
in the plane

o o ®
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o Example: We have 13 points P = {(x0, y0), (1, y1), " - - , (x12, y12)}
in the plane

o SE
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o Example: We have 13 points P = {(x0, y0), (x1,¥1), - - - , (x12, y12)}

in the plane

NW |NE ,

SW | SE °
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o Example: We have 13 points P = {(x0, y0), (x1,¥1), - - - , (x12, y12)}

in the plane
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o Example: We have 13 points P = {(x0, y0), (1, y1), " - - , (x12, y12)}
in the plane
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in the plane
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o Example: We have 13 points P = {(x0, y0), (x1,¥1), - - - , (x12, y12)}

in the plane
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o Example: We have 13 points P = {(x0, y0), (1, y1), " - - , (x12, y12)}
in the plane
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o Example: We have 13 points P = {(x0, y0), (x1,¥1), - - - , (x12, y12)}

in the plane
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o Example: We have 13 points P = {(x0, y0), (x1,¥1), - - - , (x12, y12)}

in the plane
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Quadtree Operations

o Search: Analogous to binary search trees
o Insert:

o Search for the point
o Split the leaf if there are two points

o Delete:

o Search for the point
o Remove the point
o Walk back up in the tree to discard unnecessary splits
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QTree-RangeSearch(T, R)
T: A quadtree node, R: Query rectangle
1. if (T is a leaf) then
if (T.point € R) then
report T .point
for each child C of T do
if C.regionN R # () then
QTree-RangeSearch(C, R)

S O RIS

Complexity of range search: ©(n + h) even if the answer is ()
spread factor of points P : B(P) = dmax/dmin

Amax(dmin): maximum (minimum) distance between two points in P

height of quadtree: h € ©(log, %ﬁj)

Complexity to build initial tree: ©(nh)
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o Very easy to compute and handle

o No complicated arithmetic, only divisions by 2 (usually the boundary
box is padded to get a power of two).

o Space wasteful

o Major drawback: can have very large height for certain nonuniform
distributions of points

o Easily generates to higher dimensions (octrees, etc. ).
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We have n points P = {(x0, ¥0), (X1, 1), 5 (Xn—1, ¥n—1)}

Quadtrees split square into quadrants regardless of where points
actually lie

o kd-tree idea: Split the points into two (roughly) equal subsets

How to build a kd-tree on P:

o Split P into two equal subsets using a vertical line

o Split each of the two subsets into two equal pieces using horizontal
lines

o Continue splitting, alternating vertical and horizontal lines, until
every point is in a separate region

Complexity: ©(nlog n), height of the tree: ©(log n)
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o kd-tree idea: Split the points into two (roughly) equal subsets

o A balanced binary tree

o P4
epP3 epg
e pg
L]
P1
® Po
[ ) [ ]
P Pe 123
e p7
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kd-trees

o kd-tree idea: Split the points into two (roughly) equal subsets

o A balanced binary tree

o P4
epP3 epg
®Pg
L]
P1
® Po
[ ) [ ]
P Pe 123
e p7
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kd-trees

o kd-tree idea: Split the points into two (roughly) equal subsets

o P4
epP3 epg
() ()

o A balanced binary tree

e ]
P1
® Po
—————0—
P Pe 123

op7
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kd-trees

o kd-tree idea: Split the points into two (roughly) equal subsets

o P4
OO

o A balanced binary tree

op7
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kd-trees

o kd-tree idea: Split the points into two (roughly) equal subsets

o A balanced binary tree

o P4

OSRG

o () ) @)
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Y KD-tree Construction (details)
o Initialize:
o Sort the n points according to their x-coordinates and store in X
— O(nlog n)
o Sort the n points according to their y-coordinates and store in Y
— O(nlog n)
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o Initialize:
o Sort the n points according to their x-coordinates and store in X
— O(nlog n)
o Sort the n points according to their y-coordinates and store in Y
— O(nlog n)

@ Recursive process on X, Y:

o The root of the tree is the point with median x-coordinate (index
i =|n/2] in the sorted list X)

o Let X1 = X[ll — 1] X = X[I+ 1n]

o Partition Y to Y1, Y2 such that Y1 = X; and Y2 = Xz (but in the
sorted order according to y-coordinate).

o Recurs on (X1, Y1) and (X2, Y2) but alternate the coordinate; these
form the left and right subtrees.



v Range Search Query
l‘ . ‘
WY KD-tree Construction (details)

o Initialize:
o Sort the n points according to their x-coordinates and store in X
— O(nlog n)
o Sort the n points according to their y-coordinates and store in Y
— O(nlog n)
@ Recursive process on X, Y:
o The root of the tree is the point with median x-coordinate (index
i =|n/2] in the sorted list X)
o Let X1 = X[ll — 1] X = X[I+ 1"]
o Partition Y to Y1, Y2 such that Y1 = X; and Y2 = Xz (but in the
sorted order according to y-coordinate).
o Recurs on (X1, Y1) and (X2, Y2) but alternate the coordinate; these
form the left and right subtrees.

o Time analysis:

o The partitioning takes O(n) time. The recursion is
T(n) =2T(n/2) + O(n) which solves as T(n) = ©(nlogn). The
initialization is also ©(nlog n).
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o Search: as in any binary search tree (check x or y coordinate on
even/odd levels of the tree, respectively).

o Insert, Delete: not hard. However they may leave the tree
unbalanced. Therefore we need to do (periodic) rebalancing.

o A rotation is equivalent to shifting a vertical line to its left/right
point or shifting the horizontal line to its below/above point.

°P3  eP9
g 9 (=)
() (m) () ()

Ps

Pe
" (=) ) @)
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w KD-tree Operations

o Search: as in any binary search tree (check x or y coordinate on
even/odd levels of the tree, respectively).

o Insert, Delete: not hard. However they may leave the tree
unbalanced. Therefore we need to do (periodic) rebalancing.

o A rotation is equivalent to shifting a vertical line to its left/right
point or shifting the horizontal line to its below/above point.

ops
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kd-tree: Range Search Complexity

o The complexity is O(k + U) where k is the number of keys reported
and U is the number of regions (tree nodes) we go to but
unsuccessfully

o Here, U = {ps, p1, P10, Ps, P11, P12}

o U corresponds to the number of regions which intersect but are not
fully in R

o Those regions have to intersect one of the four sides of R

* Py ops
op3 P9
P $Ps P
P1 .
. Prp
* o
Pia
Pe Ps
P2
° 7
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kd-tree: Range Search Complexity

o Q(n): Maximum number of regions in a kd-tree with n points that
intersect a vertical (horizontal) line

o Q(n) satisfies the following recurrence relation:
Q(n) =2Q(n/4) + O(1)
o It solves to Q(n) = O(y/n)
o Therefore, the complexity of range search in kd-trees is O(k + \/n)

Py ops
op3 =)
P sps *Pnn
P1 ep
12
*pio
70
Pia = =
6 5
P2
op7
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kd-tree: Range Search Complexity

o Q(n): Maximum number of regions in a kd-tree with n points that
intersect a vertical (horizontal) line

o Q(n) satisfies the following recurrence relation:
Q(n) =2Q(n/4) + O(1)
o It solves to Q(n) = O(y/n)
o Therefore, the complexity of range search in kd-trees is O(k + \/n)

* P oPs
op3 P9
Py eps Pt
P1 *p,
L]
oho P10

Pia 5 o

. 6 5

° 7|
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kd-tree: Higher Dimensions

o kd-trees for d-dimensional space

o At the root the point set is partitioned based on the first coordinate

o At the children of the root the partition is based on the second
coordinate

o At depth d — 1 the partition is based on the last coordinate

o At depth d we start all over again, partitioning on first coordinate

o Storage: O(n)

o Construction time: O(nlogn)

o Insertion/deletion: O(log n)

o Range query time: O(n*~Y/9 + k)

(Note: d is considered to be a constant.)
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o We have n points P = {(x0, ¥0), (x1,%1), "+, (Xn—1, ¥n—1)} in the
plane

o A range tree is a tree of trees (a multi-level data structure)
o How to build a range tree on P:

o Build a balanced binary search tree 7 determined by the
x-coordinates of the n points

o For every node v € 7, build a balanced binary search tree Tassoc(Vv)
(associated structure of 7) determined by the y-coordinates of the
nodes in the subtree of 7 with root node v
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Range Tree Structure

binary search tree on
x-coordinates

binary search tree
on y-coordinates

P(v)
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o There is one primary tree (x-tree) and n secondary trees
(y-trees).

x-tree
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o There is one primary tree (x-tree) and n secondary trees
(y-trees).

x-tree
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o The size of the primary tree is O(n) for n points.
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o The size of the primary tree is O(n) for n points.
o Each point x is associated with a leaf in the primary tree .

o From the leaf to the root of 7, the secondary tree associated with
any node includes x.
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o The size of the primary tree is O(n) for n points.
o Each point x is associated with a leaf in the primary tree .

o From the leaf to the root of 7, the secondary tree associated with
any node includes x.

o So, x is present in O(log n) secondary trees.

o Over all points, all secondary trees take ©(nlog n) space.
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o The size of the primary tree is O(n) for n points.
o Each point x is associated with a leaf in the primary tree .

o From the leaf to the root of 7, the secondary tree associated with
any node includes x.

o So, x is present in O(log n) secondary trees.

o Over all points, all secondary trees take ©(nlog n) space.

o A 2d-range tree of n points take O(nlog n) space
o It is slightly more than O(n) of kd-trees.
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o The size of the primary tree is O(n) for n points.

Each point x is associated with a leaf in the primary tree 7.

o From the leaf to the root of 7, the secondary tree associated with
any node includes x.

o So, x is present in O(log n) secondary trees.
o Over all points, all secondary trees take ©(nlog n) space.

o A 2d-range tree of n points take O(nlog n) space
o It is slightly more than O(n) of kd-trees.

A 2d-range tree of n points can be constructured in O(nlogn)

o Details omitted here.
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o Search: trivially as in a binary search tree
o Insert: insert point in the primary tree 7 by x-coordinate

o From inserted leaf, walk back up to the root and insert the point in
all associated trees Tassoc(v) of nodes v on path to the root.

Delete: analogous to insertion.

o Note: re-balancing is a problem.



v Range Search Query
l‘ ; ‘
=\
™" Range Trees: Range Search

o To perform a range search query R = [x1, x| X [y1, 2]

o Perform a range search (on the x-coordinates) for the interval
[x1,x2] in 7 (BST-RangeSearch(r, x1, x2))

o For every outside node, do nothing.

o For every “top” inside node v, perform a range search (on the
y-coordinates) for the interval [y1, y2] in Tassoc(v). During the range
search of Tassoc(v), do not check x-coordinates (they are within
range).

o For every boundary node, test to see if the corresponding point is
within the region R.
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Range Trees: Range Search

o E.g., range search [4,59] x [14,35]

o Search for range [4,59] in 7. Do nothing for outside nodes (e.g., p12, p2s).
o Boundary nodes are checked individually (e.g., pio = (10,8) is not in the range).
o Do a range search on y-coordinate on trees associated with top nodes (e.g., ps, po)-

T
A“‘\

P7 Ps Pis Pis P21

| Data Structures
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o E.g., range search [4,59] x [14,35]

Search for range [4,59] in 7. Do nothing for outside nodes (e.g., p12, p2s).
Boundary nodes are checked individually (e.g., pio = (10,8) is not in the range).
Do a range search on y-coordinate on trees associated with top nodes (e.g., ps, po)-
There is an overhead of O(log n) for 1-dimensional search on each top node, and
there are O(log n) top nodes — O(log? n) time complexity

Pis P21

P7 Ps Pis
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i Range Trees: Higher Dimensions
o Range trees for d-dimensional space

o Storage: O(n(logn)?~1)
o Construction time: O(n (log n)®~")
o Range query time: O((log n)? + k)

(Note: d is considered to be a constant.)
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o Space/time trade-off

o Storage: O(n(logn)?~1) kd-trees: O(n)
o Construction time: O(n (log n)®~") kd-trees: O(nlog n)
o Range query time: O((log n)? + k) kd-trees: O(n*~Y/¢ + k)

(Note: d is considered to be a constant.)
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