EECS 4101-5101
 Advanced Data Structures

Shahin Kamali
Topic 3 - Multidimensional Dictionaries
York University

Picture is from the cover of the textbook CLRS.

Multi-Dimensional Data

- Various applications
- Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive, $\cdot \cdots$)
- Attributes of an employee (name, age, salary,…)

Range Search Query

Multi-Dimensional Data

- Various applications
- Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive, ...)
- Attributes of an employee (name, age, salary,…)
- Dictionary for multi-dimensional data A collection of d-dimensional items Each item has d aspects (coordinates): $\left(x_{0}, x_{1}, \cdots, x_{d-1}\right)$ Operations: insert, delete, range-search query

Multi-Dimensional Data

- Various applications
- Attributes of a product (laptop: price, screen size, processor speed, RAM, hard drive, \cdots)
- Attributes of an employee (name, age, salary, . .)
- Dictionary for multi-dimensional data A collection of d-dimensional items Each item has d aspects (coordinates): $\left(x_{0}, x_{1}, \cdots, x_{d-1}\right)$ Operations: insert, delete, range-search query
- (Orthogonal) Range-search query: specify a range (interval) for certain aspects, and find all the items whose aspects fall within given ranges.
Example: laptops with screen size between 11 and 13 inches, RAM between 8 and 16 GB , price between 1,500 and 2,000 CAD

Multi-Dimensional Data

- Each item has d aspects (coordinates): $\left(x_{0}, x_{1}, \cdots, x_{d-1}\right)$
- Aspect values $\left(x_{i}\right)$ are numbers
- Each item corresponds to a point in d-dimensional space
- We concentrate on $d=2$, i.e., points in Euclidean plane

One-Dimensional Range Search

- First solution: ordered arrays
- Running time: $O(\log n+k), k$: number of reported items
- Problem: does not generalize to higher dimensions

One-Dimensional Range Search

- First solution: ordered arrays
- Running time: $O(\log n+k), k$: number of reported items
- Problem: does not generalize to higher dimensions
- Second solution: balanced BST (e.g., AVL tree)

```
BST-RangeSearch(T, k},\mp@subsup{k}{2}{}
T: A balanced search tree, }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}\mathrm{ : search keys
Report keys in T that are in range [ }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}
1. if T= nil then return
2. if }\operatorname{key}(T)<\mp@subsup{k}{1}{}\mathrm{ then
    BST-RangeSearch(T.right, k},\mp@subsup{k}{2}{}
4. if }\operatorname{key}(T)>\mp@subsup{k}{2}{}\mathrm{ then
5. BST-RangeSearch(T.left, }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}
6. if }\mp@subsup{k}{1}{}\leq\operatorname{key}(T)\leq\mp@subsup{k}{2}{}\mathrm{ then
7. BST-RangeSearch(T.left, }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}
8. report key(T)
9. BST-RangeSearch(T.right, k},\mp@subsup{k}{2}{}
```


Range Search Query
 Range Search example

 BST-RangeSearch (T, 30, 65)

Nodes either on boundary, inside, or outside.

Range Search example

BST-RangeSearch (T, 30,65)
Nodes either on boundary, inside, or outside.

Note: Not every boundary node is returned.

One-Dimensional Range Search

- P_{1} : path traversed in $B S T-\operatorname{Search}\left(T, k_{1}\right)$
- P_{2} : path traversed in BST-Search $\left(T, k_{2}\right)$
- Partition nodes of T into three groups:
(1) boundary nodes: nodes in P_{1} or P_{2}
(2) inside nodes: non-boundary nodes that belong to either (a subtree rooted at a right child of a node of P_{1}) or (a subtree rooted at a left child of a node of P_{2})
(3) outside nodes: non-boundary nodes that belong to either (a subtree rooted at a left child of a node of P_{1}) or (a subtree rooted at a right child of a node of P_{2})

One-Dimensional Range Search

- P_{1} : path traversed in $B S T-\operatorname{Search}\left(T, k_{1}\right)$
- P_{2} : path traversed in BST-Search $\left(T, k_{2}\right)$
- k : number of reported items
- Nodes visited during the search:
- $O(\log n)$ boundary nodes
- $O(k)$ inside nodes
- No outside nodes
- Running time $O(\log n+k)$

2-Dimensional Range Search

- Each item has 2 aspects (coordinates): $\left(x_{i}, y_{i}\right)$
- Each item corresponds to a point in Euclidean plane
- Options for implementing d-dimensional dictionaries:
- Reduce to one-dimensional dictionary: combine the d-dimensional key into one key

2-Dimensional Range Search

- Each item has 2 aspects (coordinates): $\left(x_{i}, y_{i}\right)$
- Each item corresponds to a point in Euclidean plane
- Options for implementing d-dimensional dictionaries:
- Reduce to one-dimensional dictionary: combine the d-dimensional key into one key
Problem: Range search on one aspect is not straightforward

2-Dimensional Range Search

- Each item has 2 aspects (coordinates): $\left(x_{i}, y_{i}\right)$
- Each item corresponds to a point in Euclidean plane
- Options for implementing d-dimensional dictionaries:
- Reduce to one-dimensional dictionary: combine the d-dimensional key into one key
Problem: Range search on one aspect is not straightforward
- Use several dictionaries: one for each dimension Problem: inefficient, wastes space
- Partition trees
- A tree with n leaves, each leaf corresponds to an item
- Each internal node corresponds to a region
- quadtrees, kd-trees
- multi-dimensional range trees

Quadtrees

- We have n points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n-1}, y_{n-1}\right)\right\}$ in the plane
- How to build a quadtree on P :
- Find a square R that contains all the points of P (We can compute minimum and maximum x and y values among n points)
- Root of the quadtree corresponds to R
- Split: Partition R into four equal subsquares (quadrants), each correspond to a child of R
- Recursively repeat this process for any node that contains more than one point
- Points on split lines belong to left/bottom side
- Each leaf stores (at most) one point
- We can delete a leaf that does not contain any point
- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

0

Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Range Search Query
 Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Range Search Query
 Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Range Search Query
 Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Range Search Query
 Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Range Search Query
 Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Range Search Query
 Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Range Search Query
 Quadtrees

- Example: We have 13 points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{12}, y_{12}\right)\right\}$ in the plane

Quadtree Operations

- Search: Analogous to binary search trees
- Insert:
- Search for the point
- Split the leaf if there are two points
- Delete:
- Search for the point
- Remove the point
- Walk back up in the tree to discard unnecessary splits

Quadtree: Range Search

```
QTree-RangeSearch(T,R)
T: A quadtree node, R: Query rectangle
1. if ( }T\mathrm{ is a leaf) then
2. if (T.point }\inR)\mathrm{ then
3. report T.point
4. for each child C of T do
5. if C.region \capR\not=\emptyset then
6. QTree-RangeSearch(C,R)
```

- Complexity of range search: $\Theta(n+h)$ even if the answer is \emptyset
- spread factor of points $P: \beta(P)=d_{\text {max }} / d_{\text {min }}$
- $d_{\text {max }}\left(d_{\text {min }}\right)$: maximum (minimum) distance between two points in P
- height of quadtree: $h \in \Theta\left(\log _{2} \frac{d_{\text {max }}}{d_{\text {min }}}\right)$
- Complexity to build initial tree: $\Theta(n h)$
- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (usually the boundary box is padded to get a power of two).
- Space wasteful
- Major drawback: can have very large height for certain nonuniform distributions of points
- Easily generates to higher dimensions (octrees, etc.).

kd-trees

- We have n points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n-1}, y_{n-1}\right)\right\}$
- Quadtrees split square into quadrants regardless of where points actually lie
- kd-tree idea: Split the points into two (roughly) equal subsets
- How to build a kd-tree on P :
- Split P into two equal subsets using a vertical line
- Split each of the two subsets into two equal pieces using horizontal lines
- Continue splitting, alternating vertical and horizontal lines, until every point is in a separate region
- Complexity: $\Theta(n \log n)$, height of the tree: $\Theta(\log n)$

kd-trees

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

- p_{4}

$\bullet p_{3} \quad p_{9}$

$$
\bullet p_{8}
$$

${ }^{\bullet} p_{1}$

- p_{0}

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

Range Search Query
 kd-trees

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

Range Search Query
 kd-trees

- kd-tree idea: Split the points into two (roughly) equal subsets
- A balanced binary tree

KD-tree Construction (details)

- Initialize:
- Sort the n points according to their x-coordinates and store in X $\rightarrow O(n \log n)$
- Sort the n points according to their y-coordinates and store in Y $\rightarrow O(n \log n)$

KD-tree Construction (details)

- Initialize:
- Sort the n points according to their x-coordinates and store in X $\rightarrow O(n \log n)$
- Sort the n points according to their y-coordinates and store in Y $\rightarrow O(n \log n)$
- Recursive process on X, Y :
- The root of the tree is the point with median x-coordinate (index $i=\lfloor n / 2\rfloor$ in the sorted list X)
- Let $X_{1}=X[1 . . i-1], X_{2}=X[i+1 . . n]$
- Partition Y to Y_{1}, Y_{2} such that $Y_{1}=X_{1}$ and $Y_{2}=X_{2}$ (but in the sorted order according to y-coordinate).
- Recurs on $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ but alternate the coordinate; these form the left and right subtrees.

KD-tree Construction (details)

- Initialize:
- Sort the n points according to their x-coordinates and store in X $\rightarrow O(n \log n)$
- Sort the n points according to their y-coordinates and store in Y $\rightarrow O(n \log n)$
- Recursive process on X, Y :
- The root of the tree is the point with median x-coordinate (index $i=\lfloor n / 2\rfloor$ in the sorted list X)
- Let $X_{1}=X[1 . . i-1], X_{2}=X[i+1 . . n]$
- Partition Y to Y_{1}, Y_{2} such that $Y_{1}=X_{1}$ and $Y_{2}=X_{2}$ (but in the sorted order according to y -coordinate).
- Recurs on $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ but alternate the coordinate; these form the left and right subtrees.
- Time analysis:
- The partitioning takes $O(n)$ time. The recursion is $T(n)=2 T(n / 2)+O(n)$ which solves as $T(n)=\Theta(n \log n)$. The initialization is also $\Theta(n \log n)$.

KD-tree Operations

- Search: as in any binary search tree (check x or y coordinate on even/odd levels of the tree, respectively).
- Insert, Delete: not hard. However they may leave the tree unbalanced. Therefore we need to do (periodic) rebalancing.
- A rotation is equivalent to shifting a vertical line to its left/right point or shifting the horizontal line to its below/above point.

KD-tree Operations

- Search: as in any binary search tree (check x or y coordinate on even/odd levels of the tree, respectively).
- Insert, Delete: not hard. However they may leave the tree unbalanced. Therefore we need to do (periodic) rebalancing.
- A rotation is equivalent to shifting a vertical line to its left/right point or shifting the horizontal line to its below/above point.

kd-tree: Range Search Complexity

- The complexity is $O(k+U)$ where k is the number of keys reported and U is the number of regions (tree nodes) we go to but unsuccessfully
- Here, $U=\left\{p_{8}, p_{1}, p_{10}, p_{5}, p_{11}, p_{12}\right\}$
- U corresponds to the number of regions which intersect but are not fully in R
- Those regions have to intersect one of the four sides of R

kd-tree: Range Search Complexity

- $Q(n)$: Maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line
- $Q(n)$ satisfies the following recurrence relation:

$$
Q(n)=2 Q(n / 4)+O(1)
$$

- It solves to $Q(n)=O(\sqrt{n})$
- Therefore, the complexity of range search in kd-trees is $O(k+\sqrt{n})$

kd-tree: Range Search Complexity

- $Q(n)$: Maximum number of regions in a kd-tree with n points that intersect a vertical (horizontal) line
- $Q(n)$ satisfies the following recurrence relation:

$$
Q(n)=2 Q(n / 4)+O(1)
$$

- It solves to $Q(n)=O(\sqrt{n})$
- Therefore, the complexity of range search in kd-trees is $O(k+\sqrt{n})$

kd-tree: Higher Dimensions

- kd-trees for d-dimensional space
- At the root the point set is partitioned based on the first coordinate
- At the children of the root the partition is based on the second coordinate
- At depth $d-1$ the partition is based on the last coordinate
- At depth d we start all over again, partitioning on first coordinate
- Storage: $O(n)$
- Construction time: $O(n \log n)$
- Insertion/deletion: $O(\log n)$
- Range query time: $O\left(n^{1-1 / d}+k\right)$
(Note: d is considered to be a constant.)

Range Search Query

Range Trees

- We have n points $P=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n-1}, y_{n-1}\right)\right\}$ in the plane
- A range tree is a tree of trees (a multi-level data structure)
- How to build a range tree on P :
- Build a balanced binary search tree τ determined by the x-coordinates of the n points
- For every node $v \in \tau$, build a balanced binary search tree $\tau_{\text {assoc }}(v)$ (associated structure of τ) determined by the y-coordinates of the nodes in the subtree of τ with root node v

Range Search Query
 Range Tree Structure

Range Tree Structure

- There is one primary tree (x-tree) and n secondary trees (y-trees).

Range Tree Structure

- There is one primary tree (x-tree) and n secondary trees (y-trees).

Range Trees: Size \& Construction

- The size of the primary tree is $O(n)$ for n points.

Range Trees: Size \& Construction

- The size of the primary tree is $O(n)$ for n points.
- Each point x is associated with a leaf in the primary tree τ.
- From the leaf to the root of τ, the secondary tree associated with any node includes x.

Range Trees: Size \& Construction

- The size of the primary tree is $O(n)$ for n points.
- Each point x is associated with a leaf in the primary tree τ.
- From the leaf to the root of τ, the secondary tree associated with any node includes x.
- So, x is present in $\Theta(\log n)$ secondary trees.
- Over all points, all secondary trees take $\Theta(n \log n)$ space.

Range Trees: Size \& Construction

- The size of the primary tree is $O(n)$ for n points.
- Each point x is associated with a leaf in the primary tree τ.
- From the leaf to the root of τ, the secondary tree associated with any node includes x.
- So, x is present in $\Theta(\log n)$ secondary trees.
- Over all points, all secondary trees take $\Theta(n \log n)$ space.
- A 2d-range tree of n points take $O(n \log n)$ space
- It is slightly more than $O(n)$ of kd-trees.

Range Trees: Size \& Construction

- The size of the primary tree is $O(n)$ for n points.
- Each point x is associated with a leaf in the primary tree τ.
- From the leaf to the root of τ, the secondary tree associated with any node includes x.
- So, x is present in $\Theta(\log n)$ secondary trees.
- Over all points, all secondary trees take $\Theta(n \log n)$ space.
- A 2d-range tree of n points take $O(n \log n)$ space
- It is slightly more than $O(n)$ of kd-trees.
- A 2d-range tree of n points can be constructured in $O(n \log n)$
- Details omitted here.

Range Trees: Operations

- Search: trivially as in a binary search tree
- Insert: insert point in the primary tree τ by x-coordinate
- From inserted leaf, walk back up to the root and insert the point in all associated trees $\tau_{\text {assoc }}(v)$ of nodes v on path to the root.
- Delete: analogous to insertion.
- Note: re-balancing is a problem.

Range Trees: Range Search

- To perform a range search query $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$:
- Perform a range search (on the x-coordinates) for the interval $\left[x_{1}, x_{2}\right]$ in $\tau\left(B S T\right.$-RangeSearch $\left.\left(\tau, x_{1}, x_{2}\right)\right)$
- For every outside node, do nothing.
- For every "top" inside node v, perform a range search (on the y-coordinates) for the interval $\left[y_{1}, y_{2}\right]$ in $\tau_{\text {assoc }}(v)$. During the range search of $\tau_{\text {assoc }}(v)$, do not check x-coordinates (they are within range).
- For every boundary node, test to see if the corresponding point is within the region R.

Range Search Query

Range Trees: Range Search

- E.g., range search $[4,59] \times[14,35]$
- Search for range $[4,59]$ in τ. Do nothing for outside nodes (e.g., p_{12}, p_{28}).
- Boundary nodes are checked individually (e.g., $p_{10}=(10,8)$ is not in the range).
- Do a range search on y-coordinate on trees associated with top nodes (e.g., p_{6}, p_{0}).

Range Search Query

Range Trees: Range Search

- E.g., range search $[4,59] \times[14,35]$
- Search for range $[4,59]$ in τ. Do nothing for outside nodes (e.g., p_{12}, p_{28}).
- Boundary nodes are checked individually (e.g., $p_{10}=(10,8)$ is not in the range).
- Do a range search on y-coordinate on trees associated with top nodes (e.g., p_{6}, p_{0}).
- There is an overhead of $O(\log n)$ for 1 -dimensional search on each top node, and there are $O(\log n)$ top nodes $\rightarrow O\left(\log ^{2} n\right)$ time complexity

Range Trees: Higher Dimensions

- Range trees for d-dimensional space
- Storage: $O\left(n(\log n)^{d-1}\right)$
- Construction time: $O\left(n(\log n)^{d-1}\right)$
- Range query time: $O\left((\log n)^{d}+k\right)$
(Note: d is considered to be a constant.)

Range Trees: Higher Dimensions

- Space/time trade-off
- Storage: $O\left(n(\log n)^{d-1}\right)$
- Construction time: $O\left(n(\log n)^{d-1}\right)$
- Range query time: $O\left((\log n)^{d}+k\right)$
(Note: d is considered to be a constant.)

kd-trees: $O(n)$ kd-trees: $O(n \log n)$
kd-trees: $O\left(n^{1-1 / d}+k\right)$

