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Hashing intro

Lower bound for search

The fastest implementations of the dictionary ADT require O(log n)
time to search a dictionary containing n items. Is this the best
possible?

Theorem: In the comparison model (on the keys),
Ω(log n) comparisons are required to search a size-n dictionary.

Proof: Similar to lower bound for sorting.

Any algorithm de�nes a binary decision tree with
comparisons at the nodes and actions at the leaves.

There are at least n + 1 di�erent actions (return an item, or �not
found�).

So there are Ω(n) leaves, and therefore the height is Ω(log n).

We can do better if keys are integers!
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Hashing intro

Direct Addressing

Requirement: For a given M ∈ N,
every key k is an integer with 0 ≤ k < M.

All keys are in [0,M).

Data structure : An array of values A with size M

search(k) : Check whether A[k] is empty

insert(k , v) : A[k]← v

delete(k) : A[k]← Null

E.g., assume student id's are in [0, 1000) and values are pointers to
students' records.

Maintain an array A of pointers with size 1000.
If a student with id k is present in the dictionary, the content of
A[k] will be the pointer to that students' record; otherwise it is Null.
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Hashing intro

Direct Addressing

Each operation is O(1).

Total storage is O(M).

Direct addressing isn't possible if keys are not integers.

And the storage is very wasteful if n≪ M, e.g., if student numbers
are 32-bit integers, you will need an array of size M = 232.
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Hashing intro

Hashing

Suppose keys come from some universe U.
Use a hash function h : U → {0, 1, . . . ,M − 1}.
Generally, h is not injective, so many keys can map to the same
integer.

Hash table Dictionary:
Array T of size M (the hash table).
An item with key k is stored in T [h(k)].
search, insert, and delete should all cost O(1).

Challenges:

Choosing a good hash function
Dealing with collisions (when h(k1) = h(k2))
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Hash function strategies

Choosing a good hash function

Uniform Hashing Assumption: Each hash function value is
equally likely.

Proving is usually impossible, as it requires knowledge of
the input distribution and the hash function distribution.

We can get good performance by following a few rules.

A good hash function should:

be very e�cient to compute
be unrelated to any possible patterns in the data
depend on all parts of the key
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Hash function strategies

Hash Functions

The goal of a hash function is to distribute the keys uniformly.

A hash function takes a key and returns a location in memory that
can be accessed in O(1) time.

A hash function is the composition of two functions:

Hash code map:

h1 : keys → integers
Compression map

: h2: integers → [0,M − 1]
The hash code map is applied �rst and the compression map is then
applied on the result: h(x) = h2(h1(x))
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Hash function strategies

Basic hash functions

If all keys are integers (or can be mapped to integers),
the following two approaches tend to work well:

Division method: h(k) = k mod M.
We should choose M to be a prime not close to a power of 2.
In the case of non-random data, this ensures the most wide-spread
distribution of integers to indices.

Multiplication method: h(k) = ⌊M(kA− ⌊kA⌋)⌋,
for some constant �oating-point number A with 0 < A < 1.

Knuth suggests A = φ =

√
5− 1

2
≈ 0.618.

E.g., k = 2023, M = 31, and A = 0.618, we get
⌊31(1984 ∗ 0.618− ⌊1984 ∗ 0.618⌋)⌋ =
⌊31(1226.112− ⌊1226.112⌋)⌋ = ⌊31 ∗ 0.112⌋ = 3
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Hash function strategies

Non-integer keys

Suppose we have a table capable of holding 5001 records and keys
consisting of strings that are 6 characters long. We can apply
numeric operations to the ASCII codes of the characters in the
string in order to determine a hash index:

static int hashFn(String key) {
int hashCode = 0;
for (i = 0 ; i < key.length() ; i++)
hashCode += (int) key.charAt(i);

return hashCode % 5001; }
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Hash function strategies

Non-integer keys

A better solution via Horner's Rule

static int hashFn(String key) {
int hashCode = 0;
int m = 2; (any int ̸= 1 or 0)
for (i = 0 ; i < key.length() ; i++)

hashCode = m * hashCode + (int) key.charAt(i);
return hashCode % 5001;

}

E.g., for m = 10 and string �hope", we get:
→ 104(h)→ 10 ∗ 104+ 111(o) ≡ 1151→ 10 ∗ 1151+ 112(p) ≡
1620→ 18 ∗ 1620+ 101(e) ≡ 4526.
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Hash function strategies

Collisions

If a hash function h maps two di�erent keys x and y to the same
index (i.e., x ̸= y and h(x) = h(y)), then x and y collide.

A perfect hash function causes no collisions. That is, the function is
one-to-one.
Unfortunately, creating a perfect hash function requires knowledge
of what keys will be hashed.
Even a hash function that distributes items randomly can cause
collisions, even when the number of items hashed is small.
Consequently, we must design a scheme to handle collisions.
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Buckets

Collision Resolution

Two basic strategies:

Allow multiple items at each table location (buckets)
Allow each item to go into multiple locations (open addressing)

We will examine the average cost of search, insert, delete,
in terms of n, M, and/or the load factor α = n/M.

We probably want to rebuild the whole hash table and change
the value of M when the load factor gets too large or too small.
This is called rehashing, and should cost roughly O(M + n).
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Buckets

Chaining

Each table entry is a bucket containing 0 or more KVPs.

This could be implemented by any dictionary (even another hash

table!).

The simplest approach is to use an unsorted linked list in each

bucket.

This is called collision resolution by chaining.

search(k): Look for key k in the list at T [h(k)].

insert(k, v): Add (k , v) to the front of the list at T [h(k)].

delete(k): Perform a search, then delete from the linked list.
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Buckets

Chaining example

M = 11, h(k) = k mod 11

insert()

h

0

451

132

3

924

495

6

77

8

9

4310
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Buckets

Chaining example

M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

451

132

3

924

495

6

77

8

9
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Buckets

Chaining example

M = 11, h(k) = k mod 11

insert(41)

h(41) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Buckets

Chaining example

M = 11, h(k) = k mod 11

insert(46)

h(46) = 2

0

451

132

3

924

495

6

77

418

9

4310
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Buckets

Chaining example

M = 11, h(k) = k mod 11

insert(46)

h(46) = 2

0

451

462 13

3

924

495

6

77

418

9

4310
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Buckets

Chaining example

M = 11, h(k) = k mod 11

insert(16)

h(16) = 5

0

451

462 13

3

924

165 49

6

77

418

9

4310
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Buckets

Chaining example

M = 11, h(k) = k mod 11

insert(79)

h(79) = 2

0

451

792 46 13

3

924

165 49

6

77

418

9

4310
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Buckets

Complexity of chaining

Recall the load balance α = n/M.

Assuming uniform hashing, average bucket size is exactly α.

Analysis of operations:

search O(1+ α) average-case, O(n) worst-case
insert O(1) worst-case, since we always insert in front.
delete Same cost as search: O(1+ α) average, O(n)

worst-case

If we maintain M ∈ O(n), then average costs are all O(1).
This is typically accomplished by rehashing whenever n < c1M or
n > c2M, for some constants c1, c2 with 0 < c1 < c2.
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Open addressing

Open addressing

Main idea: Each hash table entry holds only one item,
but any key k can go in multiple locations.

search and insert follow a probe sequence of possible locations for
key k : ⟨h(k , 0), h(k, 1), h(k , 2), . . .⟩.

delete is similar to search but we must distinguish between empty

and deleted locations.

Simplest idea: linear probing
h(k, i) = (h(k) + i) mod M, for some hash function h.
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

()

h

0

451

132

3

924

495

6

77

8

9

4310
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

insert(41)

h(41, 0) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

insert(84)

h(84, 0) = 7

0

451

132

3

924

495

6

77

418

9

4310
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

insert(84)

h(84, 1) = 8

0

451

132

3

924

495

6

77

418

9

4310
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

insert(84)

h(84, 2) = 9

0

451

132

3

924

495

6

77

418

849

4310
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

insert(20)

h(20, 2) = 0

200

451

132

3

924

495

6

77

418

849

4310
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

delete(43)

h(43, 0) = 10

200

451

132

3

924

495

6

77

418

849

deleted10
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Open addressing

Linear probing example

M = 11, h(k) = k mod 11 h(k , i) = (h(k) + i) mod M

search(63)

h(63, 6) = 3

200

451

132

3

924

495

6

77

418

849

deleted10
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Open addressing

Open Addressing: Double Hashing

We have two hash functions h1, h2 that are independent.

For double hashing, de�ne h(k , i) = h1(k) + i · h2(k) mod M.

search, insert, delete work just like for linear probing, but with this
di�erent probe sequence.
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Open addressing

Open Addressing: Double Hashing

Assume we have hash functions: h1(x) = x mod 10,
h2(x) = ⌊x/10⌋ mod 10.

Recall that h(k , i) = h1(k) + i · h2(k) mod M.

We want to insert keys: 24, 34, 14, 54, 64, 35, . . .
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Open addressing

Cuckoo hashing

We have two independent hash functions h1, h2.

We always insert a new item into h1(k).

This might �kick out� another item, which we then attempt to
re-insert into its alternate position.

Insertion might not be possible if there is a loop. In this case, we
have to rehash with a larger M.

The big advantage is that an element with key k can only be in
T [h1(k)] or T [h2(k)].
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Open addressing

Cuckoo hashing insertion

Here a pseudocode for Cuckoo hashing:

cuckoo-insert(T,x)
T : hash table, x : new item to insert
1. y ← x , i ← h1(x .key)
2. do at most n times:
3. swap(y ,T [i ])
4. if y is �empty� then return �success�
5. if i = h1(y .key) then i ← h2(y .key)
6. else i ← h1(y .key)
7. return �failure�
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

()

y .key =
i =

h1(y .key) =
h2(y .key) =

440

1

2

3

264

5

6

7

8

929

10
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(51)

y .key = 51

i = 7

h1(y .key) = 7

h2(y .key) = 5

440

1

2

3

264

5

6

7

8

929

10
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(51)

y .key =
i =

h1(y .key) =
h2(y .key) =

440

1

2

3

264

5

6

517

8

929

10
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(95)

y .key = 95

i = 7

h1(y .key) = 7

h2(y .key) = 7

440

1

2

3

264

5

6

517

8

929

10
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(95)

y .key = 51

i = 5

h1(y .key) = 7

h2(y .key) = 5

440

1

2

3

264

5

6

957

8

929

10

51
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(95)

y .key =
i =

h1(y .key) =
h2(y .key) =

440

1

2

3

264

515

6

957

8

929

10
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(97)

y .key = 97

i = 9

h1(y .key) = 9

h2(y .key) = 10

440

1

2

3

264

515

6

957

8

929

10
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(97)

y .key = 92

i = 4

h1(y .key) = 4

h2(y .key) = 9

440

1

2

3

264

515

6

957

8

979

10

92
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(97)

y .key = 26

i = 0

h1(y .key) = 4

h2(y .key) = 0

440

1

2

3

924

515

6

957

8

979

10

26
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(97)

y .key = 44

i = 2

h1(y .key) = 0

h2(y .key) = 2

260

1

2

3

924

515

6

957

8

979

10

44
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

insert(97)

y .key =
i =

h1(y .key) =
h2(y .key) =

260
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3
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6
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8
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10
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Open addressing

Cuckoo hashing example

M = 11, h1(k) = k mod 11, h2(k) = ⌊11(φk − ⌊φk⌋)⌋

search(26)

y .key =
i =

h1(26) = 4

h2(26) = 0
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Open addressing

Complexity of open addressing strate-

gies

We won't do the analysis, but just state the costs.

For any open addressing scheme, we must have α < 1 (why?).

Cuckoo hashing requires α < 1/2.

The following gives the big-Theta cost of each operation for each

strategy:

search insert delete

Linear Probing
1

(1− α)2
1

(1− α)2
1

1− α

Double Hashing
1

1− α

1

1− α

1

α
log

(
1

1− α

)

Cuckoo Hashing 1
α

(1− 2α)2
1

23 / 24
EECS 4101-5101 Advanced Data Structures

▲



Open addressing

Hashing Summary

When the size of the hash table M is su�ciently large all search,
insert, deleted operations can be done in constant time.

This requires having α (load factor) being small (e.g., α = 1/2 or
α = 1/100.

Hashing is often the preferred method for implementing dictionaries.

24 / 24
EECS 4101-5101 Advanced Data Structures

▲



Open addressing

Hashing Summary

When the size of the hash table M is su�ciently large all search,
insert, deleted operations can be done in constant time.

This requires having α (load factor) being small (e.g., α = 1/2 or
α = 1/100.

Hashing is often the preferred method for implementing dictionaries.

24 / 24
EECS 4101-5101 Advanced Data Structures

▲


	Hashing intro
	Hash function strategies
	Buckets
	Open addressing

