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Self-Adjusting Binary Search Trees

The input is a set of requests to items in a
BST of size N.

The goal is to update the tree to adjust it
into patterns in the input.

There is a lot of locality in the input
sequence.

Can we apply Move-To-Front for trees?
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Splay Trees Idea

When there is a request to item a,
adjust the tree so that a becomes root
in the new tree!

Use tree rotations to `bubble up' the
accessed item.

We say that we splay a to become
root in the adjusted tree

It is a natural extension of
Move-To-Front to the lists.
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Splaying Rotations General Idea

Consider accessed item a, its parent p and grand-parent g (if they
exist).

Reorder a, p, and g so that a appears `above' the other two

If a is smallest/largest, p and g will be in one side of a.
If a is in between, p and g will be on its left and right.

After re-ordering a, p, and g , `place' the following four subtrees in
their appropriate position to save BST property:

the two subtrees of a
the sibling of a in the subtree of p
the sibling of p in the subtree of g
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Splay Example

E.g., Access a = 12
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Splaying Cases (a bit more formal)

The accessed node a is either

Root
Child of the root
Has both parent (p) and grandparent (g):

Zig-zig pattern: g → p → a is left-left or right-right

Zig-zag pattern: g → p → a is left-right or right-left
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Access root

if x is root, do nothing!
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Access child of root

When x is child of the root, do a single rotation to move it above
its parent

It is called a zig operation
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Access LR or RL grandchild

When x is left-child (resp. right-child) of P and p is right-child
(resp. left-child) of g , do a double rotation.

It is called a zig-zag operation

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



Access LL or RR grandchild

Reverse the order of a,p,and g .

It is called a zig-zig operation
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Splay Example

E.g., Access a = 6
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Splay Example

E.g., Access a = 4
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Splaying: Intuition

The accessed node is moved to `front' (i.e., is now root)

Let b be a node on the access path from root to the accessed node
a. If b is at depth d before the splay, it's at about depth d/2 after
the splay.

'Deeper nodes' on the access path tend to move closer to the root

Splaying gets amortized O(logN) amortized time.

N is the number of nods in the tree
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BST-Update problem

So far, we learned how Splay trees work; they are equivalent of
self-adjusting lists updated with MTF.

BST-Update problem:

The input is an online sequence of requests to items in a BST.
Each probe for �nding an item x has cost 1.
On the path traversed from the root to x , the algorithm can make
any number of rotations at a cost of 1 per rotation.

As before, the competitive ratio of an algorithm (self-adjusting tree)
is de�ned as the maximum ratio between the cost of that tree and
an optimal o�ine tree (which adjust itself via rotations.)

E.g., AVL trees, red-black trees have a competitive ratio of Ω(log n)
(why?)
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BST-Update problem

Dynamic Optimality Conjecture: Splay trees have a competitive
ratio independent of the size N of tree and length n of sequence.

As before, the competitive ratio is de�ned as the maximum ratio
between the cost of an algorithm and that of an optimal o�ine
algorithm (which can update the tree using rotations)

We know the competitive ratio of splay trees is O(logN)

The best existing algorithm is provided by self-adjusting Tango

Trees, and has a competitive ratio of O(log logN).
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