EECS 4101-5101 Advanced Data Structures

Shahin Kamali

Topic 2d - Splay Trees \& Dynamic Optimality Conjecture
York University

Picture is from the cover of the textbook CLRS.

Self-Adjusting Binary Search Trees

- The input is a set of requests to items in a BST of size N.
- The goal is to update the tree to adjust it into patterns in the input.
- There is a lot of locality in the input sequence.
- Can we apply Move-To-Front for trees?

Splay Trees Idea

- When there is a request to item a, adjust the tree so that a becomes root in the new tree!
- Use tree rotations to 'bubble up' the accessed item.
- We say that we splay a to become root in the adjusted tree
- It is a natural extension of
 Move-To-Front to the lists.

Splay Trees Idea

- When there is a request to item a, adjust the tree so that a becomes root in the new tree!
- Use tree rotations to 'bubble up' the accessed item.
- We say that we splay a to become

Splaying Rotations General Idea

- Consider accessed item a, its parent p and grand-parent g (if they exist).
- Reorder a, p, and g so that a appears 'above' the other two
- If a is smallest/largest, p and g will be in one side of a.
- If a is in between, p and g will be on its left and right.

Splaying Rotations General Idea

- Consider accessed item a, its parent p and grand-parent g (if they exist).
- Reorder a, p, and g so that a appears 'above' the other two
- If a is smallest/largest, p and g will be in one side of a.
- If a is in between, p and g will be on its left and right.
- After re-ordering a, p, and g, 'place' the following four subtrees in their appropriate position to save BST property:
- the two subtrees of a
- the sibling of a in the subtree of p
- the sibling of p in the subtree of g
- E.g., Access $a=12$

Splaying Cases (a bit more formal)

- The accessed node a is either
- Root
- Child of the root
- Has both parent (p) and grandparent (g):
- Zig-zig pattern: $g \rightarrow p \rightarrow a$ is left-left or right-right
- Zig-zag pattern: $g \rightarrow p \rightarrow a$ is left-right or right-left
- if x is root, do nothing!

Access child of root

- When x is child of the root, do a single rotation to move it above its parent
- It is called a zig operation

Access LR or RL grandchild

- When x is left-child (resp. right-child) of P and p is right-child (resp. left-child) of g, do a double rotation.
- It is called a zig-zag operation

Access LL or RR grandchild

- Reverse the order of a, p, and g.
- It is called a zig-zig operation

- E.g., Access $a=6$
(1)
(2)
(3)

(4)

(6)

- E.g., Access $a=6$
(1)
(1)

(2)

- E.g., Access $a=6$

- E.g., Access $a=6$
(1)
\odot

- E.g., Access $a=4$

- E.g., Access $a=4$

- E.g., Access $a=4$

Splaying: Intuition

- The accessed node is moved to 'front' (i.e., is now root)
- Let b be a node on the access path from root to the accessed node a. If b is at depth d before the splay, it's at about depth $d / 2$ after the splay.
- 'Deeper nodes' on the access path tend to move closer to the root

Splaying: Intuition

- The accessed node is moved to 'front' (i.e., is now root)
- Let b be a node on the access path from root to the accessed node a. If b is at depth d before the splay, it's at about depth $d / 2$ after the splay.
- 'Deeper nodes' on the access path tend to move closer to the root
- Splaying gets amortized $O(\log N)$ amortized time.
- N is the number of nods in the tree

BST-Update problem

- So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.

BST-Update problem

- So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.
- BST-Update problem:
- The input is an online sequence of requests to items in a BST.
- Each probe for finding an item x has cost 1 .
- On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.

BST-Update problem

- So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.
- BST-Update problem:
- The input is an online sequence of requests to items in a BST.
- Each probe for finding an item x has cost 1 .
- On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.
- As before, the competitive ratio of an algorithm (self-adjusting tree) is defined as the maximum ratio between the cost of that tree and an optimal offline tree (which adjust itself via rotations.)

BST-Update problem

- So far, we learned how Splay trees work; they are equivalent of self-adjusting lists updated with MTF.
- BST-Update problem:
- The input is an online sequence of requests to items in a BST.
- Each probe for finding an item x has cost 1 .
- On the path traversed from the root to x, the algorithm can make any number of rotations at a cost of 1 per rotation.
- As before, the competitive ratio of an algorithm (self-adjusting tree) is defined as the maximum ratio between the cost of that tree and an optimal offline tree (which adjust itself via rotations.)
- E.g., AVL trees, red-black trees have a competitive ratio of $\Omega(\log n)$ (why?)

BST-Update problem

- Dynamic Optimality Conjecture: Splay trees have a competitive ratio independent of the size N of tree and length n of sequence.
- As before, the competitive ratio is defined as the maximum ratio between the cost of an algorithm and that of an optimal offline algorithm (which can update the tree using rotations)
- We know the competitive ratio of splay trees is $O(\log N)$

BST-Update problem

- Dynamic Optimality Conjecture: Splay trees have a competitive ratio independent of the size N of tree and length n of sequence.
- As before, the competitive ratio is defined as the maximum ratio between the cost of an algorithm and that of an optimal offline algorithm (which can update the tree using rotations)
- We know the competitive ratio of splay trees is $O(\log N)$
- The best existing algorithm is provided by self-adjusting Tango Trees, and has a competitive ratio of $O(\log \log N)$.

