EECS 4101-5101
v Advanced Data Structures

e ‘ Shahin Kamali
\‘ T Wy

“‘ Topic 2¢ 2-3 Trees and B Trees
York University

Picture is from the cover of the textbook CLRS.

EECS 4101-5101 Advanced Data Structures

v
PN

. VA;’A"" . .
WYY Overview

o Introduction to 2-3 trees
o b-trees as an extension of 2-3 trees

o Dictionary Operations on 2-3 trees and b-trees

EECS 4101-5101 Advanced Data Structures

v 2-3 Trees

a
~

\ N k..
G 2-3 Trees

o A ternary tree is a tree in which each node has at most 3 children.

o A 2-3 Tree is a ternary tree like a BST with additional structual
properties:
o Every node either contains one KVP and two children,
or two KVPs and three children.
o All the leaves are at the same level (A leaf is a node with empty
children.)

v = rees

a
~

i A}
WY Search in a 2-3 tree

o Searching through a 1-node is just like in a BST.

o For a 2-node, we must examine both keys and follow the
appropriate path.

search(21)

v = rees

a
~

i A}
WY Search in a 2-3 tree

o Searching through a 1-node is just like in a BST.

o For a 2-node, we must examine both keys and follow the
appropriate path.

search(21)

v = rees

a
~

i A}
WY Search in a 2-3 tree

o Searching through a 1-node is just like in a BST.

o For a 2-node, we must examine both keys and follow the
appropriate path.

search(21)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(19)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(19)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(19)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(19)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(41)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(41)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(41)

v 2-3 Trees

a
~

N] .

Insertion in a 2-3 tree

.
ENN
o Inserting a new KVP to a 2-3 tree

o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.

Split the leaf into two 1-nodes, containing a and c,

and (recursively) insert b into the parent along with the new link.

Example: insert(41)

v 2-3 Trees

a
~

N] .

- Insertion in a 2-3 tree
o Inserting a new KVP to a 2-3 tree
o First, we search to find the leaf where the new key belongs.
o If the leaf has only 1 KVP, just add the new one to make a 2-node.
o Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(41)

v 2-3 Trees

a
~

A}
Y Deletion from a 2-3 Tree

o As with BSTs and AVL trees, we first swap the KVP with its
successor — this way we always delete from a leaf.

o Say we're deleting KVP x from a node V:

o If V is a 2-node, just delete x.

o Else If V' has a 2-node immediate sibling U, perform a transfer:
Put the “intermediate” KVP in the parent between V and U into V,
and replace it with the adjacent KVP from U.

o Otherwise, we merge V and a 1-node sibling U:

Remove V and (recursively) delete the “intermediate” KVP
from the parent, adding it to U.

v !-! rees

1
i A
N

N 2-3 Tree Deletion

Example: delete(43)

@5 :
e b e

v !—! rees

1
i A
N

N 2-3 Tree Deletion

Example: delete(43)

@5
e o ool

@\{

v !—! rees

-
~\—
.

'\“

N 2-3 Tree Deletion

Example: delete(43)

@5
A ol o

v !-! rees

1
i A
N

N 2-3 Tree Deletion

Example: delete(19)

@5
A ol ol

v !-! rees

a
~\—
.

'\“

N 2-3 Tree Deletion

Example: delete(19)

./
-l o

v !-! rees

a
~\—
.

'\“

N 2-3 Tree Deletion

Example: delete(19)

Sl o

K

v !-! rees

a
~\—
.

'\“

N 2-3 Tree Deletion

Example: delete(42)

S ok

I\

v !—! rees

-
~\—
.

'\“

N 2-3 Tree Deletion

Example: delete(42)

VAN
- o

I\

-

v !-! rees
-

."77 ‘
WY 2.3 Tree Deletion

./-\.
i

Example: delete(42)

K

v !-! rees

a
~

\“

\ea
A\

2-3 Tree Deletion

i
HED

=] (& B [(&

Example: delete(42)

v !—! rees

a
~

i
WY 2.3 Tree Deletion

Example: delete(42)

[5]5]
G1] BE

v B-Trees

a
~
.

\ - N =
T B-Trees
o A B-tree of minsize d is a search tree satisfying:

o Each node contains at most 2d KVPs.
Non-root nodes contain at least d KVPs (root can have 1 or more).
o All the leaves are at the same level.

o Some people call this a B-tree of order (2d 4 1), or a
(d+1,2d + 1)-tree.

o The 2-3 Tree is a specific type of B-tree with d = 1.
o Here is a tree with d = 2:

24

10 18 35 42 50

12 17J019 21 2227 32 60 70 80

v B-Trees

a
~

B
RN
Y

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

insert (90)

12 17019 21 2227 32|38 39 46 4960 70 80

v B-Trees

a
~

B
RN
Y

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

insert (90)

12 17J019 21 2227 32|38 39 46 4960 70 80 90

v B-Trees

a
~

B
RN
Y

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

insert (91)

12 17J019 21 2227 32|38 39 46 4960 70 80 90

v B-Trees

a
~

B
RN
Y

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

insert (91)

12 17J019 21 2227 32|38 3946 4960 70 80 90 91

v B-Trees

a
~

N] .

S
R\

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

insert (91)

35 42 5080

12 17J019 21 22827 32|38 39 46 4960 70 N 90 91

v B-Trees

a
~

N] .

v \
A\

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

o For delete, take the following steps:

o if there is no underflow after delete, do nothing.

o else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).

o else, merge two nodes by creating a node containing the
underflowed node (with d — 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d.

delete (5)

35 42 5080

12 17J019 21 22827 32|38 39 46 4960 70 N 90 91

v B-Trees

a
~

N] .

v \
A\

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

o For delete, take the following steps:

o if there is no underflow after delete, do nothing.

o else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).

o else, merge two nodes by creating a node containing the
underflowed node (with d — 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d.

delete (5)

35 42 5080

12 17|19 21 22827 3238 3946 4960 70 | 90 91

v B-Trees

a
~

N] .

v \
A\

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

o For delete, take the following steps:

o if there is no underflow after delete, do nothing.

o else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).

o else, merge two nodes by creating a node containing the
underflowed node (with d — 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d.

delete (5)

35 42 5080

12 17|19 21 22827 3238 3946 4960 70 | 90 91

v B-Trees

a
~

N] .

v \
A\

B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

o For delete, take the following steps:

o if there is no underflow after delete, do nothing.

o else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).

o else, merge two nodes by creating a node containing the
underflowed node (with d — 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d.

delete (5)

35 42 5080

71012 17|19 21 22827 32438 39 46 4960 70 | 90 91

v B-Trees

a
~

€
W™ B-Tree Operations

o search, insert, delete work just like for 2-3 trees.

o As before, insert might result in overflow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

o For delete, take the following steps:

o if there is no underflow after delete, do nothing.

o else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).

o else, merge two nodes by creating a node containing the
underflowed node (with d — 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d.

delete (5)

71012 17Jl19 21 2227 32 46 4960 70 | 90 91

v B-Trees
\ 7“

" Height of a B-tree

What is the least number of KVPs in a height-h B-tree?

a
~

Level #Nodesis > Node sizeis > KVPsis >
0 1 1 1
1 2 d 2d
2 2(d + 1) d 2d(d +1)
3 (d +1)? d 2d(d +1)?
h 2(d + 1) d 2d(d + 1)” 1
h—1

Total: n>1+) 2d(d+1)' =2(d+1)" -1
i=0
log(n+1) —1
log(d + 1)

log n

— log(n+1) > 14 hlog(d+1) = h < log d

= 0(—)

v !— | rees

a
~

A
™ Analysis of B-tree operations

o Assume each node stores its KVPs and child-pointers in a dictionary
that supports O(log d) search, insert, and delete.

o Then search, insert, and delete work just like for 2-3 trees, and each
require ©(height) node operations.

. log n B
o Total cost is O (Iogd - (log d)> = O(logn).

v B-Trees

a
~

€
w ™ Dictionaries in external memory

o Tree-based data structures have poor memory locality:
If an operation accesses m nodes, then it must access
m spaced-out memory locations.

o Observation: Accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).

o In an AVL tree or 2-3 tree, ©(log n) pages are loaded in the worst
case for a single insert/delete/search operation.

o If d is small enough so a 2d-node fits into a single page,
then a B-tree of minsize d only loads ©((log n)/(log d)) pages.

o This can result in a huge savings:
memory access is often the largest time cost in a computation.

o This was the main reason for the introduction of B-trees by Bayer
and McCreight in 1970.

v B-Trees

a
~

e
Y B-trees vs Red-Black Trees

Red-black trees: Identical to a B-tree with minsize 1 and maxsize
3

o Given a red-black tree, merge each black node with its red children;
maintain one black node at each node of the B-tree. Why is the
result a B-tree?

v B-Trees

a
~

A)

~Y B-tree variations

S
A\

Max size 2d + 1: Permitting one additional KVP in each node
allows insert and delete to avoid backtracking via

pre-emptive splitting and pre-emptive merging.

B'-trees: All KVPs are stored at the leaves

(interior nodes just have keys), and the leaves are linked
sequentially.

	2-3 Trees
	2-3 Tree Deletion

	B-Trees

