
EECS 4101-5101

Advanced Data Structures

Shahin Kamali

Topic 2c 2-3 Trees and B Trees

York University

Picture is from the cover of the textbook CLRS.

1 / 14
EECS 4101-5101 Advanced Data Structures

▲



Overview

Introduction to 2-3 trees

b-trees as an extension of 2-3 trees

Dictionary Operations on 2-3 trees and b-trees

2 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Trees

A ternary tree is a tree in which each node has at most 3 children.

A 2-3 Tree is a ternary tree like a BST with additional structual
properties:

Every node either contains one KVP and two children,
or two KVPs and three children.
All the leaves are at the same level (A leaf is a node with empty
children.)

3 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Search in a 2-3 tree

Searching through a 1-node is just like in a BST.

For a 2-node, we must examine both keys and follow the
appropriate path.

search(21)

25 43

18

12 21 24

31 36

28 33 39 42

51

48 56 62

4 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Search in a 2-3 tree

Searching through a 1-node is just like in a BST.

For a 2-node, we must examine both keys and follow the
appropriate path.

search(21)

25 43

18

12 21 24

31 36

28 33 39 42

51

48 56 62

4 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Search in a 2-3 tree

Searching through a 1-node is just like in a BST.

For a 2-node, we must examine both keys and follow the
appropriate path.

search(21)

25 43

18

12 21 24

31 36

28 33 39 42

51

48 56 62

4 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(19)
25 43

18

12 21 24

31 36

28 33 39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(19)
25 43

18

12 21 24

31 36

28 33 39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(19)
25 43

18

12 19 21 24

31 36

28 33 39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(19)
25 43

18 21

12 19 24

31 36

28 33 39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(41)
25 43

18 21

12 19 24

31 36

28 33 39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(41)
25 43

18 21

12 19 24

31 36

28 33 39 41 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(41)
25 43

18 21

12 19 24

31 36 41

28 33 39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(41)
25 36 43

18 21

12 19 24

31

28 33

41

39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Insertion in a 2-3 tree

Inserting a new KVP to a 2-3 tree

First, we search to �nd the leaf where the new key belongs.
If the leaf has only 1 KVP, just add the new one to make a 2-node.
Otherwise, order the three keys as a < b < c.
Split the leaf into two 1-nodes, containing a and c,
and (recursively) insert b into the parent along with the new link.

Example: insert(41) 36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

5 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

Deletion from a 2-3 Tree

As with BSTs and AVL trees, we �rst swap the KVP with its
successor → this way we always delete from a leaf.

Say we're deleting KVP x from a node V :

If V is a 2-node, just delete x .
Else If V has a 2-node immediate sibling U, perform a transfer :
Put the �intermediate� KVP in the parent between V and U into V ,
and replace it with the adjacent KVP from U.
Otherwise, we merge V and a 1-node sibling U:
Remove V and (recursively) delete the �intermediate� KVP
from the parent, adding it to U.

6 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(43)

36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(43)

36

25

18 21

12 19 24

31

28 33

48

41

39 42

51

56 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(43)

36

25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(19)

36

25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(19)

36

25

18

12 21 24

31

28 33

48

41

39 42

56

51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(19)

36

25

18

12 21 24

31

28 33

48

41

39 42

56

51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(42)

36

25

18

12 21 24

31

28 33

48

41

39 42

56

51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(42)

36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(42)

36

25

18

12 21 24

31

28 33

48 56

39 41 51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(42)

25 36

18

12 21 24

31

28 33

48 56

39 41 51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



2-3 Trees

2-3 Tree Deletion

Example: delete(42)

25 36

18

12 21 24

31

28 33

48 56

39 41 51 62

7 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Trees

A B-tree of minsize d is a search tree satisfying:

Each node contains at most 2d KVPs.
Non-root nodes contain at least d KVPs (root can have 1 or more).
All the leaves are at the same level.

Some people call this a B-tree of order (2d + 1), or a
(d + 1, 2d + 1)-tree.

The 2-3 Tree is a speci�c type of B-tree with d = 1.
Here is a tree with d = 2:

8 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

For delete, take the following steps:
if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

For delete, take the following steps:
if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

For delete, take the following steps:
if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

For delete, take the following steps:
if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).

For delete, take the following steps:
if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).
For delete, take the following steps:

if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).
For delete, take the following steps:

if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).
For delete, take the following steps:

if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).
For delete, take the following steps:

if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-Tree Operations

search, insert, delete work just like for 2-3 trees.

As before, insert might result in over�ow, in which case we divide
the node in two nodes and send parent upward (and repeat
recursively).
For delete, take the following steps:

if there is no under�ow after delete, do nothing.
else, check if any direct sibling has an extra key; if it does, borrow a
key from the parent and let the parent borrow a key from the
sibling (update the pointer after).
else, merge two nodes by creating a node containing the
under�owed node (with d − 1 keys), the key at parent (1 key), and
direct sibling (d keys). The new key will have size 2d .

9 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

Height of a B-tree

What is the least number of KVPs in a height-h B-tree?

Level #Nodes is ≥ Node size is ≥ KVPs is ≥
0 1 1 1

1 2 d 2d
2 2(d + 1) d 2d(d + 1)
3 2(d + 1)2 d 2d(d + 1)2

· · · · · · · · · · · ·
h 2(d + 1)h−1 d 2d(d + 1)h−1

Total: n ≥ 1+
h−1∑
i=0

2d(d + 1)i = 2(d + 1)h − 1

→ log(n+ 1) ≥ 1+h log(d + 1) → h ≤ log(n + 1)− 1

log(d + 1)
= O(

log n

log d
)

Therefore height of tree with n nodes is O
(
(log n)/(log d)

)
.

10 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

Analysis of B-tree operations

Assume each node stores its KVPs and child-pointers in a dictionary
that supports O(log d) search, insert, and delete.

Then search, insert, and delete work just like for 2-3 trees, and each
require Θ(height) node operations.

Total cost is O

(
log n

log d
· (log d)

)
= O(log n).

11 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

Dictionaries in external memory

Tree-based data structures have poor memory locality :
If an operation accesses m nodes, then it must access
m spaced-out memory locations.

Observation: Accessing a single location in external memory

(e.g. hard disk) automatically loads a whole block (or �page�).

In an AVL tree or 2-3 tree, Θ(log n) pages are loaded in the worst
case for a single insert/delete/search operation.

If d is small enough so a 2d-node �ts into a single page,
then a B-tree of minsize d only loads Θ

(
(log n)/(log d)

)
pages.

This can result in a huge savings:
memory access is often the largest time cost in a computation.
This was the main reason for the introduction of B-trees by Bayer
and McCreight in 1970.

12 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-trees vs Red-Black Trees

Red-black trees: Identical to a B-tree with minsize 1 and maxsize
3

Given a red-black tree, merge each black node with its red children;
maintain one black node at each node of the B-tree. Why is the
result a B-tree?

1 5

3

10 20

15

8

30 50

32

25

40

→

1 5

3

10 2015

8

30

5032

25

40 55

13 / 14
EECS 4101-5101 Advanced Data Structures

▲



B-Trees

B-tree variations

Max size 2d + 1: Permitting one additional KVP in each node

allows insert and delete to avoid backtracking via

pre-emptive splitting and pre-emptive merging .

B+-trees: All KVPs are stored at the leaves

(interior nodes just have keys), and the leaves are linked

sequentially.

14 / 14
EECS 4101-5101 Advanced Data Structures

▲


	2-3 Trees
	2-3 Tree Deletion

	B-Trees

