EECS 4101-5101 Advanced Data Structures

Shahin Kamali

Topic 2c 2-3 Trees and B Trees
York University

Picture is from the cover of the textbook CLRS.

Overview

- Introduction to 2-3 trees
- b-trees as an extension of 2-3 trees
- Dictionary Operations on 2-3 trees and b-trees

2-3 Trees

- A ternary tree is a tree in which each node has at most 3 children.
- A 2-3 Tree is a ternary tree like a BST with additional structual properties:
- Every node either contains one KVP and two children, or two KVPs and three children.
- All the leaves are at the same level (A leaf is a node with empty children.)

2-3 Trees
 Search in a 2-3 tree

- Searching through a 1-node is just like in a BST.
- For a 2-node, we must examine both keys and follow the appropriate path.
search(21)

2-3 Trees
 Search in a 2-3 tree

- Searching through a 1-node is just like in a BST.
- For a 2-node, we must examine both keys and follow the appropriate path.
search(21)

2-3 Trees
 Search in a 2-3 tree

- Searching through a 1-node is just like in a BST.
- For a 2-node, we must examine both keys and follow the appropriate path.
search(21)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(19)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(19)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(19)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(19)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(41)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(41)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(41)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(41)

Insertion in a 2-3 tree

- Inserting a new KVP to a 2-3 tree
- First, we search to find the leaf where the new key belongs.
- If the leaf has only 1 KVP, just add the new one to make a 2-node.
- Otherwise, order the three keys as $a<b<c$.

Split the leaf into two 1-nodes, containing a and c, and (recursively) insert b into the parent along with the new link.
Example: insert(41)

Deletion from a 2-3 Tree

- As with BSTs and AVL trees, we first swap the KVP with its successor \rightarrow this way we always delete from a leaf.
- Say we're deleting KVP x from a node V :
- If V is a 2-node, just delete x.
- Else If V has a 2-node immediate sibling U, perform a transfer: Put the "intermediate" KVP in the parent between V and U into V, and replace it with the adjacent KVP from U.
- Otherwise, we merge V and a 1-node sibling U : Remove V and (recursively) delete the "intermediate" KVP from the parent, adding it to U.

$\therefore \quad \therefore \frac{23 \text { Tres }}{2-3 \text { Tree Deletion }}$

Example: delete(43)

\therefore … ${ }^{23} 2-3$ Tree Deletion

Example: delete(43)

2-3 Trees
 2-3 Tree Deletion

Example: delete(43)

2-3 Trees
 2-3 Tree Deletion

Example: delete(19)

2-3 Trees
 2-3 Tree Deletion

Example: delete(19)

2-3 Trees
 2-3 Tree Deletion

Example: delete(19)

2-3 Trees
 2-3 Tree Deletion

Example: delete(42)

2-3 Trees
 2-3 Tree Deletion

Example: delete(42)

2-3 Trees
 2-3 Tree Deletion

Example: delete(42)

2-3 Trees
 2-3 Tree Deletion

Example: delete(42)

2-3 Trees
 2-3 Tree Deletion

Example: delete(42)

B-Trees

B-Trees

- A B-tree of minsize d is a search tree satisfying:
- Each node contains at most $2 d$ KVPs.

Non-root nodes contain at least d KVPs (root can have 1 or more).

- All the leaves are at the same level.
- Some people call this a B-tree of order $(2 d+1)$, or a $(d+1,2 d+1)$-tree.
- The 2-3 Tree is a specific type of B-tree with $d=1$.
- Here is a tree with $d=2$:

B-Trees

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).

B-Trees

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).

B-Trees

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).

B-Trees

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).

B-Trees

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).
- For delete, take the following steps:
- if there is no underflow after delete, do nothing.
- else, check if any direct sibling has an extra key; if it does, borrow a key from the parent and let the parent borrow a key from the sibling (update the pointer after).
- else, merge two nodes by creating a node containing the underflowed node (with $d-1$ keys), the key at parent (1 key), and direct sibling (d keys). The new key will have size $2 d$.

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).
- For delete, take the following steps:
- if there is no underflow after delete, do nothing.
- else, check if any direct sibling has an extra key; if it does, borrow a key from the parent and let the parent borrow a key from the sibling (update the pointer after).
- else, merge two nodes by creating a node containing the underflowed node (with $d-1$ keys), the key at parent (1 key), and direct sibling (d keys). The new key will have size $2 d$.
delete (5)

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).
- For delete, take the following steps:
- if there is no underflow after delete, do nothing.
- else, check if any direct sibling has an extra key; if it does, borrow a key from the parent and let the parent borrow a key from the sibling (update the pointer after).
- else, merge two nodes by creating a node containing the underflowed node (with $d-1$ keys), the key at parent (1 key), and direct sibling (d keys). The new key will have size $2 d$.
delete (5)

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).
- For delete, take the following steps:
- if there is no underflow after delete, do nothing.
- else, check if any direct sibling has an extra key; if it does, borrow a key from the parent and let the parent borrow a key from the sibling (update the pointer after).
- else, merge two nodes by creating a node containing the underflowed node (with $d-1$ keys), the key at parent (1 key), and direct sibling (d keys). The new key will have size $2 d$.

B-Tree Operations

- search, insert, delete work just like for 2-3 trees.
- As before, insert might result in overflow, in which case we divide the node in two nodes and send parent upward (and repeat recursively).
- For delete, take the following steps:
- if there is no underflow after delete, do nothing.
- else, check if any direct sibling has an extra key; if it does, borrow a key from the parent and let the parent borrow a key from the sibling (update the pointer after).
- else, merge two nodes by creating a node containing the underflowed node (with $d-1$ keys), the key at parent (1 key), and direct sibling (d keys). The new key will have size $2 d$.
delete (5)

Height of a B-tree

What is the least number of KVPs in a height- h B-tree?

Level	\#Nodes is \geq	Node size is \geq	KVPs is \geq
0	1	1	1
1	2	d	$2 d$
2	$2(d+1)$	d	$2 d(d+1)$
3	$2(d+1)^{2}$	d	$2 d(d+1)^{2}$
\cdots	\cdots	\cdots	\cdots
h	$2(d+1)^{h-1}$	d	$2 d(d+1)^{h-1}$

$$
\begin{gathered}
\text { Total: } n \geq 1+\sum_{i=0}^{h-1} 2 d(d+1)^{i}=2(d+1)^{h}-1 \\
\rightarrow \log (n+1) \geq 1+h \log (d+1) \rightarrow h \leq \frac{\log (n+1)-1}{\log (d+1)}=O\left(\frac{\log n}{\log d}\right)
\end{gathered}
$$

B-Trees

Analysis of B-tree operations

- Assume each node stores its KVPs and child-pointers in a dictionary that supports $O(\log d)$ search, insert, and delete.
- Then search, insert, and delete work just like for 2-3 trees, and each require Θ (height) node operations.
- Total cost is $O\left(\frac{\log n}{\log d} \cdot(\log d)\right)=O(\log n)$.

Dictionaries in external memory

- Tree-based data structures have poor memory locality: If an operation accesses m nodes, then it must access m spaced-out memory locations.
- Observation: Accessing a single location in external memory (e.g. hard disk) automatically loads a whole block (or "page").
- In an AVL tree or 2-3 tree, $\Theta(\log n)$ pages are loaded in the worst case for a single insert/delete/search operation.
- If d is small enough so a $2 d$-node fits into a single page, then a B-tree of minsize d only loads $\Theta((\log n) /(\log d))$ pages.
- This can result in a huge savings: memory access is often the largest time cost in a computation.
- This was the main reason for the introduction of B-trees by Bayer and McCreight in 1970.

B-Trees

Red-black trees: Identical to a B-tree with minsize 1 and maxsize 3

- Given a red-black tree, merge each black node with its red children; maintain one black node at each node of the B-tree. Why is the result a B-tree?

B-tree variations

Max size $2 d+1$: Permitting one additional KVP in each node allows insert and delete to avoid backtracking via pre-emptive splitting and pre-emptive merging.

B $^{+}$-trees: All KVPs are stored at the leaves
(interior nodes just have keys), and the leaves are linked sequentially.

