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Picture is from the cover of the textbook CLRS.
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Red-Black Trees

Red-black trees were introduced in 1978 by Guibas and Sedgewick.

They were evolved from symmetric binary B-trees (more on them
later).
The colours were selected because red and black pens were available
to the authors to draw the trees!
Red-black trees o�er a more relaxed structure than AVL-trees and
are often faster!
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Red-Black Trees

A red-black tree is a binary search tree in which:

Every node is colored either Red (pictured white on slides and
board) or Black.
Each Null pointer is considered to be a Black �node".
If a node is Red, then both of its children must be Black.
Every path from a node X to a NULL (in the subtree rooted at X )
contains the same number of Black nodes.
By convention, the root is Black

1 5

3

10 20

15

8

30
50

32

25

40 55

3 / 11
EECS 4101-5101 Advanced Data Structures

▲



Red-Black Trees

The left and right subtrees of a node can have heights that di�er by
a factor of 2.

Compared to the AVL tree, red-black trees have a much more
relaxed structure.

1 5

3

10 20

15

8 32

25

4 / 11
EECS 4101-5101 Advanced Data Structures

▲



Red-Black Trees

The black-height of a node X in a red-black tree is the number of
Black nodes on any path to a NULL, not counting X .

Black-Height of the tree (the root) = 3
Black-Height of the node with key 8 is 2.
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Red-Black Trees

Theorem

The black-height of any red-black tree with n nodes is O(log n).

Proof: let N(h) denote the maximum number of nodes in a
red-black tree with black-height h.

We have N(1) ≥ 1; For h > 1, the value of N(h) is minimized if the
tree has a black root and its two children are also black; we can
write N(h) ≥ 1+ 2N(h − 1), which gives N(h) ≥ 2h, or
h ∈ O(log n).

The actual height of a red-black tree is at most twice the
black-height (why?) → the height of a red-black tree is O(log n).
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Red-Black Tree Insertion

Insert node; Color it Red; X is pointer to it.

1 X is the root � color it Black.

2 Parent is black; nothing to do.
3 E.g., insert(27)
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Red-Black Tree Insertion

Insert node; Color it Red; X is pointer to it. Cases to consider:

1 X is the root � color it Black.
2 Parent is black; nothing to do.
3 Both parent and uncle are Red � color parent and uncle Black, color

grandparent Red. Point X to the grandparent and check the new
situation.

4 E.g., insert(12)
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Red-Black Tree Insertion
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1 X is the root � color it Black.
2 Parent is black; nothing to do.
3 Both parent and uncle are Red � color parent and uncle Black, color

grandparent Red. Point X to the grandparent and check the new
situation.

4 Parent is Red and uncle is Black: rotate on the three nodes x,
parent, and its grandparent (s.t. the middle key becomes the parent
of the other two). Children of these three nodes are all black
(why?) → recolor to �x the structure. E.g., insert (28):

1 5

3

10 20

15

8

30
50

32

25

4027

12

x

55

9 / 11
EECS 4101-5101 Advanced Data Structures

▲



Red-Black Tree Insertion

Insert node; Color it Red; X is pointer to it. Cases to consider:

1 X is the root � color it Black.
2 Parent is black; nothing to do.
3 Both parent and uncle are Red � color parent and uncle Black, color

grandparent Red. Point X to the grandparent and check the new
situation.

4 Parent is Red and uncle is Black: rotate on the three nodes x,
parent, and its grandparent (s.t. the middle key becomes the parent
of the other two). Children of these three nodes are all black
(why?) → recolor to �x the structure. E.g., insert (28):

1 5

3

10 20

15

8

30
50

32

25

4027

12

x

55

9 / 11
EECS 4101-5101 Advanced Data Structures

▲



Red-Black Tree Insertion

Insert node; Color it Red; X is pointer to it. Cases to consider:

1 X is the root � color it Black.
2 Parent is black; nothing to do.
3 Both parent and uncle are Red � color parent and uncle Black, color

grandparent Red. Point X to the grandparent and check the new
situation.

4 Parent is Red and uncle is Black: rotate on the three nodes x,
parent, and its grandparent (s.t. the middle key becomes the parent
of the other two). Children of these three nodes are all black
(why?) → recolor to �x the structure. E.g., insert (28):

1 5

3

10 20

15

8

30
50

32

25

4027

12 28
x

55

9 / 11
EECS 4101-5101 Advanced Data Structures

▲



Red-Black Tree Insertion

Insert node; Color it Red; X is pointer to it. Cases to consider:

1 X is the root � color it Black.
2 Parent is black; nothing to do.
3 Both parent and uncle are Red � color parent and uncle Black, color

grandparent Red. Point X to the grandparent and check the new
situation.

4 Parent is Red and uncle is Black: rotate on the three nodes x,
parent, and its grandparent (s.t. the middle key becomes the parent
of the other two). Children of these three nodes are all black
(why?) → recolor to �x the structure. E.g., insert (28):

1 5

3

10 20

15

8

28
50

32

25

4027

12

30

x

55

9 / 11
EECS 4101-5101 Advanced Data Structures

▲



Red-Black Tree Insertion

Insert node; Color it Red; X is pointer to it. Cases to consider:

1 X is the root � color it Black.
2 Parent is black; nothing to do.
3 Both parent and uncle are Red � color parent and uncle Black, color

grandparent Red. Point X to the grandparent and check the new
situation.

4 Parent is Red and uncle is Black: rotate on the three nodes x,
parent, and its grandparent (s.t. the middle key becomes the parent
of the other two). Children of these three nodes are all black
(why?) → recolor to �x the structure. E.g., insert (28):

1 5

3

10 20

15

8

28
50

32

25

4027

12

30

x

55

9 / 11
EECS 4101-5101 Advanced Data Structures

▲



Red-Black Tree Insertion

How long does insertion take?

1 Step 3 (when both parents and uncle are Red) only recolors and
repeats at a higher level.

2 Rotations occur at least once at Step 4 (after rotation, we do not
need to re-structure the tree).

3 Insertion in a Red-Black Tree takes at most 1 rotation and

Θ(log n) time.
4 Deletion has the same spirit; you will practice them in your next

assignment.
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Red-Black Tree Summary

Red-Black trees support insertion, deletion, and search in O(log n)
time.

Although the time-complexities of operations are the same as AVL
trees, in practice, Red-Black trees are faster and require fewer
rotations.

Red-Black trees can be augmented in a similar way that AVL trees
can!
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