EECS 4101-5101 Advanced Data Structures

Shahin Kamali

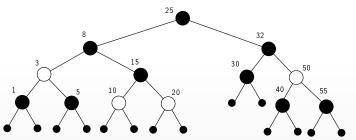
Topic 2b Red-Black Trees York University

Picture is from the cover of the textbook CLRS.

- Red-black trees were introduced in 1978 by Guibas and Sedgewick.
 - They were evolved from symmetric binary B-trees (more on them later).
 - The colours were selected because red and black pens were available to the authors to draw the trees!
 - Red-black trees offer a more relaxed structure than AVL-trees and are often faster!

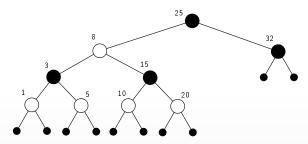
Red-Black Trees

- A red-black tree is a binary search tree in which:
 - Every node is colored either Red (pictured white on slides and board) or Black.
 - Each Null pointer is considered to be a Black "node".
 - If a node is Red, then both of its children must be Black.
 - Every path from a node X to a NULL (in the subtree rooted at X) contains the same number of Black nodes.
 - By convention, the root is Black



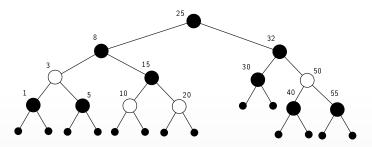
Red-Black Trees

- The left and right subtrees of a node can have heights that differ by a **factor** of 2.
 - Compared to the AVL tree, red-black trees have a much more relaxed structure.



Red-Black Trees

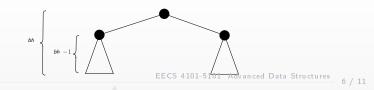
- The **black-height** of a node X in a red-black tree is the number of Black nodes on any path to a NULL, not counting X.
 - Black-Height of the tree (the root) = 3
 - Black-Height of the node with key 8 is 2.



Theorem

The black-height of any red-black tree with n nodes is $O(\log n)$.

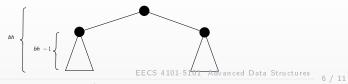
- Proof: let N(h) denote the maximum number of nodes in a red-black tree with black-height h.
 - We have $N(1) \ge 1$; For h > 1, the value of N(h) is minimized if the tree has a black root and its two children are also black; we can write $N(h) \ge 1 + 2N(h-1)$, which gives $N(h) \ge 2^h$, or $h \in O(\log n)$.



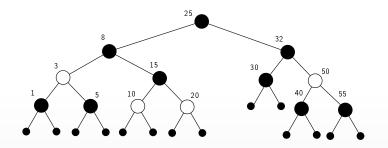
Theorem

The black-height of any red-black tree with n nodes is $O(\log n)$.

- Proof: let N(h) denote the maximum number of nodes in a red-black tree with black-height h.
 - We have $N(1) \ge 1$; For h > 1, the value of N(h) is minimized if the tree has a black root and its two children are also black; we can write $N(h) \ge 1 + 2N(h-1)$, which gives $N(h) \ge 2^h$, or $h \in O(\log n)$.
- The actual height of a red-black tree is at most twice the black-height (why?) → the height of a red-black tree is O(log n).



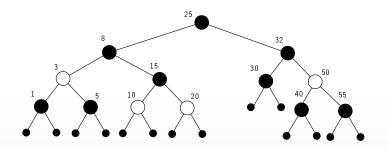
- Insert node; Color it Red; X is pointer to it.
 - X is the root color it Black.



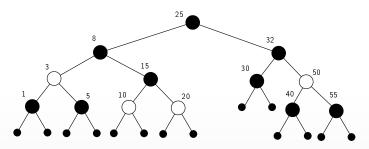
- Insert node; Color it Red; X is pointer to it.

X is the root – color it Black.

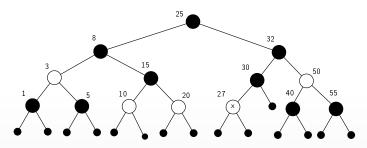
2 Parent is black; nothing to do.



- Insert node; Color it Red; X is pointer to it.
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - E.g., insert(27)

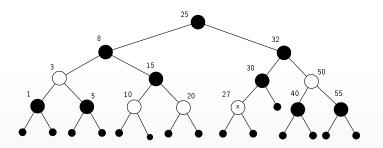


- Insert node; Color it Red; X is pointer to it.
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - E.g., insert(27)



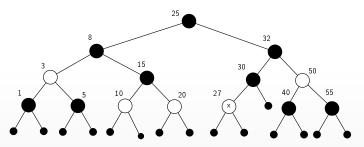
• Insert node; Color it Red; X is pointer to it. Cases to consider:

- X is the root color it Black.
- Parent is black; nothing to do.
- Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.



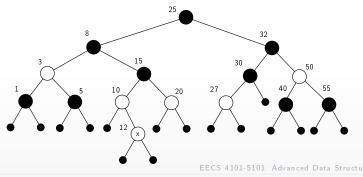
• Insert node; Color it Red; X is pointer to it. Cases to consider:

- X is the root color it Black.
- Parent is black; nothing to do.
- Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.



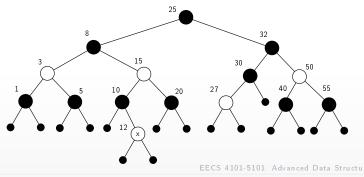
- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.





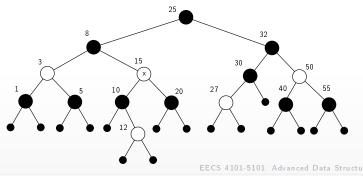
- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.



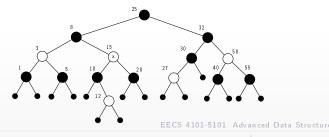


- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.

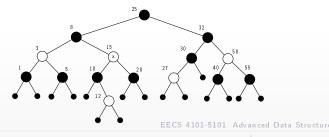




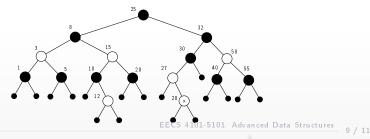
- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - ③ Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.
 - ③ Parent is Red and uncle is Black: rotate on the three nodes x, parent, and its grandparent (s.t. the middle key becomes the parent of the other two). Children of these three nodes are all black (why?) → recolor to fix the structure. E.g., insert (28):



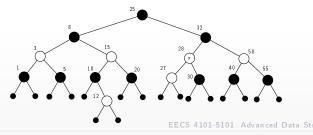
- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - ③ Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.
 - ③ Parent is Red and uncle is Black: rotate on the three nodes x, parent, and its grandparent (s.t. the middle key becomes the parent of the other two). Children of these three nodes are all black (why?) → recolor to fix the structure. E.g., insert (28):



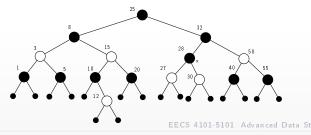
- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - ③ Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.
 - ③ Parent is Red and uncle is Black: rotate on the three nodes x, parent, and its grandparent (s.t. the middle key becomes the parent of the other two). Children of these three nodes are all black (why?) → recolor to fix the structure. E.g., insert (28):



- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - ③ Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.
 - ③ Parent is Red and uncle is Black: rotate on the three nodes x, parent, and its grandparent (s.t. the middle key becomes the parent of the other two). Children of these three nodes are all black (why?) → recolor to fix the structure. E.g., insert (28):

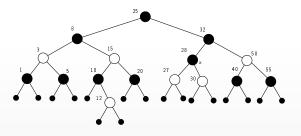


- Insert node; Color it Red; X is pointer to it. Cases to consider:
 - X is the root color it Black.
 - Parent is black; nothing to do.
 - ③ Both parent and uncle are Red color parent and uncle Black, color grandparent Red. Point X to the grandparent and check the new situation.
 - ③ Parent is Red and uncle is Black: rotate on the three nodes x, parent, and its grandparent (s.t. the middle key becomes the parent of the other two). Children of these three nodes are all black (why?) → recolor to fix the structure. E.g., insert (28):

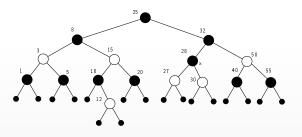


- How long does insertion take?

 - Step 3 (when both parents and uncle are Red) only recolors and repeats at a higher level.



- How long does insertion take?
 - Step 3 (when both parents and uncle are Red) only recolors and repeats at a higher level.
 - Rotations occur at least once at Step 4 (after rotation, we do not need to re-structure the tree).



• How long does insertion take?

- Step 3 (when both parents and uncle are Red) only recolors and repeats at a higher level.
- Rotations occur at least once at Step 4 (after rotation, we do not need to re-structure the tree).
- Insertion in a Red-Black Tree takes at most 1 rotation and Θ(log n) time.

• How long does insertion take?

- Step 3 (when both parents and uncle are Red) only recolors and repeats at a higher level.
- Rotations occur at least once at Step 4 (after rotation, we do not need to re-structure the tree).
- Insertion in a Red-Black Tree takes at most 1 rotation and Θ(log n) time.
- Oeletion has the same spirit; you will practice them in your next assignment.

Red-Black Tree Summary

- Red-Black trees support insertion, deletion, and search in O(log n) time.
- Although the time-complexities of operations are the same as AVL trees, in practice, Red-Black trees are faster and require fewer rotations.
- Red-Black trees can be augmented in a similar way that AVL trees can!