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Dictionaries

Dictionary ADT

De�nition

A dictionary is a collection S of items, each of which contains a
key and some data, and is called a key-value pair (KVP).

It is also called an associative array, a map, or a symbol table.

Keys can be compared and are (typically) unique.

We often focus on keys; associating data with keys is easy.

Main Operations:

search(x): return true i� x ∈ S

insert(x , v): S ← S
⋃
{x}

delete(x): S ← S/{x}

additional: join, isEmpty, size, etc.

Examples: student database, symbol table, license plate database

2 / 42
EECS 4101-5101 Advanced Data Structures

▲



Dictionaries

Dictionary ADT

De�nition

A dictionary is a collection S of items, each of which contains a
key and some data, and is called a key-value pair (KVP).

It is also called an associative array, a map, or a symbol table.

Keys can be compared and are (typically) unique.

We often focus on keys; associating data with keys is easy.

Main Operations:

search(x): return true i� x ∈ S

insert(x , v): S ← S
⋃
{x}

delete(x): S ← S/{x}

additional: join, isEmpty, size, etc.

Examples: student database, symbol table, license plate database

2 / 42
EECS 4101-5101 Advanced Data Structures

▲



Dictionaries

Optional Operations

In addition to the main operations (search, insert, delete), the
followings are useful:

predecessor(x): return the largest y ∈ S such that y < x
successor(x): return the smallest y ∈ S such that y > x
rank(x) : return the index of x in the sorted array
select(i): return the key at index i in the sorted array → i 'th order
statistic
isEmpty(x): return true if S is empty
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Dictionaries

Dictionaries

Is dictionary an abstract data type or a data structure?

It is an abstract data type; we did not discuss implementation.
Di�erent data structures can be used to implement dictionaries.
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Dictionaries

Elementary Implementations

Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the �value� could be a pointer)
Comparing keys takes constant time

Unsorted array or linked list

search Θ(n)
insert Θ(1)
delete Θ(n) (need to search)

Sorted array

search Θ(log n)
insert Θ(n)
delete Θ(n)
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Dictionaries

Data Structures for Dictionaries

space search insert/delete predecessor

unsorted array,linked list Θ(n + a) Θ(n) Θ(1)/Θ(n) Θ(n)

sorted array

sorted linked-list

unbalanced BST

balanced BST

hash tables

skip list

n: number of KVPs.

a: the length of array; when we use sorted/unsorted arrays, a ≥ n.

∗: expected time/space
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BSTs

Binary Search Trees (review)

Structure A BST is either empty or contains a KVP,
left child BST, and right child BST.

Ordering Every key k in T .left is less than the root key.
Every key k in T .right is greater than the root key.
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BSTs

BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

insert(k , v) Search for k , then insert (k , v) as new node

Example: search(24)
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BSTs

BST Search and Insert

search(k) Compare k to current node, stop if found,
else recurse on subtree unless it's empty

insert(k , v) Search for k , then insert (k , v) as new node

Example: insert(24, . . .)
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BSTs

BST Delete

If node is a leaf, just delete it.

If node has one child, move child up

Else, swap with successor or predecessor node and then delete

successor and predecssor have one or zero children (why?)
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BSTs

Height of a BST

search, insert, delete all have cost Θ(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

Worst-case:

Θ(n)

Best-case: Θ(log n)

Average-case: Θ(log n)
(similar analysis to quick-sort with random pivot)
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BSTs

Binary Search Trees
How to �nd max/min elements in a BST?

Just �nd the rightmost/leftmost node in Θ(h) time

How can I print all keys in sorted order?

Do an in-order traversal of the tree in Θ(n) time
Can we do that in o(n)?

BSTs maintain data in sorted order, which is useful for some
queries (an advantage over hash tables which scatter data).
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queries (an advantage over hash tables which scatter data).
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BSTs

Balanced BSTs

Perfectly balanced BSTs: all nodes except for the bottom 2 levels
are full (have two children).

Too strict for e�cient BST balancing.

Weight balanced: at each internal node i , at least cni nodes are in
its left subtree and cni in its right subtree, for some constant
c ∈ (0, 1/2], where ni denotes the number of descendants for node i .

Height balanced: heights of left and right subtrees of each internal
node di�er by at most k, for some constant k ≥ 1.

For AVL trees, k = 1.
We will assume k = 1 for the remainder of our discussion.

Height Θ(log n) where n is the number of nodes in the tree.

All balanced BSTs (with respect to any of above de�nitions)
have height Θ(log n)

We see the proof for height-balanced BSTs in a minute.
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BSTs

Tree height

De�nition

The height of a node a is the length of the longest path between
a and any descendent of a

as opposed to depth which is the length of the path between a and
the root.

Height can be de�ned recursively as follows:

height(a) =

{
−1, a = Φ

1+max{height(a.left), height(a.right)} a ̸= Φ

For a height-balanced BST with k = 1, the balancing factor (the
di�erence between the height of the two children) for any node is in
{−1, 0, 1}.
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BSTs

Bounds for the height of height-
balanced BSTs

Theorem

For the height h(n) of a height-balanced BST (with k = 1) on suf-
�ciently large n nodes we have log(n)−1 < h(n) < 1.45 log(n+1)

This implies h(n) ∈ Θ(log n).

Let's see the proof.
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BSTs

Lower Bound for the height of height-
balanced BSTs

We want to prove log(n)− 1 < h(n).

The number of nodes in a binary search tree of height h is at most:

n ≤ 2h+1 − 1⇒ log n ≤ log(2h+1 − 1) < log(2h+1) = h + 1

Hence, we have log n − 1 < h.
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BSTs

Upper Bound for the height of height-
balanced BSTs

We want to show h(n) < 1.45 log(n + 1).

Let s(h) denote the minimum number of nodes in a height-balanced
BST (with k = 1) of height h.
We have s(0) =

1 s(1) = 2 s(2) = 4

s(h) =


1 h = 0

2 h = 1

s(h − 1) + s(h − 2) + 1, h ≥ 2

We can say s(h) > F (h) where F (h) is the h'th Fibonacci number.

For large n, we have F (h) ≈ 1√
5

(
1+

√
5

2

)h+1 − 1

We have n > 1√
5
( 1+

√
5

2
)h+1 − 1→

√
5(n + 1) ≥

(
1+

√
5

2
)h+1 →

log(
√
5(n + 1)) ≥ (h + 1) log( 1+

√
5

2
)→ h < log

√
5+log(n+1)

log(1+
√
5)−1

− 1

= 1

log(1+
√
5)−1

log(n + 1) + log
√
5

log(1+
√
5)−1

− 1 < 1.45 log(n + 1)
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BSTs

Bounds for the height of height-
balanced BSTs

Theorem

For the height h(n) of a height-balanced BST (with k = 1) on suf-
�ciently large n nodes we have log(n)−1 < h(n) < 1.45 log(n+1)

This implies h(n) ∈ Θ(log n).

So, it is desirable to maintain a height-balanced binary search tree
(they are asymptotically the best possible BSTs).
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BSTs

BST Single Rotation
Height of a height-balanced BST on n nodes is Θ(log n)

A self-balancing BST maintains the height-balanced property after
an insertion/deletion via tree rotation

Every rotation swaps parent-child relationship between two nodes
(here between 2 and 4)

Tree rotation preserves the BST key ordering property.

Each rotation requires updating a few pointers in O(1) time.

original height: max(height(a) + 2, height(b) + 2, height(c) + 1)
new height: max(height(a) + 1; height(b) + 2; height(c) + 2)
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AVL Trees

AVL Trees

Introduced by Adelson-Velski�� and Landis in 1962

An AVL Tree is a height-balanced BST

The heights of the left and right subtree di�er by at most 1.
(The height of an empty tree is de�ned to be −1.)

At each non-empty node, we store
height(R)− height(L) ∈ {−1, 0, 1}:

−1 means the tree is left-heavy
0 means the tree is balanced
1 means the tree is right-heavy

We could store the actual height, but storing balances
is simpler and more convenient.

19 / 42
EECS 4101-5101 Advanced Data Structures

▲



AVL Trees

AVL insertion

To perform insert(T , k , v):

First, insert (k, v) into T using usual BST insertion

Then, move up the tree from the new leaf, updating balance factors.

If the balance factor is −1, 0, or 1, then keep going.

If the balance factor is ±2, then call the �x algorithm
to �rebalance� at that node.
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AVL Trees

How to ��x� an unbalanced AVL tree

Goal: change the structure without changing the order

A B C D

Notice that if heights of A,B,C ,D di�er by at most 1,
then the tree is a proper AVL tree.
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AVL Trees

Right Rotation

When the followings hold, we apply a right rotation on node z

The balance factor at z is -2.
The balance factor of y is 0 or -1.

z

y

x

A B

C

D

y

x

A B

z

C D

Note: Only two edges need to be moved, and two balances
updated.
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AVL Trees

Left Rotation

When the followings hold, we apply a left rotation on node z

The balance factor at z is 2.
The balance factor of y is 0 or 1.

z

A

y

B

x

C D

y

z

A B

x

C D

Again, only two edges need to be moved and two balances updated.
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AVL Trees

Double Right Rotation

When the followings hold, we apply a double right rotation on z

The balance factor at z is -2 & the balance factor of y is 1.

z

y

A

x

B C

D

z

x

y

A B

C

D

x

y

A B

z

C D

First, a left rotation on the left subtree (y).

Second, a right rotation on the whole tree (z).
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AVL Trees
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AVL Trees

Double Left Rotation

This is a double left rotation on node z ; apply when balance of z is
2 and balance of y is -1.

z

A

y

x

B C

D

x

z

A B

y

C D

Right rotation on right subtree (y),
followed by left rotation on the whole tree (z).
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AVL Trees

AVL Tree Operations

search: Just like in BSTs, costs Θ(height)

insert: Shown already, total cost Θ(height)
�x will be called at most once.

delete: First search, then swap with successor (as with BSTs),
then move up the tree and apply �x (as with insert).
�x may be called Θ(height) times.
Total cost is Θ(height).
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AVL Trees

AVL tree examples

Example: insert(8) 22
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AVL Trees

AVL tree examples

Example: delete(22) 22
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AVL Trees

AVL tree examples

Example: delete(22) 28
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AVL Trees

AVL tree analysis

Since AVL-trees are height-balanced, their height is Θ(log n)

Search can be done as before (no need for rebalancing)

Insert(x) takes Θ(log n) and involves at most one �x.

Delete(x) takes Θ(log n) and involves at most Θ(log n) �xes.

⇒ search, insert, delete all cost Θ(log n).

What about other queries (e.g., get-max(), get-min(), rank(),
select())?

One great thing about AVL trees is that they can be easily
augmented to support these queries in a good time (this is the main
advantage of the trees over say Hash tables).
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Augmented Data Structures

Augmented Data Structures

In practice, it often happens that you want an abstract data type to
support additional queries

To implement this, we need to augment the underlying data
structure
Augmentation often involves storing additional data which
facilitates the query.

Consider AVL tree which supports search, insert, delete in Θ(log n)
time

What if your `boss' asks you to additionally support minimum,
maximum, rank, and select?
Without augmentation, minimum and maximum take Θ(log n)
while rank and select require linear time (in-order traversal to
retrieve the sorted list of keys).
What if your boss wants them to be faster?
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Augmented Data Structures

Augmenting Data Structures

First, �gure out what additional information should be store?

Second, �gure out how, using the additional information, answer
new queries (e.g., min and rank in AVL trees) e�ciently?

Third, �gure out how to update existing operations (e.g., insertion
and deletion) to keep the stored information updated.
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Augmented Data Structures

Augmenting AVL trees

We can augment AVL trees to support minimum/maximum in
Θ(1).

Just add a pointer to the leftmost/rightmost leaf of the tree.

After updating the tree by an insert/deleted, make sure that the
pointer still points to the smallest/largest element
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Augmented Data Structures

Augmenting AVL trees

After an insertion, �rst, re-arrange the tree if required (to keep it
AVL). Keep a pointer to the newly inserted element

After the insertion, if the newly inserted key is less than minimum,
update the the minimum pointer to point to it (similar for
maximum pointer).

It takes an additional time of Θ(1) (the insertion time is still
Θ(log n)).

Similar update for max pointer
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After an insertion, �rst, re-arrange the tree if required (to keep it
AVL). Keep a pointer to the newly inserted element

After the insertion, if the newly inserted key is less than minimum,
update the the minimum pointer to point to it (similar for
maximum pointer).
It takes an additional time of Θ(1) (the insertion time is still
Θ(log n)).
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Augmented Data Structures

Augmenting AVL trees
For deleting node x , check if x is the minimum element. If so, �rst
update the minimum pointer to the successor of x .

Finding the successor of minimum takes additional time of Θ(1)

Let x be the min element before deletion; we know there is nothing
on the left of x .
The right subtree of x has zero or one node (otherwise x is
unbalanced).
If there is an item y on the right of x , then it is the successor of x
If y is a leaf, then its parent is the successor

After updating the pointer, delete as in regular AVL trees.

Similar update for max pointer
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Augmented Data Structures

Augmenting AVL trees

Theorem

We can augment AVL trees by adding only two pointers (Θ(1))
extra space to support minimum/maximum queries in Θ(1) and
without changing time complexity of other queries (insertion,
deletion, and search).

34 / 42
EECS 4101-5101 Advanced Data Structures

▲



Augmented Data Structures

Augmenting AVL trees

Can we augment AVL trees to support rank/select operations in
O(log n) time?

rank(x) reports the index of key x in the sorted array of keys
select(i) returns the key with index i in the sorted array of keys

Idea 1: Store the rank of each node at that node.

O(log n) rank and select are guaranteed (why?)

Is it a good augment data structure?
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Augmented Data Structures

Augmenting AVL trees
Can we augment AVL trees to support rank/select operations in
O(log n) time?

rank(x) reports the index of key x in the sorted array of keys
select(i) returns the key with index i in the sorted array of keys

Idea 1: Store the rank of each node at that node.

O(log n) rank and select are guaranteed (why?)
Is it a good augment data structure? No because inserting an item
(e.g., key 1 here) might require updating all stored ranks
Insertion/deletion take Θ(n). Failed!
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Augmented Data Structures

Augmenting AVL trees
Idea 2: At each node, store the size (no. of nodes) )of the subtree
rooted at that node

The size of a node is the sum of the sizes of its two subtrees plus 1.
The size of an empty subtree is 0.

The rank of a node x in its own subtree is the size of its left
subtree.
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Augmented Data Structures

Selection in Augmented AVL trees
Selection on an AVL tree augmented with size data is similar to
quickselect, where the root acts as a pivot.

Select(i): compare i with the rank of the root r (size of left
subarray).

If equal, return the root r
if i < rank(root), recursively �nd the same index i in the left subtree
if i > rank(root), recursively �nd index i − rank(root)− 1 in the
right subtree
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Selection in Augmented AVL trees
Selection on an AVL tree augmented with size data is similar to
quickselect, where the root acts as a pivot.

Select(i): compare i with the rank of the root r (size of left
subarray).

If equal, return the root r
if i < rank(root), recursively �nd the same index i in the left subtree
if i > rank(root), recursively �nd index i − rank(root)− 1 in the
right subtree

E.g., select(5,12)
left−−→ select(5,7)

right−−−→ select(2,9)
right−−−→ select(0,11)

equal−−−→ 11
is returned
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Augmented Data Structures

Augmenting AVL trees
To �nd rank(x) on an AVL tree augmented, search for k .

On the path from the root to x , sum up sizes of all left sub trees

When searching for x , when you recurs on the right subtree, add up
the size of the left subtree plus one (for the current node).
When the node was found, add up the size of its left subtree to the
computed rank.
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Augmenting AVL trees
To �nd rank(x) on an AVL tree augmented, search for k .

On the path from the root to x , sum up sizes of all left sub trees

When searching for x , when you recurs on the right subtree, add up
the size of the left subtree plus one (for the current node).
When the node was found, add up the size of its left subtree to the
computed rank.

rank(16,20)
left−−→ rank(16,12) res += 12+1

right−−−→ rank(16,17)
left−−→

rank(16,14) res+= 1+1
right−−−→ rank(16,16) res+= 1
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Augmented Data Structures

Augmenting AVL trees
To �nd rank(x) on an AVL tree augmented, search for k .

On the path from the root to x , sum up sizes of all left sub trees

When searching for x , when you recurs on the right subtree, add up
the size of the left subtree plus one (for the current node).
When the node was found, add up the size of its left subtree to the
computed rank.

rank(25,20) res+= 20+1
right−−−→ rank(25,28)

left−−→ rank(25,25) res
+= 4.
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Augmented Data Structures

Updating Augmented AVL trees

After an insertion, the sizes of all ancestors of the new node should
be incremented; do it before �xing the tree.

After a deletion, the sizes of all ancestors of the deleted node
should be decremented; do it before �xing the tree.

The 2 nodes involved in each single rotation must have their sizes
updated. (recall that double rotation involves two single rotations)

Only sizes of A and B should be updated. It can be done in
constant time!
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Augmented Data Structures

Updating Augmenting AVL trees

insert(2): �rst insert the new node and update sizes of ancestors.

After the insertion, node 3 is unbalanced, since it is left-heavy and
its left child (1) is right heavy, �rst apply a left rotation; update the
sizes of the two involved node (1 and 2).

Now 3 is left-heavy and its left child (2) is not right-heavy; apply a
single rotation between them and update their sizes
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Augmented Data Structures

Augmenting AVL trees

Theorem

It is possible to augment an AVL tree by storing the sizes of each
subtree so that select and rank operations can be supported in
Θ(log n) time. The time complexity of other operations (search,
insert, and delete) remain unchanged.

In fact, we can merge such AVL tree with a doubly linked list to
support predecessor and successor operations.
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Augmented Data Structures

Augmented Data Structures Summary

Steps to Augmenting a Data Structure

Specify an ADT (including additional operations to support).
Choose an underlying data structure.
Determine the additional data to be maintained.
Develop algorithms for new operations.
Verify that the additional data can be maintained e�ciently during
updates.
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