
EECS 4101-5101

Advanced Data Structures

Shahin Kamali

Topic 1d - Self Adjusting Linked Lists & Data Compression

York University

Picture is from the cover of the textbook CLRS.

1 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update Problem

List Update Problem

1 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4+3

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4+3+1

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Accessing Problem

The input is a set of requests to items in a list.

The cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4+3+1+3 = 19

2 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

Introduction to List Update

An instance of self-adjusting data

structures.

The structure adjusts itself based on the
input queries.

List update was formulated in 1984 by
Sleator and Tarjan

This result of Sleator and Tarjan made
online algorithms popular in the
following two decades
There are applications in
data-compression!

3 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

Introduction to List Update

An instance of self-adjusting data

structures.

The structure adjusts itself based on the
input queries.

List update was formulated in 1984 by
Sleator and Tarjan

This result of Sleator and Tarjan made
online algorithms popular in the
following two decades
There are applications in
data-compression!

3 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input
sequence of length n (n≫ k).

Free exchanges: Move a requested item closer to the front without
any cost.
Paid exchanges: Swap positions of two consecutive items with a
cost 1.

4 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input
sequence of length n (n≫ k).

Free exchanges: Move a requested item closer to the front without
any cost.

Paid exchanges: Swap positions of two consecutive items with a
cost 1.

< d b b d c a c >

a b c d e

cost: 4

4 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input
sequence of length n (n≫ k).

Free exchanges: Move a requested item closer to the front without
any cost.

Paid exchanges: Swap positions of two consecutive items with a
cost 1.

< d b b d c a c >

a d b c e

cost: 4

4 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input
sequence of length n (n≫ k).

Free exchanges: Move a requested item closer to the front without
any cost.
Paid exchanges: Swap positions of two consecutive items with a
cost 1.

< d b b d c a c >

a d b c e

cost: 4

4 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

Self-Adjusting Lists

Update a list of length k to adjust it to the patterns in the input
sequence of length n (n≫ k).

Free exchanges: Move a requested item closer to the front without
any cost.
Paid exchanges: Swap positions of two consecutive items with a
cost 1.

< d b b d c a c >

a d b e c

cost: 4

4 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Update Problem

In the o�ine version of the problem, you have access to the whole
set at the beginning.

The problem is NP-hard.

In the online setting, the requests appear in an online, sequential
manner.

An online algorithm should reorder the list without looking at the
future requests.

5 / 34
EECS 4101-5101 Advanced Data Structures

▲

Problem Statement

List Update Problem

In the o�ine version of the problem, you have access to the whole
set at the beginning.

The problem is NP-hard.

In the online setting, the requests appear in an online, sequential
manner.

An online algorithm should reorder the list without looking at the
future requests.

5 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

a b c d e

cost: 4

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

d a b c e

cost: 4

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

d a b c e

cost: 4+3

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+3

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+3+1

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+3+1+2

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

d b a c e

cost: 4+3+1+2+4

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

c d b a e

cost: 4+3+1+2+4+4

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

a c d b e

cost: 4+3+1+2+4+4+2

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms for List Update

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

c a d b e

cost: 4+3+1+2+4+4+2

6 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

a b c d e

cost: 4

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

a b c d e

cost: 4+2

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

a b c d e

cost: 4+2+2

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

b a c d e

cost: 4+2+2

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

b a c d e

cost: 4+2+2+4

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

b d a c e

cost: 4+2+2+4

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

b d a c e

cost: 4+2+2+4+4

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

b d a c e

cost: 4+2+2+4+4+3

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

b d a c e

cost: 4+2+2+4+4+3+4

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

TIMESTAMP

After an access to x , move x to the front of the �rst item y which
has been requested at most once since the last access to x .

Do nothing on the �rst access to x or if such an item y does not
exist.

< d b b d c a c >

c b d a e

cost: 4+2+2+4+4+3+4

7 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

Optimal Static Algorithm

Look at the sequence of requests, sort items by the frequency of
their accesses.

The most accessed item will be at the beginning of the list.

The cost of the algorithm would be at most nk/2.

8 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

Optimal Static Algorithm

Look at the sequence of requests, sort items by the frequency of
their accesses.

The most accessed item will be at the beginning of the list.

The cost of the algorithm would be at most nk/2.

8 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

Lower Bound for Competitive Ratio

Consider a cruel sequence in which the adversary always asks for
the last item in the list!

What will be the cost of the algorithm?

It will be nk.

What is the cost of Opt?

We know the optimal static algorithm has a cost of n(k + 1)/2.
So the cost of Opt is no more than n(k + 1)/2.

The competitive ratio of any online list update algorithm is at least
nk

nk/2 = 2.

9 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

Lower Bound for Competitive Ratio

Consider a cruel sequence in which the adversary always asks for
the last item in the list!

What will be the cost of the algorithm?

It will be nk.

What is the cost of Opt?

We know the optimal static algorithm has a cost of n(k + 1)/2.
So the cost of Opt is no more than n(k + 1)/2.

The competitive ratio of any online list update algorithm is at least
nk

nk/2 = 2.

9 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

Lower Bound for Competitive Ratio

Consider a cruel sequence in which the adversary always asks for
the last item in the list!

What will be the cost of the algorithm?

It will be nk.

What is the cost of Opt?

We know the optimal static algorithm has a cost of n(k + 1)/2.
So the cost of Opt is no more than n(k + 1)/2.

The competitive ratio of any online list update algorithm is at least
nk

nk/2 = 2.

9 / 34
EECS 4101-5101 Advanced Data Structures

▲

Online Algorithms

Lower Bound for Competitive Ratio

Consider a cruel sequence in which the adversary always asks for
the last item in the list!

What will be the cost of the algorithm?

It will be nk.

What is the cost of Opt?

We know the optimal static algorithm has a cost of n(k + 1)/2.
So the cost of Opt is no more than n(k + 1)/2.

The competitive ratio of any online list update algorithm is at least
nk

nk/2 = 2.

9 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Competitiveness of MTF

9 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

On the Nature of Opt
There is an optimal algorithm that only uses paid exchanges!

Assume Opt uses a free exchange after accessing item x at position
i to move it closer to the front to position j

The cost will be i .

In a new scheme, before the access apply i − j paid exchanges to
move i to position j .

The new cost will be i − j for paid exchanges and j for the access,
which sums to i

10 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

On the Nature of Opt
There is an optimal algorithm that only uses paid exchanges!

Assume Opt uses a free exchange after accessing item x at position
i to move it closer to the front to position j

The cost will be i .

In a new scheme, before the access apply i − j paid exchanges to
move i to position j .

The new cost will be i − j for paid exchanges and j for the access,
which sums to i

10 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

On the Nature of Opt
There is an optimal algorithm that only uses paid exchanges!

Assume Opt uses a free exchange after accessing item x at position
i to move it closer to the front to position j

The cost will be i .

In a new scheme, before the access apply i − j paid exchanges to
move i to position j .

The new cost will be i − j for paid exchanges and j for the access,
which sums to i

10 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Competitiveness of MTF

Theorem

Move-To-Front has competitive ratio of 2.

We prove it through potential function method

And it takes a few slides :'-)

11 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function (Review)

Assume you face an online problem where the input is a sequence of
requests that require you to change the state of a problem.

These states should be �nite and independent of the input length!

De�ne a `potential' as a function of the state of the algorithm and
that of Opt (e.g. no. inversions).

This is the critical part :-)

De�ne the amortized cost at a given time t as the actual cost
algorithm plus the di�erence in potential after the request is served
(same for all problems).

The potential should be de�ned in a way so that you can show
amortized_cost(t) ≤ c Opt(t).

Using a telescopic sum, the competitive ratio will be at most c
(same for all problems).

12 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function (Review)

Assume you face an online problem where the input is a sequence of
requests that require you to change the state of a problem.

These states should be �nite and independent of the input length!

De�ne a `potential' as a function of the state of the algorithm and
that of Opt (e.g. no. inversions).

This is the critical part :-)

De�ne the amortized cost at a given time t as the actual cost
algorithm plus the di�erence in potential after the request is served
(same for all problems).

The potential should be de�ned in a way so that you can show
amortized_cost(t) ≤ c Opt(t).

Using a telescopic sum, the competitive ratio will be at most c
(same for all problems).

12 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function (Review)

Assume you face an online problem where the input is a sequence of
requests that require you to change the state of a problem.

These states should be �nite and independent of the input length!

De�ne a `potential' as a function of the state of the algorithm and
that of Opt (e.g. no. inversions).

This is the critical part :-)

De�ne the amortized cost at a given time t as the actual cost
algorithm plus the di�erence in potential after the request is served
(same for all problems).

The potential should be de�ned in a way so that you can show
amortized_cost(t) ≤ c Opt(t).

Using a telescopic sum, the competitive ratio will be at most c
(same for all problems).

12 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function (Review)

Assume you face an online problem where the input is a sequence of
requests that require you to change the state of a problem.

These states should be �nite and independent of the input length!

De�ne a `potential' as a function of the state of the algorithm and
that of Opt (e.g. no. inversions).

This is the critical part :-)

De�ne the amortized cost at a given time t as the actual cost
algorithm plus the di�erence in potential after the request is served
(same for all problems).

The potential should be de�ned in a way so that you can show
amortized_cost(t) ≤ c Opt(t).

Using a telescopic sum, the competitive ratio will be at most c
(same for all problems).

12 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function (Review)

Assume you face an online problem where the input is a sequence of
requests that require you to change the state of a problem.

These states should be �nite and independent of the input length!

De�ne a `potential' as a function of the state of the algorithm and
that of Opt (e.g. no. inversions).

This is the critical part :-)

De�ne the amortized cost at a given time t as the actual cost
algorithm plus the di�erence in potential after the request is served
(same for all problems).

The potential should be de�ned in a way so that you can show
amortized_cost(t) ≤ c Opt(t).

Using a telescopic sum, the competitive ratio will be at most c
(same for all problems).

12 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Inversions

At a given time, two items x and y form an inversion if their
relative order is di�erent in the lists of MTF and Opt

Question: what is the maximum number of inversions for a list of
length k?

(a) k/2 (c) k(k − 1)/2 (c) k (d) k2 − k/2

13 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function

Assume MTF and Opt are running the same input in parallel

Assume we are at the t'th request, and there is a request to an item
x .

De�ne the potential at time t to be the total number of inversions
before accessing x .

Inversions are (b, c), (b, d), (b, e), (c , d)

So, Φ(t) = 4.

14 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function

Assume MTF and Opt are running the same input in parallel

Assume we are at the t'th request, and there is a request to an item
x .

De�ne the potential at time t to be the total number of inversions
before accessing x .

Inversions are (b, c), (b, d), (b, e), (c , d)

So, Φ(t) = 4.

14 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Amortized Cost

Intuitively, if we have a high potential, we are in bad state.

De�ne the amortized cost at time t (when answering the tth
request) as:

amortized_cost(t) = actual_cost(t) + Φ(t + 1)− Φ(t)

Example: assume at time t, there is a request to b, and Opt does
not rearrange the list for accessing t.

For MTF, we have actual_cost(t) = 5, -Φ(t) = 4 and Φ(t + 1) =
2.
amortized_cost is 5+ 2− 4 = 3.

15 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Amortized Cost

Intuitively, if we have a high potential, we are in bad state.

De�ne the amortized cost at time t (when answering the tth
request) as:

amortized_cost(t) = actual_cost(t) + Φ(t + 1)− Φ(t)

Example: assume at time t, there is a request to b, and Opt does
not rearrange the list for accessing t.

For MTF, we have actual_cost(t) = 5, -Φ(t) = 4 and Φ(t + 1) =
2.
amortized_cost is 5+ 2− 4 = 3.

15 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Amortized Cost

Intuitively, if we have a high potential, we are in bad state.

De�ne the amortized cost at time t (when answering the tth
request) as:

amortized_cost(t) = actual_cost(t) + Φ(t + 1)− Φ(t)

Example: assume at time t, there is a request to b, and Opt does
not rearrange the list for accessing t.

For MTF, we have actual_cost(t) = 5, -Φ(t) = 4 and Φ(t + 1) =
2.
amortized_cost is 5+ 2− 4 = 3.

15 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Amortized Cost

Intuitively, if we have a high potential, we are in bad state.

De�ne the amortized cost at time t (when answering the tth
request) as:

amortized_cost(t) = actual_cost(t) + Φ(t + 1)− Φ(t)

Example: assume at time t, there is a request to b, and Opt does
not rearrange the list for accessing t.

For MTF, we have actual_cost(t) = 5, -Φ(t) = 4 and Φ(t + 1) =
2.
amortized_cost is 5+ 2− 4 = 3.

15 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Amortized Cost

Intuitively, if we have a high potential, we are in bad state.

De�ne the amortized cost at time t (when answering the tth
request) as:

amortized_cost(t) = actual_cost(t) + Φ(t + 1)− Φ(t)

Example: assume at time t, there is a request to b, and Opt does
not rearrange the list for accessing t.

For MTF, we have actual_cost(t) = 5, -Φ(t) = 4 and Φ(t + 1) =
2.
amortized_cost is 5+ 2− 4 = 3.

15 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)

Lemma

At any time t, amortized_cost(t) ≤ 2Opt(t), i.e., the amortized

cost of MTF for the t'th request is at most twice that of Opt.

16 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)

How many inversions are removed by moving x to front?

Before moving to front, there are i − 1 items before x in MTF list.
At most j − 1 of them can also appear before x in Opt list (are
non-inversions) ⇒ the rest, at least, i − 1− (j − 1) = i − j are
inversions ⇒ By moving to front at least i − j inversions are
removed.

17 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)

How many inversions are removed by moving x to front?

Before moving to front, there are i − 1 items before x in MTF list.
At most j − 1 of them can also appear before x in Opt list (are
non-inversions) ⇒ the rest, at least, i − 1− (j − 1) = i − j are
inversions ⇒ By moving to front at least i − j inversions are
removed.

17 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)

How many inversions are added by moving x to front?

x is in front of MTF list after the move and at position j of Opt's
list
items that appear after x in MTF and before x in Opt are at most
j − 1
At most j − 1 inversions are added

18 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)
When moving x to front:

Actual cost is i , at least i − j inversions are removed, at most
j − 1 inversions are added

Assume Opt makes k ′ paid exchanges.

Recall that it does no free exchange.
The cost of Opt will be j + k ′.
Each paid exchange increases potential by 1 → potential increases
by at most k ′.

Φ(t + 1)− Φ(t) = added_inversions − removed_inversions ≤
(j + k ′ − 1)− (i − j) = 2j + k ′ − i − 1.

amortized_cost = actual_cost +Φ(t + 1)− Φ(t) ≤
i + 2j + k ′ − i − 1 = 2j + k ′ − 1

Cost of Opt is j + k ′ and amortized_cost is less than 2j + k ′.

Lemma

At any time t, amortized_cost(t) < 2Opt(t).

19 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)
When moving x to front:

Actual cost is i , at least i − j inversions are removed, at most
j − 1 inversions are added

Assume Opt makes k ′ paid exchanges.

Recall that it does no free exchange.
The cost of Opt will be j + k ′.
Each paid exchange increases potential by 1 → potential increases
by at most k ′.

Φ(t + 1)− Φ(t) = added_inversions − removed_inversions ≤
(j + k ′ − 1)− (i − j) = 2j + k ′ − i − 1.

amortized_cost = actual_cost +Φ(t + 1)− Φ(t) ≤
i + 2j + k ′ − i − 1 = 2j + k ′ − 1

Cost of Opt is j + k ′ and amortized_cost is less than 2j + k ′.

Lemma

At any time t, amortized_cost(t) < 2Opt(t).

19 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)
When moving x to front:

Actual cost is i , at least i − j inversions are removed, at most
j − 1 inversions are added

Assume Opt makes k ′ paid exchanges.

Recall that it does no free exchange.
The cost of Opt will be j + k ′.
Each paid exchange increases potential by 1 → potential increases
by at most k ′.

Φ(t + 1)− Φ(t) = added_inversions − removed_inversions ≤
(j + k ′ − 1)− (i − j) = 2j + k ′ − i − 1.

amortized_cost = actual_cost +Φ(t + 1)− Φ(t) ≤
i + 2j + k ′ − i − 1 = 2j + k ′ − 1

Cost of Opt is j + k ′ and amortized_cost is less than 2j + k ′.

Lemma

At any time t, amortized_cost(t) < 2Opt(t).

19 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)
When moving x to front:

Actual cost is i , at least i − j inversions are removed, at most
j − 1 inversions are added

Assume Opt makes k ′ paid exchanges.

Recall that it does no free exchange.
The cost of Opt will be j + k ′.
Each paid exchange increases potential by 1 → potential increases
by at most k ′.

Φ(t + 1)− Φ(t) = added_inversions − removed_inversions ≤
(j + k ′ − 1)− (i − j) = 2j + k ′ − i − 1.

amortized_cost = actual_cost +Φ(t + 1)− Φ(t) ≤
i + 2j + k ′ − i − 1 = 2j + k ′ − 1

Cost of Opt is j + k ′ and amortized_cost is less than 2j + k ′.

Lemma

At any time t, amortized_cost(t) < 2Opt(t).

19 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Potential Function Method (cntd.)
When moving x to front:

Actual cost is i , at least i − j inversions are removed, at most
j − 1 inversions are added

Assume Opt makes k ′ paid exchanges.

Recall that it does no free exchange.
The cost of Opt will be j + k ′.
Each paid exchange increases potential by 1 → potential increases
by at most k ′.

Φ(t + 1)− Φ(t) = added_inversions − removed_inversions ≤
(j + k ′ − 1)− (i − j) = 2j + k ′ − i − 1.

amortized_cost = actual_cost +Φ(t + 1)− Φ(t) ≤
i + 2j + k ′ − i − 1 = 2j + k ′ − 1

Cost of Opt is j + k ′ and amortized_cost is less than 2j + k ′.

Lemma

At any time t, amortized_cost(t) < 2Opt(t).
19 / 34

EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

A Quick Example

Assume at time t:

the list of MTF is

8 → 7 → 6 → 5 → 4 → 3 → 2 → 1

the list of OPT is

1 → 2 → 3 → 4 → 5 → 6 → 7 → 8

Assume x is 3, which means i = 6 and j = 3.

The number of removed inversions in this case is at least i − j = 3.
In fact, it turns out to be 5 because all 4,5,6,7,8 form inversions
with 3 which will be removed by moving 3 to the front.

The number of new inversions will be at most j − 1 = 2. In fact, it
is 0 as no new inversion is added.

20 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Competitiveness of MTF

For the cost of MTF, we have

MTF =actual_cost(1) + actual_cost(2) + . . .+ actual_cost(n)

=(actual_cost(1) + Φ(2)− Φ(1))

+ (actual_cost(2) + Φ(3)− Φ(2))

+ . . .

+ (actual_cost(n) + Φ(n + 1)− Φ(n))− (Φ(n + 1)− Φ(1))

= amortized_cost(1) + . . .+ amortized_cost(n)− (Φ(n + 1)− Φ(1))

< 2Opt(1) + . . .+ 2Opt(n)− O(k2) ≈ 2Cost_Opt(n)

{recall that n ≫ k}

Note that in the second line, we just added and removed values
(i.e., we added
Φ(1)− Φ(1) + Φ(2)− Φ(2) + . . .+Φ(n + 1)− Φ(n + 1) = 0).

21 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Competitiveness of MTF

Theorem

Competitive ratio of Mtf is at most 2

No deterministic algorithm can have a competitive ratio better than
2.

MTF is an optimal list-update algorithm.
Timestamp is another optimal deterministic algorithm.

There are randomized algorithms that achieve better competitive
ratios.

Potential function method is a general framework for analysis of
many online algorithms!

22 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Competitiveness of MTF

Theorem

Competitive ratio of Mtf is at most 2

No deterministic algorithm can have a competitive ratio better than
2.

MTF is an optimal list-update algorithm.
Timestamp is another optimal deterministic algorithm.

There are randomized algorithms that achieve better competitive
ratios.

Potential function method is a general framework for analysis of
many online algorithms!

22 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Transpose Algorithm

Transpose: Move the accessed item one unit closer to the front.

Question: What is the competitive ratio of Transpose for a list of
length m?

(a) 1.5 (b) 2 (c) Θ(m) (d) Θ(m2)

The cost of Transpose after n requests on a list of length m will be
n ·m
What does Opt do?

It moves am and am−1 to the front using 2m − 3 paid exchanges,
and does not move them after.
The cost for accesses to am−1 and am are respectively 2 and 1.
The cost of Opt will be 2m − 3+ n/2 · 1+ n/2 · 2 ≈ 1.5n + 2m.

The competitive ratio will be at least n·m
1.5n+2m ∈ Θ(m).

23 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Transpose Algorithm

Transpose: Move the accessed item one unit closer to the front.

Question: What is the competitive ratio of Transpose for a list of
length m?

(a) 1.5 (b) 2 (c) Θ(m) (d) Θ(m2)

a1 → a2 → . . .→ am−1 →
↓
am

sequence: am

The cost of Transpose after n requests on a list of length m will be
n ·m
What does Opt do?

It moves am and am−1 to the front using 2m − 3 paid exchanges,
and does not move them after.

The cost for accesses to am−1 and am are respectively 2 and 1.
The cost of Opt will be 2m − 3+ n/2 · 1+ n/2 · 2 ≈ 1.5n + 2m.

The competitive ratio will be at least n·m
1.5n+2m ∈ Θ(m).

23 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Transpose Algorithm

Transpose: Move the accessed item one unit closer to the front.

Question: What is the competitive ratio of Transpose for a list of
length m?

(a) 1.5 (b) 2 (c) Θ(m) (d) Θ(m2)

a1 → a2 → . . .→ am →
↓

am−1

sequence: (am am−1)

The cost of Transpose after n requests on a list of length m will be
n ·m
What does Opt do?

It moves am and am−1 to the front using 2m − 3 paid exchanges,
and does not move them after.
The cost for accesses to am−1 and am are respectively 2 and 1.
The cost of Opt will be 2m − 3+ n/2 · 1+ n/2 · 2 ≈ 1.5n + 2m.

The competitive ratio will be at least n·m
1.5n+2m ∈ Θ(m).

23 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Transpose Algorithm

Transpose: Move the accessed item one unit closer to the front.

Question: What is the competitive ratio of Transpose for a list of
length m?

(a) 1.5 (b) 2 (c) Θ(m) (d) Θ(m2)

a1 → a2 → . . .→ am−1 →
↓
am

sequence: (am am−1)
k

The cost of Transpose after n requests on a list of length m will be
n ·m
What does Opt do?

It moves am and am−1 to the front using 2m − 3 paid exchanges,
and does not move them after.
The cost for accesses to am−1 and am are respectively 2 and 1.
The cost of Opt will be 2m − 3+ n/2 · 1+ n/2 · 2 ≈ 1.5n + 2m.

The competitive ratio will be at least n·m
1.5n+2m ∈ Θ(m).

23 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Transpose Algorithm

Transpose: Move the accessed item one unit closer to the front.

Question: What is the competitive ratio of Transpose for a list of
length m?

(a) 1.5 (b) 2 (c) Θ(m) (d) Θ(m2)

sequence: (am am−1)
k

The cost of Transpose after n requests on a list of length m will be
n ·m
What does Opt do?

It moves am and am−1 to the front using 2m − 3 paid exchanges,
and does not move them after.
The cost for accesses to am−1 and am are respectively 2 and 1.
The cost of Opt will be 2m − 3+ n/2 · 1+ n/2 · 2 ≈ 1.5n + 2m.

The competitive ratio will be at least n·m
1.5n+2m ∈ Θ(m).

23 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Transpose Algorithm

Transpose: Move the accessed item one unit closer to the front.

Question: What is the competitive ratio of Transpose for a list of
length m?

(a) 1.5 (b) 2 (c) Θ(m) (d) Θ(m2)

sequence: (am am−1)
k

The cost of Transpose after n requests on a list of length m will be
n ·m
What does Opt do?

It moves am and am−1 to the front using 2m − 3 paid exchanges,
and does not move them after.
The cost for accesses to am−1 and am are respectively 2 and 1.
The cost of Opt will be 2m − 3+ n/2 · 1+ n/2 · 2 ≈ 1.5n + 2m.

The competitive ratio will be at least n·m
1.5n+2m ∈ Θ(m).

23 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → am+1 → am+2 → . . .→ a2m−1 →
↓

a2m

sequence: a2m

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → a2m → am+1 → . . .→ a2m−2 →
↓

a2m−1

sequence: a2m a2m−1

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → a2m−1 → a2m → . . .→ a2m−3 →
↓

a2m−2

sequence: a2m a2m−1 a2m−2

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → am+2 → am+3 → . . .→ a2m →
↓

am+1

sequence: a2m a2m−1 a2m−2 . . . am+1

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → am+1 → am+2 → . . .→ a2m−1 →
↓

a2m

sequence: (a2m a2m−1 a2m−2 . . . am+1)
k

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → am+1 → am+2 → . . .→ a2m−1 →
↓

a2m

sequence: (a2m a2m−1 a2m−2 . . . am+1)
k

→ Alg's cost after n requests is n · 2m

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → am+1 → am+2 → . . .→ a2m−1 →
↓

a2m

sequence: (a2m a2m−1 a2m−2 . . . am+1)
k

→ Alg's cost after n requests is n · 2m

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

am+1 → am+2 → . . .→ a2m−1 → a2m → a1 → a2 . . .→ am

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → am+1 → am+2 → . . .→ a2m−1 →
↓

a2m

sequence: (a2m a2m−1 a2m−2 . . . am+1)
k

→ Alg's cost after n requests is n · 2m

Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

am+1 → am+2 → . . .→ a2m−1 → a2m → a1 → a2 . . .→ am

Opt's cost after n requests is n ·m/2+ O(m2).

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms

Consider an algorithm that moves a requested item at index i half
way to front.

What is the competitive ratio of this algorithm?

a1 → a2 → . . .→ am → am+1 → am+2 → . . .→ a2m−1 →
↓

a2m

sequence: (a2m a2m−1 a2m−2 . . . am+1)
k

→ Alg's cost after n requests is n · 2m
Opt moves the requested m items to the front (using O(m2) paid
exchanges at the beginning) and does not move after that.

am+1 → am+2 → . . .→ a2m−1 → a2m → a1 → a2 . . .→ am

Opt's cost after n requests is n ·m/2+ O(m2).

Theorem

The competitive ratio is at least n·2m
n·m/2+O(m2) ≈ 4

24 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms
(cntd.)

Consider an algorithm that moves a requested item x to the front of
the list on every-other-access to x .

The competitive ratio of this algorithm is indeed 2.5.

Theorem

The best existing deterministic algorithms are Move-To-Front and

Timestamp (and some algorithms which combine them). Other

list update algorithms do not achieve competitive ratio of 2.

25 / 34
EECS 4101-5101 Advanced Data Structures

▲

Competitiveness of MTF

Other Deterministic Algorithms
(cntd.)

Consider an algorithm that moves a requested item x to the front of
the list on every-other-access to x .

The competitive ratio of this algorithm is indeed 2.5.

Theorem

The best existing deterministic algorithms are Move-To-Front and

Timestamp (and some algorithms which combine them). Other

list update algorithms do not achieve competitive ratio of 2.

25 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

List Update & Compression

25 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

List Update & Compression

One important application of list update is in data compression.

Given a data-sequence (e.g., an English text), we want to compress
it

We should be able to recover the exact text from the compressed
one → Lossless compression

26 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Basics of Compression

How to encode some data (e.g., an English text)?

Solution 1: write the ASCII or Unicode code for each character

The code for `A' has the same length as `Q'.

Solution 2: let more common characters have smaller length

In Hu�man code `A' is encoded shorter than `Q' :)
The `context' is ignored: the code for `TH' is longer than `Q' :(

27 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Basics of Compression

How to encode some data (e.g., an English text)?

Solution 1: write the ASCII or Unicode code for each character

The code for `A' has the same length as `Q'.

Solution 2: let more common characters have smaller length

In Hu�man code `A' is encoded shorter than `Q' :)
The `context' is ignored: the code for `TH' is longer than `Q' :(

27 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Basics of Compression

How to encode some data (e.g., an English text)?

Solution 1: write the ASCII or Unicode code for each character

The code for `A' has the same length as `Q'.

Solution 2: let more common characters have smaller length

In Hu�man code `A' is encoded shorter than `Q' :)

The `context' is ignored: the code for `TH' is longer than `Q' :(

27 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Basics of Compression

How to encode some data (e.g., an English text)?

Solution 1: write the ASCII or Unicode code for each character

The code for `A' has the same length as `Q'.

Solution 2: let more common characters have smaller length

In Hu�man code `A' is encoded shorter than `Q' :)
The `context' is ignored: the code for `TH' is longer than `Q' :(

27 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPONMLKJIHGFEDCBA

S = INEFFICIENCIES

C =

8 13 6 7 0 3 6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPONMLKJIHGFEDCBA

S = INEFFICIENCIES

C = 8

13 6 7 0 3 6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPONMLKJHGFEDCBAI

S = INEFFICIENCIES

C = 8 13

6 7 0 3 6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPOMLKJHGFEDCBAIN

S = INEFFICIENCIES

C = 8 13 6

7 0 3 6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPOMLKJHGFDCBAINE

S = INEFFICIENCIES

C = 8 13 6 7

0 3 6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPOMLKJHGDCBAINEF

S = INEFFICIENCIES

C = 8 13 6 7 0

3 6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPOMLKJHGDCBAINEF

S = INEFFICIENCIES

C = 8 13 6 7 0 3

6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPOMLKJHGDCBANEFI

S = INEFFICIENCIES

C = 8 13 6 7 0 3 6

1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTSRQPOMLKJHGDBANEFIC

S = INEFFICIENCIES

C = 8 13 6 7 0 3 6 1

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

MTF Encoding

Solutions 3: use MTF index to encode the characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTRQPOMLKJHGDBAFNCIES

S = INEFFICIENCIES

C = 8 13 6 7 0 3 6 1 3 4 3 3 3 18

What does a run in S encode to in C?

This results in good compression if we have high locality in the
input.

28 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Burrows-Wheeler Transform

Increase locality using Burrows-Wheeler
Transform!

How it works?

Create all rotations of a given sequence.
Sort those rotations into lexicographic
order.
Take as output the last column!

Why it is useful?

Creates output with high locality!
This is reversible

29 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Burrows-Wheeler Transform

Increase locality using Burrows-Wheeler
Transform!

How it works?

Create all rotations of a given sequence.
Sort those rotations into lexicographic
order.
Take as output the last column!

Why it is useful?

Creates output with high locality!
This is reversible

29 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Burrows-Wheeler Transform

Increase locality using Burrows-Wheeler
Transform!

How it works?

Create all rotations of a given sequence.
Sort those rotations into lexicographic
order.
Take as output the last column!

Why it is useful?

Creates output with high locality!
This is reversible

29 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Burrows-Wheeler Transform (cntd.)

Why Burrows-Wheeler outputs have high
locality?

Consider an example of English text; there
are many 'the's such text.

When we sort, rotations starting with 'he'
appear together.
The last column for these rotations has
character 't', i.e., we will have a run of t's

30 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Burrows-Wheeler Transform (cntd.)

Why Burrows-Wheeler outputs have high
locality?

Consider an example of English text; there
are many 'the's such text.

When we sort, rotations starting with 'he'
appear together.
The last column for these rotations has
character 't', i.e., we will have a run of t's

30 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding

Idea: Given C , We can generate the �rst column of the array by

sorting.

This tells us which character comes after each character in S .

Decoding Algorithm:
View the coded text C as an array of characters.

1 Make array of A of tuples (C [i], i)

2 Sort A by the characters, record integers in array N
(Note: C [N[i]] follows C [i] in S , for all 0 ≤ i < n)

3 Set j to index of $ in C and S to empty string

4 Set j ← N[j] and append C [j] to S

5 Repeat Step 4 until C [j] = $

31 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S =

abracadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j =

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S =

abracadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j =

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S =

abracadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j =

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S =

abracadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j = 3

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S = a

bracadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j = 7

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S = ab

racadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j = 11

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S = abr

acadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j = 4

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

BWT Decoding Example

C = ard$rcaaaabb

S = abracadabra$

A

a, 0

r, 1

d, 2

$, 3

r, 4

c, 5

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11

−→

sort(A)

$, 3

a, 0

a, 6

a, 7

a, 8

a, 9

b, 10
b, 11
c, 5

d, 2

r, 1

r, 4

j =

32 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

B-Zip2 compression scheme

Assume we want to compress a data sequence S .

Apply BWT on S to increase its locality

baanana$ =⇒ annb$aa

Apply MTF on BWT output and encode the indices in the list

a → b → . . . → n → . . . → z → $

annb$aa =⇒ 0 13 0 2 27 3 0

You expect to see a lot of 0's and 1's.

Use run-length encoding to store these indices

Write down the length of each run!
⟨1 1 1 1 1 2 2 2 2 1 1 4 4 4⟩ → ⟨(1 5) (2 4) (1 2) (4 3)⟩

33 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

B-Zip2 compression scheme

Assume we want to compress a data sequence S .

Apply BWT on S to increase its locality

baanana$ =⇒ annb$aa

Apply MTF on BWT output and encode the indices in the list

a → b → . . . → n → . . . → z → $

annb$aa =⇒ 0 13 0 2 27 3 0

You expect to see a lot of 0's and 1's.

Use run-length encoding to store these indices

Write down the length of each run!
⟨1 1 1 1 1 2 2 2 2 1 1 4 4 4⟩ → ⟨(1 5) (2 4) (1 2) (4 3)⟩

33 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

B-Zip2 compression scheme

Assume we want to compress a data sequence S .

Apply BWT on S to increase its locality

baanana$ =⇒ annb$aa

Apply MTF on BWT output and encode the indices in the list

a → b → . . . → n → . . . → z → $

annb$aa =⇒ 0 13 0 2 27 3 0

You expect to see a lot of 0's and 1's.

Use run-length encoding to store these indices

Write down the length of each run!
⟨1 1 1 1 1 2 2 2 2 1 1 4 4 4⟩ → ⟨(1 5) (2 4) (1 2) (4 3)⟩

33 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Decompression

Assume we are given the indices in the compressed �le

Follow the steps of MTF and write down the character of each
index

a → b → . . . → n → . . . → z → $

0 13 0 2 27 3 0 =⇒ annb$aa

Can we replace MTF by another algorithm?

Yes, any online list update algorithm can be used.
The quality of compression might change!

What about an algorithm with advice?

34 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Decompression

Assume we are given the indices in the compressed �le

Follow the steps of MTF and write down the character of each
index

a → b → . . . → n → . . . → z → $

0 13 0 2 27 3 0 =⇒ annb$aa

Can we replace MTF by another algorithm?

Yes, any online list update algorithm can be used.
The quality of compression might change!

What about an algorithm with advice?

34 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Decompression

Assume we are given the indices in the compressed �le

Follow the steps of MTF and write down the character of each
index

a → b → . . . → n → . . . → z → $

0 13 0 2 27 3 0 =⇒ annb$aa

Can we replace MTF by another algorithm?

Yes, any online list update algorithm can be used.
The quality of compression might change!

What about an algorithm with advice?

34 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Decompression

Assume we are given the indices in the compressed �le

Follow the steps of MTF and write down the character of each
index

a → b → . . . → n → . . . → z → $

0 13 0 2 27 3 0 =⇒ annb$aa

Can we replace MTF by another algorithm?

Yes, any online list update algorithm can be used.
The quality of compression might change!

What about an algorithm with advice?

34 / 34
EECS 4101-5101 Advanced Data Structures

▲

List Update & Compression

Decompression

Assume we are given the indices in the compressed �le

Follow the steps of MTF and write down the character of each
index

a → b → . . . → n → . . . → z → $

0 13 0 2 27 3 0 =⇒ annb$aa

Can we replace MTF by another algorithm?

Yes, any online list update algorithm can be used.
The quality of compression might change!

What about an algorithm with advice?

34 / 34
EECS 4101-5101 Advanced Data Structures

▲

	List Update Problem
	Problem Statement
	Online Algorithms for List Update
	Online Algorithms
	Competitiveness of MTF
	List Update & Compression

