EECS 4101-5101 Advanced Data Structures

Shahin Kamali
Topic 1d - Self Adjusting Linked Lists \& Data Compression
York University

Picture is from the cover of the textbook CLRS.

List Update Problem

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

$$
<\mathrm{dbbdcac}>
$$

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

Problem Statement
 List Accessing Problem

- The input is a set of requests to items in a list.
- The cost of accessing an item in index i is i.

Introduction to List Update

- An instance of self-adjusting data structures.
- The structure adjusts itself based on the input queries.

Introduction to List Update

- An instance of self-adjusting data structures.
- The structure adjusts itself based on the input queries.
- List update was formulated in 1984 by Sleator and Tarjan
- This result of Sleator and Tarjan made online algorithms popular in the following two decades
- There are applications in data-compression!

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length $n(n \gg k)$.

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length $n(n \gg k)$.
- Free exchanges: Move a requested item closer to the front without any cost.

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length $n(n \gg k)$.
- Free exchanges: Move a requested item closer to the front without any cost.

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length $n(n \gg k)$.
- Free exchanges: Move a requested item closer to the front without any cost.
- Paid exchanges: Swap positions of two consecutive items with a cost 1.

$$
\text { cost: } \begin{aligned}
& <\mathrm{d} b \mathrm{bdcac}> \\
& 4
\end{aligned}
$$

Self-Adjusting Lists

- Update a list of length k to adjust it to the patterns in the input sequence of length $n(n \gg k)$.
- Free exchanges: Move a requested item closer to the front without any cost.
- Paid exchanges: Swap positions of two consecutive items with a cost 1.

$$
\text { cost: } \quad \begin{aligned}
& <\mathrm{d} b \mathrm{bdcac}> \\
& 4
\end{aligned}
$$

Problem Statement
 List Update Problem

- In the offline version of the problem, you have access to the whole set at the beginning.
- The problem is NP-hard.

List Update Problem

- In the offline version of the problem, you have access to the whole set at the beginning.
- The problem is NP-hard.
- In the online setting, the requests appear in an online, sequential manner.
- An online algorithm should reorder the list without looking at the future requests.

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
\text { cost: } \quad<\mathrm{dbbdcac}_{4}
$$

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
\begin{aligned}
& \text { cost: } \quad<\mathrm{dbbdcac}\rangle \\
& 4+3
\end{aligned}
$$

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
\begin{array}{ll}
& <\mathrm{dbbd} \text { b a } \mathrm{c}> \\
\text { cost: } & 4+3+1
\end{array}
$$

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
<\mathrm{dbbdcac}>
$$

$$
\text { cost: } \quad 4+3+1+2
$$

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
\begin{array}{ll}
& <\mathrm{d} \mathrm{~b} \mathrm{~b} \mathrm{~d} \mathrm{c} \mathrm{a} \mathrm{c}> \\
\text { cost: } & 4+3+1+2+4
\end{array}
$$

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
\begin{aligned}
& \text { cost: } \quad\langle\mathrm{d} \mathrm{~b} \mathrm{~b} \mathrm{~d} \mathrm{c} \mathrm{a} \mathrm{c}\rangle \\
& 4+3+1+2+4+4
\end{aligned}
$$

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
\begin{array}{cc}
& <\mathrm{dbbdycac}> \\
\operatorname{cost}: & 4+3+1+2+4+4+2
\end{array}
$$

Online Algorithms for List Update

Move-To-Front (MTF)

- After each access, move the requested item to the front.
- It only uses free exchanges.

$$
\begin{array}{cc}
& <\mathrm{dbbdycac}> \\
\operatorname{cost}: & 4+3+1+2+4+4+2
\end{array}
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\text { cost: } \quad<\mathrm{dbbdcac}_{4}
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\begin{aligned}
& \text { cost: }
\end{aligned} \quad\left\langle\mathrm{dbbdcac}_{4+2}\right\rangle
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\begin{aligned}
& \text { cost: } \\
& \langle\mathrm{dbbdcac}\rangle \\
& 4+2+2
\end{aligned}
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\begin{aligned}
& \text { cost: } \\
& \langle\mathrm{dbbdcac}\rangle \\
& 4+2+2
\end{aligned}
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\begin{array}{ll}
& <\mathrm{d} \mathrm{~b} \mathrm{~b} \mathrm{~d} \mathrm{c} \mathrm{a} \mathrm{c}> \\
\text { cost: } & 4+2+2+4
\end{array}
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\left.\begin{array}{c}
\text { cost: }
\end{array} \quad \begin{array}{c}
\mathrm{d} \mathrm{~b} \mathrm{~b} \mathrm{~d} \mathrm{c} \mathrm{a} \mathrm{c}
\end{array}\right\rangle
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\begin{gathered}
\quad<\mathrm{d} \mathrm{~b} \mathrm{~b} \mathrm{~d} \mathrm{c} \mathrm{a} \mathrm{c}\rangle \\
4+2+2+4+4
\end{gathered}
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\left.\begin{array}{c}
\\
\text { cost: }
\end{array} \begin{array}{c}
\mathrm{d} \mathrm{~b} \mathrm{~b} \mathrm{~d} \mathrm{c} \mathrm{a} \mathrm{c}
\end{array}\right\rangle
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\begin{aligned}
& \\
& \text { cost: }
\end{aligned} \quad \begin{aligned}
\text { d bbdcac}\rangle \\
4+2+2+4+4+3+4
\end{aligned}
$$

Online Algorithms

TIMESTAMP

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
- Do nothing on the first access to x or if such an item y does not exist.

$$
\begin{aligned}
& <\mathrm{dbbdcac}> \\
& \text { cost: } \quad 4+2+2+4+4+3+4
\end{aligned}
$$

Online Algorithms
 Optimal Static Algorithm

- Look at the sequence of requests, sort items by the frequency of their accesses.
- The most accessed item will be at the beginning of the list.

Optimal Static Algorithm

- Look at the sequence of requests, sort items by the frequency of their accesses.
- The most accessed item will be at the beginning of the list.
- The cost of the algorithm would be at most $n k / 2$.
- Consider a cruel sequence in which the adversary always asks for the last item in the list!
- What will be the cost of the algorithm?
- Consider a cruel sequence in which the adversary always asks for the last item in the list!
- What will be the cost of the algorithm?
-It will be nk.

Lower Bound for Competitive Ratio

- Consider a cruel sequence in which the adversary always asks for the last item in the list!
- What will be the cost of the algorithm?
- It will be $n k$.
- What is the cost of Opt?
- We know the optimal static algorithm has a cost of $n(k+1) / 2$.
- So the cost of Opt is no more than $n(k+1) / 2$.

Lower Bound for Competitive Ratio

- Consider a cruel sequence in which the adversary always asks for the last item in the list!
- What will be the cost of the algorithm?
- It will be $n k$.
- What is the cost of Opt?
- We know the optimal static algorithm has a cost of $n(k+1) / 2$.
- So the cost of Opt is no more than $n(k+1) / 2$.
- The competitive ratio of any online list update algorithm is at least $\frac{n k}{n k / 2}=2$.

Competitiveness of MTF

- There is an optimal algorithm that only uses paid exchanges!

On the Nature of Opt

- There is an optimal algorithm that only uses paid exchanges!
- Assume Opt uses a free exchange after accessing item x at position i to move it closer to the front to position j
- The cost will be i.

On the Nature of Opt

- There is an optimal algorithm that only uses paid exchanges!
- Assume Opt uses a free exchange after accessing item x at position i to move it closer to the front to position j
- The cost will be i.

- In a new scheme, before the access apply $i-j$ paid exchanges to move i to position j.
- The new cost will be $i-j$ for paid exchanges and j for the access, which sums to i

Competitiveness of MTF

Theorem

Move-To-Front has competitive ratio of 2.

- We prove it through potential function method
- And it takes a few slides :'-)

Potential Function (Review)

- Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.
- These states should be finite and independent of the input length!

Potential Function (Review)

- Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.
- These states should be finite and independent of the input length!
- Define a 'potential' as a function of the state of the algorithm and that of Opt (e.g. no. inversions).
- This is the critical part :-)

Potential Function (Review)

- Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.
- These states should be finite and independent of the input length!
- Define a 'potential' as a function of the state of the algorithm and that of Opt (e.g. no. inversions).
- This is the critical part :-)
- Define the amortized cost at a given time t as the actual cost algorithm plus the difference in potential after the request is served (same for all problems).

Potential Function (Review)

- Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.
- These states should be finite and independent of the input length!
- Define a 'potential' as a function of the state of the algorithm and that of Opt (e.g. no. inversions).
- This is the critical part :-)
- Define the amortized cost at a given time t as the actual cost algorithm plus the difference in potential after the request is served (same for all problems).
- The potential should be defined in a way so that you can show amortized_cost $(t) \leq c \operatorname{Opt}(t)$.

Potential Function (Review)

- Assume you face an online problem where the input is a sequence of requests that require you to change the state of a problem.
- These states should be finite and independent of the input length!
- Define a 'potential' as a function of the state of the algorithm and that of Opt (e.g. no. inversions).
- This is the critical part :-)
- Define the amortized cost at a given time t as the actual cost algorithm plus the difference in potential after the request is served (same for all problems).
- The potential should be defined in a way so that you can show amortized_cost $(t) \leq c \operatorname{Opt}(t)$.
- Using a telescopic sum, the competitive ratio will be at most c (same for all problems).

Inversions

- At a given time, two items x and y form an inversion if their relative order is different in the lists of MTF and Opt
- Question: what is the maximum number of inversions for a list of length k ?
- (a) $k / 2$
(c) $k(k-1) / 2$
(c) k
(d) $k^{2}-k / 2$
list of MTF

list of Opt

Potential Function

- Assume MTF and Opt are running the same input in parallel
- Assume we are at the t 'th request, and there is a request to an item x.
- Define the potential at time t to be the total number of inversions before accessing x.

Potential Function

- Assume MTF and Opt are running the same input in parallel
- Assume we are at the t 'th request, and there is a request to an item x.
- Define the potential at time t to be the total number of inversions before accessing x.

- Inversions are $(b, c),(b, d),(b, e),(c, d)$
- So, $\Phi(t)=4$.

Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.

Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.
- Define the amortized cost at time t (when answering the t th request) as:

$$
\text { amortized_cost }(t)=\text { actual_cost }(t)+\Phi(t+1)-\Phi(t)
$$

Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.
- Define the amortized cost at time t (when answering the t th request) as:

$$
\text { amortized_cost }(t)=\text { actual_cost }(t)+\Phi(t+1)-\Phi(t)
$$

- Example: assume at time t, there is a request to b, and Opt does not rearrange the list for accessing t.

Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.
- Define the amortized cost at time t (when answering the t th request) as:

$$
\text { amortized_cost }(t)=\text { actual_cost }(t)+\Phi(t+1)-\Phi(t)
$$

- Example: assume at time t, there is a request to b, and Opt does not rearrange the list for accessing t.

Amortized Cost

- Intuitively, if we have a high potential, we are in bad state.
- Define the amortized cost at time t (when answering the t th request) as:

$$
\text { amortized_cost }(t)=\text { actual_cost }(t)+\Phi(t+1)-\Phi(t)
$$

- Example: assume at time t, there is a request to b, and Opt does not rearrange the list for accessing t.
- For MTF, we have actual_cost $(t)=5,-\Phi(t)=4$ and $\Phi(t+1)=$ 2.
- amortized_cost is $5+2-4=3$.

Potential Function Method (cntd.)

Lemma

At any time t, amortized_cost $(t) \leq 2 \operatorname{Opt}(t)$, i.e., the amortized cost of MTF for the t 'th request is at most twice that of Opt.

Potential Function Method (cntd.)

- How many inversions are removed by moving x to front?

Potential Function Method (cntd.)

- How many inversions are removed by moving x to front?
- Before moving to front, there are $i-1$ items before x in MTF list.
- At most $j-1$ of them can also appear before x in Opt list (are non-inversions) \Rightarrow the rest, at least, $i-1-(j-1)=i-j$ are inversions \Rightarrow By moving to front at least $i-j$ inversions are removed.

Potential Function Method (cntd.)

- How many inversions are added by moving x to front?
- x is in front of MTF list after the move and at position j of Opt's list
- items that appear after x in MTF and before x in Opt are at most $j-1$
- At most $j-1$ inversions are added

Potential Function Method (cntd.)

- When moving x to front:
- Actual cost is i, at least $i-j$ inversions are removed, at most $j-1$ inversions are added

Potential Function Method (cntd.)

- When moving x to front:
- Actual cost is i, at least $i-j$ inversions are removed, at most $j-1$ inversions are added
- Assume Opt makes k^{\prime} paid exchanges.
- Recall that it does no free exchange.
- The cost of Opt will be $j+k^{\prime}$.
- Each paid exchange increases potential by $1 \rightarrow$ potential increases by at most k^{\prime}.

Potential Function Method (cntd.)

- When moving x to front:
- Actual cost is i, at least $i-j$ inversions are removed, at most $j-1$ inversions are added
- Assume Opt makes k^{\prime} paid exchanges.
- Recall that it does no free exchange.
- The cost of Opt will be $j+k^{\prime}$.
- Each paid exchange increases potential by $1 \rightarrow$ potential increases by at most k^{\prime}.
- $\Phi(t+1)-\Phi(t)=$ added_inversions - removed_inversions \leq $\left(j+k^{\prime}-1\right)-(i-j)=2 j+k^{\prime}-i-1$.

Potential Function Method (cntd.)

- When moving x to front:
- Actual cost is i, at least $i-j$ inversions are removed, at most $j-1$ inversions are added
- Assume Opt makes k^{\prime} paid exchanges.
- Recall that it does no free exchange.
- The cost of Opt will be $j+k^{\prime}$.
- Each paid exchange increases potential by $1 \rightarrow$ potential increases by at most k^{\prime}.
- $\Phi(t+1)-\Phi(t)=$ added_inversions - removed_inversions \leq $\left(j+k^{\prime}-1\right)-(i-j)=2 j+k^{\prime}-i-1$.
- amortized_cost $=$ actual_cost $+\Phi(t+1)-\Phi(t) \leq$ $i+2 j+k^{\prime}-i-1=2 j+k^{\prime}-1$

Potential Function Method (cntd.)

- When moving x to front:
- Actual cost is i, at least $i-j$ inversions are removed, at most $j-1$ inversions are added
- Assume Opt makes k^{\prime} paid exchanges.
- Recall that it does no free exchange.
- The cost of Opt will be $j+k^{\prime}$.
- Each paid exchange increases potential by $1 \rightarrow$ potential increases by at most k^{\prime}.
- $\Phi(t+1)-\Phi(t)=$ added_inversions - removed_inversions \leq $\left(j+k^{\prime}-1\right)-(i-j)=2 j+k^{\prime}-i-1$.
- amortized_cost $=$ actual_cost $+\Phi(t+1)-\Phi(t) \leq$ $i+2 j+k^{\prime}-i-1=2 j+k^{\prime}-1$
- Cost of Opt is $j+k^{\prime}$ and amortized_cost is less than $2 j+k^{\prime}$.

Lemma

At any time t, amortized_cost $(t)<2 \mathrm{Opt}^{2}(t)$.

A Quick Example

- Assume at time t :
- the list of MTF is

$$
8 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1
$$

- the list of OPT is

$$
1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8
$$

- Assume x is 3 , which means $i=6$ and $j=3$.
- The number of removed inversions in this case is at least $i-j=3$. In fact, it turns out to be 5 because all 4,5,6,7,8 form inversions with 3 which will be removed by moving 3 to the front.
- The number of new inversions will be at most $j-1=2$. In fact, it is 0 as no new inversion is added.

Competitiveness of MTF

- For the cost of MTF, we have

$$
\begin{aligned}
\text { MTF }= & \text { actual_cost }(1)+\text { actual_cost }(2)+\ldots+\text { actual_cost }(n) \\
= & (\text { actual_cost }(1)+\Phi(2)-\Phi(1)) \\
& +(\text { actual_cost }(2)+\Phi(3)-\Phi(2)) \\
& +\ldots \\
& +(\text { actual_cost }(n)+\Phi(n+1)-\Phi(n))-(\Phi(n+1)-\Phi(1)) \\
& =\text { amortized_cost }(1)+\ldots+\text { amortized_cost }(n)-(\Phi(n+1)-\Phi(1)) \\
& <2 \text { Opt }(1)+\ldots+2 \text { Opt }(n)-O\left(k^{2}\right) \approx 2 \operatorname{Cost} _O p t(n) \\
& \{\text { recall that } n \gg k\}
\end{aligned}
$$

- Note that in the second line, we just added and removed values (i.e., we added

$$
\Phi(1)-\Phi(1)+\Phi(2)-\Phi(2)+\ldots+\Phi(n+1)-\Phi(n+1)=0)
$$

Competitiveness of MTF

Theorem

Competitive ratio of Mtf is at most 2

- No deterministic algorithm can have a competitive ratio better than 2.
- MTF is an optimal list-update algorithm.
- Timestamp is another optimal deterministic algorithm.
- There are randomized algorithms that achieve better competitive ratios.

Competitiveness of MTF

Theorem

Competitive ratio of Mtf is at most 2

- No deterministic algorithm can have a competitive ratio better than 2.
- MTF is an optimal list-update algorithm.
- Timestamp is another optimal deterministic algorithm.
- There are randomized algorithms that achieve better competitive ratios.
- Potential function method is a general framework for analysis of many online algorithms!

Transpose Algorithm

- Transpose: Move the accessed item one unit closer to the front.
- Question: What is the competitive ratio of Transpose for a list of length m ?
(a) 1.5
(b) 2
(c) $\Theta(m)$
(d) $\Theta\left(m^{2}\right)$

Transpose Algorithm

- Transpose: Move the accessed item one unit closer to the front.
- Question: What is the competitive ratio of Transpose for a list of length m ?
(a) 1.5
(b) 2
(c) $\Theta(m)$
(d) $\Theta\left(m^{2}\right)$

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m-1} \rightarrow \stackrel{\downarrow}{a_{m}}
$$

sequence: a_{m}

Transpose Algorithm

- Transpose: Move the accessed item one unit closer to the front.
- Question: What is the competitive ratio of Transpose for a list of length m ?
(a) 1.5
(b) 2
(c) $\Theta(m)$
(d) $\Theta\left(m^{2}\right)$

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m-1}^{\downarrow}
$$

sequence: $\left(a_{m} a_{m-1}\right)$

Transpose Algorithm

- Transpose: Move the accessed item one unit closer to the front.
- Question: What is the competitive ratio of Transpose for a list of length m ?
(a) 1.5
(b) 2
(c) $\Theta(m)$
(d) $\Theta\left(m^{2}\right)$

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m-1} \rightarrow \stackrel{\downarrow}{a_{m}}
$$

sequence: $\left(a_{m} a_{m-1}\right)^{k}$

- The cost of Transpose after n requests on a list of length m will be $n \cdot m$
- What does Opt do?

Transpose Algorithm

- Transpose: Move the accessed item one unit closer to the front.
- Question: What is the competitive ratio of Transpose for a list of length m ?
(a) 1.5
(b) 2
(c) $\Theta(m)$
(d) $\Theta\left(m^{2}\right)$
sequence: $\left(a_{m} a_{m-1}\right)^{k}$
- The cost of Transpose after n requests on a list of length m will be $n \cdot m$
- What does Opt do?
- It moves a_{m} and a_{m-1} to the front using $2 m-3$ paid exchanges, and does not move them after.
- The cost for accesses to a_{m-1} and a_{m} are respectively 2 and 1 .
- The cost of Opt will be $2 m-3+n / 2 \cdot 1+n / 2 \cdot 2 \approx 1.5 n+2 m$.

Transpose Algorithm

- Transpose: Move the accessed item one unit closer to the front.
- Question: What is the competitive ratio of Transpose for a list of length m ?
(a) 1.5
(b) 2
(c) $\Theta(m)$
(d) $\Theta\left(m^{2}\right)$
sequence: $\left(a_{m} a_{m-1}\right)^{k}$
- The cost of Transpose after n requests on a list of length m will be $n \cdot m$
- What does Opt do?
- It moves a_{m} and a_{m-1} to the front using $2 m-3$ paid exchanges, and does not move them after.
- The cost for accesses to a_{m-1} and a_{m} are respectively 2 and 1 .
- The cost of Opt will be $2 m-3+n / 2 \cdot 1+n / 2 \cdot 2 \approx 1.5 n+2 m$.
- The competitive ratio will be at least $\frac{n \cdot m}{1.5 n+2 m} \in \Theta(m)$.
- Consider an algorithm that moves a requested item at index i half way to front.
- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m}^{\downarrow}
$$

sequence: $a_{2 m}$

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{2 m} \rightarrow a_{m+1} \rightarrow \ldots \rightarrow a_{2 m-2} \rightarrow a_{2 m-1}^{\stackrel{\downarrow}{1}}
$$

sequence: $a_{2 m} a_{2 m-1}$

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{2 m-1} \rightarrow a_{2 m} \rightarrow \ldots \rightarrow a_{2 m-3} \rightarrow a_{2 m-2}^{\downarrow}
$$

sequence: $a_{2 m} a_{2 m-1} a_{2 m-2}$

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m+2} \rightarrow a_{m+3} \rightarrow \ldots \rightarrow a_{2 m} \rightarrow a_{m+1}^{\downarrow}
$$

sequence: $a_{2 m} a_{2 m-1} a_{2 m-2} \ldots a_{m+1}$

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m}^{\downarrow}
$$

sequence: $\left(a_{2 m} a_{2 m-1} \quad a_{2 m-2} \ldots a_{m+1}\right)^{k}$

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m}^{\downarrow}
$$

sequence: $\left(a_{2 m} a_{2 m-1} a_{2 m-2} \ldots a_{m+1}\right)^{k}$
\rightarrow Alg's cost after n requests is $n \cdot 2 m$

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m}^{\downarrow}
$$

sequence: $\left(a_{2 m} a_{2 m-1} a_{2 m-2} \ldots a_{m+1}\right)^{k}$
\rightarrow Alg's cost after n requests is $n \cdot 2 m$

- Opt moves the requested m items to the front (using $O\left(m^{2}\right)$ paid exchanges at the beginning) and does not move after that.

$$
a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m} \rightarrow a_{1} \rightarrow a_{2} \ldots \rightarrow a_{m}
$$

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m}^{\downarrow}
$$

sequence: $\left(a_{2 m} a_{2 m-1} a_{2 m-2} \ldots a_{m+1}\right)^{k}$
\rightarrow Alg's cost after n requests is $n \cdot 2 m$

- Opt moves the requested m items to the front (using $O\left(m^{2}\right)$ paid exchanges at the beginning) and does not move after that.

$$
a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m} \rightarrow a_{1} \rightarrow a_{2} \ldots \rightarrow a_{m}
$$

Opt's cost after n requests is $n \cdot m / 2+O\left(m^{2}\right)$.

Other Deterministic Algorithms

- Consider an algorithm that moves a requested item at index i half way to front.
- What is the competitive ratio of this algorithm?

$$
a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{m} \rightarrow a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m}^{\downarrow}
$$

sequence: $\left(a_{2 m} a_{2 m-1} a_{2 m-2} \ldots a_{m+1}\right)^{k}$
\rightarrow Alg's cost after n requests is $n \cdot 2 m$

- Opt moves the requested m items to the front (using $O\left(m^{2}\right)$ paid exchanges at the beginning) and does not move after that.

$$
a_{m+1} \rightarrow a_{m+2} \rightarrow \ldots \rightarrow a_{2 m-1} \rightarrow a_{2 m} \rightarrow a_{1} \rightarrow a_{2} \ldots \rightarrow a_{m}
$$

Opt's cost after n requests is $n \cdot m / 2+O\left(m^{2}\right)$.

Theorem

The competitive ratio is at least $\frac{n \cdot 2 m}{n \cdot m / 2+O\left(m^{2}\right)} \approx 4$

Other (cntd.)

- Consider an algorithm that moves a requested item x to the front of the list on every-other-access to x.

Other (cntd.)

- Consider an algorithm that moves a requested item x to the front of the list on every-other-access to x.
- The competitive ratio of this algorithm is indeed 2.5.

Theorem

The best existing deterministic algorithms are Move-To-Front and Timestamp (and some algorithms which combine them). Other list update algorithms do not achieve competitive ratio of 2.

List Update \& Compression

List Update \& Compression

- One important application of list update is in data compression.
- Given a data-sequence (e.g., an English text), we want to compress it
- We should be able to recover the exact text from the compressed one \rightarrow Lossless compression
- How to encode some data (e.g., an English text)?

List Update \& Compression
 Basics of Compression

- How to encode some data (e.g., an English text)?
- Solution 1: write the ASCII or Unicode code for each character
- The code for ' A ' has the same length as ' Q '.

Basics of Compression

- How to encode some data (e.g., an English text)?
- Solution 1: write the ASCII or Unicode code for each character
- The code for ' A ' has the same length as ' Q '.
- Solution 2: let more common characters have smaller length
- In Huffman code ' A ' is encoded shorter than ' Q ' :)

Basics of Compression

- How to encode some data (e.g., an English text)?
- Solution 1: write the ASCII or Unicode code for each character
- The code for ' A ' has the same length as ' Q '.
- Solution 2: let more common characters have smaller length
- In Huffman code ' A ' is encoded shorter than ' Q ' :)
- The 'context' is ignored: the code for 'TH' is longer than ' Q ' :(

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$S=$ INEFFICIENCIES

$C=$

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$S=$ INEFFICIENCIES

$$
C=8
$$

MTF Encoding

- Solutions 3: use MTF index to encode the characters
O $\mathbf{1}$

$S=$ INEFFICIENCIES

$$
C=813
$$

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$S=$ INEFFICIENCIES

$$
C=8136
$$

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$S=$ INEFFICIENCIES

$$
C=81367
$$

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$S=$ INEFFICIENCIES

$$
C=813670
$$

List Update \& Compression

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$S=$ INEFFICIENCIES

$C=8136703$

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$S=$ INEFFICIENCIES

$$
C=81367036
$$

List Update \& Compression

MTF Encoding

- Solutions 3: use MTF index to encode the characters

$$
\begin{aligned}
& S=\text { INEFFICIENCIES } \\
& C=813670361
\end{aligned}
$$

MTF Encoding

- Solutions 3: use MTF index to encode the characters
O $\mathbf{1}$

$$
\begin{aligned}
& S=\text { INEFFICIENCIES } \\
& C=8136703613433318
\end{aligned}
$$

- What does a run in S encode to in C ?
- This results in good compression if we have high locality in the input.

List Update \& Compression
 Burrows-Wheeler Transform

- Increase locality using Burrows-Wheeler Transform!

List Update \& Compression

Burrows-Wheeler Transform

- Increase locality using Burrows-Wheeler Transform!
- How it works?
- Create all rotations of a given sequence.
- Sort those rotations into lexicographic order.
- Take as output the last column!

Burrows-Wheeler Transform

- Increase locality using Burrows-Wheeler Transform!
- How it works?
- Create all rotations of a given sequence.
- Sort those rotations into lexicographic order.
- Take as output the last column!
- Why it is useful?
- Creates output with high locality!
- This is reversible
banana

banana\$ anana\$b nana\$ba ana\$ban	sbanana sort
na\$bana a\$banan ana\$ban \$banana	anana\$b banana\$ nana\$ba na\$bana

$\operatorname{BWT}($ banana $)=\operatorname{annb\$ aa}$

List Update \& Compression
 Burrows-Wheeler Transform (cntd.)

- Why Burrows-Wheeler outputs have high locality?
- Consider an example of English text; there are many 'the's such text.

Burrows-Wheeler Transform (cntd.)

- Why Burrows-Wheeler outputs have high locality?
- Consider an example of English text; there are many 'the's such text.
...
the cat \ldots
sort $\begin{aligned} & \text { he cat ... } t \\ & \text { he dog ... }\end{aligned}$
... the duck ...
...
... the man ..
- The last column for these rotations has character ' t ', i.e., we will have a run of t 's

BWT Decoding

Idea: Given C, We can generate the first column of the array by sorting.
This tells us which character comes after each character in S.
Decoding Algorithm:
View the coded text C as an array of characters.
(1) Make array of A of tuples ($C[i], i$)
(2) Sort A by the characters, record integers in array N (Note: $C[N[i]]$ follows $C[i]$ in S, for all $0 \leq i<n$)
(3) Set j to index of $\$$ in C and S to empty string
(9) Set $j \leftarrow N[j]$ and append $C[j]$ to S
(3) Repeat Step 4 until $C[j]=\$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=$

$$
\begin{gathered}
A \\
{\left[\begin{array}{cc}
\mathrm{a}, & 0 \\
\mathrm{r}, & 1 \\
\mathrm{~d}, & 2 \\
\$, & 3 \\
\mathrm{r}, & 4 \\
\mathrm{c}, & 5 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11
\end{array}\right]}
\end{gathered}
$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=$

$$
\begin{gathered}
A \\
{\left[\begin{array}{cc}
\mathrm{a}, & 0 \\
\mathrm{r}, & 1 \\
\mathrm{~d}, & 2 \\
\$, & 3 \\
\mathrm{r}, & 4 \\
\mathrm{c}, & 5 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11
\end{array}\right] \quad\left[\begin{array}{cc}
\operatorname{sort}(A) \\
{\left[\begin{array}{cc}
\$, & 3 \\
\mathrm{a}, & 0 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11 \\
\mathrm{c}, & 5 \\
\mathrm{~d}, & 2 \\
\mathrm{r}, & 1 \\
\mathrm{r}, & 4
\end{array}\right]}
\end{array} . \begin{array}{c}
\\
\hline
\end{array}\right]}
\end{gathered}
$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=$

$$
\begin{gathered}
A \\
{\left[\begin{array}{cc}
\mathrm{a}, & 0 \\
\mathrm{r}, & 1 \\
\mathrm{~d}, & 2 \\
\$, & 3 \\
\mathrm{r}, & 4 \\
\mathrm{c}, & 5 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11
\end{array}\right] \quad\left[\begin{array}{cc}
\operatorname{sort}(A) \\
{\left[\begin{array}{cc}
\$, & 3 \\
\mathrm{a}, & 0 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11 \\
\mathrm{c}, & 5 \\
\mathrm{~d}, & 2 \\
\mathrm{r}, & 1 \\
\mathrm{r}, & 4
\end{array}\right]}
\end{array} . \begin{array}{c}
\\
\hline
\end{array}\right]}
\end{gathered}
$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=$

$$
\begin{gathered}
A \\
\left.\left[\begin{array}{cc}
\mathrm{a}, & 0 \\
\mathrm{r}, & 1 \\
\mathrm{~d}, & 2 \\
\$, & 3 \\
\mathrm{r}, & 4 \\
\mathrm{c}, & 5 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11
\end{array}\right] \quad\left[\begin{array}{cc}
\operatorname{sort}(A) \\
\$, & {\left[\begin{array}{cc}
\$, & 3 \\
\mathrm{a}, & 0 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11 \\
\mathrm{c}, & 5 \\
\mathrm{~d}, & 2 \\
\mathrm{r}, & 1 \\
\mathrm{r}, & 4
\end{array}\right]}
\end{array}\right] . \begin{array}{c}
\\
\hline
\end{array}\right]
\end{gathered}
$$

$$
j=3
$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=\mathrm{a}$

$$
\begin{gathered}
A \\
{\left[\begin{array}{rr}
\mathrm{a}, & 0 \\
\mathrm{r} & 1 \\
\mathrm{~d}, & 2 \\
\$, & 3 \\
\mathrm{r}, & 4 \\
\mathrm{c}, & 5 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a} & 8 \\
\mathrm{a} & 8 \\
\mathrm{~b} & 9 \\
\mathrm{~b}, & 10
\end{array}\right] \longrightarrow\left[\begin{array}{rr}
\$, & 3 \\
\mathrm{a} & 11 \\
\mathrm{a} & 0 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11 \\
\mathrm{c} & 5 \\
\mathrm{~d} & 2 \\
\mathrm{r} & 2 \\
\mathrm{r}, & 4
\end{array}\right]}
\end{gathered}
$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=\mathrm{ab}$

$$
\begin{gathered}
A \\
{\left[\begin{array}{rr}
\mathrm{a}, & 0 \\
\mathrm{r}, & 1 \\
\mathrm{~d}, & 2 \\
\$, & 3 \\
\mathrm{r}, & 4 \\
\mathrm{c}, & 5 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11
\end{array}\right] \longrightarrow\left[\begin{array}{rr}
\$ \operatorname{sort}(A) \\
\mathrm{a}, & 0 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11 \\
\mathrm{c}, & 5 \\
\mathrm{~d}, & 2 \\
\mathrm{r}, & 1 \\
\mathrm{r}, & 4
\end{array}\right] \quad j=11}
\end{gathered}
$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=\mathrm{abr}$

$$
\begin{gathered}
A \\
{\left[\begin{array}{rr}
\mathrm{a}, & 0 \\
\mathrm{r} & 1 \\
\mathrm{~d}, & 2 \\
\$, & 3 \\
\mathrm{r}, & 4 \\
\mathrm{c}, & 5 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a} & 8 \\
\mathrm{a} & 8 \\
\mathrm{~b} & 9 \\
\mathrm{~b}, & 10
\end{array}\right] \longrightarrow\left[\begin{array}{rr}
\$, & 3 \\
\mathrm{a}, & 0 \\
\mathrm{a}, & 6 \\
\mathrm{a}, & 7 \\
\mathrm{a}, & 8 \\
\mathrm{a}, & 9 \\
\mathrm{~b}, & 10 \\
\mathrm{~b}, & 11 \\
\mathrm{c}, & 5 \\
\mathrm{~d}, & 2 \\
\mathrm{r}, & 1 \\
\mathrm{r}, & 4
\end{array}\right]}
\end{gathered}
$$

BWT Decoding Example

$C=\operatorname{ard} \$ r c a a a b b$
$S=$ abracadabra\$
A
$\left[\begin{array}{lr}\mathrm{a}, & 0 \\ \mathrm{r}, & 1 \\ \mathrm{~d}, & 2 \\ \$, & 3 \\ \mathrm{r}, & 4 \\ \mathrm{c}, & 5 \\ \mathrm{a}, & 6 \\ \mathrm{a}, & 7 \\ \mathrm{a}, & 8 \\ \mathrm{a}, & 9 \\ \mathrm{~b}, & 10 \\ \mathrm{~b}, & 11\end{array}\right] \longrightarrow\left[\begin{array}{lr}\operatorname{sort}(A) \\ \mathrm{a}, & 3 \\ \mathrm{a}, & 6 \\ \mathrm{a}, & 7 \\ \mathrm{a}, & 8 \\ \mathrm{a}, & 9 \\ \mathrm{~b}, & 10 \\ \mathrm{~b}, & 11 \\ \mathrm{c}, & 5 \\ \mathrm{~d}, & 2 \\ \mathrm{r}, & 1 \\ \mathrm{r}, & 4\end{array}\right]$

B-Zip2 compression scheme

- Assume we want to compress a data sequence S.
- Apply BWT on S to increase its locality
- baanana\$ \Longrightarrow annb\$aa

B-Zip2 compression scheme

- Assume we want to compress a data sequence S.
- Apply BWT on S to increase its locality
- baanana\$ \Longrightarrow annb\$aa
- Apply MTF on BWT output and encode the indices in the list

$$
a \rightarrow b \rightarrow \ldots \rightarrow n \rightarrow \ldots \rightarrow z \rightarrow \$
$$

$$
\text { annb\$aa } \Longrightarrow 013022730
$$

- You expect to see a lot of 0's and 1's.

B-Zip2 compression scheme

- Assume we want to compress a data sequence S.
- Apply BWT on S to increase its locality
- baanana\$ \Longrightarrow annb\$aa
- Apply MTF on BWT output and encode the indices in the list

$$
a \rightarrow b \rightarrow \ldots \rightarrow n \rightarrow \ldots \rightarrow z \rightarrow \$
$$

$$
\text { annb\$aa } \Longrightarrow 013022730
$$

- You expect to see a lot of 0's and 1's.
- Use run-length encoding to store these indices
- Write down the length of each run!
- $\langle 11111222211444\rangle \rightarrow\langle(15)(24)(12)(43)\rangle$
- Assume we are given the indices in the compressed file
- Assume we are given the indices in the compressed file
- Follow the steps of MTF and write down the character of each index

$$
\begin{gathered}
a \rightarrow b \rightarrow \ldots \rightarrow n \rightarrow \ldots \rightarrow z \rightarrow \$ \\
013022730 \Longrightarrow \text { annb\$aa }
\end{gathered}
$$

Decompression

- Assume we are given the indices in the compressed file
- Follow the steps of MTF and write down the character of each index

$$
\begin{gathered}
a \rightarrow b \rightarrow \ldots \rightarrow n \rightarrow \ldots \rightarrow z \rightarrow \$ \\
013022730 \Longrightarrow \text { ann } b \$ \text { aa }
\end{gathered}
$$

- Can we replace MTF by another algorithm?

List Update \& Compression

Decompression

- Assume we are given the indices in the compressed file
- Follow the steps of MTF and write down the character of each index

$$
\begin{gathered}
a \rightarrow b \rightarrow \ldots \rightarrow n \rightarrow \ldots \rightarrow z \rightarrow \$ \\
013022730 \Longrightarrow \text { annb\$aa }
\end{gathered}
$$

- Can we replace MTF by another algorithm?
- Yes, any online list update algorithm can be used.
- The quality of compression might change!

List Update \& Compression

Decompression

- Assume we are given the indices in the compressed file
- Follow the steps of MTF and write down the character of each index

$$
\begin{gathered}
a \rightarrow b \rightarrow \ldots \rightarrow n \rightarrow \ldots \rightarrow z \rightarrow \$ \\
013022730 \Longrightarrow \text { annb\$aa }
\end{gathered}
$$

- Can we replace MTF by another algorithm?
- Yes, any online list update algorithm can be used.
- The quality of compression might change!
- What about an algorithm with advice?

