EECS 4101-5101

v Advanced Data Structures
-
b e
* ) \ \‘ Shahin Kamali
.\,?‘ \‘ Topic 1c - Competitive Analysis
“‘ CLRS 17-1, 17-2, 17-3, 17-4

York University

Picture is from the cover of the textbook CLRS.

EECS 4101-510 lvanced Data Structures



v

PN
~

™Y Offline vs. Online Algorithms

o Traditional algorithms are ‘offline’ in the sense that they have the
whole input in their hand.

o Online algorithms, in contrast, do not have/need the whole input in
order to solve a problem

o The input is a ‘sequence’ which is processed by the online algorithm
piece-by-piece

o The online algorithms often take irrevocable decisions to process
the input.



v
PN

;t;ii‘i‘ Bin Packing Problem

o The input is a set/sequence of items of various sizes
o E.g., <9,3,8,5,1,1,3,2,4,2,4,5,5,8,6,4,5, ... >.

EECS 4101-5101 Advanced Data Structures



v
-
~

2" Bin Packing Problem

o The input is a set/sequence of items of various sizes
o E.g., <9,3,8,5,1,1,3,2,4,2,4,5,5,8,6,4,5, ... >.

o The goal is to pack these items into a minimum number of bins of
uniform capacity.

0
2 |5 ¢
5 —
95 &
8 8
456
3| | 3




v

PN
~\——

RS

A\

Bin Packing Problem (cntd.)

o In the online setting:

o an algorithm receives items one by one

o when it receives an item, it has to place it in a bin without any
knowledge about forthcoming items

o decisions of the algorithms are irrevocable (i.e., cannot move items
between bins)



v
PN
N\

o~ First Fit (FF) Algorithm

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

EECS 4101-5101 Advanced Data Structures



v
PN
1

o~ First Fit (FF) Algorithm

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
PN
1

o~ First Fit (FF) Algorithm

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
PN
N\

‘o' First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
PN
N\

‘o' First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

*.";3“ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

*.";3“ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>




v
-
~

*.";3“ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>

0
2
5
95 &
8
3 3|4




v
-
~

‘.’;‘;?“ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>

0
2
5
95 &
8
5
3 3|4




v
-
~

‘.’;‘;?“ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>

0
2
5
95 &
8 8
5
3 3|4




v
-
~

‘o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>

0
2
5
95 &
8 8
4|3 °
3l | s




v
-
~

‘o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>

0
2
o | 4
95 &
8 8
4|3 °
3l | s




v
-
~

‘o~ First Fit (FF) Algorithm

W

o Find the first bin which has enough space for the item, and place
the item there

o Open a new bin if such bin does not exist

<93851132424558645>

0
2
o | 4
95 &
8 8
s RS
3l | s




v
PN

1 A‘ s _ 0
WY  Competitive Ratio

o We use the framework of competitive analysis to compare online
algorithms

EECS 4101-5101 Advanced Data Structures



v
PN
~

\sz

< ‘ L] L] -
W)  Competitive Ratio

o We use the framework of competitive analysis to compare online
algorithms

o Let Opt denote the best possible offline solution.

o Given a sequence o, Opt is an algorithm which packs items in o in
a minimum number of bins



v

PN
~

‘ L] L] L]
WY  Competitive Ratio

o We use the framework of competitive analysis to compare online
algorithms

o Let Opt denote the best possible offline solution.

o Given a sequence o, Opt is an algorithm which packs items in o in
a minimum number of bins

o Competitive ratio of an algorithm A is the maximum ratio between
the cost of A and that of Opt over all sequences

cr(A) = max _costa(o)
o costopt(0)



v
PN
~

1 A‘ s _ . . o
'Y  Competitive Ratio of First Fit

o For First Fit, the competitive ratio is 1.7 [Johnson 1973]

EECS 4101-5101 Advanced Data Structures



v
-
~

1 A .. 0 - .
‘)  Competitive Ratio of First Fit

o For First Fit, the competitive ratio is 1.7 [Johnson 1973]

o The number of bins opened by FF for any sequence is at most 1.7
times that of Opt, i.e., c.r. < 1.7 (upper bound for FF)

o There are sequences for which the number of bins opened by FF is
1.7 times that of Opt, i.e., c.r. > 1.7 (lower bound for FF)



v
-
~

1 ) s _ . . o
Y  Competitive Ratio of First Fit

o For First Fit, the competitive ratio is 1.7 [Johnson 1973]

o The number of bins opened by FF for any sequence is at most 1.7
times that of Opt, i.e., c.r. < 1.7 (upper bound for FF)

o There are sequences for which the number of bins opened by FF is
1.7 times that of Opt, i.e., c.r. > 1.7 (lower bound for FF)

o The best existing online algorithm has c.r. of 1.5783 [Balogh et al.
2017



v

PN
~

t ‘ L] L] L] - .
Y  Competitive Ratio of First Fit

o For First Fit, the competitive ratio is 1.7 [Johnson 1973]

o The number of bins opened by FF for any sequence is at most 1.7
times that of Opt, i.e., c.r. < 1.7 (upper bound for FF)

o There are sequences for which the number of bins opened by FF is
1.7 times that of Opt, i.e., c.r. > 1.7 (lower bound for FF)

o The best existing online algorithm has c.r. of 1.5783 [Balogh et al.
2017

o No algorithm can be better than 1.54037-competitive (best general
lower bound) [Balogh et al. 2015].



F' -

-
~

\“

e
A“‘\

Ski-rental problem

o Assume you want to go skiing for x number of days

o In the online setting, the value of x is unknown!

EECS 4101-5101 Advanced Data Structures



v !!l—!enla !ro! em

-
-

A
) Ski-rental problem

e
>“‘\
o Assume you want to go skiing for x number of days

o In the online setting, the value of x is unknown!

o You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day



v !!l—!enta !ro! em

-
-

A
) Ski-rental problem

-
Y
o Assume you want to go skiing for x number of days

o In the online setting, the value of x is unknown!

o You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

o If we know x, what is the best solution?



v !!l—!enta !ro! em

A\ R
W™ Ski-rental problem

o Assume you want to go skiing for x number of days

o In the online setting, the value of x is unknown!

o You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

o If we know x, what is the best solution?

o Buy at the beginning if x > b, otherwise, rent every day



v !!l—Renta Pro! em

-
l‘ ; “
N

W™ Ski-rental problem

Assume you want to go skiing for x number of days

o In the online setting, the value of x is unknown!

o You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

o If we know x, what is the best solution?
o Buy at the beginning if x > b, otherwise, rent every day

o What is the competitive ratio of an algorithm that buys at day 1?7



v Ski-Rental Problem
R

s

W™ Ski-rental problem

]

Assume you want to go skiing for x number of days

o In the online setting, the value of x is unknown!

o You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

o If we know x, what is the best solution?
o Buy at the beginning if x > b, otherwise, rent every day
o What is the competitive ratio of an algorithm that buys at day 1?7

o In the worst case, you go skiing once; so 2 = b (not good)




v Ski-Rental Problem
Lo
w7 Ski-rental problem

Assume you want to go skiing for x number of days

o In the online setting, the value of x is unknown!

o You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

o If we know x, what is the best solution?
o Buy at the beginning if x > b, otherwise, rent every day

o What is the competitive ratio of an algorithm that buys at day 1?7
o In the worst case, you go skiing once; so 2 = b (not good)

o What is the competitive ratio of an algorithm that always rent?

o In the worst-case, we go skiing n days for large n

o The competitive ratio is £, which can be arbitrary large (very bad).



F' -
-
~

| \‘\

N ,"‘\

" Ski-rental problem (cntd.)

o Online strategy break-even: rent for the first b — 1 days and buy in
the next day.

EECS 4101-5101 Advanced Data Structures



v !!l—!enla !ro! em

-
=0

\“

" Ski-rental problem (cntd.)

P
A“‘\

o Online strategy break-even: rent for the first b — 1 days and buy in
the next day.

o What is the competitive ratio of Break-even algorithm?

EECS 4101-5101 Advanced Data Structures



v !!l—!enta !ro! em

-
~

A
WY Ski-rental problem (cntd.)

o Online strategy break-even: rent for the first b — 1 days and buy in
the next day.

o What is the competitive ratio of Break-even algorithm?

o ltis E=TE o

Theorem
Competitive ratio is roughly 2, and it is the best for any deterministic
online algorithm.



Cow-Path Problem

EECS 4101-5101 Advanced Data Structures



v !OW !at !FO! em

-
~

A}
™ Problem Definition

A cow faces a fence, infinite in both directions

o She wants to find a hole in order to get to the green pasture on the
other side

o The cow’s online strategy specifies the path traveled in search of
the hole.

The goal is to minimize the distance traveled.




v !OW !at !FO! em

-
<\

“‘
' Offline Strategy

e
>“‘\

o Let u an integer indicating the distance between the initial location
of the cow and the location of the hole.

o u is unknown to the cow!




v !OW !at !FO! em

-
~

s

. “‘
w > Offline Strategy

o Let u an integer indicating the distance between the initial location
of the cow and the location of the hole.

o u is unknown to the cow!

o An optimal offline algorithm Opt (i.e., a cow which knows the
location of the hole), incurs a cost of u




S Cow Path Problem

-
~

A
W™ Smart-Cow Algorithm (SCA)

o Gradually extend the explored interval of the fence

o Alternate between left and right!

o Go right for distance do

o Go back to the origin, left for distance di

o Go back to the origin, right for distance d>

o Continue accordingly for ds, ..., dk until the hole is found.

k-1 — dk-Z

ds di 0 dy d.



v Cow Path Problem
Al

WY Competitive Ratio of SCA

o Recall that the competitive ratio of an online algorithm is the
maximum ratio between the cost of that algorithm and an optimal
offline Opt algorithm Opt

o The cost of Opt is u

o The cost of SCA is 2dy +2d1 + ... +2dk_> +2dk_1 + u
o di_a < u<dk

ds di 0 do d;



Y !ow Pat! Pro! em

-
~

A
WY Competitive Ratio of SCA (cntd.)

o The competitive ratio would be

2d0+2d1+...+2dk_2+2dk_1+u_1+2d0+d1+...+dk_1
u u

o what is the value of u in the worst case?

o If you are an adversary and want to fail the algorithm, where you
place the hole?

dk

—

ds di 0 dy do



Y !ow Pat! Pro! em

-
~

A
WY Competitive Ratio of SCA (cntd.)

o The competitive ratio would be

2d0+2d1+...+2dk_2+2dk_1+u_1+2d0+d1+...+dk_1
u u

o In the worst case, u = di_» + €.
o Just a bit more than the previous probel

o So, the competitive ratio of a Smart-Cow algorithm is

2d0+d1+...+dk_1

1+
di—o + €

(e u —
dk
dkrl

—

—> di:

—

ds di 0 dy d




v Cow Path Problem

-
~

* A )
Y The Doubling Technique

o Assume d; = 2, i.e., first go one unit to the right, go back to the
origin, go two units to the left, back to origin, four units to the
right, etc.

o We will have
do+di+...+di1=14+2444.. 421 =02Fk_1=4.2k2
o The competitive ratio would be

do+di + ...+ di_1 4 .0k=2
1+2 =14+2——=9

+ di_o + € * 2k=2 1 ¢

_u_
yp . : >
- S )%
1
| ] ] ] ] LI ] ] ] ] ] ] ] ] | | ] ] ] 1

8 2 1 4



v ow FFa roblem

-
-

(N -

\ =
\ ‘\

Overview

Theorem

The smart-cow algorithm with steps that double (i.e., d; = 2')
has a competitive ratio of at most 9.

EECS 4101-5101 Advanced Data Structures




v !OW !at !FO! em

-
~

A}
W™ Overview

Theorem

The smart-cow algorithm with steps that double (i.e., d; = 2')
has a competitive ratio of at most 9.

o It turns out that no deterministic algorithm can achieve a ratio
better than 9.

o The proof is a bit involved and we skip it here.



v !ow Pat! Pro! em

-
l‘ ; “
N

W™ Overview

Theorem

The smart-cow algorithm with steps that double (i.e., d; = 2')
has a competitive ratio of at most 9.

o It turns out that no deterministic algorithm can achieve a ratio
better than 9.

o The proof is a bit involved and we skip it here.

@ So, the doubling technique results an optimal algorithm in this case



v !OW !at !FO! em

-
A\ -
=N
RN

Semi-online Problem

o We assumed the value of v is unknown to the algorithm.

o Question: what competitive an “almost-online” algorithm can
achieve when the value of u is known?

o The algorithm knows u but does not know the side (left or right)
where the target is located.



v !OW !at !FO! em

-
~

A
W Search Problems under Uncertainty

o A cow can be a robot (or the other way around)!

o In practice, robots often do not have full information about their
environment.

o Cow-path problem and its variant are a way to model many types of
search problems.




v !OW !at !FO! em

-
~

A}
™ Variants of Search Problems

o Path-cow problem is an online search
problem on a path.

o Consider a star, where w paths have one
common endpoint.

o Assume a robot is initially locate at the
common point, and needs to find a target
located in an unknown position.

o What is a good algorithm?



v ow FFa roblem

.
]

e
w  Variants of Search Problems

o The best strategy is to have
d; = (w/(w — 1))’
o For w = 2, it requires doubling.

o For w = 3, we jump by a factor of 3/2,
and so on.

EECS 4101-5101 Advanced Data Structures |



v ow Pat roblem

.
4D

A

w

o The best strategy is to have
d; = (w/(w — 1))’
o For w = 2, it requires doubling.

o For w = 3, we jump by a factor of 3/2,
and so on.

o The competitive ratio will be at most
1+ 20 1)W1~1-|-2e( 1) (when w is
sufficiently large).

o e~ 2.71 is the Euler’s constant

»~  Variants of Search Problems



v ow Path Problem
i -
™ Variants of Search Problems

o The best strategy is to have
d; = (w/(w — 1))’
o For w = 2, it requires doubling.

o For w = 3, we jump by a factor of 3/2,
and so on.

o The competitive ratio will be at most 5
1+2 ot & 1+ 2e(w — 1) (when w is
sufficiently large).

o e~ 2.71 is the Euler’s constant

o Note that doubling is not optimal here.

o But it is still competitive, i.e., it has a
constant competitive ratio.



	Ski-Rental Problem
	Cow-Path Problem

