EECS 4101-5101
 Advanced Data Structures

Shahin Kamali

Topic 1c - Competitive Analysis
CLRS 17-1, 17-2, 17-3, 17-4
York University

Picture is from the cover of the textbook CLRS.

Offline vs. Online Algorithms

- Traditional algorithms are 'offline' in the sense that they have the whole input in their hand.
- Online algorithms, in contrast, do not have/need the whole input in order to solve a problem
- The input is a 'sequence' which is processed by the online algorithm piece-by-piece
- The online algorithms often take irrevocable decisions to process the input.

Bin Packing Problem

- The input is a set/sequence of items of various sizes
- E.g., $<9,3,8,5,1,1,3,2,4,2,4,5,5,8,6,4,5, \ldots>$.

Bin Packing Problem

- The input is a set/sequence of items of various sizes

$$
\text { - E.g., }<9,3,8,5,1,1,3,2,4,2,4,5,5,8,6,4,5, \ldots>
$$

- The goal is to pack these items into a minimum number of bins of uniform capacity.

Bin Packing Problem (cntd.)

- In the online setting:
- an algorithm receives items one by one
- when it receives an item, it has to place it in a bin without any knowledge about forthcoming items
- decisions of the algorithms are irrevocable (i.e., cannot move items between bins)

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		
9	1	
	5	
		8
	3	

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		2	
9	5		
		8	
	3		3

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		2	
9	1		
	5	8	4
	3		3

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		2	
9	1		2
	5		4
		8	
	3		3

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		2		
9	1		2	5
	5	8		
			4	
	3		3	4

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		2					
9	1		2	5			
	5	8				8	
			4				
				-			
	3		3	4	5		

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		2					
9	1			5	4		
	5	8				8	
			4				
				-			
	3		3	4	5		

First Fit (FF) Algorithm

- Find the first bin which has enough space for the item, and place the item there
- Open a new bin if such bin does not exist

$$
<93851132424558645>
$$

1		2						
9	1		2	5	4			
	5	8				8		
			4					
				-				
	3		3	4	5			5

Competitive Ratio

- We use the framework of competitive analysis to compare online algorithms

Competitive Ratio

- We use the framework of competitive analysis to compare online algorithms
- Let Opt denote the best possible offline solution.
- Given a sequence σ, Opt is an algorithm which packs items in σ in a minimum number of bins

Competitive Ratio

- We use the framework of competitive analysis to compare online algorithms
- Let Opt denote the best possible offline solution.
- Given a sequence σ, Opt is an algorithm which packs items in σ in a minimum number of bins
- Competitive ratio of an algorithm A is the maximum ratio between the cost of A and that of Opt over all sequences

$$
\operatorname{cr}(A) \equiv \max _{\sigma} \frac{\operatorname{cost}_{A}(\sigma)}{\operatorname{cost}_{\mathrm{Opt}}(\sigma)}
$$

Competitive Ratio of First Fit

- For First Fit, the competitive ratio is 1.7 [Johnson 1973]

Competitive Ratio of First Fit

- For First Fit, the competitive ratio is 1.7 [Johnson 1973]
- The number of bins opened by FF for any sequence is at most 1.7 times that of Opt, i.e., c.r. ≤ 1.7 (upper bound for FF)
- There are sequences for which the number of bins opened by FF is 1.7 times that of Opt, i.e., c.r. ≥ 1.7 (lower bound for FF)

Competitive Ratio of First Fit

- For First Fit, the competitive ratio is 1.7 [Johnson 1973]
- The number of bins opened by FF for any sequence is at most 1.7 times that of Opt, i.e., c.r. ≤ 1.7 (upper bound for FF)
- There are sequences for which the number of bins opened by FF is 1.7 times that of Opt, i.e., c.r. ≥ 1.7 (lower bound for FF)
- The best existing online algorithm has c.r. of 1.5783 [Balogh et al. 2017]

Competitive Ratio of First Fit

- For First Fit, the competitive ratio is 1.7 [Johnson 1973]
- The number of bins opened by FF for any sequence is at most 1.7 times that of Opt, i.e., c.r. ≤ 1.7 (upper bound for FF)
- There are sequences for which the number of bins opened by FF is 1.7 times that of Opt, i.e., c.r. ≥ 1.7 (lower bound for FF)
- The best existing online algorithm has c.r. of 1.5783 [Balogh et al. 2017]
- No algorithm can be better than 1.54037-competitive (best general lower bound) [Balogh et al. 2015].

Ski-rental problem

- Assume you want to go skiing for x number of days
- In the online setting, the value of x is unknown!

Ski-rental problem

- Assume you want to go skiing for x number of days
- In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day

Ski-rental problem

- Assume you want to go skiing for x number of days
- In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
- If we know x, what is the best solution?

Ski-rental problem

- Assume you want to go skiing for x number of days
- In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
- If we know x, what is the best solution?
- Buy at the beginning if $x \geq b$, otherwise, rent every day

Ski-rental problem

- Assume you want to go skiing for x number of days
- In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
- If we know x, what is the best solution?
- Buy at the beginning if $x \geq b$, otherwise, rent every day
- What is the competitive ratio of an algorithm that buys at day 1 ?

Ski-rental problem

- Assume you want to go skiing for x number of days
- In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
- If we know x, what is the best solution?
- Buy at the beginning if $x \geq b$, otherwise, rent every day
- What is the competitive ratio of an algorithm that buys at day 1 ?
- In the worst case, you go skiing once; so $\frac{b}{1}=b$ (not good)

Ski-rental problem

- Assume you want to go skiing for x number of days
- In the online setting, the value of x is unknown!
- You can buy the equipment for a one-time cost of b or rent each day for a cost of 1 per day
- If we know x, what is the best solution?
- Buy at the beginning if $x \geq b$, otherwise, rent every day
- What is the competitive ratio of an algorithm that buys at day 1 ?
- In the worst case, you go skiing once; so $\frac{b}{1}=b$ (not good)
- What is the competitive ratio of an algorithm that always rent?
- In the worst-case, we go skiing n days for large n
- The competitive ratio is $\frac{n}{b}$, which can be arbitrary large (very bad).

Ski-rental problem (cntd.)

- Online strategy break-even: rent for the first $b-1$ days and buy in the next day.

Ski-rental problem (cntd.)

- Online strategy break-even: rent for the first $b-1$ days and buy in the next day.
- What is the competitive ratio of Break-even algorithm?

Ski-Rental Problem

Ski-rental problem (cntd.)

- Online strategy break-even: rent for the first $b-1$ days and buy in the next day.
- What is the competitive ratio of Break-even algorithm?
- It is $\frac{(b-1)+b}{b} \approx 2$

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic online algorithm.

Cow-Path Problem

Problem Definition

- A cow faces a fence, infinite in both directions
- She wants to find a hole in order to get to the green pasture on the other side
- The cow's online strategy specifies the path traveled in search of the hole.
- The goal is to minimize the distance traveled.

Offline Strategy

- Let u an integer indicating the distance between the initial location of the cow and the location of the hole.
- u is unknown to the cow!

Offline Strategy

- Let u an integer indicating the distance between the initial location of the cow and the location of the hole.
- u is unknown to the cow!
- An optimal offline algorithm Opt (i.e., a cow which knows the location of the hole), incurs a cost of u

Smart-Cow Algorithm (SCA)

- Gradually extend the explored interval of the fence
- Alternate between left and right!
- Go right for distance d_{0}
- Go back to the origin, left for distance d_{1}
- Go back to the origin, right for distance d_{2}
- Continue accordingly for d_{3}, \ldots, d_{k} until the hole is found.

Competitive Ratio of SCA

- Recall that the competitive ratio of an online algorithm is the maximum ratio between the cost of that algorithm and an optimal offline Opt algorithm Opt
- The cost of Opt is u
- The cost of SCA is $2 d_{0}+2 d_{1}+\ldots+2 d_{k-2}+2 d_{k-1}+u$

$$
\text { - } d_{k-2}<u \leq d_{k}
$$

Competitive Ratio of SCA (cntd.)

- The competitive ratio would be

$$
\frac{2 d_{0}+2 d_{1}+\ldots+2 d_{k-2}+2 d_{k-1}+u}{u}=1+2 \frac{d_{0}+d_{1}+\ldots+d_{k-1}}{u}
$$

- what is the value of u in the worst case?
- If you are an adversary and want to fail the algorithm, where you place the hole?

Competitive Ratio of SCA (cntd.)

- The competitive ratio would be

$$
\frac{2 d_{0}+2 d_{1}+\ldots+2 d_{k-2}+2 d_{k-1}+u}{u}=1+2 \frac{d_{0}+d_{1}+\ldots+d_{k-1}}{u}
$$

- In the worst case, $u=d_{k-2}+\epsilon$.
- Just a bit more than the previous probe!
- So, the competitive ratio of a Smart-Cow algorithm is

$$
1+2 \frac{d_{0}+d_{1}+\ldots+d_{k-1}}{d_{k-2}+\epsilon}
$$

The Doubling Technique

- Assume $d_{i}=2^{i}$, i.e., first go one unit to the right, go back to the origin, go two units to the left, back to origin, four units to the right, etc.
- We will have

$$
d_{0}+d_{1}+\ldots+d_{k-1}=1+2+4+\ldots+2^{k-1}=\cdot 2^{k}-1=4 \cdot 2^{k-2}
$$

- The competitive ratio would be

$$
1+2 \frac{d_{0}+d_{1}+\ldots+d_{k-1}}{d_{k-2}+\epsilon}=1+2 \frac{4 \cdot 2^{k-2}}{2^{k-2}+\epsilon} \approx 9
$$

Overview

Theorem

The smart-cow algorithm with steps that double (i.e., $d_{i}=2^{i}$) has a competitive ratio of at most 9 .

Overview

Theorem

The smart-cow algorithm with steps that double (i.e., $d_{i}=2^{i}$) has a competitive ratio of at most 9 .

- It turns out that no deterministic algorithm can achieve a ratio better than 9 .
- The proof is a bit involved and we skip it here.

Overview

Theorem

The smart-cow algorithm with steps that double (i.e., $d_{i}=2^{i}$) has a competitive ratio of at most 9 .

- It turns out that no deterministic algorithm can achieve a ratio better than 9 .
- The proof is a bit involved and we skip it here.
- So, the doubling technique results an optimal algorithm in this case

Semi-online Problem

- We assumed the value of u is unknown to the algorithm.
- Question: what competitive an "almost-online" algorithm can achieve when the value of u is known?
- The algorithm knows u but does not know the side (left or right) where the target is located.

Search Problems under Uncertainty

- A cow can be a robot (or the other way around)!
- In practice, robots often do not have full information about their environment.
- Cow-path problem and its variant are a way to model many types of search problems.

Variants of Search Problems

- Path-cow problem is an online search problem on a path.
- Consider a star, where w paths have one common endpoint.
- Assume a robot is initially locate at the common point, and needs to find a target located in an unknown position.
- What is a good algorithm?

Variants of Search Problems

- The best strategy is to have
$d_{i}=(w /(w-1))^{i}$.
- For $w=2$, it requires doubling.
- For $w=3$, we jump by a factor of $3 / 2$, and so on.

Variants of Search Problems

- The best strategy is to have $d_{i}=(w /(w-1))^{i}$.
- For $w=2$, it requires doubling.
- For $w=3$, we jump by a factor of $3 / 2$, and so on.
- The competitive ratio will be at most $1+2 \frac{w^{w}}{(w-1)^{w-1}} \approx 1+2 e(w-1)$ (when w is sufficiently large).

- $e \approx 2.71$ is the Euler's constant

Variants of Search Problems

- The best strategy is to have $d_{i}=(w /(w-1))^{i}$.
- For $w=2$, it requires doubling.
- For $w=3$, we jump by a factor of $3 / 2$, and so on.
- The competitive ratio will be at most $1+2 \frac{w^{w}}{(w-1)^{w-1}} \approx 1+2 e(w-1)$ (when w is sufficiently large).

- $e \approx 2.71$ is the Euler's constant
- Note that doubling is not optimal here.
- But it is still competitive, i.e., it has a constant competitive ratio.

