
EECS 4101-5101

Advanced Data Structures

Shahin Kamali

Topic 1c - Competitive Analysis

CLRS 17-1, 17-2, 17-3, 17-4

York University

Picture is from the cover of the textbook CLRS.

1 / 22
EECS 4101-5101 Advanced Data Structures

▲



O�ine vs. Online Algorithms

Traditional algorithms are `o�ine' in the sense that they have the
whole input in their hand.

Online algorithms, in contrast, do not have/need the whole input in
order to solve a problem

The input is a `sequence' which is processed by the online algorithm
piece-by-piece

The online algorithms often take irrevocable decisions to process
the input.

2 / 22
EECS 4101-5101 Advanced Data Structures

▲



Bin Packing Problem

The input is a set/sequence of items of various sizes

E.g., < 9, 3, 8, 5, 1, 1, 3, 2, 4, 2, 4, 5, 5, 8, 6, 4, 5, ... >.

The goal is to pack these items into a minimum number of bins of
uniform capacity.< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9

10

4

3

8

5

1

1

3

2

4

2

4

5

5

8

6

4
5

3 / 22
EECS 4101-5101 Advanced Data Structures

▲



Bin Packing Problem

The input is a set/sequence of items of various sizes

E.g., < 9, 3, 8, 5, 1, 1, 3, 2, 4, 2, 4, 5, 5, 8, 6, 4, 5, ... >.

The goal is to pack these items into a minimum number of bins of
uniform capacity.< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9

10

4

3

8

5

1

1

3

2

4

2

4

5

5

8

6

4
5

3 / 22
EECS 4101-5101 Advanced Data Structures

▲



Bin Packing Problem (cntd.)

In the online setting:

an algorithm receives items one by one
when it receives an item, it has to place it in a bin without any
knowledge about forthcoming items
decisions of the algorithms are irrevocable (i.e., cannot move items
between bins)

4 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

33

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

3

8

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

3

8

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

111

5

3

8

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

11

1

5

3

8

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

11

1

3

5

3

8

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2
11

1

3

5

3

8

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

11

1
2

3

4
5

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

11

1
2

2

3

4
5

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

4

11

1
2

2

3

4
5

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

4

5

11

1
2

2

3

4
5

5

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

4

5

5

11

1
2

2

3

4
5

5

5

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

4

5

8

5

11

1
2

2

3

4
5

5

5

8

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

4

5

8

5

11

1
2

2

3

4
5

5

5
6

8

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

4

5

8

5

11

1
2

2

3

4
5

5

5
6

8

3

8

4

4

9

4

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



First Fit (FF) Algorithm

Find the �rst bin which has enough space for the item, and place
the item there

Open a new bin if such bin does not exist

< 9 3 8 5 1 1 3 2 4 2 4 5 5 8 6 4 5 >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

4

5

8

55

4

11

1
2

2

3

4
5

5

5 5
6

8

3

8

4

4

9

5 / 22
EECS 4101-5101 Advanced Data Structures

▲



Competitive Ratio

We use the framework of competitive analysis to compare online
algorithms

Let Opt denote the best possible o�ine solution.

Given a sequence σ, Opt is an algorithm which packs items in σ in
a minimum number of bins

Competitive ratio of an algorithm A is the maximum ratio between
the cost of A and that of Opt over all sequences

cr(A) ≡ max
σ

costA(σ)

costOpt(σ)

6 / 22
EECS 4101-5101 Advanced Data Structures

▲



Competitive Ratio

We use the framework of competitive analysis to compare online
algorithms

Let Opt denote the best possible o�ine solution.

Given a sequence σ, Opt is an algorithm which packs items in σ in
a minimum number of bins

Competitive ratio of an algorithm A is the maximum ratio between
the cost of A and that of Opt over all sequences

cr(A) ≡ max
σ

costA(σ)

costOpt(σ)

6 / 22
EECS 4101-5101 Advanced Data Structures

▲



Competitive Ratio

We use the framework of competitive analysis to compare online
algorithms

Let Opt denote the best possible o�ine solution.

Given a sequence σ, Opt is an algorithm which packs items in σ in
a minimum number of bins

Competitive ratio of an algorithm A is the maximum ratio between
the cost of A and that of Opt over all sequences

cr(A) ≡ max
σ

costA(σ)

costOpt(σ)

6 / 22
EECS 4101-5101 Advanced Data Structures

▲



Competitive Ratio of First Fit

For First Fit, the competitive ratio is 1.7 [Johnson 1973]

The number of bins opened by FF for any sequence is at most 1.7
times that of Opt, i.e., c.r . ≤ 1.7 (upper bound for FF)
There are sequences for which the number of bins opened by FF is
1.7 times that of Opt, i.e., c.r . ≥ 1.7 (lower bound for FF)

The best existing online algorithm has c.r. of 1.5783 [Balogh et al.
2017]

No algorithm can be better than 1.54037-competitive (best general
lower bound) [Balogh et al. 2015].

7 / 22
EECS 4101-5101 Advanced Data Structures

▲



Competitive Ratio of First Fit

For First Fit, the competitive ratio is 1.7 [Johnson 1973]

The number of bins opened by FF for any sequence is at most 1.7
times that of Opt, i.e., c.r . ≤ 1.7 (upper bound for FF)
There are sequences for which the number of bins opened by FF is
1.7 times that of Opt, i.e., c.r . ≥ 1.7 (lower bound for FF)

The best existing online algorithm has c.r. of 1.5783 [Balogh et al.
2017]

No algorithm can be better than 1.54037-competitive (best general
lower bound) [Balogh et al. 2015].

7 / 22
EECS 4101-5101 Advanced Data Structures

▲



Competitive Ratio of First Fit

For First Fit, the competitive ratio is 1.7 [Johnson 1973]

The number of bins opened by FF for any sequence is at most 1.7
times that of Opt, i.e., c.r . ≤ 1.7 (upper bound for FF)
There are sequences for which the number of bins opened by FF is
1.7 times that of Opt, i.e., c.r . ≥ 1.7 (lower bound for FF)

The best existing online algorithm has c.r. of 1.5783 [Balogh et al.
2017]

No algorithm can be better than 1.54037-competitive (best general
lower bound) [Balogh et al. 2015].

7 / 22
EECS 4101-5101 Advanced Data Structures

▲



Competitive Ratio of First Fit

For First Fit, the competitive ratio is 1.7 [Johnson 1973]

The number of bins opened by FF for any sequence is at most 1.7
times that of Opt, i.e., c.r . ≤ 1.7 (upper bound for FF)
There are sequences for which the number of bins opened by FF is
1.7 times that of Opt, i.e., c.r . ≥ 1.7 (lower bound for FF)

The best existing online algorithm has c.r. of 1.5783 [Balogh et al.
2017]

No algorithm can be better than 1.54037-competitive (best general
lower bound) [Balogh et al. 2015].

7 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem

Assume you want to go skiing for x number of days

In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

If we know x , what is the best solution?

Buy at the beginning if x ≥ b, otherwise, rent every day

What is the competitive ratio of an algorithm that buys at day 1?

In the worst case, you go skiing once; so b
1
= b (not good)

What is the competitive ratio of an algorithm that always rent?

In the worst-case, we go skiing n days for large n
The competitive ratio is n

b
, which can be arbitrary large (very bad).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem

Assume you want to go skiing for x number of days

In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

If we know x , what is the best solution?

Buy at the beginning if x ≥ b, otherwise, rent every day

What is the competitive ratio of an algorithm that buys at day 1?

In the worst case, you go skiing once; so b
1
= b (not good)

What is the competitive ratio of an algorithm that always rent?

In the worst-case, we go skiing n days for large n
The competitive ratio is n

b
, which can be arbitrary large (very bad).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem

Assume you want to go skiing for x number of days

In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

If we know x , what is the best solution?

Buy at the beginning if x ≥ b, otherwise, rent every day

What is the competitive ratio of an algorithm that buys at day 1?

In the worst case, you go skiing once; so b
1
= b (not good)

What is the competitive ratio of an algorithm that always rent?

In the worst-case, we go skiing n days for large n
The competitive ratio is n

b
, which can be arbitrary large (very bad).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem

Assume you want to go skiing for x number of days

In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

If we know x , what is the best solution?

Buy at the beginning if x ≥ b, otherwise, rent every day

What is the competitive ratio of an algorithm that buys at day 1?

In the worst case, you go skiing once; so b
1
= b (not good)

What is the competitive ratio of an algorithm that always rent?

In the worst-case, we go skiing n days for large n
The competitive ratio is n

b
, which can be arbitrary large (very bad).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem

Assume you want to go skiing for x number of days

In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

If we know x , what is the best solution?

Buy at the beginning if x ≥ b, otherwise, rent every day

What is the competitive ratio of an algorithm that buys at day 1?

In the worst case, you go skiing once; so b
1
= b (not good)

What is the competitive ratio of an algorithm that always rent?

In the worst-case, we go skiing n days for large n
The competitive ratio is n

b
, which can be arbitrary large (very bad).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem

Assume you want to go skiing for x number of days

In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

If we know x , what is the best solution?

Buy at the beginning if x ≥ b, otherwise, rent every day

What is the competitive ratio of an algorithm that buys at day 1?

In the worst case, you go skiing once; so b
1
= b (not good)

What is the competitive ratio of an algorithm that always rent?

In the worst-case, we go skiing n days for large n
The competitive ratio is n

b
, which can be arbitrary large (very bad).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem

Assume you want to go skiing for x number of days

In the online setting, the value of x is unknown!

You can buy the equipment for a one-time cost of b or rent each
day for a cost of 1 per day

If we know x , what is the best solution?

Buy at the beginning if x ≥ b, otherwise, rent every day

What is the competitive ratio of an algorithm that buys at day 1?

In the worst case, you go skiing once; so b
1
= b (not good)

What is the competitive ratio of an algorithm that always rent?

In the worst-case, we go skiing n days for large n
The competitive ratio is n

b
, which can be arbitrary large (very bad).

8 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem (cntd.)

Online strategy break-even: rent for the �rst b − 1 days and buy in
the next day.

What is the competitive ratio of Break-even algorithm?

It is (b−1)+b
b ≈ 2

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic

online algorithm.

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem (cntd.)

Online strategy break-even: rent for the �rst b − 1 days and buy in
the next day.

What is the competitive ratio of Break-even algorithm?

It is (b−1)+b
b ≈ 2

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic

online algorithm.

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Ski-Rental Problem

Ski-rental problem (cntd.)

Online strategy break-even: rent for the �rst b − 1 days and buy in
the next day.

What is the competitive ratio of Break-even algorithm?

It is (b−1)+b
b ≈ 2

Theorem

Competitive ratio is roughly 2, and it is the best for any deterministic

online algorithm.

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Cow-Path Problem

9 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Problem De�nition

A cow faces a fence, in�nite in both directions

She wants to �nd a hole in order to get to the green pasture on the
other side

The cow's online strategy speci�es the path traveled in search of
the hole.

The goal is to minimize the distance traveled.

10 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

O�ine Strategy

Let u an integer indicating the distance between the initial location
of the cow and the location of the hole.

u is unknown to the cow!

11 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

O�ine Strategy

Let u an integer indicating the distance between the initial location
of the cow and the location of the hole.

u is unknown to the cow!

An optimal o�ine algorithm Opt (i.e., a cow which knows the
location of the hole), incurs a cost of u

12 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Smart-Cow Algorithm (SCA)

Gradually extend the explored interval of the fence

Alternate between left and right!

Go right for distance d0
Go back to the origin, left for distance d1
Go back to the origin, right for distance d2
Continue accordingly for d3, . . . , dk until the hole is found.

13 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Competitive Ratio of SCA

Recall that the competitive ratio of an online algorithm is the
maximum ratio between the cost of that algorithm and an optimal
o�ine Opt algorithm Opt

The cost of Opt is u

The cost of SCA is 2d0 + 2d1 + . . .+ 2dk−2 + 2dk−1 + u

dk−2 < u ≤ dk

14 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Competitive Ratio of SCA (cntd.)

The competitive ratio would be

2d0 + 2d1 + . . .+ 2dk−2 + 2dk−1 + u

u
= 1+ 2

d0 + d1 + . . .+ dk−1

u

what is the value of u in the worst case?

If you are an adversary and want to fail the algorithm, where you
place the hole?

15 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Competitive Ratio of SCA (cntd.)

The competitive ratio would be

2d0 + 2d1 + . . .+ 2dk−2 + 2dk−1 + u

u
= 1+ 2

d0 + d1 + . . .+ dk−1

u

In the worst case, u = dk−2 + ϵ.

Just a bit more than the previous probe!

So, the competitive ratio of a Smart-Cow algorithm is

1+ 2
d0 + d1 + . . .+ dk−1

dk−2 + ϵ

16 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

The Doubling Technique

Assume di = 2i , i.e., �rst go one unit to the right, go back to the
origin, go two units to the left, back to origin, four units to the
right, etc.

We will have
d0 + d1 + . . .+ dk−1 = 1+ 2+ 4+ . . .+ 2k−1 = ·2k − 1 = 4 · 2k−2.
The competitive ratio would be

1+ 2
d0 + d1 + . . .+ dk−1

dk−2 + ϵ
= 1+ 2

4 · 2k−2

2k−2 + ϵ
≈ 9

17 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Overview

Theorem

The smart-cow algorithm with steps that double (i.e., di = 2
i )

has a competitive ratio of at most 9.

It turns out that no deterministic algorithm can achieve a ratio
better than 9.

The proof is a bit involved and we skip it here.

So, the doubling technique results an optimal algorithm in this case

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Overview

Theorem

The smart-cow algorithm with steps that double (i.e., di = 2
i )

has a competitive ratio of at most 9.

It turns out that no deterministic algorithm can achieve a ratio
better than 9.

The proof is a bit involved and we skip it here.

So, the doubling technique results an optimal algorithm in this case

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Overview

Theorem

The smart-cow algorithm with steps that double (i.e., di = 2
i )

has a competitive ratio of at most 9.

It turns out that no deterministic algorithm can achieve a ratio
better than 9.

The proof is a bit involved and we skip it here.

So, the doubling technique results an optimal algorithm in this case

18 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Semi-online Problem

We assumed the value of u is unknown to the algorithm.

Question: what competitive an �almost-online� algorithm can
achieve when the value of u is known?

The algorithm knows u but does not know the side (left or right)
where the target is located.

19 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Search Problems under Uncertainty

A cow can be a robot (or the other way around)!

In practice, robots often do not have full information about their
environment.

Cow-path problem and its variant are a way to model many types of
search problems.

20 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Variants of Search Problems

Path-cow problem is an online search
problem on a path.

Consider a star, where w paths have one
common endpoint.

Assume a robot is initially locate at the
common point, and needs to �nd a target

located in an unknown position.

What is a good algorithm?

21 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Variants of Search Problems

The best strategy is to have
di = (w/(w − 1))i .

For w = 2, it requires doubling.
For w = 3, we jump by a factor of 3/2,
and so on.

The competitive ratio will be at most
1+ 2 ww

(w−1)w−1 ≈ 1+ 2e(w − 1) (when w is

su�ciently large).

e ≈ 2.71 is the Euler's constant

Note that doubling is not optimal here.

But it is still competitive, i.e., it has a
constant competitive ratio.

22 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Variants of Search Problems

The best strategy is to have
di = (w/(w − 1))i .

For w = 2, it requires doubling.
For w = 3, we jump by a factor of 3/2,
and so on.

The competitive ratio will be at most
1+ 2 ww

(w−1)w−1 ≈ 1+ 2e(w − 1) (when w is

su�ciently large).

e ≈ 2.71 is the Euler's constant

Note that doubling is not optimal here.

But it is still competitive, i.e., it has a
constant competitive ratio.

22 / 22
EECS 4101-5101 Advanced Data Structures

▲



Cow Path Problem

Variants of Search Problems

The best strategy is to have
di = (w/(w − 1))i .

For w = 2, it requires doubling.
For w = 3, we jump by a factor of 3/2,
and so on.

The competitive ratio will be at most
1+ 2 ww

(w−1)w−1 ≈ 1+ 2e(w − 1) (when w is

su�ciently large).

e ≈ 2.71 is the Euler's constant

Note that doubling is not optimal here.

But it is still competitive, i.e., it has a
constant competitive ratio.

22 / 22
EECS 4101-5101 Advanced Data Structures

▲


	Ski-Rental Problem
	Cow-Path Problem

