EECS 4101-5101 Advanced Data Structures

Shahin Kamali

Topic 1b - Amortized Analysis CLRS 17-1, 17-2, 17-3, 17-4 York University

Picture is from the cover of the textbook CLRS.

• Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 km$).

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 km$).
- Solution 1: every day, choose a random number x uniformly from the range [100,500] and drive x kilometre that day.

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 km$).
- Solution 1: every day, choose a random number x uniformly from the range [100,500] and drive x kilometre that day.
 - You drive 300 kilometers per day on average

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 km$).
- Solution 1: every day, choose a random number x uniformly from the range [100,500] and drive x kilometre that day.
 - You drive 300 kilometers per day on average
- Solution 2: drive city by city:

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 km$).
- Solution 1: every day, choose a random number x uniformly from the range [100,500] and drive x kilometre that day.
 - You drive 300 kilometers per day on average
- Solution 2: drive city by city:
 - Day 1: Winnipeg to ThunderBay(700km) Day 2: Thunder Bay to Wawa (500km)
 - Day 3: Wawa to Toronto (900km)
- Day 4: Toronto to Montreal (500km)

- Assume you want to drive from Winnipeg to Montreal (distance is ≈ 2600 km).
- Solution 1: every day, choose a random number x uniformly from the range [100,500] and drive x kilometre that day.
 - You drive 300 kilometers per day on average
- Solution 2: drive city by city:
 - Day 1: Winnipeg to ThunderBay(700km) Day 2: Thunder Bay to Wawa (500km)
 - Day 3: Wawa to Toronto (900km) Day 4: Toronto to Montreal (500km)
- On average, you drive 2600/4 = 650km per day. We say **amortized** distance moved every day is 650km.

• Both are concerned with the cost averaged over a sequence of **operations**.

- Both are concerned with the cost averaged over a sequence of **operations**.
- Average case analysis relies on probabilistic assumptions about the input or the data structure
 - There is an underlying probability distribution.
 - The worst-case might be met with some small chance (you can be 'lucky' or not).

- Both are concerned with the cost averaged over a sequence of **operations**.
- Average case analysis relies on probabilistic assumptions about the input or the data structure
 - There is an underlying probability distribution.
 - The worst-case might be met with some small chance (you can be 'lucky' or not).
- Amortized analysis consider consider a **sequence** of consecutive operations.
 - Bound the **total cost** for *m* operations
 - This gives the amortized cost B(n) per operation
 - The amortized cost is only a function of *n*, the size of stored data
 - Unlike average case analysis, there is no probability distribution
 - Every sequence of m operations is guaranteed to have worst-case time at most mB(n), regardless of the input or the sequence of operations (regardless of how lucky you are).

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take Θ(n) time in the worst case and amortized Θ(log n).

	worst-case	average/amortized	worst-case time	average time
	time per operation	time per operation	for m operations	for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average		
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized		

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take Θ(n) time in the worst case and amortized Θ(log n).

	worst-case	average/amortized	worst-case time	average time
	time per operation	time per operation	for m operations	for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized		

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take Θ(n) time in the worst case and amortized Θ(log n).

	worst-case	average/amortized	worst-case time	average time
	time per operation	time per operation	for m operations	for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized	$\Theta(m \log n)$	

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take Θ(n) time in the worst case and amortized Θ(log n).

	worst-case	average/amortized	worst-case time	average time
	time per operation	time per operation	for m operations	for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	$\Theta(m \log n)$
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized	$\Theta(m \log n)$	

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take Θ(n) time in the worst case and amortized Θ(log n).

	worst-case	average/amortized	worst-case time	average time
	time per operation	time per operation	for m operations	for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	$\Theta(m \log n)$
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized	$\Theta(m \log n)$	$\Theta(m \log n)$

- Start from an initial configuration where all bits are '0'
- Each operation increments the encoded number
- We want to know how many bits are flipped per operation

- Start from an initial configuration where all bits are '0'
- Each operation increments the encoded number
- We want to know how many bits are flipped per operation
- The *i*'th bit from right is flipped iff all i-1 bits on its right are 1 before the increment $(i \ge 0)$
 - After the flip all bits on the right will be 0.
 - In the next 2ⁱ 1 operations after the flip the bit is not flipped.
 - The i'th bit is flipped once in 2ⁱ operations

		/log m1			2	1	0		
0	0	0	0	0	0	0	0	initial configuration	
0	0	0	0	0	0	0	1	after 1st increment	1 bit flipped
0	0	0	0	0	0	1	0	after 2nd increment	2 bits flipped
								:	
0	1	1	0	1	1	1	1	after 111th increment	1 bit flipped
0	1	1	1	0	0	0	0	after 112th increment	5 bits flipped

- For a sequence of *m* operations, the *i*'th bit is flipped $\frac{m}{2^i}$ times
- Total number of flips will be at most

		/log m∃			2	1	0		
0	0	0	0	0	0	0	0	initial configuration	
0	0	0	0	0	0	0	1	after 1st increment	1 bit flipped
0	0	0	0	0	0	1	0	after 2nd increment	2 bits flipped
				:				· ·	:
0	1	1	0	1	1	1	1	after 111th increment	1 bit flipped
0	1	1	1	0	0	0	0	after 112th increment	5 bits flipped

- For a sequence of *m* operations, the *i*'th bit is flipped $\frac{m}{2^i}$ times
- Total number of flips will be at most

• The amortized number of flips per operation is $2 = \Theta(1)$ flips.

		/log m i			2	1	0		
0	0	0	0	0	0	0	0	initial configuration	
0	0	0	0	0	0	0	1	after 1st increment	1 bit flipped
0	0	0	0	0	0	1	0	after 2nd increment	2 bits flipped
				:				:	:
				•				•	
0	1	1	0	1	1	1	1	after 111th increment	1 bit flipped
0	1	1	1	0	0	0	0	after 112th increment	5 bits flipped

- For a sequence of *m* operations, the *i*'th bit is flipped $\frac{m}{2^i}$ times
- Total number of flips will be at most

- The amortized number of flips per operation is $2 = \Theta(1)$ flips.
- The worst case number of flips is Θ(log m); but it never happens that a sequence of m operations have mΘ(log m) flips!

		/log m i			2	1	0		
0	0	0	0	0	0	0	0	initial configuration	
0	0	0	0	0	0	0	1	after 1st increment	1 bit flipped
0	0	0	0	0	0	1	0	after 2nd increment	2 bits flipped
				:				:	:
				•					
0	1	1	0	1	1	1	1	after 111th increment	1 bit flipped
0	1	1	1	0	0	0	0	after 112th increment	5 bits flipped

Amortized Analysis Review

- Considering a sequence of *m* operations for sufficiently large *m*:
 - Some operations are more 'expensive' and most are 'inexpensive'.
 - Amortized cost is the average cost over all operations
 - There is no probability distribution or randomness

Amortized Analysis Review

- Considering a sequence of *m* operations for sufficiently large *m*:
 - Some operations are more 'expensive' and most are 'inexpensive'.
 - Amortized cost is the average cost over all operations
 - There is no probability distribution or randomness
- We saw the amortized number of flips when incrementing a number m times is $\Theta(1)$
 - Some increment operation need $\Theta(\log m)$ flips while most operation take less flips.
 - On average, each operation needs $\Theta(1)$ flips.

- There are three frameworks for amortized analysis.
- Aggregate method:
 - Sum the total cost of *m* operations
 - Divide by m to get the amortized cost
 - This is what we did for bit flips

- There are three frameworks for amortized analysis.
- Aggregate method:
 - Sum the total cost of *m* operations
 - Divide by m to get the amortized cost
 - This is what we did for bit flips
- Accounting method
 - Analogy with a bank account, where there are fixed deposits and variable withdrawals

- There are three frameworks for amortized analysis.
- Aggregate method:
 - Sum the total cost of *m* operations
 - Divide by *m* to get the amortized cost
 - This is what we did for bit flips
- Accounting method
 - Analogy with a bank account, where there are fixed deposits and variable withdrawals
- Potential method
 - Define amortized cost through **potential function** which maps the sequence of operations to an integer

- There are three frameworks for amortized analysis.
- Aggregate method:
 - Sum the total cost of *m* operations
 - Divide by m to get the amortized cost
 - This is what we did for bit flips
- Accounting method
 - Analogy with a bank account, where there are fixed deposits and variable withdrawals
- Potential method
 - Define amortized cost through **potential function** which maps the sequence of operations to an integer
- Let's review these methods with an example!

- Problem: implement a stack stored in an array to support push (insert) operations.
- The problem is **online** in the sense that we do not know how many operations to expect

- Problem: implement a stack stored in an array to support push (insert) operations.
- The problem is **online** in the sense that we do not know how many operations to expect
- How large the array should be? there is a trade-off:
 - larger array: less likely to run out of space, more unused/wasted memory
 - smaller array: more likely to run out of space, less unused/wasted memory

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array
 - i operation

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array
 - *i* operation

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array
 - *i* operation
 - 1 insert(a)

а

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2*n*
 - copy all *n* items to the new array
- *i* operation
- 1 insert(a)
- 2 insert(b) no space: allocate array of size 2, copy 1 item

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2*n*
 - copy all *n* items to the new array
- i operation
- 1 insert(a)
- 2 insert(b) no space: allocate array of size 2, copy 1 item
- 3 insert(c) no space: allocate array of size 4, copy 2 item

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array

- insert(c) no space: allocate array of size 4, copy 2 item
- 4 insert (d)

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2*n*
 - copy all *n* items to the new array

- i operation
- 1 insert(a)
- 2 insert(b) no space: allocate array of size 2, copy 1 item
- 3 insert(c) no space: allocate array of size 4, copy 2 item
- 4 insert(d)
- 5 insert(e) no space: allocate array of size 8, copy 4 item

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array

operation Ĺ

insert(a)

```
2
     insert(b)
                  no space: allocate array of size 2, copy 1 item
3
```

```
insert(c)
             no space: allocate array of size 4, copy 2 item
```

```
4
      insert (d)
```

5

```
insert(e)
             no space: allocate array of size 8, copy 4 item
```

```
6
      insert(f)
```


- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2*n*
 - copy all *n* items to the new array


```
i operation
```

```
1 insert(a)
```

```
2 insert(b) no space: allocate array of size 2, copy 1 item
```

```
3 insert(c) no space: allocate array of size 4, copy 2 item
```

```
4 insert (d)
```

5

```
insert(e) no space: allocate array of size 8, copy 4 item
```

- 6 insert(f)
- 7 insert(g)

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array


```
operation
i
```

```
insert(a)
1
```

```
2
    insert(b)
                  no space: allocate array of size 2, copy 1 item
```

```
3
     insert(c)
                  no space: allocate array of size 4, copy 2 item
```

```
4
      insert (d)
5
```

```
insert(e)
             no space: allocate array of size 8, copy 4 item
```

- 6 insert(f) 7
- insert(g)
- 8 insert(h)

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array

- i operation
- insert(a)
- 2 insert(b) no space allocate array of size 2, copy 1 item 3
 - insert(c) no space: allocate array of size 4, copy 2 item
 - insert(e) no space: allocate array of size 8, copy 4 item
- insert(f) 6

4 5 insert (d)

- 7 insert(g)
- 8 insert(h) 9
 - insert(i) no space allocate array of size 16, copy 8 item

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2n
 - copy all *n* items to the new array


```
i
      operation
      insert(a)
 2
      insert(b)
                    no space: allocate array of size 2, copy 1 item
 3
      insert(c)
                    no space: allocate array of size 4, copy 2 item
4
      insert(d)
5
      insert(e)
                    no space: allocate array of size 8, copy 4 item
6
      insert(f)
7
      insert (g)
8
      insert(h)
9
      insert(i)
                   no space: allocate array of size 16, copy 8 item
10
      insert(j)
```


- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space (n > a):
 - allocate a new array of size a 2*n*
 - copy all *n* items to the new array


```
i
      operation
      insert(a)
 1
 2
      insert(b)
                    no space: allocate array of size 2, copy 1 item
 3
      insert(c)
                    no space: allocate array of size 4, copy 2 item
4
      insert(d)
5
      insert(e)
                    no space: allocate array of size 8, copy 4 item
6
      insert(f)
7
      insert (g)
8
      insert(h)
9
      insert(i)
                   no space: allocate array of size 16, copy 8 item
10
      insert(j)
11
      insert(k)
```


- The worst-case cost occurs when the whole array is copied to a new array:
 - $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.

b

b

С

d

- The worst-case cost occurs when the whole array is copied to a new array:
 - $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.
 - We can obtain a much better (smaller) bound.

- The worst-case cost occurs when the whole array is copied to a new array:
 - $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.
 - We can obtain a much better (smaller) bound.

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1

- The worst-case cost occurs when the whole array is copied to a new array:
 - $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.
 - We can obtain a much better (smaller) bound.
- Let c(i) denote the cost of the *i*th insertion (cost = number of insert/copies).

$$c(i) = \begin{cases} i & \text{if } i = 2^k + 1 \text{ for some integer } k \\ 1 & \text{if otherwise} \end{cases}$$

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1

• Aggregate method: find total cost of m operations and divide by m

$$c(i) = \begin{cases} i & \text{if } i = 2^k + 1 \text{ for some integer } k \\ 1 & \text{if otherwise} \end{cases}$$

.

.....

.

• Aggregate method: find total cost of m operations and divide by m

$$c(i) = \begin{cases} i & \text{if } i = 2^k + 1 \text{ for some integer } k \\ 1 & \text{if otherwise} \end{cases}$$

Cost of m insertions $= \sum_{i=1}^m c(i) \leq \underbrace{m}_{\text{insert new item}} + \underbrace{\sum_{j=0}^{\lfloor \log(m-1) \rfloor} 2^j}_{\text{copy old items to new array}}$
$$= m + 2^{\lfloor \log(m-1) \rfloor + 1} - 1$$
$$\leq m + 2^{\log m + 1} - 1$$
$$= m + 2m - 1$$
$$= 3m - 1$$
$$\in \Theta(m)$$

• Aggregate method: find total cost of m operations and divide by m

$$c(i) = \begin{cases} i & \text{if } i = 2^k + 1 \text{ for some integer } k \\ 1 & \text{if otherwise} \end{cases}$$

$$\text{Cost of } m \text{ insertions} = \sum_{i=1}^m c(i) \leq \underbrace{m}_{\text{insert new item}} + \underbrace{\sum_{j=0}^{\lfloor \log(m-1) \rfloor} 2^j}_{\text{copy old items to new array}} = m + 2^{\lfloor \log(m-1) \rfloor + 1} - 1$$

$$\leq m + 2^{\log m + 1} - 1$$

$$= m + 2m - 1$$

$$= 3m - 1$$

$$\in \Theta(m)$$

• The amortized cost is hence $\frac{\Theta(m)}{m} = \Theta(1)$

• Aggregate method: find total cost of m operations and divide by m

$$c(i) = \begin{cases} i & \text{if } i = 2^k + 1 \text{ for some integer } k \\ 1 & \text{if otherwise} \end{cases}$$

Cost of *m* insertions = $\sum_{i=1}^{m} c(i) \leq \underbrace{m}_{\text{insert new item}} + \underbrace{\sum_{j=0}^{\lfloor \log(m-1) \rfloor} 2^j}_{\text{copy old items to new array}}$
= $m + 2^{\lfloor \log(m-1) \rfloor + 1} - 1$
 $\leq m + 2^{\log m + 1} - 1$
= $m + 2m - 1$
= $3m - 1$
 $\in \Theta(m)$

- The amortized cost is hence $\frac{\Theta(m)}{m} = \Theta(1)$
- The aggregate is useful for simple amortized analysis.
- Sometimes require a different technique to obtain amortized cost.

• Assume you want to prove that your average (amortized) daily cost is no more than 100\$.

- Assume you want to prove that your average (amortized) daily cost is no more than 100**\$**.
 - Some days you might spend much more but on average it is at most 100\$

- Assume you want to prove that your average (amortized) daily cost is no more than 100\$.
 - Some days you might spend much more but on average it is at most 100\$
- One way to do that is to assume every day 100\$ is deposited into your account
- On days which you spend more than 100\$, you should use accumulated credit from previous days

- Assume you want to prove that your average (amortized) daily cost is no more than 100**\$**.
 - Some days you might spend much more but on average it is at most 100\$
- One way to do that is to assume every day 100\$ is deposited into your account
- On days which you spend more than 100\$, you should use accumulated credit from previous days
- If your balance remains non-negative at the end of each day, your amortized cost is at most 100\$
 - In m consecutive days your expenditure has been at most $100\,m \to$ amortized cost at most 100\$.

Accounting Method

- Accounting method overview:
 - Each operation deposits a fixed credit into an account (This amount is an upper bound on the amortized cost.)
 - Each operation uses 'credit' to pay its cost
 - Inexpensive operations save more than their cost
 - Expensive operations cost more more than they save
 - Account must remain non-negative

5 / 25

- We prove the amortized cost for insertion is 3
 - Each operation deposits \$3
 - Each write/move operation costs \$1

array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

5 6

2 - 3

- We prove the amortized cost for insertion is 3
 - Each operation deposits \$3
 - Each write/move operation costs \$1
 - Inexpensive insertion deposits \$3 and spends \$1 = \$2 saved

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

- We prove the amortized cost for insertion is 3
 - Each operation deposits \$3
 - Each write/move operation costs \$1
 - Inexpensive insertion deposits \$3 and spends \$1 = \$2 saved
 - Expensive insertion deposits \$3 and spends $m \to (m 3)$ spent

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

....

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
 - Each operation deposits \$3
 - Each write/move operation costs \$1
 - Inexpensive insertion deposits \$3 and spends \$1 = \$2 saved
 - Expensive insertion deposits \$3 and spends $m \to (m 3)$ spent
 - Number of consecutive inexpensive insertions before expensive insertion: (m-1)/2 1

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

b

e

g

i

k

b

b

С

.....

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
 - Each operation deposits \$3
 - Each write/move operation costs \$1
 - Inexpensive insertion deposits \$3 and spends \$1 = \$2 saved
 - Expensive insertion deposits \$3 and spends $m \to (m 3)$ spent
 - Number of consecutive inexpensive insertions before expensive insertion: (m-1)/2 1
 - \rightarrow \$2((m-1)/2-1) = \$(m-3) accumulated credit since last expensive insertion

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

b

е

g

k

b

b

- We prove the amortized cost for insertion is 3
 - Each operation deposits \$3
 - Each write/move operation costs \$1
 - Inexpensive insertion deposits \$3 and spends \$1 = \$2 saved
 - Expensive insertion deposits \$3 and spends $m \to (m 3)$ spent
 - Number of consecutive inexpensive insertions before expensive insertion: (m-1)/2 1
 - \rightarrow \$2((m-1)/2-1) = \$(m-3) accumulated credit since last expensive insertion
 - ullet ightarrow account remains non-negative

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
c(i)	1	2	3	1	5	1	1	1	9	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

- Define a potential function Φ that maps the state of the structure and the index of an operation to an integer
 - Potential is basically the available credit in accounting method

$$\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1)$$

- $\hat{c}(i) \rightarrow$ amortized cost of operation i
- c(i)
 ightarrow actual cost of operation i
- Total amortized cost will be total cost plus a constant independent of *m*.

- Define the potential to be $\Phi(i) = 2i a_i$
- *a_i* denotes the size of the array after operation *i*

- Define the potential to be $\Phi(i) = 2i a_i$
- *a_i* denotes the size of the array after operation *i*
- In case of an inexpensive operation, we have $c_i = 1$ and $a_i = a_{i-1}$; (the size of array does not change)
 - the amortized cost will be

$$\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1) = 1 + [2i - a_i] - [2(i-1) - a_{i-1}] = 3$$

- Define the potential to be $\Phi(i) = 2i a_i$
- *a_i* denotes the size of the array after operation *i*
- In case of an inexpensive operation, we have $c_i = 1$ and $a_i = a_{i-1}$; (the size of array does not change)
 - the amortized cost will be

$$\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1) = 1 + [2i - a_i] - [2(i-1) - a_{i-1}] = 3$$

- For expensive operation *i*, table size changes from $a_{i-1} = (i-1)$ to $a_i = 2(i-1)$ and we have $c_i = i$.
 - the amortized cost will be $\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1) = i + [2i - a_i] - [2(i-1) - a_{i-1}]$ = i + 2i - 2(i-1) - 2i + 2 + (i-1) = 3

- Define the potential to be $\Phi(i) = 2i a_i$
- *a_i* denotes the size of the array after operation *i*
- In case of an inexpensive operation, we have $c_i = 1$ and $a_i = a_{i-1}$; (the size of array does not change)
 - the amortized cost will be

$$\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1) = 1 + [2i - a_i] - [2(i-1) - a_{i-1}] = 3$$

- For expensive operation *i*, table size changes from $a_{i-1} = (i-1)$ to $a_i = 2(i-1)$ and we have $c_i = i$.
 - the amortized cost will be $\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1) = i + [2i - a_i] - [2(i-1) - a_{i-1}]$ = i + 2i - 2(i-1) - 2i + 2 + (i-1) = 3
- Potential method is often the strongest method for amortized analysis

Methods for Amortized Analysis

- There are three frameworks for amortized analysis.
- Aggregate method:
 - Sum the total cost of *m* operations
 - Divide by *m* to get the amortized cost
- Accounting method
 - Analogy with a bank account, where there are fixed deposits and variable withdrawals
- Potential method
 - Define amortized cost through **potential function** which maps the sequence of operations to an integer
- Let's review these methods with another example!

• Consider a stack with one operation Op(n, x), where $n \ge 0$.

Op(n, x): pop n items from the stack and push x to it.

• Consider a stack with one operation Op(n, x), where $n \ge 0$. Op(n, x): pop n items from the stack and push x to it.

Special Stacks

- Consider a stack with one operation Op(n, x), where $n \ge 0$. Op(n, x): pop n items from the stack and push x to it.
- What is the time complexity of each operation?
 - Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).

Special Stacks

- Consider a stack with one operation Op(n, x), where $n \ge 0$. Op(n, x): pop n items from the stack and push x to it.
- What is the time complexity of each operation?
 - Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).
- Assume m-1 operations pop nothing and the m'th operation pops everything
 - A single operation can have a cost of $\Theta(m)$ in the worst case.

Special Stacks

- Consider a stack with one operation Op(n, x), where $n \ge 0$. Op(n, x): pop n items from the stack and push x to it.
- What is the time complexity of each operation?
 - Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).
- Assume m-1 operations pop nothing and the m'th operation pops everything
 - A single operation can have a cost of $\Theta(m)$ in the worst case.
 - The amortized time is much better!

Aggregate Method for Special Stacks

- Review of aggregate method:
 - Sum the total cost of *m* consecutive operations
 - Divide by *m* to get the amortized cost

Aggregate Method for Special Stacks

- Review of aggregate method:
 - Sum the total cost of *m* consecutive operations
 - Divide by *m* to get the amortized cost
- Unlike bit flips and dynamic arrays, we cannot predict the cost of the *i*'th operation.
- The aggregate method is limited and cannot help for amortized analysis of special stacks!

- Review of accounting method:
 - Each operations comes with a **fixed deposit** that is added to the **account** (defines the amortized cost).
 - For each operation, we subtract the cost of the operation from the account
 - Inexpensive operations contribute to the account
 - Expensive operations take away from the account
 - Iff the account is non-negative after each operation, the amortized cost is at most the fixed deposit.

- Review of accounting method:
 - Each operations comes with a **fixed deposit** that is added to the **account** (defines the amortized cost).
 - For each operation, we subtract the cost of the operation from the account
 - Inexpensive operations contribute to the account
 - Expensive operations take away from the account
 - Iff the account is non-negative after each operation, the amortized cost is at most the fixed deposit.
- Often, the account can be imagined as sum of 'credits' assigned to different components of data structure

• We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.
- OP(n, x) where $n \ge 0$:

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.
- OP(n, x) where $n \ge 0$:
 - Pop n items: there is a credit of 1 for each item that is popped; so the cost that the algorithm pays for pops is the same as the consumed credit → account remains positive

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.
- OP(n, x) where $n \ge 0$:
 - Pop n items: there is a credit of 1 for each item that is popped; so the cost that the algorithm pays for pops is the same as the consumed credit → account remains positive
 - Push(x): there is a cost of 1 and fixed deposit of 2; the extra saving is stored as the credit for the item.

- With a fixed deposit of 2 per operation, we showed that the balance remains non-negative after each operation
- The balance was the accumulated credits stored in each item in the stack
- We conclude that the amortized cost of each operation is at most 2

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation *i* to a positive number.
 - Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

 $\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1)$

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation *i* to a positive number.
 - Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

 $\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1)$

• Define the potential to be the number of items in the stack

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation *i* to a positive number.
 - Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

 $\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1)$

- Define the potential to be the number of items in the stack
 - Assume operation *i* is OP(n, x). The actual cost is c(i) = n + 1.

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation *i* to a positive number.
 - Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

 $\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1)$

- Define the potential to be the number of items in the stack
 - Assume operation *i* is OP(n, x). The actual cost is c(i) = n + 1.
 - After the operation, the number of items is increased by 1 n, i.e., $\Phi(i) \Phi(i 1) = 1 n$.

24 / 25

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation *i* to a positive number.
 - Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

 $\hat{c}(i) = c(i) + \Phi(i) - \Phi(i-1)$

- Define the potential to be the number of items in the stack
 - Assume operation *i* is OP(n, x). The actual cost is c(i) = n + 1.
 - After the operation, the number of items is increased by 1 n, i.e., $\Phi(i) \Phi(i-1) = 1 n$.
 - The amortized cost is $\hat{c}(i) = (n+1) + (1-n) = 2$.

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
 - Most operations can be done in constant time; for some operations, the heap should be restructured.
 - The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is O(1) (champions for priority queues).

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
 - Most operations can be done in constant time; for some operations, the heap should be restructured.
 - The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is O(1) (champions for priority queues).
- Dynamic lists and arrays
 - Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
 - Most operations can be done in constant time; for some operations, the heap should be restructured.
 - The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is O(1) (champions for priority queues).
- Dynamic lists and arrays
 - Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression
 - Splay trees: dynamic binary trees which move an accessed item closer to the root.
 - Ideal for real-world scenarios where there is locality in accesses
 - Dynamic optimality conjecture: the amortized cost of accessing an item in a splay tree is within a constant ratio of any other tree (a challenging open question).

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
 - Most operations can be done in constant time; for some operations, the heap should be restructured.
 - The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is O(1) (champions for priority queues).
- Dynamic lists and arrays
 - Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression
 - Splay trees: dynamic binary trees which move an accessed item closer to the root.
 - Ideal for real-world scenarios where there is locality in accesses
 - Dynamic optimality conjecture: the amortized cost of accessing an item in a splay tree is within a constant ratio of any other tree (a challenging open question).
- The whole field of online algorithms!