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WY Amortized vs Average Analysis

o Assume you want to drive from Winnipeg to Montreal (distance is ~ 2600km).
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o Assume you want to drive from Winnipeg to Montreal (distance is ~ 2600km).

o Solution 1: every day, choose a random number x uniformly from the range
[100,500] and drive x kilometre that day.
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o Solution 1: every day, choose a random number x uniformly from the range
[100,500] and drive x kilometre that day.

o You drive 300 kilometers per day on average
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WY Amortized vs Average Analysis

o Assume you want to drive from Winnipeg to Montreal (distance is ~ 2600km).

o Solution 1: every day, choose a random number x uniformly from the range
[100,500] and drive x kilometre that day.

o You drive 300 kilometers per day on average

o Solution 2: drive city by city:
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‘WY  Amortized vs Average Analysis

o Assume you want to drive from Winnipeg to Montreal (distance is ~ 2600km).

o Solution 1: every day, choose a random number x uniformly from the range
[100,500] and drive x kilometre that day.

o You drive 300 kilometers per day on average
o Solution 2: drive city by city:

o Day 1: Winnipeg to ThunderBay(700km) Day 2: Thunder Bay to Wawa (500km)
o Day 3: Wawa to Toronto (900km) Day 4: Toronto to Montreal (500km)
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Assume you want to drive from Winnipeg to Montreal (distance is ~ 2600km).

Solution 1: every day, choose a random number x uniformly from the range
[100,500] and drive x kilometre that day.

o You drive 300 kilometers per day on average
o Solution 2: drive city by city:

o Day 1: Winnipeg to ThunderBay(700km) Day 2: Thunder Bay to Wawa (500km)
o Day 3: Wawa to Toronto (900km) Day 4: Toronto to Montreal (500km)

o On average, you drive 2600/4 = 650km per day. We say amortized distance
moved every day is 650km.
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o Both are concerned with the cost averaged over a sequence of
operations.
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W
o Both are concerned with the cost averaged over a sequence of
operations.
o Average case analysis relies on probabilistic assumptions about the
input or the data structure

o There is an underlying probability distribution.
o The worst-case might be met with some small chance (you can be

‘lucky’ or not).
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‘™Y  Amortized vs Average Analysis

o Both are concerned with the cost averaged over a sequence of
operations.

o Average case analysis relies on probabilistic assumptions about the
input or the data structure
o There is an underlying probability distribution.
o The worst-case might be met with some small chance (you can be
‘lucky’ or not).

o Amortized analysis consider consider a sequence of consecutive
operations.

o Bound the total cost for m operations

o This gives the amortized cost B(n) per operation

o The amortized cost is only a function of n, the size of stored data

o Unlike average case analysis, there is no probability distribution

o Every sequence of m operations is guaranteed to have worst-case
time at most mB(n), regardless of the input or the sequence of
operations (regardless of how lucky you are).
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o Let's compare two algorithms A and B

L} . :
W™  Amortized vs Average Analysis

o A performs operations which take ©(n) time in the worst case and
O(log n) on average.

o B performs operations which take ©(n) time in the worst case and
amortized O(log n).

worst-case average /amortized | worst-case time average time
time per operation | time per operation | for m operations | for m operations
Algorithm A | ©(n) O(logn) average
Algorithm B | ©(n) ©(log n) amortized
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o Let's compare two algorithms A and B

A . .
‘™Y  Amortized vs Average Analysis

o A performs operations which take ©(n) time in the worst case and
O(log n) on average.

o B performs operations which take ©(n) time in the worst case and
amortized O(log n).

worst-case average /amortized | worst-case time average time
time per operation | time per operation | for m operations | for m operations
Algorithm A | ©(n) O(logn) average O(m-n)

Algorithm B

O(n)

©(log n) amortized
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o Let's compare two algorithms A and B

A . .
‘™Y  Amortized vs Average Analysis

o A performs operations which take ©(n) time in the worst case and
O(log n) on average.

o B performs operations which take ©(n) time in the worst case and
amortized O(log n).

worst-case average /amortized | worst-case time average time
time per operation | time per operation | for m operations | for m operations
Algorithm A | ©(n) O(logn) average O(m-n)
Algorithm B | ©(n) ©(logn) amortized | ©(mlogn)
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o Let's compare two algorithms A and B

A . .
‘™Y  Amortized vs Average Analysis

o A performs operations which take ©(n) time in the worst case and
O(log n) on average.

o B performs operations which take ©(n) time in the worst case and
amortized O(log n).

worst-case average /amortized | worst-case time average time

time per operation | time per operation | for m operations | for m operations
Algorithm A | ©(n) O(logn) average O(m-n) O(mlogn)
Algorithm B | ©(n) ©(logn) amortized | ©(mlogn)
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o Let's compare two algorithms A and B

A . .
‘™Y  Amortized vs Average Analysis

o A performs operations which take ©(n) time in the worst case and
O(log n) on average.

o B performs operations which take ©(n) time in the worst case and
amortized O(log n).

worst-case average /amortized | worst-case time average time

time per operation | time per operation | for m operations | for m operations
Algorithm A | ©(n) O(logn) average O(m-n) O(mlogn)
Algorithm B | ©(n) ©(logn) amortized | ©(mlogn) O(mlogn)
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o Start from an initial configuration where all bits are ‘0’
o Each operation increments the encoded number

o We want to know how many bits are flipped per operation

EECS 4101-5101 lvanced Data Structures



v

PN
~

\

‘ L]
N  Bit Counter
o Start from an initial configuration where all bits are ‘0’
o Each operation increments the encoded number

o We want to know how many bits are flipped per operation

o The i'th bit from right is flipped iff all / — 1 bits on its right are 1
before the increment (i > 0)

o After the flip all bits on the right will be 0.
o In the next 2' — 1 operations after the flip the bit is not flipped.
o The i'th bit is flipped once in 2' operations

Tlog m7 . 2 1 0
0{0[0]0]0]0[O0]O0 ]| initial configuration
0{0[0]0[0]0[O0]T1] after Ist increment 1 bit flipped
0Ofofojofojo]1

0 | after 2nd increment 2 bits flipped

O{1[1]0]1T]1[1]1] after 111th increment 1 bit flipped
O{1[1]1T][0]0]0]O0] after 112th increment 5 bits flipped
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o For a sequence of m operations, the i’th bit is flipped 5 times

o Total number of flips will be at most

00
+ I 44 o <my’ L >
~— 2 2[log m] L i
flips of index 0 ~~ N—— i=0
flips of index 1 flips of index [log m]
logm7 2 1 0
0101010]0]0]0]O0 /| initial configuration
0{0[0]0[0]0[0]T1] after Ist increment 1 bit flipped
0(fofofjofojo]1l

0 | after 2nd increment 2 bits flipped

Of1[1]O0}1[1]1]1]after111th increment 1 bit flipped
01 [1]1T][0[0]0]0] after 112th increment 5 bits flipped
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o For a sequence of m operations, the i’th bit is flipped 5 times

o Total number of flips will be at most

00
+ I 44 o <md L >
~—~ 2 2[log m] L i
flips of index 0 ~~ N—— i=0
flips of index 1 flips of index [log m]

o The amortized number of flips per operation is 2 = ©(1) flips.

logm7 2 1 0
0101010]0]0]0]O0 /| initial configuration
0{0[0]0[0]0[0]T1] after Ist increment 1 bit flipped
0(fofofjofojo]1l

0 | after 2nd increment 2 bits flipped

Of1[1]O0}1[1]1]1]after111th increment 1 bit flipped
01 [1]1T][0[0]0]0] after 112th increment 5 bits flipped
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o For a sequence of m operations, the i’th bit is flipped 5 times

o Total number of flips will be at most

00
+ I 44 o <md L >
~—~ 2 2[log m] L i
flips of index 0 ~~ N—— i=0
flips of index 1 flips of index [log m]

o The amortized number of flips per operation is 2 = ©(1) flips.

o The worst case number of flips is ©(log m); but it never happens
that a sequence of m operations have mO(log m) flips!

Ilogm7 - 2 1 0
0101010]0]0]0]O0 /| initial configuration
0{0[0]0[0]0[0]T1] after Ist increment 1 bit flipped
0(fofofjofojo]1l

0 | after 2nd increment 2 bits flipped

O(1(1]0]1]1|1]1]after 111th increment 1 bit flipped
01 [1]1T][0[0]0]0] after 112th increment 5 bits flipped
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o Considering a sequence of m operations for sufficiently large m:

o Some operations are more ‘expensive’ and most are ‘inexpensive’.
o Amortized cost is the average cost over all operations
o There is no probability distribution or randomness
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WY Amortized Analysis Review

o Considering a sequence of m operations for sufficiently large m:

o Some operations are more ‘expensive’ and most are ‘inexpensive’.
o Amortized cost is the average cost over all operations
o There is no probability distribution or randomness

o We saw the amortized number of flips when incrementing a number
m times is ©(1)

o Some increment operation need ©(log m) flips while most operation
take less flips.
o On average, each operation needs ©(1) flips.
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o There are three frameworks for amortized analysis.
o Aggregate method:

o Sum the total cost of m operations
o Divide by m to get the amortized cost
o This is what we did for bit flips
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o There are three frameworks for amortized analysis.
o Aggregate method:

o Sum the total cost of m operations
o Divide by m to get the amortized cost
o This is what we did for bit flips

o Accounting method

o Analogy with a bank account, where there are fixed depaosits and
variable withdrawals
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o There are three frameworks for amortized analysis.

Aggregate method:

o Sum the total cost of m operations
o Divide by m to get the amortized cost
o This is what we did for bit flips

o Accounting method

o Analogy with a bank account, where there are fixed depaosits and
variable withdrawals

o Potential method

o Define amortized cost through potential function which maps the
sequence of operations to an integer
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o There are three frameworks for amortized analysis.

Aggregate method:

o Sum the total cost of m operations
o Divide by m to get the amortized cost
o This is what we did for bit flips

o Accounting method

o Analogy with a bank account, where there are fixed depaosits and
variable withdrawals

o Potential method

o Define amortized cost through potential function which maps the
sequence of operations to an integer

o Let's review these methods with an example!
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o Problem: implement a stack stored in an array to support push
(insert) operations.

o The problem is online in the sense that we do not know how many
operations to expect
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WY Dynamic Arrays

o Problem: implement a stack stored in an array to support push
(insert) operations.

o The problem is online in the sense that we do not know how many
operations to expect

o How large the array should be? there is a trade-off:

o larger array: less likely to run out of space, more unused/wasted

memory
o smaller array: more likely to run out of space, less unused/wasted

memory
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WY Dynamic Arrays

o Possible solution: maintain arrays with
sizes that are powers of 2.

o If the array runs out of space (n > a):

o allocate a new array of size a 2n
o copy all nitems to the new array

i operation

EECS 4101-510 lvanced Data Structures
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WY Dynamic Arrays

o Possible solution: maintain arrays with
sizes that are powers of 2.

o If the array runs out of space (n > a):

o allocate a new array of size a 2n
o copy all nitems to the new array

i operation
1  insert(a)
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[a] -
o Possible solution: maintain arrays with
sizes that are powers of 2.

o If the array runs out of space (n > a):

o allocate a new array of size a 2n
o copy all nitems to the new array

i operation
1 insert(a)
2 insert(b)  no space: allocate array of size 2, copy 1 item
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[a] = [a] = [a]
o Possible solution: maintain arrays with b b

sizes that are powers of 2.

[ I°]

o If the array runs out of space (n > a):

o allocate a new array of size a 2n
o copy all nitems to the new array

i operation
1 insert(a)
2 insert(b)  no space: allocate array of size 2, copy 1 item
3 insert(c)  no space: allocate array of size 4, copy 2 item
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o Possible solution: maintain arrays with 2] E

sizes that are powers of 2.
o If the array runs out of space (n > a): ]

o allocate a new array of size a 2n
o copy all nitems to the new array

operation
insert(a)
insert(b)  no space: allocate array of size 2, copy 1 item
insert(c)  no space: allocate array of size 4, copy 2 item
insert(d)

PN =
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o Possible solution: maintain arrays with la] - —- [a] -~
sizes that are powers of 2. 6]
d]

o If the array runs out of space (n > a):

[ [o]alololo]

o allocate a new array of size a 2n
o copy all nitems to the new array

operation
insert(a)
insert(b)  no space: allocate array of size 2, copy 1 item
insert(c)  no space: allocate array of size 4, copy 2 item
insert(d)
insert(e)  no space: allocate array of size 8, copy 4 item

G wNn =



v

PN
~

L} :
WY Dynamic Arrays

o Possible solution: maintain arrays with B — [a] -
(6] [B]

sizes that are powers of 2.
o If the array runs out of space (n > a): d|

o allocate a new array of size a 2n
o copy all nitems to the new array

[~[e]afo oo ]

operation
insert(a)
insert(b)  no space: allocate array of size 2, copy 1 item
insert(c)  no space: allocate array of size 4, copy 2 item
insert(d)
insert(e)  no space: allocate array of size 8, copy 4 item
insert(f)

NDOR o



v

PN
~

L} :
WY Dynamic Arrays

o Possible solution: maintain arrays with

sizes that are powers of 2. [a] —~ e E e %
o If the array runs out of space (n > a): %
o allocate a new array of size a 2n e
o copy all nitems to the new array |
9]
i operation T
1 insert(a)
2 insert(b)  no space: allocate array of size 2, copy 1 item
3 insert(c) no space: allocate array of size 4, copy 2 item
4 insert(d)
5  insert(e)  no space: allocate array of size 8, copy 4 item
6 insert(f)
7

insert(g)
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o Possible solution: maintain arrays with

sizes that are powers of 2. [a] - [a] —= [a] = [4&]
b] [b] |b
o If the array runs out of space (n > a): ol
o allocate a new array of size a 2n 9] d|
o copy all nitems to the new array %
19|
i operation Lh]
1 insert(a)
2 insert(b)  no space: allocate array of size 2, copy 1 item
3 insert(c)  no space: allocate array of size 4, copy 2 item
4  insert(d)
5 insert(e)  no space: allocate array of size 8, copy 4 item
6 insert(f)
7 insert(g)
8

insert(h)
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o Possible solution: maintain arrays with

sizes that are powers of 2. @ - @] - [a] — [q]
o If the array runs out of space (n > a): b] b %
c
o allocate a new array of size a 2n ' d]| Kl
o copy all nitems to the new array = %
f
. 19 19
i operation h h
1 insert(a) * 7
2 insert(b) no space: allocate array of size 2, copy 1 item ]
3 insert(c) no space: allocate array of size 4, copy 2 item 1
4  insert(d) ™
5 insert(e) no space: allocate array of size 8, copy 4 item ™
6 insert(f) ™
7 insert(g) ]
8  insert(h) ]
9 insert(i) no space: allocate array of size 16, copy 8 item —
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o Possible solution: maintain arrays with
sizes that are powers of 2.

o If the array runs out of space (n > a): b B [ [
o allocate a new array of size a 2n % %

o copy all nitems to the new array ol el

| 'f]

i operation 19| 19 |
1 insert(a) Lh] i
2 insert(b) no space: allocate array of size 2, copy 1 item |
3 insert(c) no space: allocate array of size 4, copy 2 item |
4 insert(d) L
5 insert(e) no space: allocate array of size 8, copy 4 item L
6 insert(f) L
7 insert(g) ||
8 insert(h) ||
9 insert(i) no space: allocate array of size 16, copy 8 item L

10 insert(j)



v

PN
~

L} :
WY Dynamic Arrays

o Possible solution: maintain arrays with
sizes that are powers of 2.

o If the array runs out of space (n > a): b B [ [
o allocate a new array of size a 2n % %
o copy all nitems to the new array ol el
| 'f]
i operation 19| 19 |
1 insert(a) Lh] i
2 insert(b) no space: allocate array of size 2, copy 1 item |
3 insert(c) no space: allocate array of size 4, copy 2 item |
4 insert(d) Ls
5 insert(e) no space: allocate array of size 8, copy 4 item L
6 insert(f) L
7 insert(g) ||
8 insert(h) ||
9 insert(i) no space: allocate array of size 16, copy 8 item L
10 insert(j)
11 insert(k)
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o The worst-case cost occurs when the whole array is
copied to a new array:

[ofo]5]

o ©(n) worst-case time per insert.

o Rough estimate: a sequence of m insert operations
takes O(m - n) time.

Zlef[+[o]alo \v\m |

[ [ [x=[=[=fe][~]o[a]o[o]o]
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o The worst-case cost occurs when the whole array is
copied to a new array:

[ofo]5]

o ©(n) worst-case time per insert.

o Rough estimate: a sequence of m insert operations
takes O(m - n) time.

Zlef[+[o]alo \v\m |

o We can obtain a much better (smaller) bound.

[ [ [x=[=[=fe][~]o[a]o[o]o]
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o The worst-case cost occurs when the whole array is

copied to a new array:

o ©(n) worst-case time per insert.

@**

o Rough estimate: a sequence of m insert operations

takes O(m - n) time.

o We can obtain a much better (smaller) bound.

i 1 2 3 4 5 6 7
array size (a) 1 2 4 4 8 8 8
(i) 12 31 5 1 1

10
16
1

a] —

[a[o]

[=lel>[olalo oo

[ [ [ [ [==[~[=fe[~[e[a[o[o]a]
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o The worst-case cost occurs when the whole array is

copied to a new array:

o ©(n) worst-case time per insert.

@**

o Rough estimate: a sequence of m insert operations

takes O(m - n) time.

o We can obtain a much better (smaller) bound.

o Let c(i) denote the cost of the ith insertion (cost =

number of insert/copies).

c(i):{ i

if otherwise

if i = 2K 4+ 1 for some integer k

i 1 2 3 4 5 6 7
array size (a) 1 2 4 4 8 8 8
(i) 1231 5 1 1

9
16
9

10
16
1

a] —

[a[o]

[=lel>[olalo oo

[ [ [ [ [==[~[=fe[~[e[a[o[o]a]
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o Aggregate method: find total cost of m operations and divide by m

)= i if i =2k +1 for some integer k
| 1 if otherwise

EECS 4101-5101 Advanced Data Structures _
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WY Aggregation for Dynamic Arrays
o Aggregate method: find total cost of m operations and divide by m

c(i) =

i if i =254 1 for some integer k
1 if otherwise

m [log(m—1)]
& of 1 insertions — (7 j
Cost of m insertions = Z e(i) < m + Z 2
i=1 insert new item Jj=0
e ——

copy old items to new array
— o glles(m—D)1+1 _ ¢
< m 4 2lesmtl_q
=m+2m-—1
=3m—1
€ 6(m)
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WY Aggregation for Dynamic Arrays
o Aggregate method: find total cost of m operations and divide by m

. . COR k .
(i) = { i if i =2K41 for some integer k

1 if otherwise

m [log(m—1)]
e . J
Cost of m insertions = Z e(i) < m + Z 2
i=1 insert new item Jj=0
e ——

copy old items to new array
— o glles(m—D)1+1 _ ¢

< m 4 2lesmtl_q

=m+2m-—1

=3m—1

€ 6(m)

o The amortized cost is hence % =0(1)
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o Aggregate method: find total cost of m operations and divide by m

c(i) =

i if i =254 1 for some integer k
1 if otherwise

m |log(m—1)]
4 of m insertions — (7 j
Cost of m insertions = g e(i)y < m + E 2
i=1 insert new item Jj=0
————

copy old items to new array

—m4+ 2Llog(mfl)J+1 -1

<m+ 210gm+1 1

=m+2m-1
=3m-1
€ 6(m)

@ The amortized cost is hence e('") O(1)

o The aggregate is useful for snmple amortized analysis.

o Sometimes require a different technique to obtain amortized cost.
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o Assume you want to prove that your average (amortized) daily cost
is no more than 1009.

EECS 4101-5101 Advanced Data Structures 13/ 25
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o Assume you want to prove that your average (amortized) daily cost
is no more than 1009.

o Some days you might spend much more but on average it is at most
100$

EECS 4101-510 lvanced Data Structures
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W

o Assume you want to prove that your average (amortized) daily cost
is no more than 1009.

o Some days you might spend much more but on average it is at most
100$

o One way to do that is to assume every day 1003 is deposited into
your account

o On days which you spend more than 100%, you should use
accumulated credit from previous days
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W

Assume you want to prove that your average (amortized) daily cost
is no more than 1009.

o Some days you might spend much more but on average it is at most
100$

o One way to do that is to assume every day 1003 is deposited into
your account

o On days which you spend more than 100%, you should use
accumulated credit from previous days

o If your balance remains non-negative at the end of each day, your
amortized cost is at most 100$

o In m consecutive days your expenditure has been at most 100m —
amortized cost at most 100$.
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o Accounting method overview:

o Each operation deposits a fixed credit into an account (This
amount is an upper bound on the amortized cost.)

o Each operation uses ‘credit’ to pay its cost

o Inexpensive operations save more than their cost

o Expensive operations cost more more than they save

o Account must remain non-negative
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o We prove the amortized cost for insertion is 3

@»»»Z»?

6] k| [b] [P

c c

dl d |d

el e

2 If

9] 9]

Lhl  |h]

[

|

Le

i 1 2 3 4 5 6 7 8 9 10 L

array size (a) 1 2 4 4 8 8 8 8 16 16 L

(i) 1231 5 1 1 1 9 1 ]
total deposited |3 6 9 12 15 18 21 24 27 30
total spent 1 3 6 7 12 13 14 15 26 27
available credit | 2 3 3 5 3 5 7 9 1 3
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o We prove the amortized cost for insertion is 3

o Each operation deposits $3 1b] b b 'b]

o Each write/move operation costs $1 c| C]

4] d 9

€] A

1

19 9]

Lh]  |h]

]

n

LS

i 1 2 3 4 5 6 7 8 9 10 L

array size (a) 1 2 4 4 8 8 8 8 16 16 L

0 1231 5 1 1 1 9 1 ]
total deposited |3 6 9 12 15 18 21 24 27 30
total spent 1 3 6 7 12 13 14 15 26 27
available credit | 2 3 3 5 3 5 7 9 1 3
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DN Accounting Method - Dynamic Arrays

o We prove the amortized cost for insertion is 3

o Each operation deposits $3 1b] b b 'b]
o Each write/move operation costs $1 c| C]
o Inexpensive insertion deposits $3 and spends $1 = d] 1 d| 1d]
$2 saved € A
Fl|f]
9] 9]
Lhl  |h]
[
n
LS
i 1 2 3 4 5 6 7 8 9 10 L
array size (a) 1 2 4 4 8 8 8 8 16 16 L
20 1231 5 1 1 1 9 1 |
total deposited |3 6 9 12 15 18 21 24 27 30
total spent 1 3 6 7 12 13 14 15 26 27
available credit | 2 3 3 5 3 5 7 9 1 3
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DN Accounting Method - Dynamic Arrays

o We prove the amortized cost for insertion is 3

o Each operation deposits $3 1b] b b 'b]
o Each write/move operation costs $1 c| C]
o Inexpensive insertion deposits $3 and spends $1 = d] 1 d| 1d]
$2 saved el %
o Expensive insertion deposits $3 and spends $m — é q
$(m - 3) spent h h
[
n
LS
i 1 2 3 4 5 6 7 8 9 10 L
array size (a) 1 2 4 4 8 8 8 8 16 16 L
20 1231 5 1 1 1 9 1 ]
total deposited |3 6 9 12 15 18 21 24 27 30
total spent 1 3 6 7 12 13 14 15 26 27
available credit | 2 3 3 5 3 5 7 9 1 3
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DN Accounting Method - Dynamic Arrays

o We prove the amortized cost for insertion is 3

o Each operation deposits $3 6] b b
o Each write/move operation costs $1 c| C]
o Inexpensive insertion deposits $3 and spends $1 = d] 1 d| 1d]
$2 saved € A
o Expensive insertion deposits $3 and spends $m — il s
$(m - 3) spent % %
o Number of consecutive inexpensive insertions before — 7
expensive insertion: (m—1)/2 —1 7
[3
i 1 2 3 4 5 6 7 8 9 10 L
array size (a) 1 2 4 4 8 8 8 8 16 16 L
(1) 1 2 3 1 5 1 1 1 9 1 L
total deposited |3 6 9 12 15 18 21 24 27 30
total spent 1 3 6 7 12 13 14 15 26 27
available credit |2 3 3 5 3 5 7 0 1 3
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=S Accounting Method - Dynamic Arrays

o We prove the amortized cost for insertion is 3

o Each operation deposits $3 6] b b
o Each write/move operation costs $1 c| C]
o Inexpensive insertion deposits $3 and spends $1 = d] 1 d| 1d]
$2 saved € A
o Expensive insertion deposits $3 and spends $m — il s
$(m - 3) spent % %
o Number of consecutive inexpensive insertions before — 7
expensive insertion: (m—1)/2 —1 7
o = $2((m—1)/2 —1) = $(m — 3) accumulated K]
credit since last expensive insertion ]
i 1 2 3 4 5 6 7 8 9 10 L
array size (a) 1 2 4 4 8 8 8 8 16 16 L
(1) 1 2 3 1 5 1 1 1 9 1 L
total deposited |3 6 9 12 15 18 21 24 27 30
total spent 1 3 6 7 12 13 14 15 26 27
available credit |2 3 3 5 3 5 7 0 1 3
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=S Accounting Method - Dynamic Arrays

o We prove the amortized cost for insertion is 3

o Each operation deposits $3 6] b b
o Each write/move operation costs $1 c| C]
o Inexpensive insertion deposits $3 and spends $1 = d] 1 d| 1d]
$2 saved € A
o Expensive insertion deposits $3 and spends $m — il s
$(m - 3) spent % %
o Number of consecutive inexpensive insertions before — 7
expensive insertion: (m—1)/2 —1 7
o = $2((m—1)/2 —1) = $(m — 3) accumulated K]
credit since last expensive insertion ]
o — account remains non-negative L
i 1 2 3 4 5 6 7 8 9 10 L
array size (a) 1 2 4 4 8 8 8 8 16 16 L
(1) 1 2 3 1 5 1 1 1 9 1 L
total deposited |3 6 9 12 15 18 21 24 27 30
total spent 1 3 6 7 12 13 14 15 26 27
available credit |2 3 3 5 3 5 7 0 1 3
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‘™Y  Potential method

o Define a potential function ® that maps the state of the structure
and the index of an operation to an integer

o Potential is basically the available credit in accounting method

&(i) = c(i) + ®(i) — d(i — 1)

o ¢&(i) — amortized cost of operation i
o c(i) — actual cost of operation i

o Total amortized cost will be total cost plus a constant independent
of m.
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o Define the potential to be ®(i) = 2i — a;

o a; denotes the size of the array after operation /

EECS 4101-5101 Advanced Data Structures
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WY  Potential Method for Dynamic Arrays

o Define the potential to be ®(i) = 2i — a;
o a; denotes the size of the array after operation /

o In case of an inexpensive operation, we have ¢; =1 and a; = a;_q;
(the size of array does not change)

o the amortized cost will be

&)= c(i)+0(i)—d(i—1) =1+[2i —a] —[2(i—1) —a1] =3
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™Y Potential Method for Dynamic Arrays

Define the potential to be ®(i/) = 2i — a;

o a; denotes the size of the array after operation /

o In case of an inexpensive operation, we have ¢; =1 and a; = a;_q;
(the size of array does not change)

o the amortized cost will be
e(i)=c(i)+0()—d(i—1)=1+[2i—a]—[2(i—1) —ar1] =3
o For expensive operation i, table size changes from a;_; = (i — 1) to
a; =2(i — 1) and we have ¢; = i.

o the amortized cost will be
) =c(N+o()—d(i—-1)=i+[2i—a]—[2(/ —1) — ai-1]
=i+2i-2(i—-1)=-2i+24+(i—1)=3
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™Y Potential Method for Dynamic Arrays

o Define the potential to be ®(i) = 2i — a;
o a; denotes the size of the array after operation /

o In case of an inexpensive operation, we have ¢; =1 and a; = a;_q;
(the size of array does not change)

o the amortized cost will be
e(i)=c(i)+0()—d(i—1)=1+[2i—a]—[2(i—1) —ar1] =3
o For expensive operation i, table size changes from a;_; = (i — 1) to
a; =2(i — 1) and we have ¢; = i.

o the amortized cost will be
) =c(N+o()—d(i—-1)=i+[2i—a]—[2(/ —1) — ai-1]
=i+2i-2(i—-1)=-2i+24+(i—1)=3

o Potential method is often the strongest method for amortized
analysis
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»““;\“ Methods for Amortized Analysis

o There are three frameworks for amortized analysis.

Aggregate method:

o Sum the total cost of m operations
o Divide by m to get the amortized cost

Accounting method

o Analogy with a bank account, where there are fixed deposits and
variable withdrawals

Potential method

o Define amortized cost through potential function which maps the
sequence of operations to an integer

o Let's review these methods with another example!
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o Consider a stack with one operation Op(n, x), where n > 0.

Op(n, x): pop n items from the stack and push x to it.

EECS 4101-5101 Advanced Data Structures 10 / 25
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o Consider a stack with one operation Op(n, x), where n > 0.
Op(n, x): pop n items from the stack and push x to it.

g
c d f f
b b b e e e
a a a a a a a h

op(0,a) op(Ob) op(0c) op(ld) op(e) op@Of) ©op@0g) op4h)
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o Consider a stack with one operation Op(n, x), where n > 0.
Op(n, x): pop n items from the stack and push x to it.
o What is the time complexity of each operation?

o Assume each single push and pop has cost 1 (e.g., stack is
implemented using a linked list).

g
c d f f
b b b e e e
a a a a a a a h

op(0,a) op(Ob) op(0c) op(ld) op@e) op@Of op@0g) oph)
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o Consider a stack with one operation Op(n, x), where n > 0.
Op(n, x): pop n items from the stack and push x to it.

o What is the time complexity of each operation?
o Assume each single push and pop has cost 1 (e.g., stack is
implemented using a linked list).
o Assume m — 1 operations pop nothing and the m'th operation pops
everything
o A single operation can have a cost of ©(m) in the worst case.

g
c d f f
b b b e e e
a a a a a a a h

op(0,a) op(Ob) op(0c) op(ld) op(e) op@Of) op@0g) oph)
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o Consider a stack with one operation Op(n, x), where n > 0.
Op(n, x): pop n items from the stack and push x to it.

o What is the time complexity of each operation?
o Assume each single push and pop has cost 1 (e.g., stack is
implemented using a linked list).
o Assume m — 1 operations pop nothing and the m'th operation pops
everything
o A single operation can have a cost of ©(m) in the worst case.
o The amortized time is much better!

g
c d f f
b b b e e e
a a a a a a a h

op(0,a) op(Ob) op(0c) op(ld) op(e) op@Of) op@0g) oph)
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o Review of aggregate method:

o Sum the total cost of m consecutive operations
o Divide by m to get the amortized cost

g
c d f f
b b b e e e
a a a a a a a h

on(0.a) ani0hY  on0e)  on(ld)  on(?2e) opo(0.H  0op(0,9)  op(4h)
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»“.;;i“‘ Aggregate Method for Special Stacks

o Review of aggregate method:

o Sum the total cost of m consecutive operations
o Divide by m to get the amortized cost

o Unlike bit flips and dynamic arrays, we cannot predict the cost of
the i'th operation.

o The aggregate method is limited and cannot help for amortized
analysis of special stacks!

g
c d f f
b b b e e e
a a a a a a a h

on(0.a) ani0hY  on0e)  on(ld)  on(?2e) opo(0.H  0op(0,9)  op(4h)
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»“;i“‘ Accounting Method for Special Stacks

o Review of accounting method:

o Each operations comes with a fixed deposit that is added to the
account (defines the amortized cost).

o For each operation, we subtract the cost of the operation from the
account

o Inexpensive operations contribute to the account
o Expensive operations take away from the account
o Iff the account is non-negative after each operation, the amortized
cost is at most the fixed deposit.

g
c d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op@e) op@Of) op0g) op(4h)
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»“;s“‘ Accounting Method for Special Stacks

o Review of accounting method:

o Each operations comes with a fixed deposit that is added to the
account (defines the amortized cost).

o For each operation, we subtract the cost of the operation from the
account

o Inexpensive operations contribute to the account
o Expensive operations take away from the account

o Iff the account is non-negative after each operation, the amortized
cost is at most the fixed deposit.

o Often, the account can be imagined as sum of ‘credits’ assigned to
different components of data structure

g
c d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op@e) op@Of) op0g) op(4h)
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o We prove an amortized cost of 2 per operation — assume there is a
fixed deposit of 2 per operation.

g
[ d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op(2e) op@Of) 0op0g) op4h)

Bal:1  Bal2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:1
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o We prove an amortized cost of 2 per operation — assume there is a
fixed deposit of 2 per operation.

o Maintain this invariant: there is a credit of 1 for each item in the
stack — account is the number of items in the stack.

g
[ d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op(2e) op@Of) 0op0g) op4h)

Bal:1  Bal2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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»““;\“ Accounting Method for Special Stacks

o We prove an amortized cost of 2 per operation — assume there is a
fixed deposit of 2 per operation.

o Maintain this invariant: there is a credit of 1 for each item in the
stack — account is the number of items in the stack.

o OP(n, x) where n > 0:

g
[ d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op(2e) op@Of) op0g) op4h)

Bal:1  Bal:2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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»“;i“‘ Accounting Method for Special Stacks

o We prove an amortized cost of 2 per operation — assume there is a
fixed deposit of 2 per operation.

o Maintain this invariant: there is a credit of 1 for each item in the
stack — account is the number of items in the stack.
o OP(n, x) where n > 0:
o Pop n items: there is a credit of 1 for each item that is popped; so

the cost that the algorithm pays for pops is the same as the
consumed credit — account remains positive

g
[ d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op(2e) op@Of) 0op0g) op4h)

Bal:1  Bal:2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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»“;s“‘ Accounting Method for Special Stacks

o We prove an amortized cost of 2 per operation — assume there is a
fixed deposit of 2 per operation.

o Maintain this invariant: there is a credit of 1 for each item in the
stack — account is the number of items in the stack.

o OP(n, x) where n > 0:

o Pop n items: there is a credit of 1 for each item that is popped; so
the cost that the algorithm pays for pops is the same as the
consumed credit — account remains positive

o Push(x): there is a cost of 1 and fixed deposit of 2; the extra saving
is stored as the credit for the item.

g
[ d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op(2e) op@Of) 0op0g) op(4h)

Bal:1  Bal:2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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o With a fixed deposit of 2 per operation, we showed that the balance
remains non-negative after each operation

o The balance was the accumulated credits stored in each item in the
stack

o We conclude that the amortized cost of each operation is at most 2

g
[ d f f
b b b e e e
a a a a a a a h

op(0,a) op(0,b) op(0c) op(ld) op(2e) op(Of) op0g) op4h)

Bal:1  Bal2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:1
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»““;\“ Potential Method for Special Stacks

o Review: Define a potential function ¢(i) which maps the state of
the structure after operation i to a positive number.
o Potential is equivalent to the available credit after each operation in
the accounting method.

o Amortized cost is the summation of actual cost and the difference in
potential function:
E(N)=c()+d()—P(i—1)



v

PN
~

;;;i“‘ Potential Method for Special Stacks

o Review: Define a potential function ¢(i) which maps the state of
the structure after operation i to a positive number.

o Potential is equivalent to the available credit after each operation in
the accounting method.

o Amortized cost is the summation of actual cost and the difference in
potential function:

e(N)=c()+ (i) —P(i—1)

o Define the potential to be the number of items in the stack

BNAIHIEAIFIHIN

op(0,a) op(0b) op(0.c) op(ld) op(2e) op@©f) ©op0g) op(4h)
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Bal:1  Bal2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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;;;i“‘ Potential Method for Special Stacks

o Review: Define a potential function ¢(i) which maps the state of
the structure after operation i to a positive number.
o Potential is equivalent to the available credit after each operation in
the accounting method.

o Amortized cost is the summation of actual cost and the difference in
potential function:

E(N)=c()+d()—P(i—1)
o Define the potential to be the number of items in the stack
o Assume operation i is OP(n, x). The actual cost is ¢(i) = n+ 1.

BNAIHIBAIFIHIN

op(0,a) op(0b) op(0.c) op(ld) op(2e) op@Of) ©op0g) op(4h)
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Bal:1  Bal2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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o Review: Define a potential function ¢(i) which maps the state of
the structure after operation i to a positive number.
o Potential is equivalent to the available credit after each operation in

the accounting method.

o Amortized cost is the summation of actual cost and the difference in
potential function:

E(N)=c()+d()—P(i—1)
o Define the potential to be the number of items in the stack

o Assume operation i is OP(n, x). The actual cost is ¢(i) = n+ 1.

o After the operation, the number of items is increased by 1 — n, i.e.,
S()—d(i—1)=1—n.

BNAIHIBAIFIHIN

op(0,a) op(0b) op(0.c) op(ld) op(2e) op@Of) ©op0g) op(4h)
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Bal:1  Bal2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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o Review: Define a potential function ¢(i) which maps the state of
the structure after operation i to a positive number.
o Potential is equivalent to the available credit after each operation in
the accounting method.

o Amortized cost is the summation of actual cost and the difference in
potential function:

E(N)=c()+d()—P(i—1)
o Define the potential to be the number of items in the stack

o Assume operation i is OP(n, x). The actual cost is ¢(i) = n+ 1.

o After the operation, the number of items is increased by 1 — n, i.e.,
d(i) — d>(i—1)—1—n

o The amortized cost is é(i) = (n+1) + (1 —

TUEELEE

op(0,a) op(0b) op(0.c) op(ld) op(2e) op@Of) ©op0g) op(4h)
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Bal:1  Bal2 Bal:3 Bal:3 Bal:2 Bal:3 Bal:4 Bal:l
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WY More Examples of Amortized Analysis

o Fibonacci heaps: similar to binomial heaps except that they have a
more ‘relaxed’ structure

o Most operations can be done in constant time; for some operations,
the heap should be restructured.

o The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey
is O(1) (champions for priority queues).
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WY More Examples of Amortized Analysis

o Fibonacci heaps: similar to binomial heaps except that they have a
more ‘relaxed’ structure

o Most operations can be done in constant time; for some operations,
the heap should be restructured.

o The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey
is O(1) (champions for priority queues).

o Dynamic lists and arrays

o Update a self-adjusting linked list with Move-To-Front strategy:
applications in data compression
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WY  More Examples of Amortized Analysis
o Fibonacci heaps: similar to binomial heaps except that they have a

more ‘relaxed’ structure

o Most operations can be done in constant time; for some operations,
the heap should be restructured.

o The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey
is O(1) (champions for priority queues).

o Dynamic lists and arrays

o Update a self-adjusting linked list with Move-To-Front strategy:
applications in data compression
o Splay trees: dynamic binary trees which move an accessed item
closer to the root.
o lIdeal for real-world scenarios where there is locality in accesses
o Dynamic optimality conjecture: the amortized cost of accessing an
item in a splay tree is within a constant ratio of any other tree (a
challenging open question).
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WY  More Examples of Amortized Analysis

o Fibonacci heaps: similar to binomial heaps except that they have a
more ‘relaxed’ structure

o Most operations can be done in constant time; for some operations,
the heap should be restructured.
o The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey

is O(1) (champions for priority queues).
o Dynamic lists and arrays

o Update a self-adjusting linked list with Move-To-Front strategy:
applications in data compression
o Splay trees: dynamic binary trees which move an accessed item
closer to the root.
o lIdeal for real-world scenarios where there is locality in accesses
o Dynamic optimality conjecture: the amortized cost of accessing an
item in a splay tree is within a constant ratio of any other tree (a
challenging open question).

o The whole field of online algorithms!



