EECS 4101-5101
 Advanced Data Structures

Shahin Kamali

Topic 1b - Amortized Analysis
CLRS 17-1, 17-2, 17-3, 17-4
York University

Picture is from the cover of the textbook CLRS.

Amortized vs Average Analysis

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 \mathrm{~km}$).

Amortized vs Average Analysis

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 \mathrm{~km}$).
- Solution 1: every day, choose a random number x uniformly from the range $[100,500]$ and drive x kilometre that day.

Amortized vs Average Analysis

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 \mathrm{~km}$).
- Solution 1: every day, choose a random number x uniformly from the range $[100,500]$ and drive x kilometre that day.
- You drive 300 kilometers per day on average

Amortized vs Average Analysis

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 \mathrm{~km}$).
- Solution 1: every day, choose a random number x uniformly from the range $[100,500]$ and drive x kilometre that day.
- You drive 300 kilometers per day on average
- Solution 2: drive city by city:

Amortized vs Average Analysis

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 \mathrm{~km}$).
- Solution 1: every day, choose a random number x uniformly from the range $[100,500]$ and drive x kilometre that day.
- You drive 300 kilometers per day on average
- Solution 2: drive city by city:
- Day 1: Winnipeg to ThunderBay(700 km) Day 2: Thunder Bay to Wawa (500 km)
- Day 3: Wawa to Toronto (900 km) Day 4: Toronto to Montreal (500km)

Amortized vs Average Analysis

- Assume you want to drive from Winnipeg to Montreal (distance is $\approx 2600 \mathrm{~km}$).
- Solution 1: every day, choose a random number x uniformly from the range $[100,500]$ and drive x kilometre that day.
- You drive 300 kilometers per day on average
- Solution 2: drive city by city:
- Day 1: Winnipeg to ThunderBay(700 km) Day 2: Thunder Bay to Wawa (500 km)
- Day 3: Wawa to Toronto (900 km) Day 4: Toronto to Montreal (500 km)
- On average, you drive $2600 / 4=650 \mathrm{~km}$ per day. We say amortized distance moved every day is 650 km .

Amortized vs Average Analysis

- Both are concerned with the cost averaged over a sequence of operations.

Amortized vs Average Analysis

- Both are concerned with the cost averaged over a sequence of operations.
- Average case analysis relies on probabilistic assumptions about the input or the data structure
- There is an underlying probability distribution.
- The worst-case might be met with some small chance (you can be 'lucky' or not).

Amortized vs Average Analysis

- Both are concerned with the cost averaged over a sequence of operations.
- Average case analysis relies on probabilistic assumptions about the input or the data structure
- There is an underlying probability distribution.
- The worst-case might be met with some small chance (you can be 'lucky' or not).
- Amortized analysis consider consider a sequence of consecutive operations.
- Bound the total cost for m operations
- This gives the amortized cost $B(n)$ per operation
- The amortized cost is only a function of n, the size of stored data
- Unlike average case analysis, there is no probability distribution
- Every sequence of m operations is guaranteed to have worst-case time at most $m B(n)$, regardless of the input or the sequence of operations (regardless of how lucky you are).

Amortized vs Average Analysis

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take $\Theta(n)$ time in the worst case and amortized $\Theta(\log n)$.

	worst-case time per operation	average/amortized time per operation	worst-case time for m operations	average time for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average		
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized		

Amortized vs Average Analysis

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take $\Theta(n)$ time in the worst case and amortized $\Theta(\log n)$.

	worst-case time per operation	average/amortized time per operation	worst-case time for m operations	average time for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized		

Amortized vs Average Analysis

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take $\Theta(n)$ time in the worst case and amortized $\Theta(\log n)$.

	worst-case time per operation	average/amortized time per operation	worst-case time for m operations	average time for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized	$\Theta(m \log n)$	

Amortized vs Average Analysis

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take $\Theta(n)$ time in the worst case and amortized $\Theta(\log n)$.

	worst-case time per operation	average/amortized time per operation	worst-case time for m operations	average time for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	$\Theta(m \log n)$
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized	$\Theta(m \log n)$	

Amortized vs Average Analysis

- Let's compare two algorithms A and B
- A performs operations which take $\Theta(n)$ time in the worst case and $\Theta(\log n)$ on average.
- B performs operations which take $\Theta(n)$ time in the worst case and amortized $\Theta(\log n)$.

	worst-case time per operation	average/amortized time per operation	worst-case time for m operations	average time for m operations
Algorithm A	$\Theta(n)$	$\Theta(\log n)$ average	$\Theta(m \cdot n)$	$\Theta(m \log n)$
Algorithm B	$\Theta(n)$	$\Theta(\log n)$ amortized	$\Theta(m \log n)$	$\Theta(m \log n)$

Bit Counter

- Start from an initial configuration where all bits are ' 0 '
- Each operation increments the encoded number
- We want to know how many bits are flipped per operation

Bit Counter

- Start from an initial configuration where all bits are ' 0 '
- Each operation increments the encoded number
- We want to know how many bits are flipped per operation
- The i 'th bit from right is flipped iff all $i-1$ bits on its right are 1 before the increment ($i \geq 0$)
- After the flip all bits on the right will be 0 .
- In the next $2^{i}-1$ operations after the flip the bit is not flipped.
- The i^{\prime} th bit is flipped once in 2^{i} operations

rogm7							
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0

0	1	1	0	1	1	1	1
0	1	1	1	0	0	0	0

after 111th increment 1 bit flipped after 112 th increment 5 bits flipped

Bit Counter

- For a sequence of m operations, the i^{\prime} th bit is flipped $\frac{m}{2^{\prime}}$ times
- Total number of flips will be at most
$\underbrace{m}_{\text {flips of index } 0}+\underbrace{\frac{m}{2}}_{\text {flips of index } 1}+\ldots+\underbrace{\frac{m}{2\lceil\log m\rceil}}_{\text {flips of index }\lceil\log m\rceil}<m \sum_{i=0}^{\infty} \frac{1}{2^{i}}=2 m$

rog m7					2	1	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0
0	1	1	0	1	1	1	1
0	1	1	1	0	0	0	0

initial configuration $\begin{array}{ll}\text { after 1st increment } & 1 \text { bit flipped } \\ \text { after 2nd increment } & 2 \text { bits flipped }\end{array}$
after 2nd increment 2 bits flipped
after 111th increment 1 bit flipped
after 112th increment 5 bits flipped

Bit Counter

- For a sequence of m operations, the i^{\prime} th bit is flipped $\frac{m}{2^{\prime}}$ times
- Total number of flips will be at most
$\underbrace{m}_{\text {flips of index } 0}+\underbrace{\frac{m}{2}}_{\text {flips of index } 1}+\ldots+\underbrace{\frac{m}{2^{\lceil\log m\rceil}}}_{\text {flips of index }\lceil\log m\rceil}<m \sum_{i=0}^{\infty} \frac{1}{2^{i}}=2 m$
- The amortized number of flips per operation is $2=\Theta(1)$ flips.

${ }^{7}$ og m7							
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0

initial configuration
after 1st increment 1 bit flipped
after 2nd increment 2 bits flipped

0	1	1	0	1	1	1	1
0	1	1	1	0	0	0	0

after 111th increment after 112 th increment 5 bits flipped

Bit Counter

- For a sequence of m operations, the i^{\prime} th bit is flipped $\frac{m}{2^{\prime}}$ times
- Total number of flips will be at most
$\underbrace{m}_{\text {flips of index } 0}+\underbrace{\frac{m}{2}}_{\text {flips of index } 1}+\ldots+\underbrace{\frac{m}{2^{\lceil\log m\rceil}}}_{\text {flips of index }\lceil\log m\rceil}<m \sum_{i=0}^{\infty} \frac{1}{2^{i}}=2 m$
- The amortized number of flips per operation is $2=\Theta(1)$ flips.
- The worst case number of flips is $\Theta(\log m)$; but it never happens that a sequence of m operations have $m \Theta(\log m)$ flips!

rog m7					2	1	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0

initial configuration after 1st increment
after 2nd increment

1 bit flipped
2 bits flipped

0	1	1	0	1	1	1	1
0	1	1	1	0	0	0	0

after 111th increment after 112 th increment 5 bits flipped

Amortized Analysis Review

- Considering a sequence of m operations for sufficiently large m :
- Some operations are more 'expensive' and most are 'inexpensive'.
- Amortized cost is the average cost over all operations
- There is no probability distribution or randomness

Amortized Analysis Review

- Considering a sequence of m operations for sufficiently large m :
- Some operations are more 'expensive' and most are 'inexpensive'.
- Amortized cost is the average cost over all operations
- There is no probability distribution or randomness
- We saw the amortized number of flips when incrementing a number m times is $\Theta(1)$
- Some increment operation need $\Theta(\log m)$ flips while most operation take less flips.
- On average, each operation needs $\Theta(1)$ flips.

Methods for Amortized Analysis

- There are three frameworks for amortized analysis.
- Aggregate method:
- Sum the total cost of m operations
- Divide by m to get the amortized cost
- This is what we did for bit flips

Methods for Amortized Analysis

- There are three frameworks for amortized analysis.
- Aggregate method:
- Sum the total cost of m operations
- Divide by m to get the amortized cost
- This is what we did for bit flips
- Accounting method
- Analogy with a bank account, where there are fixed deposits and variable withdrawals

Methods for Amortized Analysis

- There are three frameworks for amortized analysis.
- Aggregate method:
- Sum the total cost of m operations
- Divide by m to get the amortized cost
- This is what we did for bit flips
- Accounting method
- Analogy with a bank account, where there are fixed deposits and variable withdrawals
- Potential method
- Define amortized cost through potential function which maps the sequence of operations to an integer

Methods for Amortized Analysis

- There are three frameworks for amortized analysis.
- Aggregate method:
- Sum the total cost of m operations
- Divide by m to get the amortized cost
- This is what we did for bit flips
- Accounting method
- Analogy with a bank account, where there are fixed deposits and variable withdrawals
- Potential method
- Define amortized cost through potential function which maps the sequence of operations to an integer
- Let's review these methods with an example!

Dynamic Arrays

- Problem: implement a stack stored in an array to support push (insert) operations.
- The problem is online in the sense that we do not know how many operations to expect

Dynamic Arrays

- Problem: implement a stack stored in an array to support push (insert) operations.
- The problem is online in the sense that we do not know how many operations to expect
- How large the array should be? there is a trade-off:
- larger array: less likely to run out of space, more unused/wasted memory
- smaller array: more likely to run out of space, less unused/wasted memory

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array
i operation

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array
i operation

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array

```
i operation
1 insert(a)
```


Dynamic Arrays

- Possible solution: maintain arrays with

$$
a \rightarrow \frac{a}{b}
$$ sizes that are powers of 2.

- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array
i operation
1 insert(a)
2 insert(b) no space: allocate array of size 2, copy 1 item

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array
i operation
1 insert(a)
2 insert(b) no space: allocate array of size 2, copy 1 item
3 insert(c) no space: allocate array of size 4, copy 2 item

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:

$$
a \rightarrow \frac{a}{b} \rightarrow \begin{array}{|l|}
\hline a \\
\hline \frac{b}{c} \\
\hline \frac{d}{a} \\
\hline
\end{array}
$$

- allocate a new array of size a $2 n$
- copy all n items to the new array
i operation
1 insert(a)
2 insert(b) no space: allocate array of size 2, copy 1 item
3 insert(c) no space: allocate array of size 4, copy 2 item
4 insert(d)

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:

$$
\begin{array}{|l|}
\hline a \\
\hline a \\
\hline b
\end{array} \rightarrow \begin{array}{|c|}
\hline \frac{a}{b} \\
\hline \frac{c}{d} \\
\hline
\end{array} \rightarrow \begin{array}{|l|}
\hline a \\
\hline b \\
\hline
\end{array}
$$

i operation
1 insert(a)
2 insert(b) no space: allocate array of size 2, copy 1 item
3 insert(c) no space: allocate array of size 4, copy 2 item
4 insert(d)
5 insert(e) no space: allocate array of size 8, copy 4 item

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2.
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array

```
operation
```

1 insert(a)
$\begin{array}{lll}2 & \operatorname{insert}(\mathrm{~b}) & \text { no space: allocate array of size 2, copy } 1 \text { item } \\ 3 & \operatorname{insert}(\mathrm{c}) & \text { no space: allocate array of size 4, copy } 2 \text { item }\end{array}$
$\begin{array}{lll}2 & \operatorname{insert}(\mathrm{~b}) & \text { no space: allocate array of size 2, copy } 1 \text { item } \\ 3 & \operatorname{insert}(\mathrm{c}) & \text { no space: allocate array of size 4, copy } 2 \text { item }\end{array}$
4 insert(d)
5 insert(e) no space: allocate array of size 8, copy 4 item
6 insert(f)

$$
\begin{array}{|l|}
\hline a \\
\hline a \\
\hline b
\end{array} \rightarrow \begin{array}{|l|}
\hline \frac{a}{b} \\
\hline \frac{c}{d} \\
\hline d
\end{array} \rightarrow \begin{array}{|l|}
\hline a \\
\hline b \\
\hline \frac{c}{d} \\
\hline \frac{e}{f} \\
\hline \\
\hline
\end{array}
$$

i operation

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array

$$
\begin{array}{|l|}
\hline a \\
\hline a \\
\hline b
\end{array} \rightarrow \begin{array}{|l|}
\hline \frac{a}{b} \\
\hline \frac{c}{d} \\
\hline a \\
\hline
\end{array} \begin{array}{|l|}
\hline a \\
\hline \frac{b}{c} \\
\hline \frac{d}{a} \\
\hline
\end{array}
$$

operation
1 insert(a)
2 insert(b) no space: allocate array of size 2, copy 1 item
3 insert(c) no space: allocate array of size 4, copy 2 item
4 insert(d)
5 insert(e) no space: allocate array of size 8, copy 4 item
6 insert(f)
7 insert(g)

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array
i operation

1 insert(a)
2 insert(b) no space: allocate array of size 2, copy 1 item
3 insert(c) no space: allocate array of size 4, copy 2 item
4 insert(d)
5 insert(e) no space: allocate array of size 8, copy 4 item
6 insert(f)
7 insert(g)
8 insert(h)

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array
i operation
1 insert(a)
2 insert(b)
3 insert(c)
no space: allocate array of size 2 , copy 1 item
4 insert(d)
5 insert(e) no space: allocate array of size 8, copy 4 item
6 insert(f)
7 insert(g)
8 insert(h)
9 insert(i) no space: allocate array of size 16, copy 8 item

Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array

```
operation
insert(a)
insert(b) no space: allocate array of size 2, copy 1 item
insert(c) no space: allocate array of size 4, copy 2 item
insert(d)
insert(e) no space: allocate array of size 8, copy 4 item
insert(f)
insert(g)
insert(h)
insert(i) no space: allocate array of size 16, copy 8 item
in insert(j)
```


Dynamic Arrays

- Possible solution: maintain arrays with sizes that are powers of 2 .
- If the array runs out of space $(n>a)$:
- allocate a new array of size a $2 n$
- copy all n items to the new array

```
operation
insert(a)
insert(b) no space: allocate array of size 2, copy 1 item
insert(c) no space: allocate array of size 4, copy 2 item
insert(d)
insert(e) no space: allocate array of size 8, copy 4 item
insert(f)
insert(g)
insert(h)
insert(i) no space: allocate array of size 16, copy 8 item
```

10 insert(j)
11 insert(k)

Dynamic Arrays

- The worst-case cost occurs when the whole array is copied to a new array:
- $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.

Dynamic Arrays

- The worst-case cost occurs when the whole array is copied to a new array:
- $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.

Dynamic Arrays

- The worst-case cost occurs when the whole array is copied to a new array:
- $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.
- We can obtain a much better (smaller) bound.

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1

Dynamic Arrays

- The worst-case cost occurs when the whole array is copied to a new array:
- $\Theta(n)$ worst-case time per insert.
- Rough estimate: a sequence of m insert operations takes $O(m \cdot n)$ time.
- We can obtain a much better (smaller) bound.
- Let $c(i)$ denote the cost of the ith insertion (cost $=$ number of insert/copies).
$c(i)= \begin{cases}i & \text { if } i=2^{k}+1 \text { for some integer } k \\ 1 & \text { if otherwise }\end{cases}$

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1

Aggregation for Dynamic Arrays

- Aggregate method: find total cost of m operations and divide by m

$$
c(i)= \begin{cases}i & \text { if } i=2^{k}+1 \text { for some integer } k \\ 1 & \text { if otherwise }\end{cases}
$$

Aggregation for Dynamic Arrays

- Aggregate method: find total cost of m operations and divide by m

$$
c(i)= \begin{cases}i & \text { if } i=2^{k}+1 \text { for some integer } k \\ 1 & \text { if otherwise }\end{cases}
$$

$$
\begin{aligned}
\text { Cost of } m \text { insertions }=\sum_{i=1}^{m} c(i) & \leq \underbrace{m}_{\text {insert new item }}+\underbrace{\sum_{j=0}^{\lfloor\log (m-1)\rfloor} 2^{j}}_{\text {copy old items to new array }} \\
& =m+2^{\lfloor\log (m-1)\rfloor+1}-1 \\
& \leq m+2^{\log m+1}-1 \\
& =m+2 m-1 \\
& =3 m-1 \\
& \in \Theta(m)
\end{aligned}
$$

Aggregation for Dynamic Arrays

- Aggregate method: find total cost of m operations and divide by m

$$
c(i)= \begin{cases}i & \text { if } i=2^{k}+1 \text { for some integer } k \\ 1 & \text { if otherwise }\end{cases}
$$

$$
\begin{aligned}
\text { Cost of } m \text { insertions }=\sum_{i=1}^{m} c(i) & \leq \underbrace{m}_{\text {insert new item }}+\underbrace{\sum_{j=0}^{\lfloor\log (m-1)\rfloor} 2^{j}}_{\text {copy old items to new array }} \\
& =m+2^{\lfloor\log (m-1)\rfloor+1}-1 \\
& \leq m+2^{\log m+1}-1 \\
& =m+2 m-1 \\
& =3 m-1 \\
& \in \Theta(m)
\end{aligned}
$$

- The amortized cost is hence $\frac{\Theta(m)}{m}=\Theta(1)$

Aggregation for Dynamic Arrays

- Aggregate method: find total cost of m operations and divide by m

$$
\begin{aligned}
& c(i)= \begin{cases}i \quad \text { if } i=2^{k}+1 \text { for some integer } k \\
1 & \text { if otherwise }\end{cases} \\
& \quad \text { Cost of } m \text { insertions }=\sum_{i=1}^{m} c(i)
\end{aligned} \underbrace{m}_{\text {insert new item }}+\underbrace{\sum_{j=0}^{\lfloor\log (m-1)\rfloor} 2^{j}}_{\text {copy old items to new array }} \quad \begin{aligned}
& =m+2^{\lfloor\log (m-1)\rfloor+1}-1 \\
& \leq m+2^{\log m+1}-1 \\
& =m+2 m-1 \\
& =3 m-1 \\
& \in \Theta(m)
\end{aligned}
$$

- The amortized cost is hence $\frac{\Theta(m)}{m}=\Theta(1)$
- The aggregate is useful for simple amortized analysis.
- Sometimes require a different technique to obtain amortized cost.

Accounting Method

- Assume you want to prove that your average (amortized) daily cost is no more than $100 \$$.

Accounting Method

- Assume you want to prove that your average (amortized) daily cost is no more than $100 \$$.
- Some days you might spend much more but on average it is at most 100\$

Accounting Method

- Assume you want to prove that your average (amortized) daily cost is no more than $100 \$$.
- Some days you might spend much more but on average it is at most 100\$
- One way to do that is to assume every day $100 \$$ is deposited into your account
- On days which you spend more than $100 \$$, you should use accumulated credit from previous days

Accounting Method

- Assume you want to prove that your average (amortized) daily cost is no more than $100 \$$.
- Some days you might spend much more but on average it is at most 100\$
- One way to do that is to assume every day $100 \$$ is deposited into your account
- On days which you spend more than $100 \$$, you should use accumulated credit from previous days
- If your balance remains non-negative at the end of each day, your amortized cost is at most $100 \$$
- In m consecutive days your expenditure has been at most $100 \mathrm{~m} \rightarrow$ amortized cost at most $100 \$$.

Accounting Method

- Accounting method overview:
- Each operation deposits a fixed credit into an account (This amount is an upper bound on the amortized cost.)
- Each operation uses 'credit' to pay its cost
- Inexpensive operations save more than their cost
- Expensive operations cost more more than they save
- Account must remain non-negative

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
- Each operation deposits $\$ 3$
- Each write/move operation costs $\$ 1$

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
- Each operation deposits $\$ 3$
- Each write/move operation costs $\$ 1$
- Inexpensive insertion deposits $\$ 3$ and spends $\$ 1=$ \$2 saved

$$
\begin{aligned}
& a \rightarrow \\
& 61=
\end{aligned}
$$

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
- Each operation deposits $\$ 3$
- Each write/move operation costs $\$ 1$
- Inexpensive insertion deposits $\$ 3$ and spends $\$ 1=$ $\$ 2$ saved
- Expensive insertion deposits $\$ 3$ and spends $\$ m \rightarrow$ $\$(m-3)$ spent

$$
\begin{array}{r}
a \rightarrow \\
61=
\end{array}
$$

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
- Each operation deposits $\$ 3$
- Each write/move operation costs $\$ 1$
- Inexpensive insertion deposits $\$ 3$ and spends $\$ 1=$ $\$ 2$ saved
- Expensive insertion deposits $\$ 3$ and spends $\$ m \rightarrow$ $\$(m-3)$ spent
- Number of consecutive inexpensive insertions before expensive insertion: $(m-1) / 2-1$

$$
\begin{aligned}
& a \rightarrow \\
& \$ 1= \\
& n \rightarrow \\
& \text { before }
\end{aligned}
$$

i	1	2	3	4	5	6	$\mathbf{7}$	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
- Each operation deposits $\$ 3$
- Each write/move operation costs $\$ 1$
- Inexpensive insertion deposits $\$ 3$ and spends $\$ 1=$ $\$ 2$ saved
- Expensive insertion deposits $\$ 3$ and spends $\$ m \rightarrow$ $\$(m-3)$ spent
- Number of consecutive inexpensive insertions before expensive insertion: $(m-1) / 2-1$
- $\rightarrow \$ 2((m-1) / 2-1)=\$(m-3)$ accumulated credit since last expensive insertion

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

Accounting Method - Dynamic Arrays

- We prove the amortized cost for insertion is 3
- Each operation deposits \$3
- Each write/move operation costs $\$ 1$
- Inexpensive insertion deposits $\$ 3$ and spends $\$ 1=$ $\$ 2$ saved
- Expensive insertion deposits $\$ 3$ and spends $\$ m \rightarrow$ $\$(m-3)$ spent
- Number of consecutive inexpensive insertions before expensive insertion: $(m-1) / 2-1$
- $\rightarrow \$((m-1) / 2-1)=\$(m-3)$ accumulated credit since last expensive insertion
- \rightarrow account remains non-negative

i	1	2	3	4	5	6	7	8	9	10
array size (a)	1	2	4	4	8	8	8	8	16	16
$c(i)$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	1	$\mathbf{5}$	1	1	1	$\mathbf{9}$	1
total deposited	3	6	9	12	15	18	21	24	27	30
total spent	1	3	6	7	12	13	14	15	26	27
available credit	2	3	3	5	3	5	7	9	1	3

Potential method

- Define a potential function Φ that maps the state of the structure and the index of an operation to an integer
- Potential is basically the available credit in accounting method

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)
$$

- $\hat{c}(i) \rightarrow$ amortized cost of operation i
- $c(i) \rightarrow$ actual cost of operation i
- Total amortized cost will be total cost plus a constant independent of m.

Potential Method for Dynamic Arrays

- Define the potential to be $\Phi(i)=2 i-a_{i}$
- a_{i} denotes the size of the array after operation i

Potential Method for Dynamic Arrays

- Define the potential to be $\Phi(i)=2 i-a_{i}$
- a_{i} denotes the size of the array after operation i
- In case of an inexpensive operation, we have $c_{i}=1$ and $a_{i}=a_{i-1}$; (the size of array does not change)
- the amortized cost will be

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)=1+\left[2 i-a_{i}\right]-\left[2(i-1)-a_{i-1}\right]=3
$$

Potential Method for Dynamic Arrays

- Define the potential to be $\Phi(i)=2 i-a_{i}$
- a_{i} denotes the size of the array after operation i
- In case of an inexpensive operation, we have $c_{i}=1$ and $a_{i}=a_{i-1}$; (the size of array does not change)
- the amortized cost will be

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)=1+\left[2 i-a_{i}\right]-\left[2(i-1)-a_{i-1}\right]=3
$$

- For expensive operation i, table size changes from $a_{i-1}=(i-1)$ to $a_{i}=2(i-1)$ and we have $c_{i}=i$.
- the amortized cost will be

$$
\begin{aligned}
& \hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)=i+\left[2 i-a_{i}\right]-\left[2(i-1)-a_{i-1}\right] \\
& =i+2 i-2(i-1)-2 i+2+(i-1)=3
\end{aligned}
$$

Potential Method for Dynamic Arrays

- Define the potential to be $\Phi(i)=2 i-a_{i}$
- a_{i} denotes the size of the array after operation i
- In case of an inexpensive operation, we have $c_{i}=1$ and $a_{i}=a_{i-1}$; (the size of array does not change)
- the amortized cost will be

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)=1+\left[2 i-a_{i}\right]-\left[2(i-1)-a_{i-1}\right]=3
$$

- For expensive operation i, table size changes from $a_{i-1}=(i-1)$ to $a_{i}=2(i-1)$ and we have $c_{i}=i$.
- the amortized cost will be

$$
\begin{aligned}
& \hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)=i+\left[2 i-a_{i}\right]-\left[2(i-1)-a_{i-1}\right] \\
& =i+2 i-2(i-1)-2 i+2+(i-1)=3
\end{aligned}
$$

- Potential method is often the strongest method for amortized analysis

Methods for Amortized Analysis

- There are three frameworks for amortized analysis.
- Aggregate method:
- Sum the total cost of m operations
- Divide by m to get the amortized cost
- Accounting method
- Analogy with a bank account, where there are fixed deposits and variable withdrawals
- Potential method
- Define amortized cost through potential function which maps the sequence of operations to an integer
- Let's review these methods with another example!

Special Stacks

- Consider a stack with one operation $\operatorname{Op}(n, x)$, where $n \geq 0$.

$$
O p(n, x) \text { : pop } n \text { items from the stack and push } x \text { to it. }
$$

Special Stacks

- Consider a stack with one operation $\operatorname{Op}(n, x)$, where $n \geq 0$. $O p(n, x)$: pop n items from the stack and push x to it.

Special Stacks

- Consider a stack with one operation $\operatorname{Op}(n, x)$, where $n \geq 0$. $O p(n, x)$: pop n items from the stack and push x to it.
- What is the time complexity of each operation?
- Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).

Special Stacks

- Consider a stack with one operation $\operatorname{Op}(n, x)$, where $n \geq 0$. $O p(n, x)$: pop n items from the stack and push x to it.
- What is the time complexity of each operation?
- Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).
- Assume $m-1$ operations pop nothing and the m'th operation pops everything
- A single operation can have a cost of $\Theta(m)$ in the worst case.

Special Stacks

- Consider a stack with one operation $\operatorname{Op}(n, x)$, where $n \geq 0$. $O p(n, x)$: pop n items from the stack and push x to it.
- What is the time complexity of each operation?
- Assume each single push and pop has cost 1 (e.g., stack is implemented using a linked list).
- Assume $m-1$ operations pop nothing and the m'th operation pops everything
- A single operation can have a cost of $\Theta(m)$ in the worst case.
- The amortized time is much better!

Aggregate Method for Special Stacks

- Review of aggregate method:
- Sum the total cost of m consecutive operations
- Divide by m to get the amortized cost

Aggregate Method for Special Stacks

- Review of aggregate method:
- Sum the total cost of m consecutive operations
- Divide by m to get the amortized cost
- Unlike bit flips and dynamic arrays, we cannot predict the cost of the i 'th operation.
- The aggregate method is limited and cannot help for amortized analysis of special stacks!

Accounting Method for Special Stacks

- Review of accounting method:
- Each operations comes with a fixed deposit that is added to the account (defines the amortized cost).
- For each operation, we subtract the cost of the operation from the account
- Inexpensive operations contribute to the account
- Expensive operations take away from the account
- Iff the account is non-negative after each operation, the amortized cost is at most the fixed deposit.

Accounting Method for Special Stacks

- Review of accounting method:
- Each operations comes with a fixed deposit that is added to the account (defines the amortized cost).
- For each operation, we subtract the cost of the operation from the account
- Inexpensive operations contribute to the account
- Expensive operations take away from the account
- Iff the account is non-negative after each operation, the amortized cost is at most the fixed deposit.
- Often, the account can be imagined as sum of 'credits' assigned to different components of data structure

Accounting Method for Special Stacks

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.

Accounting Method for Special Stacks

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.

Accounting Method for Special Stacks

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.
- $O P(n, x)$ where $n \geq 0$:

Accounting Method for Special Stacks

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.
- $O P(n, x)$ where $n \geq 0$:
- Pop n items: there is a credit of 1 for each item that is popped; so the cost that the algorithm pays for pops is the same as the consumed credit \rightarrow account remains positive

Accounting Method for Special Stacks

- We prove an amortized cost of 2 per operation \rightarrow assume there is a fixed deposit of 2 per operation.
- Maintain this invariant: there is a credit of 1 for each item in the stack \rightarrow account is the number of items in the stack.
- $O P(n, x)$ where $n \geq 0$:
- Pop n items: there is a credit of 1 for each item that is popped; so the cost that the algorithm pays for pops is the same as the consumed credit \rightarrow account remains positive
- Push (x) : there is a cost of 1 and fixed deposit of 2; the extra saving is stored as the credit for the item.

Accounting Method for Special Stacks

- With a fixed deposit of 2 per operation, we showed that the balance remains non-negative after each operation
- The balance was the accumulated credits stored in each item in the stack
- We conclude that the amortized cost of each operation is at most 2

Potential Method for Special Stacks

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation i to a positive number.
- Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)
$$

Potential Method for Special Stacks

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation i to a positive number.
- Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)
$$

- Define the potential to be the number of items in the stack

Potential Method for Special Stacks

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation i to a positive number.
- Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)
$$

- Define the potential to be the number of items in the stack
- Assume operation i is $O P(n, x)$. The actual cost is $c(i)=n+1$.

Potential Method for Special Stacks

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation i to a positive number.
- Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)
$$

- Define the potential to be the number of items in the stack
- Assume operation i is $O P(n, x)$. The actual cost is $c(i)=n+1$.
- After the operation, the number of items is increased by $1-n$, i.e., $\Phi(i)-\Phi(i-1)=1-n$.

op(0,a) op(0,b)

Bal: $1 \quad$ Bal:2
Bal:3
Bal:3
Bal:2
Bal:3

Potential Method for Special Stacks

- Review: Define a potential function $\phi(i)$ which maps the state of the structure after operation i to a positive number.
- Potential is equivalent to the available credit after each operation in the accounting method.
- Amortized cost is the summation of actual cost and the difference in potential function:

$$
\hat{c}(i)=c(i)+\Phi(i)-\Phi(i-1)
$$

- Define the potential to be the number of items in the stack
- Assume operation i is $O P(n, x)$. The actual cost is $c(i)=n+1$.
- After the operation, the number of items is increased by $1-n$, i.e., $\Phi(i)-\Phi(i-1)=1-n$.
- The amortized cost is $\hat{c}(i)=(n+1)+(1-n)=2$.

More Examples of Amortized Analysis

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
- Most operations can be done in constant time; for some operations, the heap should be restructured.
- The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is $O(1)$ (champions for priority queues).

More Examples of Amortized Analysis

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
- Most operations can be done in constant time; for some operations, the heap should be restructured.
- The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is $O(1)$ (champions for priority queues).
- Dynamic lists and arrays
- Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression

More Examples of Amortized Analysis

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
- Most operations can be done in constant time; for some operations, the heap should be restructured.
- The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is $O(1)$ (champions for priority queues).
- Dynamic lists and arrays
- Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression
- Splay trees: dynamic binary trees which move an accessed item closer to the root.
- Ideal for real-world scenarios where there is locality in accesses
- Dynamic optimality conjecture: the amortized cost of accessing an item in a splay tree is within a constant ratio of any other tree (a challenging open question).

More Examples of Amortized Analysis

- Fibonacci heaps: similar to binomial heaps except that they have a more 'relaxed' structure
- Most operations can be done in constant time; for some operations, the heap should be restructured.
- The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey is $O(1)$ (champions for priority queues).
- Dynamic lists and arrays
- Update a self-adjusting linked list with Move-To-Front strategy: applications in data compression
- Splay trees: dynamic binary trees which move an accessed item closer to the root.
- Ideal for real-world scenarios where there is locality in accesses
- Dynamic optimality conjecture: the amortized cost of accessing an item in a splay tree is within a constant ratio of any other tree (a challenging open question).
- The whole field of online algorithms!

