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Amortized vs Average Analysis

Assume you want to drive from Winnipeg to Montreal (distance is ≈ 2600km).

Solution 1: every day, choose a random number x uniformly from the range
[100,500] and drive x kilometre that day.

You drive 300 kilometers per day on average

Solution 2: drive city by city:

Day 1: Winnipeg to ThunderBay(700km) Day 2: Thunder Bay to Wawa (500km)
Day 3: Wawa to Toronto (900km) Day 4: Toronto to Montreal (500km)

On average, you drive 2600/4 = 650km per day. We say amortized distance
moved every day is 650km.
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Amortized vs Average Analysis

Both are concerned with the cost averaged over a sequence of
operations.

Average case analysis relies on probabilistic assumptions about the
input or the data structure

There is an underlying probability distribution.
The worst-case might be met with some small chance (you can be
`lucky' or not).

Amortized analysis consider consider a sequence of consecutive
operations.

Bound the total cost for m operations
This gives the amortized cost B(n) per operation

The amortized cost is only a function of n, the size of stored data
Unlike average case analysis, there is no probability distribution
Every sequence of m operations is guaranteed to have worst-case
time at most mB(n), regardless of the input or the sequence of
operations (regardless of how lucky you are).
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Amortized vs Average Analysis

Let's compare two algorithms A and B

A performs operations which take Θ(n) time in the worst case and
Θ(log n) on average.

B performs operations which take Θ(n) time in the worst case and
amortized Θ(log n).
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Bit Counter

Start from an initial con�guration where all bits are `0'

Each operation increments the encoded number

We want to know how many bits are �ipped per operation

The i 'th bit from right is �ipped i� all i − 1 bits on its right are 1
before the increment (i ≥ 0)

After the �ip all bits on the right will be 0.
In the next 2i − 1 operations after the �ip the bit is not �ipped.
The i 'th bit is �ipped once in 2i operations
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Bit Counter

For a sequence of m operations, the i 'th bit is �ipped m
2i

times

Total number of �ips will be at most

m︸︷︷︸
flips of index 0

+
m

2︸︷︷︸
flips of index 1

+ . . .+
m

2⌈logm⌉︸ ︷︷ ︸
flips of index ⌈logm⌉

< m
∞∑
i=0

1

2i
= 2m

The amortized number of �ips per operation is 2 = Θ(1) �ips.

The worst case number of �ips is Θ(logm); but it never happens
that a sequence of m operations have mΘ(logm) �ips!
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Amortized Analysis Review

Considering a sequence of m operations for su�ciently large m:

Some operations are more `expensive' and most are `inexpensive'.
Amortized cost is the average cost over all operations
There is no probability distribution or randomness

We saw the amortized number of �ips when incrementing a number
m times is Θ(1)

Some increment operation need Θ(logm) �ips while most operation
take less �ips.
On average, each operation needs Θ(1) �ips.
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Methods for Amortized Analysis

There are three frameworks for amortized analysis.

Aggregate method:

Sum the total cost of m operations
Divide by m to get the amortized cost
This is what we did for bit �ips

Accounting method

Analogy with a bank account, where there are �xed deposits and
variable withdrawals

Potential method

De�ne amortized cost through potential function which maps the
sequence of operations to an integer

Let's review these methods with an example!
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Dynamic Arrays

Problem: implement a stack stored in an array to support push
(insert) operations.

The problem is online in the sense that we do not know how many
operations to expect

How large the array should be? there is a trade-o�:

larger array: less likely to run out of space, more unused/wasted
memory
smaller array: more likely to run out of space, less unused/wasted
memory
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Dynamic Arrays

Possible solution: maintain arrays with
sizes that are powers of 2.

If the array runs out of space (n > a):

allocate a new array of size a 2n
copy all n items to the new array

i operation
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Dynamic Arrays

The worst-case cost occurs when the whole array is
copied to a new array:

Θ(n) worst-case time per insert.

Rough estimate: a sequence of m insert operations
takes O(m · n) time.

We can obtain a much better (smaller) bound.

Let c(i) denote the cost of the ith insertion (cost =
number of insert/copies).

c(i) =

{
i if i = 2k + 1 for some integer k
1 if otherwise
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Aggregation for Dynamic Arrays
Aggregate method: �nd total cost of m operations and divide by m

c(i) =

{
i if i = 2k + 1 for some integer k
1 if otherwise

The amortized cost is hence Θ(m)
m = Θ(1)

The aggregate is useful for simple amortized analysis.

Sometimes require a di�erent technique to obtain amortized cost.
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Accounting Method

Assume you want to prove that your average (amortized) daily cost
is no more than 100$.

Some days you might spend much more but on average it is at most
100$

One way to do that is to assume every day 100$ is deposited into
your account

On days which you spend more than 100$, you should use
accumulated credit from previous days

If your balance remains non-negative at the end of each day, your
amortized cost is at most 100$

In m consecutive days your expenditure has been at most 100m →
amortized cost at most 100$.
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Accounting Method

Accounting method overview:

Each operation deposits a �xed credit into an account (This
amount is an upper bound on the amortized cost.)
Each operation uses `credit' to pay its cost

Inexpensive operations save more than their cost
Expensive operations cost more more than they save
Account must remain non-negative
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Accounting Method - Dynamic Arrays

We prove the amortized cost for insertion is 3

Each operation deposits $3
Each write/move operation costs $1
Inexpensive insertion deposits $3 and spends $1 =
$2 saved
Expensive insertion deposits $3 and spends $m →
$(m - 3) spent
Number of consecutive inexpensive insertions before
expensive insertion: (m − 1)/2− 1
→ $2((m − 1)/2− 1) = $(m − 3) accumulated
credit since last expensive insertion
→ account remains non-negative
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Potential method

De�ne a potential function Φ that maps the state of the structure
and the index of an operation to an integer

Potential is basically the available credit in accounting method

ĉ(i) = c(i) + Φ(i)− Φ(i − 1)

ĉ(i) → amortized cost of operation i
c(i) → actual cost of operation i

Total amortized cost will be total cost plus a constant independent
of m.
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Potential Method for Dynamic Arrays

De�ne the potential to be Φ(i) = 2i − ai

ai denotes the size of the array after operation i

In case of an inexpensive operation, we have ci = 1 and ai = ai−1;
(the size of array does not change)

the amortized cost will be

ĉ(i) = c(i) + Φ(i)−Φ(i − 1) = 1+ [2i − ai ]− [2(i − 1)− ai−1] = 3

For expensive operation i , table size changes from ai−1 = (i − 1) to
ai = 2(i − 1) and we have ci = i .

the amortized cost will be
ĉ(i) = c(i) + Φ(i)− Φ(i − 1) = i + [2i − ai ]− [2(i − 1)− ai−1]
= i + 2i − 2(i − 1)− 2i + 2+ (i − 1) = 3

Potential method is often the strongest method for amortized

analysis
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Methods for Amortized Analysis

There are three frameworks for amortized analysis.

Aggregate method:

Sum the total cost of m operations
Divide by m to get the amortized cost

Accounting method

Analogy with a bank account, where there are �xed deposits and
variable withdrawals

Potential method

De�ne amortized cost through potential function which maps the
sequence of operations to an integer

Let's review these methods with another example!
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Special Stacks

Consider a stack with one operation Op(n, x), where n ≥ 0.

Op(n, x): pop n items from the stack and push x to it.

What is the time complexity of each operation?

Assume each single push and pop has cost 1 (e.g., stack is
implemented using a linked list).

Assume m − 1 operations pop nothing and the m'th operation pops
everything

A single operation can have a cost of Θ(m) in the worst case.
The amortized time is much better!
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Aggregate Method for Special Stacks

Review of aggregate method:

Sum the total cost of m consecutive operations
Divide by m to get the amortized cost

Unlike bit �ips and dynamic arrays, we cannot predict the cost of
the i 'th operation.

The aggregate method is limited and cannot help for amortized
analysis of special stacks!
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Accounting Method for Special Stacks

Review of accounting method:

Each operations comes with a �xed deposit that is added to the
account (de�nes the amortized cost).
For each operation, we subtract the cost of the operation from the
account

Inexpensive operations contribute to the account
Expensive operations take away from the account

I� the account is non-negative after each operation, the amortized
cost is at most the �xed deposit.

Often, the account can be imagined as sum of `credits' assigned to
di�erent components of data structure
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Accounting Method for Special Stacks

We prove an amortized cost of 2 per operation → assume there is a
�xed deposit of 2 per operation.

Maintain this invariant: there is a credit of 1 for each item in the
stack → account is the number of items in the stack.

OP(n, x) where n ≥ 0:

Pop n items: there is a credit of 1 for each item that is popped; so
the cost that the algorithm pays for pops is the same as the
consumed credit → account remains positive
Push(x): there is a cost of 1 and �xed deposit of 2; the extra saving
is stored as the credit for the item.
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Accounting Method for Special Stacks

With a �xed deposit of 2 per operation, we showed that the balance
remains non-negative after each operation

The balance was the accumulated credits stored in each item in the
stack

We conclude that the amortized cost of each operation is at most 2
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ĉ(i) = c(i) + Φ(i)− Φ(i − 1)

De�ne the potential to be the number of items in the stack

Assume operation i is OP(n, x). The actual cost is c(i) = n + 1.

After the operation, the number of items is increased by 1− n, i.e.,
Φ(i)− Φ(i − 1) = 1− n.
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More Examples of Amortized Analysis

Fibonacci heaps: similar to binomial heaps except that they have a
more `relaxed' structure

Most operations can be done in constant time; for some operations,
the heap should be restructured.
The amortized cost for Insert, ExtractMax, Merge, and IncreaseKey
is O(1) (champions for priority queues).

Dynamic lists and arrays

Update a self-adjusting linked list with Move-To-Front strategy:
applications in data compression
Splay trees: dynamic binary trees which move an accessed item
closer to the root.

Ideal for real-world scenarios where there is locality in accesses
Dynamic optimality conjecture: the amortized cost of accessing an
item in a splay tree is within a constant ratio of any other tree (a
challenging open question).

The whole �eld of online algorithms!
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